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ABSTRACT

The sustainable deployment of Horizontal Axis Tidal Tur-
bines will require effective management and maintenance func-
tions. In part, these can be supported by the engineering of
suitable condition monitoring systems. The development of
such a system is inevitably challenging, particularly given the
present limited level of operational data associated with in-
stalled turbines during fault onset. To mitigate this limitation,
a computational fluid dynamics model is used to simulate the
operational response of a turbine under a known set of fault
conditions. Turbine rotor imbalance faults were simulated by
the introduction of increasing levels of pitch angle offset for
a single turbine blade. The effects of these fault cases upon
cyclic variations in the torque developed by the turbine ro-
tor were then used to aid creation of a condition monitoring
approach. A parametric tidal turbine rotor model was devel-
oped based on the outputs of the computational fluid dynam-
ics models. The model was used to facilitate testing of the
condition monitoring approach under a variety of more real-
istic conditions. The condition monitoring approach showed
good performance in fault detection and diagnosis for simu-
lations relating to turbulence intensities of up to 2 %. Finally,
the condition monitoring approach was applied to simulations
of 10 % turbulence intensity. Under the 10 % turbulence in-
tensity case the rotor monitoring approach was successfully
demonstrated in its use for fault detection. The paper closes
with discussion of the effectiveness of using computational
fluid dynamics simulations extended by parametric models
to develop condition monitoring systems for horizontal axis
tidal turbine applications.
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terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Energy extraction from the ocean’s tides has gained widespread
acceptance as a potential contributor to the UK energy mix
(Department of Energy & Climate Change, 2013). The driv-
ing factor behind the uptake in tidal energy extraction has
been the realisation of finite global resources and environ-
mental impacts of burning fossil fuels (Zhang & Zeng, 2013).
In order for the Horizontal Axis Tidal Turbine (HATT) de-
vices to generate energy at a competitive levelized cost of
energy (LCOE), effective strategies for reducing the burden
of operation and maintenance (O & M) costs are needed.
This has led to the research and development of condition
monitoring (CM) systems to facilitate condition-based main-
tenance operations. These aim to reduce O & M costs and
prevent catastrophic failure and premature replacement of tur-
bine components. In the context of the more mature wind
energy sector O & M costs associated with wind turbine in-
stallations have been quoted as accounting for up 25 % of
the asset cost (Godwin & Matthews, 2013).The approach of
utilising CM to inform Condition Based Maintenance (CBM)
operations is likely to be appropriate for the HATT energy
sector where O & M costs are likely to be exacerbated by
the harsh marine environments within which HATTs are de-
ployed. The paper presents the development of a HATT ro-
tor monitoring approach developed using CFD data. This
approach is heralded, relative to the data driven approaches
developed by (Leahy et al., 2018) and (Hasegawa, Ogata,
Murakawa, Kobayashi, & Ogawa, 2017) for Wind Turbines
(WTs), as limited Supervisory Control and Data Acquisition
(SCADA) data is currently available for TST deployments.
The CM techniques presented in this paper were developed
in two stages: firstly, a series HATT rotor imbalance mea-
sures were developed. These CM metrics are based on es-
tablished Computational Fluid Dynamics (CFD) HATT mod-
els. These models were developed to harbour varying de-
grees of erroneous pitch angle settings for a single turbine
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blade thus simulating differing levels of rotor imbalance fault.
The frequency content of the torque developed by the HATT
rotor, under the varying rotor imbalance conditions, was in-
spected to guide development of a set of CM metrics. The aim
of this approach was to develop a set of CM metrics based
on resolved CFD models under near-steady conditions. In
this way, the underlying effects of the fault cases were ob-
served and exploited during CM metric development. Fur-
thermore, these effects observed in CFD simulations by as-
sociation are then based on validated models. The inference
applied was that, using validated models and studying the un-
derlying blade loading mechanisms associated with the fault
cases considered, an intelligent CM approach could be devel-
oped.

Secondly, the research then considered the development of a
parametric rotor torque model. This model is used to gen-
erate time-series of the developed HATT rotor torque which
are representative of general and stochastic turbine operations
i.e. turbine operation under varying levels of turbulence in-
tensity (TI) in the on-coming flow. Modelling such scenarios
via CFD is computationally expensive and time consuming;
especially, as a minimum number of datasets are generally re-
quired to afford statistical significance to the CM study. As
such, the approach utilises a novel parametric rotor model
which was engineered in order to provide numerous datasets
to which the developed algorithms could be applied. This
approach is then deployed to refine and test the HATT ro-
tor fault monitoring process that was developed based on the
aforementioned frequency domain characteristics observed in
the CFD data. Essentially, the parametric model was created
to extend the useful data provided by CFD simulations. The
effectiveness and the practicality of implementing such algo-
rithms to support future CM system developments are then
considered.

The paper presents a brief review of the literature relating
specifically to CM systems within the context of HATT. It
then considers the nature and formulation of the CFD data
utilised. The development of the rotor imbalance monitor-
ing processes are then outlined. The parametric rotor torque
model is then presented and utilised to test the effectiveness of
the CM approaches under varying levels of TI. Next, the ini-
tial simulation results, for turbulence intensities varying from
0.5 % to 2 % are presented along with the condition monitor-
ing results. An extended results section details the application
of the monitoring approaches to a data set developed utilising
a more realistic fluid velocity simulation approach based on
methods reported in (Val, Chernin, & Yurchenko, 2014). In
this section, the CM approaches are applied to data relating
to HATT operation within flows of 3.086 ms~! with TI of
10 %. The paper presents discussion of the effectiveness of
the overall strategy for developing CM approaches in light
of minimal operational data. Conclusions based on the work
presented are drawn; lastly and for brevity, the details of the
method for generating stochastic fluid velocity time-series is

included in Appendix L.

2. REVIEW OF TST CONDITION MONITORING

The improvement and assurance of the reliability of HATTs
and their sub-assemblies must be considered to be a major
factor in the realisation of a well-functioning tidal stream en-
ergy industry. HATTs are to face operation in the harsh ma-
rine environment and are to be exposed to cyclic and extreme
loading. Cyclic loading is enforced on the tidal stream de-
vice by both the presence of turbulence in the fluid field and
due to semi-diurnal tidal cycles which dominate the UK tidal
resource. Mixed tidal cycles are found in many other areas
where tidal stream energy extraction is feasible. It has been
argued that in order to achieve a competitive LCOE compo-
nent and turbine availability should be above 75 % (Magagna
et al., 2014). In moving toward a higher technology readi-
ness level (TRL) and to underpin the significant levels of
investment required it has also been stated that the reliabil-
ity of HATTs and their components must be demonstrated
(Wolfram, 2006); (Weller, Thies, Gordelier, & Johanning,
2015).

Caselitz et al (Caselitz & Giebhardt, 2005) presented one of
the earliest papers aimed specifically at the condition moni-
toring of HATTs. The paper aimed to apply and adapt knowl-
edge acquired in the condition monitoring of both on-shore
and off-shore WTs to the task of CM of HATTs.They pro-
pose a system containing many of the elements included in
WT monitoring systems, including accelerometers for gear-
box and baring vibration monitoring and fibre bragg gratings
for blade and structural load monitoring. The system is sup-
ported by environmental measurements, specifically by mea-
surements of the fluid velocity upstream of the turbine rotor.
Sloan et al (Sloan, Khoshgoftaar, Beaujean, & Driscoll, 2009)
presented considerations of many of the reliability issues faced
by HATTs and the associated monitoring hardware. Mjit et al
(Mjit, Beaujean, & Vendittis, 2010) conducted work consid-
ering order analysis of vibrational data as a means of fault
detection, the work was first conducted on a commercial fan
and later extended to monitoring of a small boat propeller.
The work also discussed elements of the data storage and cap-
ture processes. The order analysis methods applied were suc-
cessful in identification of imbalance and misalignment. The
research undertaken and presented by Mjit et al was extended
in 2011 (Mjit Mustapha, Beaujean, & Vendittis, 2011) to in-
corporate a more fully developed Smart Vibration Monitor-
ing System (SVMS) which handled much of the data capture
storage and processing autonomously. The system included
many of the techniques performed off-line by vibration mon-
itoring specialists including advanced signal processing of
vibration data. Specifically, the software processed raw vi-
brational data via Power Spectral Density, Fractional Octave,
Cepstrum, Hilbert Envelope, Wavelet Transform and overall
vibrational statistical characteristics. The process was devel-
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oped using LabVIEW and tested using a drive train test rig
setup to harbour fault conditions by attaching weights to the
drive train. Changes to the performance metrics calculated
via the advanced signal processing operations deployed were
successfully tracked for three differing levels of fault severity
and for two rotational velocities.

Waters et al (Waters, Beaujean, & Vendittis, 2013) presented
research considering the detection, localisation and identi-
fication of bearing faults in TST applications. The paper
presents studies within which models for bearing loading un-
der bearing race cracking were developed. The models were
then used to guide the development signal processing meth-
ods which were then applied to vibration signals acquired
from two accelerometers mounted on dynamometer test beds.
In order to detect bearing damage the power spectral density
of the measured accelerometer signals was utilised as well as
the coherency between them. A fault condition was said to
exist if the power observed at frequencies of interest (found
via impact test) exceeded a given threshold. The fault was
then localised to a given bearing by comparison of the power
spectral density measurements at the frequencies of interest
from the two accelerometer measurements. Envelope track-
ing was then used to identify the fault type (inner vs outer
race fracture) by considering the timing of the observed im-
pacts yielding the observed increases in spectral power at the
frequencies identified.

3. CFD SIMULATIONS

Cardiff marine energy research group (CMERG) has exten-

sive expertise in producing and validating CFD models (Mason-

Jones et al., 2012), (Tatum, Frost, et al., 2016),(Tatum, All-
mark, et al., 2016). Recent advances in the modelling ap-
proach utilized within the group led to the production of tran-
sient CFD models (Frost, Morris, Mason-Jones, O’Doherty,
& O’Doherty, 2015). Such models offer an opportunity to
study turbine loading throughout a single turbine rotation un-
der differing operating conditions. Along with the ability to
study turbine loading transients, these models can be set-up to
simulate rotor imbalance defects, which could be compared to
the optimum condition for turbine rotor monitoring studies.
The CFD model used in this work adopted a Sm radius rotor
equipped with three adapted Wortman FX-63 -137 blades, a
schematic of the rotor set-up is shown in Figure 1. The model
was configured with constant fluid velocity at the model inlet,
both in time and spatially (plug-flow). The fluid domain for
the model was 150 m by 50 m by 50 m and utilised a moving
reference frame at the turbine rotor. The mesh had approx-
imately 6 million elements and the model utilised a shear
stress transport viscous model. In order to conduct an ini-
tial study into TST rotor monitoring this knowledge base was
utilised to provide CFD model results for differing rotor con-
ditions. The inlet fluid velocity was set to 3.086 ms~—1. The
turbine rotational velocity was set to 2.1 rads ™! resulting in
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Figure 1. Schematic of the three bladed turbine rotor simu-
lated.

a tip speed ration A value of 3.61 for each of the simulations.
This corresponds to operation at the peak power coefficient
for the rotor used. The previous research undertaken within
the group provided a high level of confidence that the data
sets produced would be representative of the expected turbine
characteristics. This was seen as being important going for-
ward as the intention was to produce robust CM algorithms
that could be widely applied.

The previous research had established that the optimum
blade pitch angle, balancing power extraction and thrust load-
ing, was at 6° to the rotor plane (Mason-Jones, 2010). Fig-
ure 2 shows the data output from the CFD models for the
optimum and blade 1 pitch angle offset by +6° rotor setting
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Figure 2. Plots showing the torque developed by the TST
rotor as calculated via CFD.
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Table 1. Table showing the fault cases simulated via both
CFD and random parametric model simulations for develop-
ment of CM apporaches.

No Fault Case Pitch Angle: 6°

Sensitivity Case | Pitch Angle: 6° + 0.5°

Minor Fault Pitch Angle: 6° 4 3°

Major Fault Pitch Angle: 6° + 6°

cases. The figure highlights both the cyclic nature of the drive
shaft torque imposed by the rotor and the form of the results
outputted from the CFD modelling exercise. For convenience
the data was output in the form of the overall torque imposed
on the turbine drive shaft by the HATT rotor and the con-
tribution by each blade to the developed turbine drive shaft
torque. This was exploited in the initial steady state simula-
tions where the overall rotor torque contribution was consid-
ered for condition monitoring process development. This was
further utilised to construct a parametric rotor torque model.
Along with the optimal blade pitch set-up three differing blade
1 pitch offset cases were simulated to give a range of fault
severities. Table 1 shows the cases simulated. The four cases
include a Non Fault case as well as three fault cases of in-
creasing imbalance severity. In the next section 4, the data
will be discussed in terms of its use in development of the
CM metrics proposed.

4. ROTOR CM APPROACH SPECIFICATION

The approach to the development of the CM algorithm was
based on study of the output of the CFD models detailed in
Table 1. To this end, the spectra of each of the developed ro-
tor torque time-series for each fault case, were studied. This
was done to view changes in torsional oscillations due to the
rotor imbalance conditions which could be exploited for fault
detection and diagnosis. Figure 3 shows the developed rotor
torque spectrum in the turbine displacement domain - accord-
ingly the X-axis is plotted with units 1/6°, denoted here as
H zy. The figure shows the spectra for each of the rotor cases
detailed in 1. The fluid velocity and rotational velocities are
as detailed above.

The peak amplitudes observed in each of the torque spec-
tra were found to exist at three times per turbine rotation
(0.00833 Hzp or 3/360 Hzp) - this has been highlighted in
the sub-axis included in Figure 3. Based on previous expe-
rience this was attributed to the blade passing the support
stanchion or shadowing effect’ (Allmark, 2016). Harmonics
of this dominant amplitude, at integer multiples of 0.00833
Hzy, were also observed. The amplitudes of these harmon-
ics reduce with increasing harmonic number and are easily
observable until the 12th harmonic of the turbine rotational
speed. Furthermore, it was observed that the amplitude at the
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Figure 3. Plots showing the torque developed by the TST
rotor as calculated via CFD.

shadowing frequency is reduced with increased rotor imbal-
ance.

Interestingly it was noted that the amplitude at the rotational
frequency of the turbine (0.00278 H zy) is increased with in-
creasing levels of rotor imbalance or damage. This was con-
sidered to coincide with the increase in variability, and often
peak amplitude, of the set of rotational frequency harmonics
which were not multiples of three, i.e. integer multiples of
the blade passing amplitude found at 0.0833 H zy.

Analysis of the model outputs shown in Figure 3 allowed the
authors to propose a number of condition monitoring met-
rics. These were based, in particular, on the amplitude shifts
outlined above for differing levels of rotor damage. Using
A, to denote amplitudes associated with harmonics of the
turbine rotational velocity, where the subscript ¢ refers to the
harmonic number, the monitoring metrics developed are de-
tailed in Table 2. The application of the monitoring criteria
listed in table 2 will be undertaken utilising the discrete-time
Fourier transform (DFT) to calculate the required harmonic
amplitudes. Data from the stochastic simulations detailed in
section 5 will be collected in a number of datasets of 300
second intervals. More detail on data sets structuring will be
given in Section 6.

5. TURBINE ROTOR SIMULATION

5.1. Fluid Velocity Simulation - Initial Approach

To develop and test the validity of the proposed CM metrics a
simple resource simulation method was applied and coupled
with the parametric model outlined in the next Section. The

0.05
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Table 2. Table showing the four CM metric developed based
on the spectra observed within the CFD data for differing
fault cases.
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model utilised was of the following form:
Uy (t) = Uy + ul, 5)

where U, (t) is the fluid velocity at time ¢ decomposed into
a stationary mean fluid velocity U, and a fluctuating compo-
nent, u., which is time varying with the x direction perpendic-
ular to the turbine rotor plane. The fluctuating component for
this study was simulated via a normally distributed random
variable with zero average and with the standard deviation
required for the specific TI. TT here is defined as:

O'u
T = — 6
7, (6)
where, o, is the standard deviation of the fluctuation fluid
velocity component, u/,.

5.2. Parametric Rotor Model

In order to construct a parametric rotor model the effects of
rotor transients, as seen in the transient CFD data, were com-
bined with the expected mean rotor torque for a given operat-
ing condition. The mean rotor torque developed by a turbine
is given by:
1 2

TCT(t):cT~§-p-A-r~Um ™)
where, c, is the non-dimensional torque constant, p is the
fluid density, A is the swept area of the turbine, r is the turbine

radius and U, is the on coming fluid velocity. The ¢, term can
be found using the non-dimensional parameters curves for the
given turbine rotor, previous work has detailed both CFD and
experimental validation of the non-dimensional curves for the
rotor under investigation (Mason-Jones et al., 2012).
A flow chart representing the parametric model, utilising the
mean torque calculated via (7), is provided in Figure 4. This
identifies the inputs into the process from simulated fluid ve-
locity data and the turbine parameters extracted from the CFD
data detailed in Section 3. For a given time step the fluid ve-
locity, as well as the turbine position and rotational velocity
(which is fixed for these simulations) are in-putted. These
quantities along with the characteristic curves and parame-
ter set for the given TST rotor are then used to calculate the
expected torque developed by the turbine rotor for the given
flow speed and condition. The output of the model is then a
simulated rotor torque time series.
The periodic nature of the torque fluctuations under various
rotor conditions have accordingly been captured via a para-
metric model of the form of three Fourier series, one for each
blade. The remainder of this section outlines the structure
and parameter set of the parametric model. The parameter
set and model structure were developed by considering the
amplitude and phase spectra for each individual blade contri-
bution to the torque developed by the turbine rotor. Figure 5
shows the amplitude spectra for each blade. Cases shown are
Optimum or No Fault and the Major Fault case where blade
1 has been set to 4-6° from the optimum pitch setting. The
fluid velocity and rotational velocities are as detailed above.
The frequency index for the spectra, in the form used in
Equation (8) is shown above the figure and the harmonic in-
dexes are identified. It can be observed that blade offsetting
distorts the harmonic content of the frequency domain rep-
resentation from the optimum case. Each spectrum also ex-
hibits an exponentially decaying tendency with differing peak
values and decay rates. This observable exponential decay
over multiple harmonics of the turbine rotation was utilised
in the parametric model as can be seen in Equation (8). The
terms in Equation (8) have been included in the flow chart of
the simulation process depicted in Figure 4 to further indicate
the structure of the parametric turbine rotor model. The para-
metric model utilised a Fourier series of the form:
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Figure 4. A schematic showing the structure of the Parametric model used to generate stochastic simulations of the outlined
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Figure 5. Plots showing the torque amplitude spectra developed per blade by the TST rotor as calculated via CFD.
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8
Trotor = T, - (k1 + Z a;e’h - cos(2mwh+
h=1

(n2h +mih +c1)))

8
+T,, - (ke + Z a1e”" - cos(2mwl+

h=1 (8)
(n%h +maoh + ¢2)))

8
+ T, - (ks + Z a1 . cos(2mwl+
h=1

(ngh + m3h + 03)))

It can be seen in (8) how the relationship between the ob-
served phase angles at each harmonic for differing rotor con-
ditions was captured via the parametrisation of the quadratic
equation with a set of three parameters m, n and ¢ for each ro-
tor condition. It was necessary to apply a sequence of phase
angle shifts at each harmonic to create consistency between
the phase spectra observed for blades 1, 2 and 3. This phase
shifting process was applied to the phase spectra observed
for each rotor case. The results of the phase shifting process
applied to the optimum and +6° offset cases are shown in
Figure 7, along with the parametric form utilised to model
the phase angles observed for each harmonic number for dif-
fering blades and rotor conditions. The analysis of this and
similar results for the other offset cases confirmed the appro-
priateness of the choice of 2¢ order polynomial form utilised
within the parametric model.

The focus of this initial investigation was, by necessity, on
TST operation at close to peak power conditions, rather than
across the entire power curve. Accordingly, parameters were
determined for a tip speed ratio of 3.6. Although it was likely
that, as a result of the fluid velocity fluctuations, a wider TSR
range would be observed the constant parameter assumption
was deemed acceptable for the current baseline study. This
assumption allowed the parameters in the model to be held
constant relative to the TSR and parameterisation to be un-
dertaken utilising data from a single operating condition (as
was the format of the CFD data). Then referring to (8) the
parameter set was as follows:

k is the blade torque contribution for a given TSR
a is the depth of shadowing effect

b is the harmonic decay of the shadowing effect
n is the phase non-linearity

m is the phase gradient

c is the phase offset.

The parameter k gives the relative contribution of each blade
to the total drive shaft torque; this in effect sets the DC value

of the torque for a given TSR. The parameters a and b give
the depth of the shadowing effect and the rate of decay of
the eight harmonics for each blade; this in effect defines the
magnitude of torque fluctuations due to the aforementioned
shadowing effect. Lastly the parameters m, n and ¢ define the
phase relationships over the eight harmonics for each blade.

6. INITIAL RESULTS

In order to appraise the effectiveness of the CM metrics as ex-
tracted from the rotor torque spectra, a set of TST drive train
torque time series simulations were developed. The simu-
lations were generated with a 3.086 ms~! free-stream flow
velocity. Each of these was 200 seconds in length. The time
step for the simulations was 0.01 equating to 20,000 samples.
In all simulations the turbine rotational velocity was held con-
stant at 2.23 rads ", leading to a \ value of 3.6. This setting
was providing approximately peak power for the rotor under
investigation. For each rotor condition, 50 simulations were
undertaken. These were conducted for various levels of TI
to further interrogate the ability of the developed CM metrics
to extract fault features under the imposed stochastic condi-
tions. Specifically, the datasets were produced with TIs of 0
%, 0.5 %, 1 % and 2 %. The levels of TI were selected to
coincide with approximately steady-state turbine operation,
i.e to constrain the variation in operational A\. The next sec-
tions provide an overview of the simulation results and the
application of CM metrics.

6.1. Simulation Results

Figure 8 shows the parametric model output for the torque
developed by the turbine rotor with TI = 0% for both the, "No
Fault’ and "Major Fault’ cases. Plotted on the same axis are
the CFD data for the same cases, respectively. An average
Root Mean Squared Error (RMSE) of approximately 0.0551
Nm was obtained. Figure 9 shows an example of the sim-
ulation results. The figure shows the model output for the
optimum rotor case with increasing levels of turbulence. The
first case has no turbulent loading and the time series patterns
correspond to the reported frequency content for the torque
models. The three other cases have increasing turbulences,
set at 0.5%, 1.0 % and 2.0% of the mean flow velocity re-
spectively.

6.2. Condition Monitoring Results

For each of the 50 simulations at each TI setting and fault
case, the condition monitoring metrics were calculated. The
CM metrics were calculated utilising the definitions in Table
2 and the spectrum calculated for each simulation. Figure
10 shows the spectra observed for differing fault cases for a
set of simulations relating to a TI setting of 2%. The figure
highlights the position of the rotational frequency of the tur-
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Figure 6. Plots showing the phase spectra for each blade contribution to the torque developed by the turbine rotor prior to
unwrapping.
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Figure 9. A sample of the simulation results for differing
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bine; as expected, growth in the amplitude observed at the
rotational frequency of the turbine can be seen with increas-
ing fault severity. The blade passing frequency can also been
observed as the major amplitude in the spectra; this was ex-
pected based the CFD results.

The set of four condition monitoring metrics were then viewed
as 4-tuple, ’fault vector’. The metrics associated with each
simulation then created a point in the 4-dimensional space
associated with the fault vector. To improve the outputs of
any machine learning algorithms applied to the CM data each
of the metrics were normalised. This was done by subtract-
ing the mean value of the given metric and then dividing the
metric by the standard deviation of the observed values of the
given metric. Figure 11 shows the normalised CM metrics.

The figure shows the axes associated with the six principle
rotations of the 4-D space defined by the aforementioned 4-
tuple fault vector. It indicates that generally there is cluster-
ing of like fault cases, the spread of the clusters for each fault
case increases with TI. This suggests the CM metrics could
be used to adequately detect and diagnose the fault cases sim-
ulated. Lastly, it should be noted, that upon application of the
turbulence intensity differing fault cases have little impact on
the value CM4.

To illustrate the effectiveness of the CM metrics to distin-
guish between fault cases, a Naive Bayesian Classifier was
trained and used to classify fault conditions given new data.
To do this, for each case the 4-tuple fault vectors calculated
using the 50 sets of simulation data for each fault case were
split in half via random sampling. The randomly selected data
sets, consisting of 25 instances of the four monitoring metrics
for each fault case, were used to train the classifier. The re-
maining data sets were used to test the predictions made by
the classifier. The prior probability of each of the fault cases
where set as equal to yield a, 'neutral’ test of the effective-
ness of the monitoring approach. The likelihood term, i.e.
P(Data|State) in the standard probability notation, was es-
timated by fitting normal distributions to the annexed training
data for each case. Figure 12 shows the posterior probability
of each fault case for the differing input data calculated in the
standard fashion - a logarithmic scale is used for the posterior
probability axes (y-axis) to show the posterior probabilities
observed for the incorrect classification. In all cases a very
high posterior probability (=~ 1) was observed for the correct
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fault case leading to correct classification under maximum a
posteriori (MAP) classification.

Thus far in the development of the CM approach the use of
CFD and the subsequent development of fault indicators has
yielded a useful fault detection strategy. However, to fully test
the developed approach further simulations were undertaken
which included more a realistic fluid velocity model based on
Kolmgrov’s Theory of turbulence (Kolmogorov, 1941).

7. HIGHER TURBULENCE INTENSITY RESULTS

The testing of CFD models is often undertaken using labora-
tory scale devices. Under such conditions TI levels are lim-
ited. This is not the case in real life installations, where levels
of 10 % to 15 % are more typical (Milne, Sharma, Flay, &
Bickerton, 2013). To further test the value of the CM method
proposed it was necessary to consider the effect that the afore-
mentioned TI characteristics would have on upon the CM ap-
proach.

7.1. Extensions to the Condition Monitoring Study

In order to test the use of the proposed monitoring approach
under a more representative set of turbine operating condi-
tions further simulations were undertaken. This set of sim-
ulations was undertaken utilising a more representative fluid
velocity simulation process than that used in the simulations
outlined in the sections above. All other aspects of the simu-
lation, in terms of calculation process and model parametrisa-
tion, were kept the same. The specifics of the more advanced
fluid velocity model can be found in the Appendix. Briefly,
the model utilises a inverse-Fourier-Transfrom-Monte-Carlo
approach to develop stochastic fluid velocity time series which
approximately adhere to Kolmogorov’s theory of turbulence
(Kolmogorov, 1941). In essence this approach was used to
generate time series which exhibited the —5/3 power spectra
with a specific TI value and integral length scale. In this case
the TT was set at 10 % whilst the integral length scale was set
to 40 m.

7.2. Simulation Results

Ten extended simulations were undertaken, utilising the de-
veloped fluid velocity model, for each fault case. Figure 13
shows an instance of the simulations undertaken for each case;
a sub axis has been included showing a 2 second section of
the newly generated data. The simulations undertaken were
166 seconds in length with a time step of 0.005s. Figure 13
shows the more chaotic nature of the time series generated
with the new approach and shows that identification of the
fault cases cannot be undertaken easily.

7.3. Condition Monitoring Results

As in Section 6 the spectra was calculated, via the FFT al-
gorithm, for each simulation and fault case. The condition
monitoring metrics were then calculated in accordance with
the definitions outlined in Table 2. Figure 14 shows the spec-
tra for the same simulation instances shown in Figure 13. The
rotational (1-w) and blade passing frequency (3-w) associated
with the simulated turbine have been highlighted on sub-axes.
It can be seen that the characteristics identified in the CFD
spectra outlined in Section 4 are far less discernible in the
presence of the higher and more realistic turbulence spectra.
To some degree this is expected as the more representative
fluid velocity simulations involve creating a spectrum of ran-
dom amplitude and phase angles which accordingly would
disrupt the specific phasing relationship alluded to in Section
4.

Figure 15 shows the condition monitoring metrics calculated
via the spectra of the simulated torque developed via the tur-
bine rotor. The plots show each of the CM metrics plotted
against the others highlighting the structure of the 4-dimension
space created by the monitoring metrics. In this instance it
can be easily observed that no such grouping of fault con-
ditions can be seen based on the aforementioned monitoring
metrics. This would suggest that the presence of the 10 %
turbulence, and its spectra consisting of random amplitudes
and phases, has effectively mask the turbine operational fre-
quencies.

Again to quantify the effectiveness of the CM metrics the
datasets were used to train a naive Bayesian classifier set-up
with equal prior probabilities for each fault case. The clas-
sifier was trained using a random sample of five of the ten
data sets produced, with the correct label being given in each
instance. Then the remaining five datasets was used to gen-
erate a prediction of the fault case via MAP inference. The
bar chart in 16 shows the posterior probability given data in-
put from each case. Figure 16 shows that only the No Fault’
case is correctly diagnosed albeit with a low level of con-
fidence. The Sensitivity case was classified as a "No Fault
Case’, whereas both the "Minor Fault’ and the "Major Fault
cases were classified as the ’Sensitivity case’.

8. DISCUSSION

The paper has, in three main sections, developed a condi-
tion monitoring strategy utilising CFD data and subsequently
tested the approach using data generated via a parametric
model. The approach was applied to data of relatively low tur-
bulence intensity with a naive fluid velocity simulation pro-
cess. The study was then extended by applying the approach
to data generated with the aid of a more representative fluid
velocity simulation approach.

Firstly, the process of utilising and extending the findings of
CFD studies to generate CM insight given limited failure data
relating to actual turbine deployments is discussed. The ap-
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Figure 12. A series of bar charts showing the posterior probability of the fault case given the input data. This was calculated
via a naive Bayesian classifier with equal prior probabilities for each fault case. The TI for the cases shown is 2%
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Figure 15. The results of the condition monitoring study at 10 % TL.
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proach is promising as a means to generate understanding
based on limited data and as a means of extending the use-
fulness of data generated via computationally expensive CFD
studies. Whilst this is the case the authors acknowledge that
rigorous validation of such an approach with experimental
data must be undertaken before conclusive effectiveness of
the approach can be heralded. This aspect of the work is cur-
rently being addressed in on-going research activities. The
research involves defining a parameter set for a wide range of
turbine operating conditions and comparing the statistical and
spectral characteristics of the model output with experimental
data.

Given the above discussion, the effectiveness of the CM ap-
proaches, developed and tested against the model output, will
require further work before complete verification. The find-
ings show that the high levels of turbulence intensity (ap-
proximately 10 %) significantly reduce the effectiveness of
the presented CM approach. Whilst the results showed mis-
diagnosis for the 10 % TI simulations, the CM approach is
still under development and will required more rigorous data
preprocessing. The overall methodology outlined has been
successful in generating useful data sets relating to various
rotor conditions and flow conditions and can be utilised sub-
sequently during further developments of CM approaches for
the HATT industry. Accordingly, the simulation data used for
this set of testing has been made available to the researchers
and can be accessed at the DOI specified in the Acknowledge-
ment section.

The effectiveness of the approach under lower turbulence in-
tensity conditions would suggest that the monitoring approach
could be usefully applied during turbine start-up when turbu-
lent kinetic energy in the on-coming flow lower, although fur-
ther simulations are required to prove such an assertion. As
such, and in the authors opinion, the work would suggest that
whilst the approach may not be robust enough at this stage,
further research into differing condition monitoring metrics
and pre-processing approaches, coupled with larger data sets
and more sensitive classification methods may yield a CM ap-
proach which may not require the installation of rotor based
Sensors.

9. CONCLUSIONS

The effectiveness of a CM approach, developed based on con-
sideration of CFD data, under low TI simulations was shown.
Under higher TIs in the on-coming flow the approach was not
useful for fault detection. A methodology for extending CFD
results to generate hypothetical failure data for HATTs has
been created. The process was successfully applied to gen-
erated data relating to rotor imbalance faults. However, the
model output must validated moving forward.

10. FURTHER WORK

Based on the results the authors are undertaking further re-
search in four main respects. First, the authors are undertak-
ing scale HATT testing to generate data sets under which the
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model proposed can be validated. Secondly, the authors are
generating larger data sets to undertake more advanced CM
research. The more advanced CM research forms the last two
aspects of the on-going research activities. Specifically, con-
dition monitoring metric formulation and pre-processing ap-
proaches are currently being researched, developed and tested.
Lastly, these new methods are being tested in classification
systems comprising of more sensitive Machine Learning tech-
niques.
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APPENDIX - RESOURCE SIMULATION

The simulations outlined in this paper use the simplification
that the turbine would be subjected to plug flow (non-profile
flow) conditions. This simplification was necessary as this
was the approximate flow conditions observed during the flume
testing campaign used to gather data for the model parametri-
sation. The plug flow assumption leads to a convenient repre-
sentation of the flow conditions hitting the turbine rotor. The
flow is represented by:

Us(t) = Us + ug(t) )

where Uy (t) is the fluid velocity at time t decomposed into
a stationary mean fluid velocity U, and a fluctuating compo-
nent w/,(t), which is time varying with the x direction per-
pendicular to the turbine rotor plane. A natural model for
representing the fluid flow given by the above is to model the
fluid velocity fluctuations as a stationary process with given
power spectral density characteristics. Furthermore utilising
Kolomogrovs theory of turbulence the amplitude of the power
spectrum should be proportional to f~%/3 as f — oo. The
Von Karman spectrum, as utilised by previous investigators
(Val et al., 2014) for reliability simulations adheres to the
above condition and can be written in the non-dimensional
form:

£Sulf) A
e — (10)

where Su(f) is the spectral density function for the process,
L is the length scale, o, is the standard deviation of the pro-
cess u,(t). More information on the development of fluid
velocity simulations can be found in (Allmark, 2016)

16



