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Abstract The incorporation of carbon nanofillers into bulk metal matrices has stimulated 

tremendous interest to translate their intriguing properties from nanoscale to the macroscopic 

world. However, the influences of such rigid hetero-interfaces on the dynamic recrystallization 

(DRX) process and texture evolution of the composite system remain an open issue. Here we 

report interface-dominated DRX and texture evolution phenomena in a graphene nanoribbon 

(GNR)-reinforced Cu matrix composite during hot-rolling. The GNR/Cu interfaces contribute 

to the atypical recrystallization-type and brass-type textures developed in composites within 

0.5 vol.% and 3 vol.% GNRs, respectively, deviating from the normal Cu-type texture found 

in their pure Cu counterpart. We prove that the hetero-interfaces may change the texture 

evolution of the Cu matrix from four aspects including retarding dislocation cross slip, 

generating geometrically necessary dislocations, promoting the DRX process, and activating 

non-octahedral slip. This is corroborated by visco-plastic self-consistent simulations, which 
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well reproduce the texture development in all samples by considering the interface-dislocation 

interaction, GNR-driven DRX nucleation, and the activation of non-octahedral slip. This study 

suggests the possibility of manipulating the microstructure, texture, and mechanical properties 

of traditional metallic materials through the design of heterophase interfaces. 

1. Introduction 

The texture development in metals, alloys and composites containing hetero-phase interfaces 

during deformation has long been a general interest of both material science and industrial 

applications [1-3]. Most industrial alloys contain a matrix phase and dispersed second-phase 

particles (SPPs). The introduction of particle or fiber reinforcement into metal matrix 

composites (MMCs) through ex-situ blending methods provides further freedom for designing 

the fraction, distribution, alignment, size, and geometry of the SPPs. A wide variety of studies 

have proven that the inclusion of SPPs creates additional interfaces within the matrix, which 

may highly impact the deformation behavior of the matrix material [1]. The recrystallization 

(RX) behavior, crystallographic texture evolution, and associated mechanical properties of the 

investigated alloys [4-7] or composites [8] are substantially influenced by the complex 

interfacial interaction between the matrix material and the SPPs during the common 

(thermo-)mechanical processing. 

Recently, the incorporation of low-dimensional (from 0D to 2D) nanofillers into bulk metal 

matrices has attracted tremendous interest to translate their intriguing properties from 

nanoscale to the macroscopic world [9-11]. Graphene has been regarded as one of the most 

promising reinforcement for MMCs due to its peculiar 2D, single-atom-thick nanostructure, 

and excellent intrinsic physicochemical properties. Graphene nanosheets have shown great 
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capacity for improving the strength, stiffness, toughness, and thermostability of pure metals. 

To date most studies focus on improving the reinforcing efficiency through uniformly 

dispersing graphene into the metal matrix [12-14], improving the interfacial bonding between 

graphene and the metal phase [15], and explicating the reinforcement role and strengthening 

mechanisms of graphene [16-18]. Several thermo-mechanical processing steps (e.g., hot-

rolling [12, 17] and hot-extruding [14]) are usually needed to produce a final metal-graphene 

composite product. However, very little is known about the plastic deformation regime, 

dynamic RX (DRX), and texture evolution of such metal-graphene systems during thermo-

mechanical processing, and their dependence on the hetero-phase interfaces in the composite 

remains an open issue. 

Graphene features 2D planer nanostructure and ultra-large specific surface area, giving rise 

to a large interfacial contact area in the relevant MMCs. Of interest here is how the presence 

of such high densities of immiscible interfaces can potentially alter the relative activities of slip 

or twinning in the matrix phases and in turn, texture evolution with strain, compared to those 

in their pure metal counterparts. These effects have been widely documented in multi-phase 

composites like Cu-Nb layered composites produced by accumulated roll bonding [19] and Cu-

Ag eutectic-layered alloy [20, 21]. Moreover, the special geometry and nanoscale effect of 

graphene, which are distinctly different from the micrometer-sized, granular or rod-like SPP in 

traditional industrial alloys, may trigger new phenomena in terms of shear banding, slipping 

and twinning modes, DRX behavior, and texture evolution in graphene-reinforced MMCs. 

Herein, we investigate the effects of metal-graphene hetero-interfaces on the DRX and 

texture evolution during hot-rolling deformation using a graphene nanoribbon (GNR)-
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reinforced Cu matrix composite system. GNRs are novel quasi-1D carboneous nanomaterials 

combining elegantly the properties of 2D graphene and 1D carbon nanotubes (CNTs). GNRs 

feature high levels of strength, flexibility, stiffness and surface area, flat geometry and large 

aspect ratio and have shown great capacity to enhance the overall physico-mechanical 

properties of pure metals [12]. Cu is selected as a model matrix because it has a relatively 

simple deformation mode, and thus it is easy to isolate the role of the GNR/Cu interfaces 

(GCIs). We demonstrate that the GCIs contribute to the atypical textures developed in GNR-

reinforced Cu-matrix composites (GNRs/Cu), as compared to the traditional Cu-type texture 

formed in their pure Cu counterpart. As illustrated by micro-area electron back-scattered 

diffraction (EBSD), transmission electron microscope (TEM), high-resolution TEM 

(HRTEM), and Kernel average misorientation (KAM) analyses, the GCIs may change the 

texture evolution of the Cu matrix from four aspects: i) retarding dislocation cross slip; ii) 

generating geometrically necessary dislocations (GNDs); iii) promoting the DRX process; and 

iv) activating non-octahedral slip. We further carry out visco-plastic self-consistent (VPSC) 

polycrystal simulations to identify and interpret the roles of GNRs and GCIs in altering the slip 

mode, deformation mechanism, and DRX behavior of the Cu matrix. 

2. Experimental 

2.1 Material preparation and processing 

GNRs/Cu were prepared by a powder metallurgy approach consisting of solution-based 

hetero-aggregation of Cu/GNR powder mixtures [22], rapid densification of the hybrid 

powders by spark plasma sintering (SPS), and hot-rolling. The hybrid powders were 

consolidated by SPS (HPD-25, FCT Systeme GmbH) at 600 °C for 5 min with an applied 
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pressure of 50 MPa. The as-SPSed samples were first cut into slabs of 28mm × 12mm ×

3.5mm  and then annealed at 800 °C for 30min. A fast, multi-pass rolling process was 

conducted on a Φ100 mm two-high mill with final true strains of 0.36−1.94. The samples were 

rapidly quenched in water to preserve the microstructure in its as-deformed state. The raw 

materials, synthesis of GNRs, and preparation process were detailed in our previous studies 

[12, 18, 23]. GNRs/Cu containing 0.5 vol.%, 1 vol.%, and 3 vol.% GNRs were prepared by 

adjusting the amount of GNR additive and were denoted as 0.5GNR/Cu, 1GNR/Cu, and 

3GNR/Cu, respectively. 

2.2 Characterization 

Samples for X-ray diffraction (XRD) and EBSD texture measurements were prepared by 

standard mounting, grinding, and polishing. The final two polishing steps consisted of vibratory 

polishing (VibroMet 2, Buehler) with 0.05 μm colloidal alumina and 0.05 μm colloidal silica 

suspensions. The bulk texture was characterized by the Schulz reflection method, using an X-

ray texture goniometer with Cu Kα radiation (D8 Advance, Bruker), operating at 30 kV and 25 

mA. Data collection was performed with sample rotation increments of 5° and a maximum 

sample tilt of 80°. The acquisition time was 3 s and the sample oscillation was 6 mm. Four 

incomplete pole figures from (111), (200), (220), and (311) peaks were collected on a mid-

thickness section parallel to the RD-TD (RD, rolling direction; TD, transverse direction) plane, 

and they were corrected for background defocusing and used to determine the orientation 

distribution function (ODF) with the WIMV algorithm, using a MTEX software available as a 

MATLAB@ toolbox. 

EBSD was performed on a field-emission scanning electron microscope (SEM, Nova 
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NanoSEM 230, FEI) fitted with an AZTec HKL Max EBSD detector at an accelerating voltage 

of 20 kV. EBSD data were collected from the cross-sectional samples (i.e. RD-ND plane; ND, 

normal direction). The scanning step size for EBSD was 0.02−0.5 μm according to the size of 

the scanning area. The inverse polar figure (IPF) maps, ODF figures, polar figures (PFs), 

texture intensity, fractions of different texture components (with a 15° deviation from their 

ideal orientations), and KAM maps were obtained from post-treatments of the EBSD 

orientation data using the HKL Channel-5 software. KAM maps were constructed by 

calculating the misorientation angle of every measurement point up to its third nearest [24]. 

The microstructure of the as-rolled samples was characterized using a field-emission SEM (S-

4800, HITACHI).  TEM and HRTEM (JEM 2100F, JEOL) operating at 200 KV were used to 

obtain the information on the dislocation configuration, nanostructure, and interfaces of the 

samples.  TEM samples were prepared by standard polishing and ion milling (Gatan PIPS, 

Model 691, Oxford). 

3. Results and discussion 

3.1 Microstructure and texture evolution 

Fig. 1a-h show the evolution of the distribution of GNRs in the Cu matrix as a function of 

the rolling reduction. Primarily the three-step preparation method including wet-fusing 

assembly of Cu/GNR hybrid powders, fast sintering and hot-rolling [12, 18] enables well-

embedded, uniformly distributed, and individually dispersed GNRs in the Cu matrix. In 

addition, lengthwise rotation of GNRs occurs along with the plastic flow and lattice rotation of 

the Cu matrix, leading to a realignment of GNRs parallel to the RD. Specifically, GNRs 

transform form distributing randomly in the as-SPSed composite (Fig. 1a), to gradually rotate 
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to the RD with the increasing of rolling deformation (Fig. 1b-c), and finally to be perfectly 

parallel to the RD (Fig. 1d). This is corroborated by a statistic of the ξ (i.e., the angle between 

the GNR axis and the RD) values, which shows a very narrow distribution of orientation angle 

ξ between 0−10° at a true strain (ε) of 1.94 (Fig. 1e-h). The dynamic rotation of GNRs during 

deformation impose further complexity to assess the effect of GNR inclusion on the DRX 

behavior and texture evolution of GNRs/Cu. Nonetheless, it is notable that no obvious distorted 

or rotated zone is detected in GNRs/Cu (Fig. 1i-j) [4-6, 25]. The atomic-level thickness of 

GNRs contributes to a much thinner GNR-affected zone (GAZ) in GNRs/Cu than the obvious 

particle affected deformation zone (PAZ) observed in industrial alloys containing large 

constituent SPPs. 

 

Fig. 1. (a-d) Alignments of GNRs in 3GNR/Cu at ε = 0 (as-sintered), 0.36, 0.69, and 1.94, 

respectively. (e-h) The distributions of the orientation angle (ξ) corresponding to (a-d). (i-j) 

EBSD band contrast maps showing no obvious distorted or rotated zone around GNRs. 

 

The developments of macro- and micro-textures in pure Cu and GNRs/Cu are examined by 

XRD and EBSD. The ODF maps retrieved from XRD measurement (Fig. 2) are, in general, in 
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agreement with those from EBSD data, which can verify the accuracy and reliability of 

crystallographic texture obtained from EBSD analysis. Nevertheless, the micro-texture, which 

is derived from the EBSD mapping implemented in the middle thickness position, is detected 

to be slightly different from the macro- one. This is ascribed to the texture gradient frequently 

observed in the through-thickness direction of rolled sheets. 

 

Fig. 2. (a-d) ODF figures obtained from XRD incomplete PFs. (e) A schematic representation 

of the important texture components in FCC materials, showing ODF sections of φ2 = 0°, 45°, 

and 65°. 

 

It is well documented that face-centered cubic (FCC) metals may, depending on material 

parameters (e.g., stacking fault energy, SFE) and rolling paths, develop two different types of 

rolling textures [3, 26]. The Cu-type texture represents the deformation texture of metals with 

medium to high SFEs (e.g. 89 mJ m−2 for Cu) produced by conventional rolling processes [4, 

5]. The so-called β-fiber, which consists basically of a tube in orientation space including as 

major components the orientations (123)<634> (S) and (112)<111> (Cu), together with a less 
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significant (110)<112> (Bs) component, characterizes the Cu-type texture. In contrast, the 

brass-type texture developed in highly alloyed metals with low SFE (e.g. Ag and 70:30 brass) 

features a dominance of Bs orientation and a less important (110)<001> (Goss) component [20, 

27]. 

EBSD measurements indicate that the texture of the as-annealed, undeformed samples are 

essentially random (Fig. S1). According to the typical PFs (Fig. 3) and ODF maps (Fig. 4a-d) 

obtained from the XRD and EBSD measurements, the main characteristics of the texture 

developed in different samples are presented in Figure 3. 

 

Fig. 3. (a-d) (111) PFs of pure Cu, 0.5GNR/Cu, 1GNR/Cu, and 3GNR/Cu, respectively. (e-h) 

(111) PFs derived from the orientation data corresponding to (a-d), respectively. (i) (111) PF 

showing the important texture components. 

As expected, the rolling texture of pure Cu developed at ε = 1.94 is basically composed of a 

standard β-fiber. The volume fractions of the major texture components in the pure Cu are: 29% 

Cu, 26% S and 12.9% Bs, which is a typical proportion for a Cu-type texture (Fig. 4e) [28]. 

With an inclusion of 0.5 vol.% GNRs, an obviously increased strength of Goss orientation is 

observed with the expense of the β-fiber (Cu, S, and Bs) components. When the GNR fraction 
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is increased to 1 vol.%, a strong Bs component reappears; the Cu and S components become 

weaker; and the intensity of Goss orientation is diminished as compared to that in 0.5GNR/Cu. 

At a GNR fraction of 3 vol.%, the Goss orientation nearly disappears, and a predominant Bs 

component is detected with very weak Cu and S components remaining. The volume fractions 

of the major texture components in 3GNR/Cu are: 7.2% Cu, 11.4% S and 23.3% Bs, which is 

similar to a brass-type texture (Fig. 4e). 

The overall texture intensity decreases sharply with the GNR fraction increasing, as shown 

in Fig. 4f. This can be correlated to the stimulating effect of GNRs on the dynamic recovery 

and DRX processes and will be detailed in Section 3.3. 

 

Fig. 4. (a-d) ODF images retrieved from the EBSD data of pure Cu, 0.5GNR/Cu, 1GNR/Cu, 

and 3GNR/Cu, respectively. (e) Volume fractions of the main texture components (Cu, Bs, S, 

and Goss) as a function of GNR fraction. (f) Texture intensities along the β-fiber of pure Cu 

and GNRs/Cu.    Characters e and f should be present in the above figures.   
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3.2 Role of the GNR/Cu interface 

The results in Figs. 2-4 are surprising mainly for three reasons as follows: i) The observed 

texture development of GNRs/Cu appears to deviate remarkably from the Cu-type rolling 

texture; ii) With the GNR additive increasing, a dominant Goss component appears and then 

disappears; iii) While the SFE is kept constant, an approximate brass-type texture is developed 

in 3GNR/Cu. 

Primarily all the samples are processed under the same applied strain path (e.g. annealing 

temperature, number of pass, and rolling reduction per pass), thereby the deviation of textures 

in GNRs/Cu from the expected one can only be attributed to the inclusion of GNRs and GCIs. 

Depending on the hot-rolling conditions, the hot band texture of FCC metals is dominated by 

deformation (e.g., β-fiber; and α-fiber, <110>//ND) or RX components (e.g., Goss; P, 

(110)<332>; and Cube, (100)<001>) components or a combination of both [4]. Primarily, the 

texture evolution of FCC materials in hot-rolling is determined by the cross slip, twinnability, 

and competition between dislocation storage and oriented nucleation [29, 30]. Therefore, the 

introduction of GNRs and GCIs may impact the texture evolution from the following three 

aspects:  

i) GNRs drastically interact with the dislocations at the interfacial sites in terms of 

dislocation initiation, propagation, motion, and annihilation, as proven by both experimental 

observations [12, 16, 17] and molecular dynamic simulations [31]. The manner of GCI-

dislocation interaction greatly impacts the composite texture response. Firstly, the rigid 

interfacial areas may serve as high-capacity sinks for pinning down and thereby accumulating 

dislocations, especially as the specific interface area is as large as 3.48 × 10� m2 m−3 and the 
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inter-particle spacing is as narrow as < 1 μm (Fig. 1d) in this study. Secondly, there are two 

ways that an interface can supply a lattice dislocation, either by emitting of a new loop via a 

stress concentration or by splitting (dissociating) a preexisting misfit dislocation into a lattice 

dislocation and a residual [31, 32]. Thirdly, GNDs are initiated at the GCIs due to the 

deformation incompatibility along with the mismatches of coefficients of thermal expansion 

(CTE) and elastic moduli [33].  

ii) When the volume fraction of GCIs is sufficiently high, the interfaces may strongly retard 

the normal cross slip of dislocations and thereby activate non-octahedral slip in addition to the 

conventional (111)<110> slip system in FCC materials. For example, when interact with a 

GNR layer, it is possible for a single perfect dislocation with �� =
�

�
< 01�1� >  gliding on the 

(111�) close-packed slip plane to spontaneously dissociate into two Shockley partials of lower 

energies defined as ��� =
�

�
< 1�1�2 >  and ����� =

�

�
< 12�1� >  [31]. 

iii) Like the particle stimulated nucleation effect of SPPs in traditional alloys, the inclusion 

of GNRs can provide additional nucleation sites, which accelerates discontinuous RX 

nucleation of the Cu matrix. Especially, the GNR-affected zone (GAZ) with high strain 

inhomogeneity is energetically favored as preferential RX sites. It has been documented that 

the β-fiber texture is retained during continuous RX processes, whereas discontinuous RX 

processes account for β-fiber rotation towards α- (e.g., P, Bs, and Goss) and θ-fiber (Cube and 

(100)<011>) textures [4]. Therefore, the presence of GCIs can promote the formation of RX 

texture component. 

3.3 GNR-stimulated DRX 

First we attempt to clarify the relationship between the GCIs, DRX process, and final texture 
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development. The presence of non-deformable particles in commercially produced 

precipitation-containing alloys (e.g., Fe [6] and Al alloys [34]) triggers additional strain 

hardening and heterogeneities in rolled materials due to the gradients of deformation 

proportional to the inter-particle spacing [5]. In the course of deformation, a special zone (i.e., 

PAZ) is developed around such non-deformable SPPs, which is characterized by a high local 

strain and a high misorientation gradient [5]. During hot-rolling, the first recrystallized nuclei 

appear in the vicinity of the particle inclusions and this phenomenon refers to the well-known 

RX mechanism of particle stimulated nucleation, whereas the particle-free matrix exhibits the 

conventional rolling texture (β-fiber). Similarly, larger accumulated strains in the GAZ result 

in larger local driving force for RX. Firstly, GNRs modify the deformation structure in terms 

of stored energy, grain misorientation, and heterogeneity sites, which may significantly change 

the subsequent RX process. Secondly, GNRs may accelerate nucleation of RX, influence the 

orientations, and pin the growth of recrystallized grains [1].  

EBSD map (Fig. 5a) shows that the as-rolled pure Cu have elongated, laminated or spindle-

like grains, and almost no DRX grain is generated around the coarse, deformed grains. In 

contrast, some fine equiaxed grains, which are deemed to be recrystallized grains, are formed 

in the very vicinity of the GNRs (Fig. 5b-c). Deformed, recovered, and recrystallized 

components qualitatively estimated from the EBSD data indicate that the extents of dynamic 

recovery and DRX are enhanced linearly with the GNR fraction (Fig. 5d-e). This is supported 

by the much increased fraction of high-angle grain boundaries (HAGBs) in GNRs/Cu 

compared to that in pure Cu (Fig. 5f) [35, 36].  
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Fig. 5. IPF maps of (a) pure Cu and (b-c) 3GNR/Cu. The black areas indicating the GNRs. (d-

e) Deformed (red), recovered (yellow), and recrystallized (blue) areas corresponding to (a-b), 

respectively. (f) Distribution of GB misorientation angles derived from (a-b). An obviously 

larger proportion of HAGBs is detected in 3GNR/Cu than that in pure Cu. (g) High-resolution 

EBSD showing the GNR-stimulated RX nucleation. (h) (100) pole figure of the orientations of 

6 GNR-stimulation recrystallized grains labelled in (g). 

 

Due to the very large deformation rate, the incubation duration is not sufficient for 

transforming the recovered grains into fully recrystallized grains. Thus, no obvious 
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recrystallized zone is found in GNRs/Cu. Within 0.5GNR/Cu and 1GNR/Cu, the β-fiber 

components are largely eliminated along with the increase of Goss component. Since the Goss 

orientation represents a conventional RX texture component, the promotion of RX process by 

the GCIs can well explain the enhancement of Goss component in 0.5GNR/Cu and 1GNR/Cu. 

The trade-off of β-fiber has been explained using the ‘‘ReNuc’’ model of RX whereby 

nucleation is deemed to occur on HAGBs between the β-fiber components of the lamellar bands 

in conjunction with orientation-dependent recovery [37]. In contrast, despite of the elevated 

rolling temperature, the rolling texture (β-fiber) is not significantly altered in pure Cu because 

the deformation rate is as high as 30 S−1 here and thus the extent of RX is weak. PF orientation 

analysis proves that the RX nucleation and growth in the GAZ follow an essentially random 

orientation manner (Fig. 5g-h), which resembles that in the PAZ [6, 24]. Therefore, the higher 

extent of DRX is, the lower intensity of final overall texture is evolved, as detected in GNRs/Cu. 

Deformed, recovered, and recrystallized areas can further be distinguished from each other 

by analyzing local or in-grain orientation gradients. For this purpose we use the Kernel average 

misorientation (KAM) maps of the gradient GAZs under inspection [24, 38]. Fully recovered 

areas appear in such mappings as zones that are essentially free of local misorientations. In 

contrast, heavily deformed areas in the microstructure typically reveal high values of the local 

misorientation. The KAM is not necessarily homogenously distributed but rather shows a 

characteristic pattern. This applies particularly in the vicinity of the GNRs, and the 

concentrated KAM near GNRs may also verify the dislocation pile-up in the GAZ (Fig. 6a-b) 

[24, 38]. In contrast, GNR-free area with relatively low KAM values are essentially free of 

local misorientations. The KAM distribution in pure Cu is relatively homogeneous (Fig. 6c-d). 
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Fig. 6. (a-b) IPFs of pure Cu and GNRs/Cu. (c-d) KAM maps corresponding to (a-b), 

respectively. 

 

TEM characterization (Fig. 7a-c) reveals that: i) the sizes of GAZs range from several 

hundred nanometers to 1−2 micrometers; ii) preferential nucleation of dislocation cells, 

subgrains, and DRX grains occur in the GAZ; and iii) dislocation is stacked near the GCIs. We 

then correlate the change of dislocation density, RX nucleation, and KAM distribution with the 

insertion of GCIs. During deformation, GNRs restrain the gilding, migration, and propagation 

of dislocations, and the dislocation pile-up can provide abundant recovery energy. For DRX 

nucleation, critical dislocation density refers to the dislocation needed to form large enough 

subgrains with sufficient surrounding stored energy to overcome the opposing pressure from 

boundary curvature. The acceleration of dynamic recovery and DRX results from the additional 

GNDs induced by the GCIs. The density of GNDs (���� ) can be estimated by [12, 33]： 
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���� =
����� ��

���
+

������ ∆��� ∆�

�(������ )��
                       (1) 

where �� is the effective reinforcement particle diameter, ����  is the volume fraction, ��  is 

the yielding strain, ∆���   is the CTE mismatch between GNRs and Cu, and ∆�  is the 

maximum temperature change during thermomechanical processing The total dislocation 

density (�) variation with the distance from the GNRs (x) can also be estimated with respect to 

the misorientation angle (Θ) [1]: 

� =
�

�

�

�
                                (2) 

With the absolute orientation gradient, the dislocation density is [1]: 

� =
�� ������� ���� �

��
(−

���

��
)                      (3) 

where �� and K are constants, b is the Burgers vector, Θ���  is a function of the shear strain, 

and r is the particle radius. The linear relationship between �  and �  is corroborated by 

HRTEM analysis (Fig. 7d-f), which shows a high density of dislocations generated in the very 

vicinity of the GCIs whereas the density drops sharply at a distance of < 20 nm from the 

interface. All these prove that the inhomogeneity of KAM in the GAZs and GNR-free areas 

and the stimulation of DRX both arise from the dislocation pinning effect. The evolution of 

RX-type texture is a result of the dynamic competition between the dislocation accumulation 

induced by the GCIs and the dislocation removal due to DRX. 
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Fig. 7. (a-c) TEM images showing the microstructure, dislocation cells, subgrains, and DRX 

grains in the GAZ. GNRs are indicated by black arrows. (d) HRTEM image of the GCI region. 

(e-f) Inverse FFT images corresponding to regions 1 and 2 in (d), respectively. Dislocations 

are marked by “T”. 

 

It is noteworthy that the P component, which is frequently observed in recrystallized Al 

alloys containing SPPs [7, 25, 34, 39], is not developed in GNRs/Cu. The evolution of the P 

component in recrystallized materials is related to the well-known particle stimulated 

nucleation mechanism and rationalized by the strain energy release maximization theory [7, 

39]. The evolution of P-type textures can be explained by a model which combines both 

oriented nucleation and rapid growth of grains with a 40°/<111> orientation relationship to its 

surroundings. This concept rests on the idea that 40°/<111> grains have a growth advantage 

due to a higher mobility of the reaction front than growing grains of random orientations [4, 5, 
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25]. The P orientation has a 31.1°/<122> orientation relationship with respect to the Cube 

orientation, which is close to the 40°/<111> condition [40]. Finite element simulations have 

demonstrated that the strain field in the vicinity of non-deformable particles strongly deviates 

from the macroscopic one, which is responsible for the specific P-type texture in the PAZ 

during RX [5, 39].  

PAZs may provide preferred RX nucleation sites, and the development of P orientations in 

such sites is substantially tied to the shape, size, and strain distribution of the PAZ [5, 41]. 

Although GNRs also induce a GAZ, the characteristics of micro-texture and microstructure in 

the vicinity of GAZ are rather different from that of a large constituent particle in traditional 

alloys [6, 34, 36]. This refers to a nano-scale effect due to the special quasi-1D geometry and 

atomic-level thickness of GNRs. As supported by the SEM (Fig. 1a-d), EBSD (Fig. 1i-j), and 

TEM (Fig. 7) results, no shear-band, obvious local deformation zone, or local lattice rotation 

is generated in GNRs/Cu; and the GAZs have sub-micrometer size. Therefore, the magnitudes 

of local strain and misorientation gradient are too small to trigger the specific P component. 

The distinction between GAZ and PAZ may rationalize why particle stimulated nucleation 

followed by an oriented growth of P-oriented grains, which is a commonly accepted premise 

in industrial grade Al alloys containing coarse non-deformable particles [5, 39], is not observed 

in our GNRs/Cu samples. It is also notable that the coarse particles in conventional alloys have 

little effect on the overall deformation texture when the volume fraction is relatively low (e.g. 

< 5%) [1]. GNRs in this study can significantly influence the texture evolution of the 

composites, which is also owing to their nano-size effect and large specific surface area (i.e., 

interfacial area). 
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3.4 Non-octahedral slip 

Correlating the addition of GCIs to the enhanced DRX extent can well explain the 

strengthening of Goss component at relatively low GNR fractions (e.g., 0.5−1 vol.%). However, 

this correlation alone cannot rationalize why the anomalous brass-type texture is developed in 

3GNR/Cu. 

In FCC crystals, the usual operating slip is (111)<110>. It is well established that rolling 

deformation through the (111)<110> slip in FCC metals or alloys leads to the development of 

Cu, S, and Bs texture components [20]. The balance between Cu and Bs components is mainly 

determined by the value of SFE in these metals or alloys. The development of the Cu-type 

texture can be explained by Taylor-type models with straight-forward (111)<110> slip. As to 

the development of brass-type texture, a general agreement in relative theories is still lacking 

[3, 26]. Deformation twinning and shear-band theory are frequently adopted to explain the 

development of brass-type texture in Cu alloys (with relatively low SFE) and Cu-based dual-

phase composites [42]. However, neither twinning nor shear band is particularly identified in 

GNRs/Cu here. Therefore, we conjecture that the brass-type texture evolution in 3GNR/Cu is 

likely to result from the dislocation-related factors only. Some studies have documented that 

brass-type textures may be the result of the predominance of non-octahedral (or non-compact) 

slip (e.g. (111)<112> slip) [26, 28-30]. Non-compact slip could occur extensively under 

conditions of nanocrystalline [43] or ultrafine-grained [28] materials, multiple slip [44], high 

strains and strain rates, and elevated rolling temperatures (> 0.6 Tm) [29, 30]. At higher strain 

rates, grain interactions become more important; multiple slip systems are activated and their 

interactions become more complex. At high temperatures, the critical resolved shear stress 
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(CRSS) for non-basal slip decreases dramatically [45]. 

In FCC materials perfect dislocations with 
�

�
[110] Burgers vector may dissociate into two 

Shockley partial dislocations with 
�

�
[211]  Burgers vectors, for instance, 

�

�
[110]→

�

�
[211]+

�

�
[121�] . These partial dislocations may slip thus introducing a new slip mode, 

(111)<112>. It is well recognized that, for pure metals, the extent of partial diminishes with the 

SFE increasing [26]. Therefore, in normal conditions, pure Cu deforms by straight-forward 

(111)<110> slip due to its medium SFE, and dislocation partials are unlikely to form. 

Interestingly, it has been verified that, in the case of Cu-graphene composites, Shockley partials 

are initiated due to the pinning of full dislocations by the GCIs. It is possible that as with the 

inclusion of stiff graphene interfaces, there is a transition in the mechanism of slip from glide 

of perfect <110> dislocations to glide of uncoordinated slip by <112> Shockley partials [31]. 

This trend is presumably enhanced with the GNR fraction increasing (i.e., the volume of GCIs).  

In these regards, we propose that the second factor for the atypical texture evolution of 

GNRs/Cu is the activation of non-compact (111)<112> slip system, which is additional to the 

normal (111)<110> slip. Dislocation climb and cross slip are hindered by the GCIs, especially 

due to the high deformation temperatures, high strain rate, and large specific interfacial area of 

GNRs applied in this study. The increase of Bs component on one hand and the expense of Cu 

component on the other hand reflect that GNRs may stimulate non-octahedral slip in Cu in 

addition to the normal <110> cross slip. It is noteworthy that an individual GNR can cross 

several grains rather than residing at the grain boundaries [12]. This substantially enhances the 

interaction between the GCI and dislocations and may lead to a considerable high density of 

<112> partials. As revealed by the TEM images (Fig. 8a-b), a great deal of dislocation partials 
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are formed around the GCIs. HRTEM and FFT images (Fig. 8c-f) show intimate bonding 

between the Cu and GNR lattices at the atomic level. A robust interfacial bonding is 

prerequisite for effective interaction between the GCIs and dislocations. Moreover, strongly 

localized slip on only a few preferred slip systems will take place due to the nano-size effect 

of the GNRs, robust interfacial coherency, prominent GNDs storing at the GCIs to 

accommodate the strain incompatibilities, and the strong constraints to dislocation movement. 

 

Fig. 8. (a-b) TEM images showing the Shockley partials. (c) HRTEM image revealing closely 

bonded GCIs. (d-f) FFT patterns corresponding to the lattices of Cu, GCIs, and GNRs (regions 

1-3) in (a), respectively. 

Within GNRs/Cu the stimulating effect of GCIs on the RX behavior operates along with 

their impact on the slip mode. Therefore, the appearance of brass-type texture in 3GNR/Cu 

instead of an increase strength of RX component observed in 0.5GNR/Cu indicates that, at 
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higher GNR fractions, the pinning effect of GCIs and the ensuing activation of additional slip 

system play a more predominant role in the texture evolution. For 1GNR/Cu, the texture 

transformation is dominated by the competition between the RX process and slip mode change, 

and thus the final texture is a balance of RX- (Goss) and Bs components. 

3.5 VPSC simulation 

The previous experimental studies indicate that the GCIs may heavily impact the texture 

evolution via accelerating the DRX process and changing the dislocation behavior and slip 

mode. The rise of Goss component within 0.5GNR/Cu suggests a promotion of dynamic 

recovery and DRX processes by the GCIs. The development of a (110)<112> brass-type texture 

instead of a (112)<111> Cu-type texture in 3GNR/Cu justifies that the normal cross-slip is 

suppressed due to the insertion of GCIs. The texture evolution in 1GNR/Cu follows a balance 

of RX-type and brass-type textures. To explore the roles of GNRs, we further implement VPSC 

polycrystal simulations to: i) provide an understanding on the texture development of metal-

nanocarbon composites in hot-rolling process; ii) evaluate the roles of the GCIs in altering the 

DRX behavior and slip patterns of the matrix material; and iii) investigate how these changes 

influence the bulk texture evolution. In VPSC modelling, a single grain is treated as an 

ellipsoidal visco-plastic inclusion embedded in and interacting with an anisotropic 

homogeneous effective medium that corresponds to the polycrystalline aggregate [20, 27, 44]. 

The response of individual grains is described by the activation of various deformation systems 

(s) at predetermined values of the CRSS [45, 46]. The VPSC model has been proved to be 

successful in predicting texture evolution in both single-phase (e.g., Cu [47], Ag [20], Mg [45], 

and Zr [46]) and multi-phase composites (e.g., Cu-Nb [19], Cu-Ag [20], and Pt-Au [43]) under 
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load conditions involving large plastic straining and strain path changes. 

 The parameters that can be varied in VPSC are the polycrystal model itself and the assumed 

operating slip systems. Accordingly, the effects of GCIs can be investigated in the VPSC 

simulation by tuning the interaction coefficient, the CRSS value and the CRSS ratio of possible 

slip systems, and the coupling coefficient. Table 1 lists the parameters for VPSC simulation 

considering the different operating slip systems and polycrystal models (i.e., interaction 

coefficient) between pure Cu and GNRs/Cu. These parameters are assigned by taking into 

account the effects of GCIs on the DRX process, dislocation interaction (i.e., confinement, 

annihilation, or initiation), and slip mode, as discussed previously in Section 3.2-3.4. 

Table 1. Constitutive parameters for VPSC simulations of pure Cu and GNRs/Cu. 

GNR fraction Slip system �� �� �� �� ℎ��
�
 ���� 

0 (111)<110> 33.5 1200 100 5 1.4 1 

0.5 
(111)<110> 12.5 1200 100 5 1.1 

1/10 
(111)<112> 19 1200 100 5 1.1 

1 
(111)<110> 33.5 1200 100 5 1 

1/20 
(111)<112> 25 1200 100 5 1 

3 
(111)<110> 40.5 1200 100 5 1 

1/20 
(111)<112> 33.5 1200 100 5 1 

 

The variation in the polycrystal model is possible by changing a single parameter—the so-

called interaction coefficient � in the interaction equation of the VPSC model, which relates 

the grain-level stress (��) and strain rate (��) to the aggregate counterparts (�, �) [27]: 

�� − � = ����(������ + ��)(�� − �)                    (4) 

For example, ���� = 0, 1, ∞, and 1/m (m: strain-rate sensitivity parameter) correspond to 

modeling by the Sachs, Secant, Taylor, and Tangent polycrystal models, respectively [43, 47]. 
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Previous modeling studies on FCC rolling texture have indicated that the transition from Cu- 

to brass-type texture is generally dictated by two main factors, i.e., the grain-matrix interaction 

scheme and the inclusion or exclusion of deformation twinning [27]. When deformation 

twinning is not taken into account, the Taylor (upper)- and Sachs (lower)-type models lead to 

Cu- and brass-type rolling textures, respectively. Therefore, the interaction schemes can be 

adjustable to reflect the strength of the coupling between the stress and strain rate deviations. 

Considering the remarkable blocking effects of GNRs on dislocation sliding, as proven by the 

(HR)TEM characterizations (Figs. 7-8), we define an interaction coefficient ���� = 1/20 for 

1GNR/Cu and 3GNR/Cu, ���� = 1/10 for 0.5GNR/Cu, and ���� = 1 for pure Cu. 

The VPSC model also involves the Voce hardening model as follows [27, 44]: 

��(Γ)= �� + (�� + ��Γ)[1 − exp (− Γ �
��

��
�)]                 (5) 

where for each grain the accumulated strain is Γ = ∫ ∑ |∆γ�|
�

�
��; ∆γ� is the shear rate on slip 

system s; and ��, ��, �� and �� govern the hardening of s. The operating slip systems can 

be mediated by adjusting the CRSSs, i.e., the parameters �� , �� , �� , and �� , of the 

corresponding systems. 

In the case of GNRs/Cu, the effect of GNRs in terms of pinning down the dislocations, 

generating GNDs, and removing dislocations via accelerating dynamic recovery and DRX 

should be considered. Meanwhile, the dislocation density of each slip α is updated based on 

dislocation generation (plasticity) and removal (recovery and RX) [45, 46]: 

���

���
= ��

���� − ��
�(�, �̇)��                         (6) 

Parameter ��
� is temperature (T) and strain rate (�̇) dependent: 

��
�(�,�̇)

��
� =

���

��
(1 −

��

����
ln (

�̇

�̇�
)                         (7) 
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where �� is the shear strain; ��, ��, �̇�, and ��
� are the hardening parameters of slip �. 

The forest hardening of slip � is calculated by [45]: 

�������
� = ������� + ����                          (8) 

where  �  is the hardening parameter and �  is the shear modulus. The VPSC model also 

allows for the possibility of “self” and “latent” hardening by defining coupling coefficient ℎ��
�
, 

which empirically accounts for the obstacles that new dislocations associated with s' activity 

represent for the propagation of system s. 

∆�� =
���(�)

��
∑ ℎ��

�

�� ∆γ�
�
                         (9) 

where ∆��  represents the increase in the CRSS of slip system s by slip shearing on other 

systems s'. Thus, the updated CRSS of slip α (herein, (111)<110> and (111)<112> slip systems) 

can be expressed as:  

�����
� = ��

� + �������
� + ∆��                       (10) 

Qualitatively, the CRSS for normal cross slip is heavily increased due to the additional 

dislocation with in the GAZ. Thereby the activation of additional <112> partial slip is possible 

to accommodate overall dislocation movement, and this possibility is in proportion to the 

volume fraction of GCIs. Accordingly, the effect of GCIs can be expressed in the VPSC 

simulation by tuning the CRSS value and the CRSS ratio of (111)<112> and (111)<110> slip 

[26]. The Voce parameters are assigned primarily according to previous studies [19, 20]. Within 

0.5GNR/Cu, the dislocation removal via recovery and RX dominates, thus ��  is set to a 

relatively low value (see Table 1). In contrast, as revealed by our previous study [12], the 

accumulated dislocation density in 3GNR/Cu at ε = 1.94 is nearly 8 times larger than that in 

the pure Cu counterpart. Therefore, ��
����� for 3GNR/Cu is set to 40.5 MPa as compared to 
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33.5 MPa for pure Cu. 

As shown in Fig. 9, the corresponding PFs and ODF figures obtained from the simulation 

results agree well with the experimental observations (Figs. 2-4). Specifically, for pure Cu, we 

find that the development of classical Cu-type texture is best simulated with the Taylor model 

taking (111)<110> octahedral slip exclusively, which is consistent well with previous studies 

[26, 28, 47]. As to GNRs/Cu, a reasonable fit can be produced via the selection of specific <110> 

and <112> slip systems, polycrystal model, and coupling coefficient. For 0.5GNR/Cu, we make 

available to ��
����� ��

�����⁄ = 1: 1.5 , yielding 95% and 5% slip activity, respectively [43]. 

The stimulation effect of GNRs on the DRX process can be reflected by reducing the values of 

ℎ��
�
 and �. For 1GNR/Cu, we assign to <112> slip the same Voce parameters as <110> slip 

but with ��
����� ��

�����⁄ = 1.34: 1  to enforce a predominance of <112> slip [20]. For 

3GNR/Cu, the predominance of Bs component and its deviation from the ideal position are 

best simulated with the Tangent model by assuming the dominant slip of 1/6<112> partial 

dislocations on (111) planes and weak interaction between the grains, respectively (see Table 

1). 
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Fig. 9. (a-d) ODF representations at φ2 = 0°, 45°, and 60° obtained from the VPSC simulation 

results of pure Cu, 0.5GNR/Cu, 1GNR/Cu, and 3GNR/Cu, respectively. (e-h) (111) PFs 

corresponding to (a-d), respectively. 

 

The consistency between the experimental and simulated texture data further confirms the 

roles of the GCIs on the DRX and texture evolution of bulk composites. It is clear from the 

modeling that texture evolution in GNRs/Cu is dependent on non-compact slip in addition to 

conventional 111<110> slip. Qualitative and quantitative analyses of the calculated textures 

indicate that texture evolution in the Cu phase is significantly influenced by the GCIs, which 

either promotes partial dislocations or acts as a barrier to slip (or possibly both). Furthermore, 

it is noteworthy that texture measurement for composites containing > 3 vol.% GNRs is not 

implemented in this study because of the obvious aggregation of GNRs in the Cu matrix at 
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such high fractions. Nevertheless, it can be speculated from the simulation results that, for Cu-

based composites with higher volume fractions, a more predominantly brass-type texture will 

develop. This can be ascribed to more obvious changes of the dislocation-GCI interaction and 

the operating slip mode with amounts of GNRs increasing, despite higher extents of dynamic 

recovery and DRX are also expected. 

4. Conclusions 

To summarize, we demonstrate interface-directed DRX behavior and texture evolution in a 

GNR-reinforced Cu matrix composite. Macro- and micro-texture measurements show an 

increased strength of Goss component in 0.5GNR/Cu, a brass-type texture in 3GNR/Cu, and a 

balance of Goss and Bs component in 1GNR/Cu, which deviate from the normal Cu-type 

texture forming in the pure Cu counterpart. TEM, HRTEM, EBSD, and KAM analyses prove 

that the GCIs may influence the deformation behavior of the Cu matrix from the following four 

aspects: i) retarding dislocation cross slip and piling up dislocations; ii) generating GNDs; iii) 

promoting DRX nucleation; and vi) activating non-compact <112> slip. Furthermore, the 

deviations of the texture developed in 0.5GNR/Cu, 1GNR/Cu, and 3GNR/Cu are rationalized 

by the GNR-stimulating nucleation effect, and a balance of both, respectively. This is supported 

by VPSC simulations, which well reproduce the texture development in all samples by 

assigning the VPSC parameters considering the interface-dislocation interaction, GNR-

stimulated DRX and activation of non-octahedral slip.  

Interface-mediated DRX process and texture evolution as revealed by this study suggest the 

exciting possibilities of manipulating the microstructure, texture, and mechanical properties of 

traditional metallic materials through the design of heterophase interfaces. It is suggested that, 
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other low-dimensional materials (e.g., CNTs and BN nanoribbon) may function well as GNRs 

on altering the deformation behavior of the matrix phase. Hetero-interfaces prepared by top-

down methods (e.g., powder blending in this study) instead of bottom-up methods (e.g., 

precipitation in traditional alloys) may offer high flexibilities for engineering the properties of 

the interfaces, e.g., the size, geometry, orientation, spatial distribution, fraction, and bonding 

strength. Moreover, further exploration of the relation between metal-nanofiller interfaces is 

important for potential applications because the hot-rolling processing adopted here is much 

close to the industrial conditions. 
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