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Abstract

As a rapidly developing lower-middle income country, Bangladesh has been main-

taining a steady growth of +5% in the gross domestic product (GDP) annually since

2004, eventually reaching 7.1% in 2016. The country is targeting to become upper-

middle-income and developed by 2021 and 2041 respectively, which translates to an

annual GDP growth rate of 7.5�8% during this period. The bulk of this growth

is expected to come from the manufacturing sector, the signi�cant shift towards

which started at the turn of this century. Energy intensity of manufacturing-based

growth is higher, the evidence of which can be seen in the 3.17 times increase in

national energy consumption between 2001 and 2014. Also, Bangladesh aims to

achieve 100% electri�cation rate by 2021 against an annual population growth rate

of 1.08%. With the increasing per capita income, there is now a growing middle

class fuelling the growth in demand for convenient forms of energy. Considering

the above drivers, the Bangladesh 2050 Pathways Model suggested 35 times higher

energy demand than that of 2010 by 2050. The government and private sector have

started a substantial amount of investments in the energy sector to meet the sig-

ni�cant future demand. Approximately US$104 billion would be invested in the

power sector of Bangladesh for establishing 33 GW installed capacity by 2030, the

majority of which would be �nanced by national and international loans. However,

Bangladesh is one of the most corrupted country in the world which may in�uence

the energy planning development. The current policies of Bangladesh power sec-

tor paved the future direction towards predominantly coal-based energy mix which

would augment the greenhouse gas (GHG) emissions �ve times (117.5 MtCO2e) in

2030 than that of 2010. By increasing GHG emissions, the country would undermine

the worldwide e�ort of keeping global temperature rise in 21st century below 2°C,

as per the Paris agreement and COP21.
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The objective of this research was to develop a framework to explore the cost of

decarbonizing the Bangladesh's energy sector by 2050. For the study, six emissions

scenarios �business as usual (BAU), current policy (CPS), high-carbon (HCS),

medium-carbon (MCS), low-carbon (LCS) and zero-carbon scenarios (ZCS)�, and

three economic conditions �high, average and low cost�were considered. The

combination of emissions and economic scenarios rendered 18 di�erent emissions-

economic scenarios for the research. The results showed that Bangladesh would

emit 343 MtCO2e by 2050 without any emissions reduction strategies under HCS.

However, Bangladesh can reduce 23% GHG emissions by 2050 under LCS than that

of HCS by adopting decarbonization strategies such as energy mix change towards

renewable and nuclear. On the optimistic side, the emissions can be reduced 73%

by 2050 under ZCS than that of HCS. The study demonstrated that a zero carbon

future is not yet feasible for Bangladesh by 2050 because the operational fossil fuel

based plants would be operational. Therefore, the GHG emissions are going to rise

even if Bangladesh adopts renewables and nuclear dominating energy mix. How-

ever, it will be possible to keep the GHG emissions approximately 2 tCO2e/capita

threshold if the country adopts LCS. On the other hand, only MCS and LCS can

meet the projected energy demand by 2050. The energy sector can meet the pro-

jected demand under ZCS only if the electricity consumption is reduced 26% by

2050. In terms total cost, the MCS was found to be 3.9% expensive than that of

LCS by 2050. LCS would have a higher cost than that of MCS up to 2030, due to

the high capital cost of renewable technologies. The total cost under LCS would

start to be lower than of MCS after 2035 for the fossil fuel cost. Accumulated fuel

cost would reach $250 billion in 2050 under HCS, which can be reduced 23% under

ZCS. The cost of decarbonization would be 3.6, 3.4 and 3.2 times under average

cost of MCS, LCS, and ZCS, than that of HCS. As the energy sector of Bangladesh

is under rapid development, the accumulated capital would be comparatively high

by 2050. However, fuel cost can be signi�cantly reduced under LCS and ZCS which

would also ensure lower emissions. The study suggested that energy mix change,

technological maturity, corruption and demand reduction can in�uence the cost

of decarbonization. However, the most signi�cant in�uencer for the decarboniza-

tion of Bangladeshi energy sector would be the corruption. Results showed that if

Bangladesh can minimize the e�ect of corruption on the energy sector, it can reduce

the cost of decarbonization 45-77% by 2050 under MCS, LCS, and ZCS.

VI



List of symbols

y Years.

a Energy generation technologies.

f Fuels.

TCSy Total cost ($2010).

fdy Discount factor in a speci�c year.

fd2010 Discount factor in 2010.

rdy Discount rate.

IC(y,a) Installed capacity (kW).

F(y,a) Fuel used (kWh).

CC(y,a) Capital cost per installed capacity ($2010/kW).

OC(y,a) Operation and maintenance cost per installed capacity ($2010/kW).

FC(y,f) Fuel cost per unit generation ($2010/kWh).

VII



Contents

1 Introduction 1

1.1 Aim and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Energy sector in Bangladesh 12

2.1 Historical context of energy sector of Bangladesh . . . . . . . . . . . 12

2.2 Electricity and economy . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Population and economic growth . . . . . . . . . . . . . . . . 14

2.2.2 Energy use and e�ects on economy . . . . . . . . . . . . . . . 15

2.3 Electricity demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Electricity generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Transmission and distribution . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Cost analysis 32

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Cost of power plants in Bangladesh . . . . . . . . . . . . . . . . . . . 41

3.3 Cost evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 E�ect of corruption on cost of power plants . . . . . . . . . . . . . . . 50

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Energy planning models 55

4.1 Typology and structure of energy planning models . . . . . . . . . . . 57

4.2 De�ciencies in existing EPMs . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 `Suppressed' demand in developing countries . . . . . . . . . . 74

4.2.2 Di�erence in socio-economic characteristics . . . . . . . . . . . 75

VIII



4.2.3 Data inadequacy . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.4 Climate change impact . . . . . . . . . . . . . . . . . . . . . . 83

4.2.5 E�ects of poor characterisation . . . . . . . . . . . . . . . . . 85

4.3 Implications and considerations for EPMs . . . . . . . . . . . . . . . 85

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Forecasting methods 91

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Stand-alone methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 Computational intelligence (CI) methods . . . . . . . . . . . . 113

5.3.3 Mathematical programming (MP) . . . . . . . . . . . . . . . . 131

5.4 Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.1 Statistical-statistical methods . . . . . . . . . . . . . . . . . . 131

5.4.2 Statistical-CI methods . . . . . . . . . . . . . . . . . . . . . . 132

5.4.3 CI-CI methods . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4.4 Statistical-MP methods . . . . . . . . . . . . . . . . . . . . . 136

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5.2 Temporal analysis . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5.3 Geographical analysis . . . . . . . . . . . . . . . . . . . . . . . 139

5.5.4 Objective based analysis . . . . . . . . . . . . . . . . . . . . . 143

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Drivers for energy sector decarbonisation 146

6.1 `BD2050 � Bangladesh 2050 Energy and Emissions Pathways' model . 147

6.2 Cost model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 Limitations and scope . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Scenario de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4.1 Business as usual (BAU) . . . . . . . . . . . . . . . . . . . . . 159

6.4.2 Current policy scenario (CPS) . . . . . . . . . . . . . . . . . . 160

6.4.3 High-carbon scenario (HCS) . . . . . . . . . . . . . . . . . . . 162

6.4.4 Medium-carbon scenario (MCS) . . . . . . . . . . . . . . . . . 164

IX



6.4.5 Low-carbon scenario (LCS) . . . . . . . . . . . . . . . . . . . 164

6.4.6 Zero-carbon scenario (ZCS) . . . . . . . . . . . . . . . . . . . 165

6.5 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5.1 Overview of total cost and cost of decarbonization of energy

generation sector . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5.2 Change in the energy mix . . . . . . . . . . . . . . . . . . . . 170

6.5.3 Implication of technological maturity on the cost of decar-

bonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5.4 In�uence of corruption on the cost of decarbonization . . . . . 175

6.5.5 In�uence of demand reduction on the cost of decarbonization . 176

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7 Conclusion and future work 180

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

References 187

Appendix A Forecasting methods analysis 227

Appendix B Cost data 284

Appendix C Publications 291

X



List of Figures

1.1 CO2 emissions vs. access to electricity in high and low-income coun-

tries in 2010 (for the income classi�cationWorld Bank list of economies

was used); data source (WB, 2017a). Access to electricity in low and

middle-income countries ranges from 3.5�100% of the population. In

contrast, the �gure is 72.6�100% in high-income countries. . . . . . . 3

1.2 Electricity consumption per capita in di�erent countries (1971-2014)

and forecasting the trend up to 2051; data source (WB, 2017a) . . . . 4

1.3 Electricity consumption per capita in di�erent countries (1971-2014)

and forecasting the trend up to 2051; data source WB (2017a) . . . . 8

2.1 Population and GDP in Bangladesh form1960-2013 ; data source

(WB, 2017a).The population has been rising at a positively linear

trend. However, GDP is demonstrating an exponential trend. . . . . . 15

2.2 Historical GDP growth rate of Bangladesh; data source (WB, 2017a).and

plausible reasons (the yellow coloured reasons are political and green

ones are natural disasters) . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 GDP elasticity with (A) energy use per capita, and (B) electricity

consumption of Bangladesh. (C) Historical electricity consumption

in Bangladesh (1971-2013); data source (WB, 2017a). . . . . . . . . . 17

2.4 Electricity demand pro�le in 1985-86 and 2014; data source (BPDB,

2008, 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Electricity demand in di�erent sectors; data source BPDB (2008,

2009, 2010, 2011, 2012, 2013, 2014, 2017a). . . . . . . . . . . . . . . . 19

2.6 (A) Access to grid in Bangladesh; data source (WB, 2017a). (B)

Installed and derated capacity in Bangladesh, (C) Maximum gener-

ation and load shedding in Bangladesh; data source (BPDB, 2008,

2009, 2010, 2011, 2012, 2013, 2014, 2017a). . . . . . . . . . . . . . . . 20

XI



2.7 Public and private sector net generation; data source (BPDB, 2008,

2009, 2010, 2011, 2012, 2013, 2014, 2017a). . . . . . . . . . . . . . . . 22

2.8 Age of public and private power plants; data source (BPDB, 2008,

2009, 2010, 2011, 2012, 2013, 2014, 2017a). . . . . . . . . . . . . . . . 22

2.9 Power plants in Bangladesh including existing, under construction

(UC) and planned (2015-2021); Map drawn by author using data

from PGCB (2015); Hijmans et al. (2012); UNOCHA (2018) . . . . . 24

2.10 Fuel for public energy sector; data source WB (2014). . . . . . . . . . 26

2.11 Installed capacity (MW) and fuel types; data source WB (2014). . . . 26

2.12 Transmission lines in Bangladesh; data source WB (2014). . . . . . . 27

2.13 Existing, under construction and planned electricity transmission net-

work in Bangladesh (2015-2021); Map drawn by author using data

from PGCB (2015); Hijmans et al. (2012); UNOCHA (2018) . . . . . 28

2.14 Substations and HVDC stations in Bangladesh (2015-2021); Map

drawn by author using data from PGCB (2015); Hijmans et al. (2012);

UNOCHA (2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.15 Relationship of electricity customer numbers with GDP per capita

and distribution line length in Bangladesh; data source WB (2014). . 30

3.1 Capital cost comparison among fossil fueled power plants from the

world with Bangladesh. In the case of GT/ST and CCPP, Bangladeshi

public power plant's mean capital cost is higher than that of the mean

of private and world counterparts. Surprisingly, private power plant's

mean capital cost was lower than the world mean for CCPP. Subcrit-

ical coal plant means capital cost is slightly higher than that of global

mean. However, ultra-supercritical mean capital cost of Bangladesh

would be signi�cantly greater than the world mean. . . . . . . . . . . 44

XII



3.2 Capital cost comparison among nuclear and renewable power plants

from di�erent country/regions with Bangladesh. In the case of solar

PV plants, mean capital cost of Bangladesh is lower than the world

mean. However, the installed capacity is only 12 MW. Mean capital

cost for hydroelectric plants is also lower than that of global mean

capital cost. The reason behind this lower cost is the later units were

in the same plant side, which reduced the ancillary cost. For nuclear

only one plant is going to be built in Bangladesh by 2030 and its cost

would be signi�cantly higher than that of the world mean capital cost. 46

3.3 Cost evolution of di�erent power generation technologies. In the case

of coal, one subcritical power plants and two future ultra-supercritical

ones not su�cient to see the cost evolution. For hydroelectric, solar

PV and nuclear, the power plant numbers are insu�cient for analysis

of learning rate or cost evolution. Under these circumstances, highly

utilized technologies such as gas turbine/engine and CCPP for public

and private power plants were analyzed for cost evolution. . . . . . . 49

3.4 (A) Average capital cost (2004-2016) and (B) CPI score (2004-2016).

Chart `B' is demonstrating that CPI index is not gradually reducing.

Moreover, the average capital cost of power plants is related to the

change of CPI score. Here, higher CPI score means lower corruption. 51

3.5 Corruption vs. capital cost analysis for Bangladeshi power plants;

(A) Normalized capital cost vs. average annual CPI scores, (B) Nor-

malized capital cost vs. average biannual CPI scores, (C) Normalized

capital cost vs. average triannual CPI scores, and (D) Normalized

capital cost vs. average quadrennial CPI scores. . . . . . . . . . . . . 52

4.1 GDP growth vs political stability trends in developed (a-e) and devel-

oping countries (f-j). Here, the �tted regression line visually depicts

the trend in the data. Data source WB (2014); Kaufmann and Kraay

(2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 GDP per capita vs electricity consumption from 1995 to 2013. The

R2 values denote the coe�cient of determination, and it measures

how close the data to the �tted regression line (The solid lines). Data

source WB (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

XIII



4.3 Growth trends across developed and developing countries. (A) Growth

in GNI per capita of di�erent countries from 1960 to 2014. (B)

Growth trends in electricity consumption of di�erent countries from

1960 to 2014. In panel (B), the trends in the data are visually depicted

by �tted regression lines. The y-axis values are on a logarithmic scale,

and the dashed and solid lines denote exponential and logarithmic

progression of the data, respectively. The income group classi�cation

used here is that from the World Bank list of economies (July 2015):

low income, $1,045 or less; lower middle income, $1,046�4,125; upper

middle income, $4,126�12,735; and high income, $12,736 or more.

Data source WB (2014) . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Comparison of corruption perceptions with in�ation and consumer

prices. Corruption Perceptions Index (CPI) 2014 vs. In�ation (2014)

among the top and bottom 35 countries of the CPI list. High-income

countries where EPMs have originated are illustrated by hollow purple

diamond shapes. For detail, see Table 4.3. Data source WB (2014);

TI (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Basic forecasting or estimation model structure . . . . . . . . . . . . 94

5.2 ANN schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 ANN process; adopted from (Ahmad et al., 2016) . . . . . . . . . . . 114

5.4 Publishing year of the studied models . . . . . . . . . . . . . . . . . . 139

5.5 Publishing year of the models with methods utilized in energy plan-

ning models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Country wise number of models utilizing (A) Statistical, (B) CI and

MP forecasting methods . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.7 Objectives of the models . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.1 Cost model structure (red lines denote the possible links and �ow be-

tween BD2050 � `Bangladesh 2050 Energy and Emissions Pathways'

model and proposed cost model . . . . . . . . . . . . . . . . . . . . . 148

6.2 Energy mix of Bangladesh in 2010 and analyzed scenarios in 2050.

The assumptions of di�erent scenarios were calculated form the po-

tential analysis in each electricity generation sector of Bangladesh

with BD2050 (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

XIV



6.3 Installed capacity 2010-2050 under (A)BAU, (B)CPS, (C)HCS, (D)MCS,

(E)LCS and (F)ZCS . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4 Total cost under (A)BAU, (B)CPS, (C)HCS, (D)MCS, (E)LCS and

(F)ZCS from 2010 to 2050 . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5 Cost of decarbonization under (A)MCS, (B)LCS and (C)ZCS from

2010 to 2050, (D) Total GHG emissions under di�erent analyzed sce-

narios 2010-2050, (E) Unmet demand for analyzed scenarios. . . . . . 171

6.6 Accumulated (A) Capital, (B) O&M abd (C) fuel cost under di�erent

analyzed scenarios in 2050 . . . . . . . . . . . . . . . . . . . . . . . . 172

6.7 Cost breakdown in 2010 and under di�erent scenarios in 2050 . . . . 175

6.8 Total electricity generation from di�erent supply sector 2010-2050

under (A)BAU, (B)CPS, (C)HCS, (D)MCS, (E)LCS and (F)ZCS . . 178

XV



List of Tables

2.1 Electricity generation installed capacity; data source (BPDB, 2017b) 25

3.1 Background information on the cost data . . . . . . . . . . . . . . . . 36

3.1 Background information on the cost data . . . . . . . . . . . . . . . . 37

3.1 Background information on the cost data . . . . . . . . . . . . . . . . 38

3.1 Background information on the cost data . . . . . . . . . . . . . . . . 39

3.1 Background information on the cost data . . . . . . . . . . . . . . . . 40

3.2 Test of normality. The data is normal because of the Sig. Value of

the Shapiro-Wilk Test was higher than 0.05. . . . . . . . . . . . . . . 42

3.3 The capital cost of power generation plants in theWorld and Bangladesh.

Power plants in Bangladesh are further disaggregated into public and

private. Historical and projected costs are rounded to the nearest

US$(2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Pearson correlation test between CPI score and capital cost per in-

stalled capacity of power plants in Bangladesh . . . . . . . . . . . . . 53

4.1 Searched keywords and associated groups . . . . . . . . . . . . . . . . 58

4.2 Characteristics of existing energy planning models . . . . . . . . . . . 59

4.2 Characteristics of existing energy planning models . . . . . . . . . . . 60

4.2 Characteristics of existing energy planning models . . . . . . . . . . . 61

4.2 Characteristics of existing energy planning models . . . . . . . . . . . 62

4.2 Characteristics of existing energy planning models . . . . . . . . . . . 63

4.2 Characteristics of existing energy planning models . . . . . . . . . . . 64

4.3 Origin and use of EPMs . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Origin and use of EPMs . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Origin and use of EPMs . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Origin and use of EPMs . . . . . . . . . . . . . . . . . . . . . . . . . 70

XVI



4.3 Origin and use of EPMs . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Origin and use of EPMs . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Origin and use of EPMs . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 E�ect of poor characterisations of energy systems and economies of

developing countries in energy planning models . . . . . . . . . . . . 86

4.5 Applicability of suggested variables in existing EPMs. . . . . . . . . . 87

5.1 Searched keywords and associated groups . . . . . . . . . . . . . . . . 92

5.2 Analysis of stand-alone statistical methods utilized in forecasting

models (For more information on the source please check A.1) . . . . 96

5.2 Analysis of stand-alone statistical methods utilized in forecasting

models (For more information on the source please check A.1) . . . . 97

5.2 Analysis of stand-alone statistical methods utilized in forecasting

models (For more information on the source please check A.1) . . . . 98

5.3 Analysis of stand-alone computational intelligence and mathemati-

cal programming methods utilized in forecasting models (For more

information on the source please check A.2) . . . . . . . . . . . . . . 99

5.3 Analysis of stand-alone computational intelligence and mathemati-

cal programming methods utilized in forecasting models (For more

information on the source please check A.2) . . . . . . . . . . . . . . 100

5.3 Analysis of stand-alone computational intelligence and mathemati-

cal programming methods utilized in forecasting models (For more

information on the source please check A.2) . . . . . . . . . . . . . . 101

5.4 ARIMA model objectives and structures . . . . . . . . . . . . . . . . 105

5.4 ARIMA model objectives and structures . . . . . . . . . . . . . . . . 106

5.4 ARIMA model objectives and structures . . . . . . . . . . . . . . . . 107

5.4 ARIMA model objectives and structures . . . . . . . . . . . . . . . . 108

5.5 The purpose of GA in the reviewed hybrid models . . . . . . . . . . 118

5.5 The purpose of GA in the reviewed hybrid models . . . . . . . . . . 119

5.5 The purpose of GA in the reviewed hybrid models . . . . . . . . . . 120

5.5 The purpose of GA in the reviewed hybrid models . . . . . . . . . . 121

5.5 The purpose of GA in the reviewed hybrid models . . . . . . . . . . 122

5.5 The purpose of GA in the reviewed hybrid models . . . . . . . . . . 123

5.5 The purpose of GA in the reviewed hybrid models . . . . . . . . . . 124

XVII



5.6 The purpose of PSO in the reviewed hybrid models . . . . . . . . . . 126

5.6 The purpose of PSO in the reviewed hybrid models . . . . . . . . . . 127

5.6 The purpose of PSO in the reviewed hybrid models . . . . . . . . . . 128

6.1 Appliances for di�erent commercial buildings (percentage of the total

�oor area) (BD2050, 2015) . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Penetration of Technology (Percentage of passenger-km) in the trans-

port sector of Bangladesh (BD2050, 2015) . . . . . . . . . . . . . . . 151

6.3 General index of manufacturing in Bangladesh; estimation based on

(BBS, 2011, 2012, 2014, 2015, 2016) . . . . . . . . . . . . . . . . . . . 151

6.4 Baseline cost assumption for di�erent energy generation technology;

data source BPDB (2017a); GoB (2015a); IEA (2014); JICA and

TEPCO (2011); NEI (2016) . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Baseline cost assumption for di�erent energy generation technology;

data source BPDB (2017a); GoB (2015a); IEA (2014); JICA and

TEPCO (2011); NEI (2016) . . . . . . . . . . . . . . . . . . . . . . . 155

6.4 Baseline cost assumption for di�erent energy generation technology;

data source BPDB (2017a); GoB (2015a); IEA (2014); JICA and

TEPCO (2011); NEI (2016) . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 Scenario matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.1 Forecasting models analyzed for investigating stand-alone statistical

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.1 Forecasting models analyzed for investigating stand-alone statistical

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

A.1 Forecasting models analyzed for investigating stand-alone statistical

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.1 Forecasting models analyzed for investigating stand-alone statistical

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A.1 Forecasting models analyzed for investigating stand-alone statistical

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.1 Forecasting models analyzed for investigating stand-alone statistical

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

A.1 Forecasting models analyzed for investigating stand-alone statistical

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

XVIII



A.2 Analysis of stand-alone computational intelligence and mathematical

programming methods utilized in forecasting models . . . . . . . . . . 235

A.2 Analysis of stand-alone computational intelligence and mathematical

programming methods utilized in forecasting models . . . . . . . . . . 236

A.2 Analysis of stand-alone computational intelligence and mathematical

programming methods utilized in forecasting models . . . . . . . . . . 237

A.2 Analysis of stand-alone computational intelligence and mathematical

programming methods utilized in forecasting models . . . . . . . . . . 238

A.2 Analysis of stand-alone computational intelligence and mathematical

programming methods utilized in forecasting models . . . . . . . . . . 239

A.2 Analysis of stand-alone computational intelligence and mathematical

programming methods utilized in forecasting models . . . . . . . . . . 240

A.2 Analysis of stand-alone computational intelligence and mathematical

programming methods utilized in forecasting models . . . . . . . . . . 241

A.2 Analysis of stand-alone computational intelligence and mathematical

programming methods utilized in forecasting models . . . . . . . . . . 242

A.2 Analysis of stand-alone computational intelligence and mathematical

programming methods utilized in forecasting models . . . . . . . . . . 243

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 244

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 245

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 246

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 247

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 248

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 249

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 250

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 251

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 252

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 253

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 254

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 255

A.3 ANN model objectives and structures . . . . . . . . . . . . . . . . . . 256

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 257

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 258

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 259

XIX



A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 260

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 261

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 262

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 263

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 264

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 265

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 266

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 267

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 268

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 269

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 270

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 271

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 272

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 273

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 274

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 275

A.4 Method-wise accuracy of the selected reviewed models . . . . . . . . . 276

A.5 Statistical method-wise objective of the reviewed models . . . . . . . 277

A.5 Statistical method-wise objective of the reviewed models . . . . . . . 278

A.5 Statistical method-wise objective of the reviewed models . . . . . . . 279

A.5 Statistical method-wise objective of the reviewed models . . . . . . . 280

A.6 CI and mathematical method-wise objective of the reviewed models . 281

A.6 CI and mathematical method-wise objective of the reviewed models . 282

A.6 CI and mathematical method-wise objective of the reviewed models . 283

B.1 Cost database of di�erent power plants of Bangladesh; data source

(BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014) . . . . . . . . . . . 285

B.1 Cost database of di�erent power plants of Bangladesh; data source

(BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014) . . . . . . . . . . . 286

B.1 Cost database of di�erent power plants of Bangladesh; data source

(BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014) . . . . . . . . . . . 287

B.1 Cost database of di�erent power plants of Bangladesh; data source

(BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014) . . . . . . . . . . . 288

XX



B.1 Cost database of di�erent power plants of Bangladesh; data source

(BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014) . . . . . . . . . . . 289

B.1 Cost database of di�erent power plants of Bangladesh; data source

(BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014) . . . . . . . . . . . 290

XXI



XXII



Chapter 1

Introduction

Continued anthropogenic greenhouse gas (GHG) emissions have led to their un-

precedented atmospheric concentrations (Pachauri et al., 2014), contributing to and

amplifying global climate change (Raupach et al., 2007). Fossil fuels and land use

change (for example, through deforestation and farming) are two primary sources

of GHG emissions, of which the emissions from land-use has been nearly constant

(Le Quéré et al., 2009), while the emissions from fossil fuel based energy systems

increased by 50% between 2000 and 2013 (IEA, 2015). Current energy and trans-

portation systems can result in substantial GHG discharges (IPCC, 2014), with a

likely global mean temperature increase between 2.0�4.9°C, with a median of 3.2°C

by 2100 (Raftery et al., 2017). Even if current GHG concentrations remain constant,

the world will experience a few centuries of rising temperature and ocean level (Ra-

manathan and Feng, 2008; Clark et al., 2016). Therefore, substantial reductions in

global GHG emissions are essential to mitigate climate change.

In addition to the infrastructural elements of national energy systems (i.e. gen-

eration, distribution and transmission), access to grid electricity and purchasing

power of the population in�uence energy end-use and GHG emissions. Figure 1.1A

illustrates that both access to electricity and per capita CO2 emissions are more sig-

ni�cant in high-income countries, compared to low- and middle-income developing

countries. Most developed countries can ensure 100% access to electricity, which

only a few developing countries can match. In 2010, annual per capita CO2 emis-

sions ranged from 0.02�15.14 tCO2 in low and middle-income countries, compared

to 1.6�42.63 tCO2 in high-income ones (Figure 1.1A). In general, there is a positive
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association between electricity access and GHG emissions. One notable exception

is Costa Rica, an upper middle-income country, which had 98% access to electricity

but per capita CO2 emissions of 1.7 tCO2, well below the average of 2.09 tCO2 for

all low and middle-income countries in 2010. This is due to 93.3% of Costa Rica's

energy being from renewable resources, of which hydroelectric sources accounted for

75.8% (WB, 2017a).

As a result, future energy planning objectives of developed and developing coun-

tries are distinctly di�erent. In developed countries, the focus today is on reducing

emissions while enhancing energy security, primarily characterised by a shift from

fossil fuels towards more renewable resources. However, developing countries are

concerned with increasing access to electricity, which is considered a prerequisite

for development and economic empowerment, as re�ected by the inclusion of energy

as a goal in the Sustainable Development Goals (IEA, 2017a). The current CO2

emissions per capita of developing countries are low, often much below the global

average (Figure 1.1B,C). Hence, emission reduction is not always on the agenda for

developing countries, even at a cursory level, except for a few large countries such as

China and India (CAT, 2014). The total CO2 emissions in middle income countries

has been higher than that of high income ones since 2007 (Figure 1.1D). As a result,

despite the reduction in total emissions from high income countries, the global CO2

emissions has been elevating continuously.

Bangladesh �the world's eighth most populous country in 2015�is now cate-

gorized as a least developed country (UN, 2017a) with lower middle income (WB,

2015b). With approximately +6% GDP growth-rate, Bangladesh is progressing

towards being a developing economy from a least developed one by 2021 (MoF,

2011). Bangladesh demonstrated higher GDP growth than projected in 2016. GDP

growth of Bangladesh reached 7.1% (WB, 2017a), exceeding the 6.9% estimation by

the International Monetary Fund (IMF) (IMF, 2016). Bangladesh would have to

maintain an annual GDP growth of 7.5%-8% against all exogenous and endogenous

obstacles to reach upper-middle-income country status by 2021 (ADB, 2016). With

162 million population and approx. 1200 people living per square kilometre in 2016,

Bangladesh is projected to have a population of 201 million by 2050 (UN, 2017b).

Only 62% of the people have access to grid electricity in 2014 (WB, 2017a), and
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Figure 1.1: CO2 emissions vs. access to electricity in high and low-income
countries in 2010 (for the income classi�cation World Bank list of economies was
used); data source (WB, 2017a). Access to electricity in low and middle-income
countries ranges from 3.5�100% of the population. In contrast, the �gure is

72.6�100% in high-income countries.
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Figure 1.2: Electricity consumption per capita in di�erent countries (1971-2014)
and forecasting the trend up to 2051; data source (WB, 2017a)
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the government is working on 100% grid connection by 2021 (EB, 2016). Historical

data showed that electricity demand per capita has been increasing exponentially

in Bangladesh and is projected to increase by 22 times in 2050 compared to 2014

(Figure 1.2). As shown in Figure 1.2, the electricity consumption in Bangladesh was

239.8 kWh per capita in 2010 that was approximately closer to the consumption of

Malaysia in 1971. However, the projection showed that, by 2050, Bangladesh would

have approximately similar electricity consumption as Malaysia in 2010. As a re-

sult, roughly estimation suggests that Bangladesh is heading towards a high energy

consuming country and would cross the demand in Nigeria, Sri Lanka, Philippines

and Indonesia by 2050 (Figure 1.2). Moreover, the electricity sector is investment

intensive and has higher inertia, which means the capacity they have now will de-

termine what they will have in the future, which makes it imperative to study the

sector's evolution and plan especially in a developing context such as Bangladesh.

Also, there has been limited investigation on the cost of deacrbonization and it's

drivers for Bangladesh.

Greenhouse gas (GHG) emissions and CO2 emissions per capita in developing

contexts such as Nigeria, Bangladesh, Sri Lanka, Philippines and Indonesia are lower

than the world average (WB, 2017a). However, the projected emissions per capita in

developing contexts are going to rise quickly. By 2050, countries such as Bangladesh,

whose CO2 emissions per capita is as low as 0.46 tonnes in 2014 (WB, 2017a), are

going to cross 2t/capita (Figure 1.3). In the view of the UN projected population

(considering Medium Variant) (UN, 2017b), the total CO2 emissions can reach up

to 201 and 402 Million tonnes (Mt) by 2030 and 2050 respectively. That rough

estimate is going to contradict the commitments1 Bangladesh government agreed

on reducing GHG emissions in Paris summit 2015. Decarbonization potential of the

energy sector depends on emerging sources and fuel mix. As demand will be one

of the highest in the world by 2050, a 2°C scenario would require that developing

countries such as Bangladesh are already on a decarbonizing path.

GDP-electricity elasticity showed a positive linear relation (R2=0.99) in Bangladesh

1Without international support Bangladesh will reduce its GHG emissions in the power, trans-
port, and industry sectors by 12 MtCO2e by 2030 from BAU projection of 234 MtCO2e. With
international assistance, the reduction would be 36 MtCO2e, which would result in a total GHG
emissions of 198 MtCO2e by 2030(GoB, 2015b)
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(Chapter 2), which means with elevated GDP per capita energy demand would aug-

ment rapidly. The government and private sector are investing signi�cantly in the

energy sector to satisfy this exponential demand growth (JICA and TEPCO, 2011).

However, the government initiatives are more high emissions intensive, dominated

by coal-based generation. Bangladesh is one of the highly vulnerable countries to

sea level rise due to climate change. By adopting a GHG emission-intensive future

energy generation master plan, Bangladesh would contribute to its inundation, as

well as undermine the worldwide e�ort of keeping global temperature rise in 21st

century below 2°C, as per Paris agreement and COP21.

In 2015, the majority of Bangladeshi power plants (68%) were natural gas fueled.

The rest of the fuel mix was liquid hydrocarbon � coal- renewable (hydro)-imported

electricity (24%-2%-2%-4%) (BPDB, 2017a). However, the energy planning master

plan PSMP2010 has been stirring the energy sector towards an imported coal dom-

inated energy generation mix where 50% would be coal-based (JICA and TEPCO,

2011). The government and the private sector have been establishing and will con-

tinue to build a signi�cant number of new power plants within the next 12 years.

The under construction and proposed power plants have been built on a signi�cant

amount of loan from international �nancial organizations such as World Bank (WB),

IMF, ADB, as well as domestic ones. These loans would add enormous liabilities to

the future economy of Bangladesh. Moreover, the Government's approach towards

GHG intensive energy generation policies is already posing environmental threats in

Bangladesh. As a result, con�icts between environmental activists and locals, and

the government such as Rampal (EJA, 2017).

Di�erent socioeconomic parameters such as political stability, corruption has di-

rect or indirect implication on the energy development. Bangladesh is one of the

most corrupted countries in the world, with many political instabilities and natural

disasters. According to Transparency International (TI), Bangladesh was ranked

145th out of the 176 analyzed nations in corruption perceptions index 2016, com-

pared to 134th out of 178 in 2010 (TI, 2017). Political stability in Bangladesh have

been deteriorating over time. The country scored -1.24 on the scale of +2.5 to -2.5 in

2016, which was -0.90 in 2014 (WB, 2017b). The capital cost of establishing power

plants in Bangladesh might be in�uenced by corruption in energy sector (Chapter
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3). Therefore, the implication of corruption on the cost development of energy sec-

tor of Bangladesh was investigated in this study.

The present master plans, economic and environmental conditions trigger some

questions on the policy development and their cost assessments, such as:

(i) Is high emissive fossil fuel-based generation the most viable solution for Bangladesh?

(ii) What is the expense of this high emission fossil fuel intensive based generation

future?

(iii) What is the potential of a zero-carbon energy generation future for Bangladesh?

(iv) What would be the cost of decarbonizing future energy development in Bangladesh?

One of the �rst attempts at studying the cost of CO2 emissions was undertaken

by Dean et al. (1992) by analyzing six global energy planning models (EPMs) (Dean

and Hoeller, 1992). The study was conducted for a long time horizon of 110 years

(1990-2100) except for GREEN and IEA, and suggested di�erent taxes and abet-

ment costs across regions under di�erent emissions reduction scenarios. However,

the geographical extent of the study was limited to the USA, other organization

for Economic Co-operation and Development (OECD), the former Soviet Union,

China and the rest of the world. The decomposition of parameters for di�erent

regions for various models made the study more di�cult and reduced accuracy of

the outcomes. In the case of the energy sector of Bangladesh, few studies on decar-

bonization cost have been found. Mondal et al. (2010) analyzed the future energy

generation technologies and their bene�t on CO2 emissions reduction in Bangladesh

from 2005 to 2035 (Mondal et al., 2010). The study utilized MARKAL model to

analyze four scenarios. However, in a country where di�erent socioeconomic factors

such as population, GDP, corruption, political instability, and violence a�ect the

energy demand and supply, adoption of a linear programming based optimization

model may not o�er reliable forecasting for Bangladesh.

In this study, a bottom-up cost model was developed with energy and emis-

sions model BD2050 to explore di�erent scenarios such as business-as-usual, current

policy, high-, medium-, low- and zero-carbon scenarios, to investigate the cost of

decarbonizing for Bangladeshi energy sector by 2050.
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Figure 1.3: Electricity consumption per capita in di�erent countries (1971-2014)
and forecasting the trend up to 2051; data source WB (2017a)
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1.1 Aim and objectives

The aim of this study was to investigate the energy generation sector development

of Bangladesh from 2010 to 2050 under di�erent emissions scenarios to estimate the

cost of decarbonization.The objectives of the research were to:

(i) Review the state of the art of long horizon modeling and their forecasting

methods;

(ii) Investigate the historical energy supply and demand scenarios, and cost devel-

opment in energy sector of Bangladesh;

(iii) Develop long horizon emissions scenarios of Bangladesh;

(iv) Implement the interactions among the future plausible scenarios to �nd out

the energy pathways from 2010 to 2050;

(v) Evaluate model pathways to �nd out potential low carbon development path-

ways; and

(vi) Evaluate cost of decarbonizing future energy sector development.

1.2 Research questions

The research questions addressed in this thesis are:

1. What are the present state and future directions of the energy sector

of Bangladesh?

The �rst research question addressed the contextual aspect of the energy sector

of Bangladesh. It can be divided into two sub-questions as follows:

(i) How did the energy demand and supply sector develop historically?

(ii) What is the future direction of the energy sector development?

2. What are the costs of developing di�erent types of power plants in

Bangladesh?

The second research question examined the cost development of the energy

sector of Bangladesh. It can be divided into the two sub-questions, such as
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(i) What is the capital cost of di�erent energy generation technologies in

Bangladesh?

(ii) How did the cost of power plants evolve in Bangladesh?

The cost evolution can render the opportunity to analyze the cost of private

and public power plants, and compare them against the global average. This

comparison can lead to the following sub-questions:

(i) What can we learn about the cost of energy sector in Bangladesh com-

pared to the rest of the world?

(ii) If the cost is higher or lower, what are the reasons behind the di�erence?

3. How can the cost of decarbonization be modeled for Bangladesh up

to 2050?

The third question addressed the modeling aspect (methodology, assumptions)

that are needed to be considered. The cost assumptions are based on the

outcomes from the analysis of Research Question 2.

4. What would be the total cost of decarbonizing the energy sector of

Bangladesh?

The �nal research question centred on the outcomes from the model created

in Research Question 3. The discussion on cost of decarbonization can be

divided into three sub-questions.

(i) What would be the impact of change in energy mix on the cost of de-

cabonization, emissions and demand?

(ii) What would be the e�ect of technological maturity on the cost of de-

cabonization?

(iii) What would be the in�uence of corruption on the cost of decabonization?

1.3 Structure of the thesis

The thesis is divided into eight chapters. Chapter 1 presents the research problem,

aims and objectives, research questions and structure of the study. The synopsis of

the energy supply and demand of Bangladesh is discussed in Chapter 2. Then the

current energy supply structure and policies of Bangladesh is presented in Chapter

10



2. The cost analysis of the Bangladeshi supply is reviewed in Chapter 3. In Chapter

4, the existing and highly utilized energy planning models are reviewed to investigate

their applicability in developing contexts such as Bangladesh. Chapter 5 presents

the review on the forecasting methods utilized in energy planning models. The

methodology, model structure and assumptions are explained in Chapter 6. Also,

the results are discussed in Chapter ??. Chapter 7 presents the conclusion of the

study, main �ndings and recommendations for future works.
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Chapter 2

Energy sector in Bangladesh

There were a number of previous studies that attempt at reviewing the energy sce-

narios in Bangladesh. Baten et al. (2009), reviewed the renewable energy scenario in

Bangladesh including distribution, research and infrastructural development (Baten

et al., 2009). The objective of the study did not analyse the total electricity gen-

eration sector in depth. Islam et al. (2014), studied the contemporary energy mix,

energy crisis and prospect of overcoming the crisis with the scenario of utilizing

alternative renewable energy sources in Bangladesh (Islam et al., 2014). Due to

the focus on the renewable energy potential investigation, the study analysed the

present energy scenario abruptly. There are some other studies which focus on the

renewable resource potential and GHG emissions such as Ahiduzzaman and Islam

(2011); Islam et al. (2008). The focus of the previous studies was not necessarily on

the electricity generation and demand pro�le analysis, which encouraged the current

study on the rapidly expanding electricity sector in Bangladesh. In this review, the

focus was on the detailed analysis of the electricity generation and demand sector of

Bangladesh. The review not only analysed the power plants and demand pro�les,

but it also examined the transmission and distribution infrastructure.

2.1 Historical context of energy sector of Bangladesh

The power sector in Bangladesh underwent several signi�cant restructurings since

its humble beginning at the turn of the 20th century. Originally, electricity was

provided only to the wealthy residents in the capital with small power plants (Om-

prasad, 2016) but gradually shifted its focus towards serving essential businesses

and industries by 1947 (Ebinger, 2011). When the Indian subcontinent was divided
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into India and Pakistan in 1947, East Pakistan (now Bangladesh) had an installed

capacity of 21 MW, predominantly serving private companies and industry sector

(Ebinger, 2011). Bangladesh Power Development Board (BPDB) was created on

May 1, 1972 (BPDB, 2017a) after the liberation from Pakistan on December 16,

1971, with a total installed capacity of 200 MW (BPDB, 2017a). With limited

generation, BPDB was supplying to urban centres and peripheries only. For pro-

viding electricity service to rural areas, the Rural Electri�cation Board (REB) was

constructed in 1977 (BREB, 2016). The electricity generation was divided into

East and West zones, which was connected with a 230KV transmission line in 1982

(Ebinger, 2011). The deregulation of the power sector was initiated in 1994 with

National Energy Policy (Ebinger, 2011). A publicly owned company Rural Power

Company Limited (RPCL) began its journey as the �rst independent power pro-

ducer (IPP) in 1994 (Mourshed, 2013). Entirely private sector owned IPPs started

in 1997, under build-own-operate (BOO) model of public-private partnership (PPP),

which began to operate under rental agreements lasting between 3 and 15 years after

further deregulation (MoF, 2009). First rental power plant (RPP) began its opera-

tion in 2008 and augmented rapidly in number, contributing to the total generation

of Bangladesh.

At present power division of Ministry of Power, Energy and Mineral resources

(MPEMR) act as the apex governmental organization. However, Bangladesh En-

ergy Regulatory Commission (BERC) regulates the power sector. There are �ve

electricity generation bodies involved in Bangladesh such as- Bangladesh Power De-

velopment Board (BPDB), Ashuganj Power Station Company Limited (APSCL),

Electricity Generation Company of Bangladesh (EGCB), North West Power Gener-

ation Company Limited (NWPGCL) and Independent Power Producers (IPPs). The

transmission of the power sector is operated and maintained by Power Grid Com-

pany of Bangladesh Limited (PGCB). BPDB is the sole purchaser of the generated

electricity, which is then transmitted via the Power Grid Company of Bangladesh

Limited (PGCB) and distributed by State-owned area-based distribution compa-

nies. There are �ve distribution companies currently operational in Bangladesh.

They are- Bangladesh Power Development Board (BPDB), Dhaka Power Distri-

bution Company (DPDC), Dhaka Electric Supply Company Limited (DESCO),

West Zone Power Distribution Company (WZPDC) and Rural Electri�cation Board
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(REB) through Rural Co-operatives. At present, bulk generation is centralized and

mostly fossil fuel based. However, there are decentralized renewable power gener-

ation projects such as mini-grid, solar home systems (SHS) have been operational

and under development for o�-grid rural and remote areas. The government have

targeted to generate 10% of the total electricity from renewable resources by 2021

(IDCOL, 2017). Although, IDCOL is aiming towards total SHS installed capac-

ity of 200 MW by 2021, and installing 50 solar mini-grid by 2018 (IDCOL, 2017),

the cumulative capacity of the o�-grid generation will contribute very little to the

electricity supply.

2.2 Electricity and economy

2.2.1 Population and economic growth

In 2015, Bangladesh was world's eighth most populous country with the population

of approximately 161 million at the annually 1.2% growth rate (WB, 2017a) (Figure

2.1). With a total area of 0.148 million square kilometers (km2), population den-

sity was 1236.8/km2 in 2015, making Bangladesh one of the world's highest densely

populated countries. Therefore, Bangladesh outnumbered greater populous coun-

tries such as India and China, where population density was 441 and 146.1/km2 in

2015 (WB, 2017a).

The economy of Bangladesh has developed immensely since the liberation war of

1971. Before 1971, GDP growth was uneven and unpredictable (Figure2.2). After

the war, the uneven growth continued. However, from the early 1990's the GDP

growth started to stabilize, and from there it increased to 6.06% in 2010. In the

past 50 years, the highest GDP growth was recorded 10.95% in 1964 (WB, 2017a).

In 2013, Bangladesh's GDP was 7.81 times than that of 1960. According to World

Bank, Bangladesh is categorized as lower middle income, with $972.88 (constant

2010 US$) GDP per capita in 2015 (WB, 2017a). The geographical position made

Bangladesh vulnerable to natural disasters. Since 1971, there were major natural

disasters such as �oods, cyclones and hurricanes a�ected the economy of the coun-

try in 1984, 1985, 1987, 1988, 1991, 1994, 1995, 1998, 2007 and 2013 negatively

(Figure 2.2). Moreover, political instabilities such as 1971 libation war, a military
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Figure 2.1: Population and GDP in Bangladesh form1960-2013 ; data source (WB,
2017a).The population has been rising at a positively linear trend. However, GDP

is demonstrating an exponential trend.

coup (1975, 1977,1980, 1982, 1996, 2007), general election time protest and acti-

vates (1979, 1996, 2001), caretaker government crisis (2006-2008), and terrorist at-

tack (2005) also contributed to reducing GDP growth in di�erent times (Figure 2.2).

According to the World Bank, the country's poverty has decreased by 26% be-

tween 2000 and 2010 (WB, 2013). Despite an annual 7.1% GDP growth, 4.07%

of the total labor force was unemployment in 2016, which was 2.2% in 1991 (WB,

2017a). The cause behind this higher unemployment rate may be the transition

from the agriculture-based economy to manufacturing industry based one, as agri-

culture is more labor-intensive job sector than that of manufacturing industry in

Bangladesh.

2.2.2 Energy use and e�ects on economy

Lee & Chang (2007), examined the economic growth in Taiwan (1955�2003) and

concluded that the relationship between energy consumption and economic growth

in Taiwan is characterized by an inverse U-shape (Lee and Chang, 2007). Moreover,

where there was lower energy consumption in Taiwan, energy consumption promoted

economic growth (Lee and Chang, 2007). In a di�erent study, analysis of 16 Asian

countries during the 1971�2002 also demonstrated a positive long-run co-integrated

relationship between real GDP and energy consumption (Lee and Chang, 2008).
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Figure 2.2: Historical GDP growth rate of Bangladesh; data source (WB,
2017a).and plausible reasons (the yellow coloured reasons are political and green

ones are natural disasters)

Bangladesh was included in the least developed country category in 1975 (UN,

2017a). Bangladesh became lower-middle income country from lower income coun-

try in 2015 (WB, 2015b). Energy use per capita (kg of oil equivalent) and GDP per

capita (constant 2010 US$) demonstrated a positive exponential correlation with

R2= 0.98 (Figure 2.3). For the analysis, energy use and GDP per capita data from

1971 to 2013 were utilized by World Bank. Access to grid electricity in Bangladesh

is the lowest among the NEXT 11 countries (WB, 2017a; GS, 2007). In 2012, only

60% of the total population had access to electricity. Therefore, 40% of the people

in Bangladesh live in energy poverty. Increased energy consumption per capita has

shown a high economic output in Bangladesh with one of the most massive energy

poverty among it's population, which is resonating with the �ndings of the study

conducted in Taiwanese context by (Lee and Chang, 2007).

Historical data on electricity demand indicated an exponential growth (R2= 0.99)

in the last 42 years since 1971 (Figure 2.3). No data before 1971 was found. Elec-

tricity consumption in Bangladesh elevated to 293 kWh per capita in 2013 from

only 11kWh in 1971 (WB, 2017a), which means a 27 times increase in 42 years. The

GDP-electricity elasticity of the country exhibits a strong linear relationship (R2=

0.99); for one kWh/capita electricity consumption augmentation, GDP/capita in-
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Figure 2.3: GDP elasticity with (A) energy use per capita, and (B) electricity
consumption of Bangladesh. (C) Historical electricity consumption in Bangladesh

(1971-2013); data source (WB, 2017a).
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Figure 2.4: Electricity demand pro�le in 1985-86 and 2014; data source (BPDB,
2008, 2014).

creased US$1.8 on average in between 1971 and 2013 (Figure 2.3). The correlation

from Figure 2.3 also resonates with another study where a unidirectional causal-

ity from per capita GDP to per capita electricity consumption in Bangladesh was

concluded (Mozumder and Marathe, 2007).

2.3 Electricity demand

Domestic, industrial, commercial, agriculture and others are the demand sectors

in Bangladesh. In 1985-86, 52% of electricity demand came from industry sector.

Moreover, 22%, 16% and 10% of electricity demand were for domestic, others and

commercial. By 2014, domestic electricity demand became the largest of all the

sectors with 51%. The industry had the second most signi�cant demand of 34%

from the total electricity in 2014 (Figure 2.4).

Historical trends demonstrated exponential growth in all demand sectors (Figure

2.5). However, the domestic electricity demand reduced 46% in 1996-97 than that

of 1995-96 because of two consecutive cyclones (in 1994 and 1995). Also, there was

a sudden drop (153% reduction) in industry sector electricity demand in 1997-98,

because of the collective in�uence of two consecutive cyclones (in 1994 and 1995),

a military coup and the sixth & seventh national elections in 1996. Other than the

two incidents the electricity demand elevated exponentially in Bangladesh.
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Figure 2.5: Electricity demand in di�erent sectors; data source BPDB (2008, 2009,
2010, 2011, 2012, 2013, 2014, 2017a).

Despite the growing electricity demand, 62.4% of the population is yet to ac-

cess grid electricity in 2014 (Figure 2.6A). Moreover, the generation sector cannot

meet the demand resulting in growth in load shedding too (Figure 2.6C). Despite

the maximum generation of 7356 MW in history (1974-75 to 2013-14), there was a

932 MW maximum load shedding in 2013-14. In 2005-06, the load shedding was

highest of 1312 MW, while the maximum generation was 3721 MW. In eight years

(2005-2013), the maximum generation elevated 1.9 times with a 29% reduction in

load shedding. The load shedding is reducing in Bangladesh. However, suppressed

demand can rise faster with more access to grid electricity and higher buying capac-

ity (Rosnes and Vennemo, 2012), which is both going on in Bangladesh.

2.4 Electricity generation

In the case of electricity generation, the installed capacity is elevating exponen-

tially to meet the demand (Figure 2.6B). Moreover, the derated installed capacity

improved since 2009-10, because most of the newly built power plants became op-

erational after 2009 and they are still in early stage of their lifespan (Figure 2.8).

However, the present installed capacity is not su�cient, and the result is load shed-
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Figure 2.6: (A) Access to grid in Bangladesh; data source (WB, 2017a). (B)
Installed and derated capacity in Bangladesh, (C) Maximum generation and load
shedding in Bangladesh; data source (BPDB, 2008, 2009, 2010, 2011, 2012, 2013,

2014, 2017a).
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ding. As per present energy sector planning, installed capacity will keep rising and

rich to 33708 MW by 2030, which will be a 3.23 times higher than that of 2013-14

(JICA and TEPCO, 2011).

Public sector generation capacity has increased exponentially between 1970 and

1997 (Figure 2.7). The growth in the public sector slowed down when the private

sector began supplementing generation in 1997 (Figure 2.7). Majority of the growth

since 1997 came from the private sector and the trend is projected to continue up

to 2030 with an installed capacity of 33.7 GW in 2030 (JICA and TEPCO, 2011)

from 13.7 GW in 2017 (BPDB, 2017b). The installed capacity for public and private

generation sector was 5803 and 4345 MW in 2015 respectively, with additional 500

MW imported from India (Table 2.1). The total generation capacity of Bangladesh

was 10648 MW in 2015, which increased only 0.1% in 2016. However, the total

installed capacity elevated to 12484 MW in 2017, which was 17.1% increase in a

year. The public and private sector installed capacity were 6576 and 5308 MW re-

spectively, with 600 MW imported electricity from India in 2017. The public sector

installed capacity increased 13% between 2015 and 2017. APSCL and NWPGCL

achieved 74.77%, and 19.6% increased installed capacity in two years (2015-17). On

the other hand, the private sector had 22% increased installed capacity in 2017 than

that of 2015. The IPP and QRPP installed capacity increased 60.6% and 26.9% in

two years (2015-17). However, the total installed capacity of RPPs reduced 48% by

2017.

There were 74 public and 85 private owned power plant units operational in

2015. Among the public plants, 6% are older than 40 years. However, 23% and 25%

of the plants are in 30-40 and 20-30 years old range. Moreover, 30% power plants

are less than ten years old. On the other hand, 85% private power plants are less

than ten years old (Figure 2.8). Altogether, 58% of the total power plant units are

less than ten years old.

The majority of the existing thermal power plants are situated in north, north-

west, east and middle-east part of the country (Figure 2.9). Among the existing

power plants, the east zone has 9688 MW installed capacity, of which 4307 MW

(44% of the east zone) was situated in Dhaka zone in 2017. However, the west zone
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Figure 2.7: Public and private sector net generation; data source (BPDB, 2008,
2009, 2010, 2011, 2012, 2013, 2014, 2017a).

Figure 2.8: Age of public and private power plants; data source (BPDB, 2008,
2009, 2010, 2011, 2012, 2013, 2014, 2017a).
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had only 2796 MW installed capacity in 2017. Therefore, the east zone has 3.5 times

more installed capacity than that of west zone. The positions are mostly close to

the fuel source such as gas, coal or liquid hydrocarbons. Close to a river is another

requirement for thermal power plants due to the high water demand for cooling. In

the case of the plants which fueled with imported liquid hydrocarbons, the rivers act

as fuel transport medium. There is a signi�cant number of fossil fuel based thermal

power plants that are under construction and planned for the future by 2030 (Figure

2.9). However, there will be eight new thermal power plants built in the southern

coastal areas of Bangladesh by 2030. Five of them will be near the south-east cor-

ner of the country, close to the port city of Chittagong. The other three are going

to be constructed on the south-western side of the country, which will come very

close to the world's largest mangrove forest Sundarbans. The proposed 1320 MW

imported coal-fueled Rampal power plants would be constructed 14 km north of

Sundarbans. There has been signi�cant con�ict between the government, local peo-

ple and environmental activists due to the concern on the e�ect of GHG emissions

on the forest (EJA, 2017). Moreover, the land acquisition and deforestation are also

of major concern as 742 ha area would be built for the power plant by cleaning

forest and adjacent lands. There were more con�icts regarding coal mining in Phul-

bari, Bangladesh in 2005. It was an open-pit coal mine project proposed by Asia

Energy Corporation, which would have displaced 220000 local people and destroyed

agricultural land. Due to the large protest from the local people and environmental

authority the government had to stop this project. These con�icts around the only

proven coal deposit in the north and geographical characteristic of Bangladesh may

have in�uenced the future energy planning master plan PSMP2010. In PSMP2010,

the government was suggested by JICA to move towards imported coal-based ultra-

supercritical power plants (JICA and TEPCO, 2011). Due to the dependency on

import, the future power plants were positioned in the coastal areas. However, the

construction of coal power plant close to Sundarbans is still questionable from an

environmental point of view.

In 1975, 78% of public electricity generation utilized natural gas. By 2013, the

natural gas fuel use increased 21 times. Moreover, liquid hydrocarbon-based fuel

use elevated 7.26 times in 2013 as compared to 1975. There has been an exponential

growth in fuel use in public power plants between 1975 and 2013 (Figure 2.10).
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Figure 2.9: Power plants in Bangladesh including existing, under construction
(UC) and planned (2015-2021); Map drawn by author using data from PGCB

(2015); Hijmans et al. (2012); UNOCHA (2018)
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Table 2.1: Electricity generation installed capacity; data source (BPDB, 2017b)

Generation authority
Installed capacity (MW)
2015 2016 2017

Public
BPDB 4126 3758 4088
APSCL 687 840 1200
EGCB 622 210 622
NWPGCL 368 368 440
RPCL 0 77 77
PDB-RPCL 0 149 149
Private
IPP 1883 2485 3025
SIPP-PDB 99 99 99
SIPP-REB 226 226 226
CIPP-REB 25 25 25
QRPP 1114 1414 1414
RPP 998 506 519
IMP 500 500 600
Total 10648 10657 12484

In 2015, 68% of the power plants were natural gas fueled (Figure 2.11). More-

over, 24% of the power plants were liquid hydrocarbon fueled. Only 2% generation

was the renewable source (Hydro). Imported electricity is accounted for 4% of the

electricity. However, the PSMP2010 proposed a shift from natural gas based electric-

ity generation to coal-based (50%) one by 2030. Because the domestic natural gas

reserve have been depleting and expected to reduce signi�cantly after 2015 (JICA

and TEPCO, 2011).

Most RPPs are oil based that relies on imported petroleum as Bangladesh has

insu�cient oil reserve. By increasing oil dependency (Mujeri et al., 2014), the en-

ergy sector was exposed to the volatile international oil market (Mourshed, 2013).

Energy sector subsidies have escalated because of growing import prices for fuels

to encounter the accelerated energy demand (Mujeri et al., 2014). Moreover, lack

of transparency in public procurement process acted as an incentive for corruption

to increase in the energy sector of Bangladesh (Khan and Rasheduzzman, 2013;

Ahmed, 2011; Khatun and Ahamad, 2013). There were no data on how much fuel

is used in private power plants separately.
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Figure 2.10: Fuel for public energy sector; data source WB (2014).

Figure 2.11: Installed capacity (MW) and fuel types; data source WB (2014).

26



Figure 2.12: Transmission lines in Bangladesh; data source WB (2014).

2.5 Transmission and distribution

There are four types of transmission lines such as 400kV, 230kV, 132kV and 66kV

that exist in Bangladesh by 2015. In 1981-82, 1967km of transmission line existed

which increased to 2652km by 1990-91. However, only 22% of the population had

access to grid electricity. By 2012-13, length of transmission line elevated to 4829km,

a 1.8 times increase to supply electricity to 60% of the population (Figure 2.12).

The transmission line length is going to elevate because there are a substan-

tial amount of lines that are under construction and planned for the future (Figure

2.13). Higher population density areas have access to grid electricity. However, a

large number of rural and suburban regions does not have access to electricity (Fig-

ure 2.13).

There are three types of transmissions substations in Bangladesh, such as 230/132

kV, 132/33 kV, and 66 kV. Distribution substations are 33/11kV type. In the case

of distribution transformers, two types of 33/0.4kV and 11/0.4 kV are present in

Bangladesh. These substations numbers are also going to increase signi�cantly by

2021 to supply most of the country (Figure 2.14). Moreover, HDVC stations are

working in the interconnection between India and Bangladesh in Bheramara, Kush-

tia. Another one is under planning in the northern part of Bangladesh (Figure 2.14).
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Figure 2.13: Existing, under construction and planned electricity transmission
network in Bangladesh (2015-2021); Map drawn by author using data from PGCB

(2015); Hijmans et al. (2012); UNOCHA (2018)
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Figure 2.14: Substations and HVDC stations in Bangladesh (2015-2021); Map
drawn by author using data from PGCB (2015); Hijmans et al. (2012); UNOCHA

(2018)
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Figure 2.15: Relationship of electricity customer numbers with GDP per capita
and distribution line length in Bangladesh; data source WB (2014).

Generally, distribution lines in Bangladesh are of three capacities- 33kV, 11kV

and 0.4kV. In 1981-82, the total length of distribution line was 24156 km, which

elevated two times to reach 49460 km by 2013-14. Customer number and GDP per

capita showed a positive linear relationship in Bangladesh. The relationship can be

interpreted as the higher buying capacity among the people elevates the number of

electricity consumers (Figure 2.15), which resonates with the study conducted by

(Hu and Hu, 2013). However, the customer number increases exponentially with

the growth in distribution line length (Figure 2.15), which can be the result of

suppressed demand in a country with high energy poverty. Moreover, distribution

system loss in Bangladesh was 35.79% in 1991-92 which was reduced to 11.89% by

2013-14 with e�cient maintenance and planning (BPDB, 2017a).

2.6 Summary

The historical and future energy sector development was analysed in this chapter.

The historical data of energy demand and supply sector in Bangladesh showed an

exponential growth over the past 40 years. The highest increase in the demand was

in domestic sector. The domestic sector energy demand was 22% in 1985-86, which
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elevated to 51% of the total demand in 2014. Second highest demand share was

34% for industry sector. The historical demand pro�le denotes that there can be

signi�cant rise in electricity consumption. The supply sector have been developing

in a rapid growth in the past 40 years. The trends showed that private sector was

dominating the energy supply sector in 2014. However, the PSMP2010 is clearly

leading towards a massive public electricity generation sector development in the

next two decades, which would be dominated by fossil fuel especially coal. In addi-

tion to that energy supply sector development, the transmissions and distribution

sector is growing rapidly to meet the target of giving access to grid electricity to all

households by 2021.
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Chapter 3

Cost analysis

Bangladesh takes a considerable amount of loans from national and international

funding bodies for establishing power plants. Therefore, they would need to borrow a

signi�cant amount of loan to construct the substantial number of stations to achieve

a 20 GW of additional installed capacity by 2030 than that of 2017 (BPDB, 2017a;

JICA and TEPCO, 2011). With considerable capital costs involved and previous

evidence of corruption in the energy sector (Khan and Rasheduzzman, 2013; Ruth,

2002) as well as in public procurement (Mahmood, 2010), the utilization of massive

amount of money can prove to be a signi�cant concern in Bangladesh. There have

been di�erent studies on the relationship between corruption and cost of big public

projects. Study on Italian high-speed railways megaprojects demonstrated that cor-

ruption worsens both cost and temporal performance (Locatelli et al., 2017). This

study also identi�ed the project contexts such as the discretionary power of o�-

cials, economic rents of policy/decision makers and weak institutions would make a

country ideal for corruption. Another study demonstrated that capital cost of IPPs

selected without competitive bidding was 44-56% higher than that of with competi-

tive bidding in developing countries including Bangladesh (Phadke, 2009). However,

only two projects with competitive bidding (4.87% of the total projects analysed)

were considered in the case of Bangladesh. Therefore, the result was generic for

developing countries, and the conclusion was not robust for Bangladesh. In another

research, the Malaysian context was analysed to �nd the reasons behind corruption

were an abuse of power, opportunity and moral compromise within the government

o�cials (Othman et al., 2014). Also, di�erent studies suggest that the ongoing cor-

ruption can be controlled via random and regular supervision, severe punishment
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and prosecution of corrupt personnel, and anti-corruption awareness development

(Zou, 2006; De Chiara and Livio, 2017). Although the literature suggests that gov-

ernment personnel are mostly responsible for active corruption by asking bribes,

the private sector can also contribute by acting as passive corruption through ap-

proaching bureaucrats by o�ering bribes (Capasso and Santoro, 2017). However,

there is a gap in the literature regarding studies on cost evolution of energy sec-

tor in developing economies such as Bangladesh, and their relation to corruption,

due to the lack of political transparency and data. There are two objectives of

this chapter. Initially, to investigate the capital cost of establishing various power

plants in Bangladesh and compare with other countries, regions and world, to �nd

any di�erences. Furthermore, to understand the reason behind the di�erences, it

was hypothesized that corruption might have in�uenced the capital cost of power

plants in Bangladesh. The correlation between the capital cost of the power plants

and Corruption Perceptions Index (CPI)1 of Bangladesh was examined to test the

hypothesis.

3.1 Methodology

The study was conducted in three stages. First, annual (BPDB, 2008, 2009, 2010,

2011, 2012, 2013, 2014, 2017a; KPCL, 2014), project (APSCL, 2015; CPGCBL,

2015; EGCBL, 2015) and �nancial aid reports (IDCOL, 2015; WB, 2017c) from na-

tional bodies and international organizations were reviewed to develop a capital cost

database of power plants in Bangladesh (Table B.1). Capital cost refers to all the

expenses incurred before a plant becomes operational and comprises the cost asso-

ciated with the acquisition of land; permits and legal matters; plant equipment and

construction; �nancing; and the commissioning of the plant. Independent scrutiny

of public expenditure does not feature strongly in Bangladesh's governance struc-

ture. Hence, the total capital cost or the breakdown of the capital cost of all the

operational power plants is not publicly available. There were 100 public power

plants in January 2016, of which 96 were operational (BPDB, 2017b). Primary data

such as installed capacity, commissioning year, fuel and owner of 165 units from

113 public and private operational Bangladeshi power plants in January 2016 were

1Corruption Perceptions Index (CPI) was started in 1995. CPI is calculated from aggregated
data to a standardized scale of 0-100, where '0' and '100' refers to highest and lowest level of
corruption, respectively (TI, 2017).

33



collected for this analysis. The number of public and private owned units were 80

(6968 MW) and 85 (5566 MW) respectively. Among the operational units, ninety-

�ve utilize gas, and seven are dual fuel type, of which four can use gas and heavy

fuel oil (HFO). The rest of the three dual-fuel plants utilize high-speed diesel (HSD)

and gas. Moreover, only HFO and HSD based units were 32 and 23 respectively.

Two units were coal-based, and four units were hydroelectric. Also, there was a

500 MW interconnection with India in Khulna. Due to data constraints, the capital

cost of 61 fossils (gas, coal and petroleum) and renewable (nuclear, hydro, the wind

and solar) power plants in Bangladesh commissioned since 1962 and planned up to

2030, were collected (Table 3.1). Of the 61 plants, 34 are operational, and 27 are

under construction, repair or future planned. The study had to test the hypothesis

with lower data constrain and bias generated by it because of unavailability of cost

data. The government has started to provide cost data since 2007 through the an-

nual reports (BPDB, 2017b). With more data and transparency in the future, the

studies regarding cost can be improved to make the power plants more cost-e�ective.

Among the analyzed 61 power plant units, gas, HFO/HSD/duel fuel, coal, nu-

clear and renewable based were 34, 17, four, one and �ve respectively. Moreover,

48 are public, and thirteen are privately operated. All the future and under-

construction power plants are government owned. Among the nine analyzed duel

fuel power plant units, three utilize HFO and gas, of which two are public, and

one is privately owned. Six duel fuel power plant units use HSD and gas, of which

one is private, and �ve are publicly owned. There are only nine HFO based power

plant units, of which two are planned for future and rest of them are operational.

All the HFO based functional power plants are privately owned. In the case of

coal-based power plants units, only two are functional, and three are planned for

future, and all of them are publicly owned. Similarly, all the renewable power plants

are government owned, of which one is the Kaptai hydroelectric plant (5 units) and

two small solar energy plants. The only planned nuclear power plant (Rooppur 1

and 2) would be publicly owned too. Three phases (Unit 1 and 2; Unit 3; Unit 4

and 5) of Kaptai hydroelectric power plant was considered separately because three

stages had di�erent cost individually. Among the coal power generation technolo-

gies, domestic coal-fueled subcritical plants were built in Barapukuria. Moreover,

two new ultra-supercritical plants are under construction which would operate with
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imported coal. Cost per installed capacity in kW in a speci�c year of construction

of the power plant was calculated and converted to the US dollar (USD) equivalent

using the currency exchange rate with Bangladeshi Taka (BDT) on December 31 of

the same year, obtained from Bangladesh Bank (BB, 2016). In cases where a power

plant is going to be built after 2015, the cost was converted to 2015 USD using BDT

to USD exchange rate on December 31, 2015. Then the historical cost data was

converted using Consumer Price Index (Coinnews, 2016) of 2015 USD so that all

cost can be compared on the 2015 USD basis.
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Table 3.1: Background information on the cost data

Variable
Scale/

Category

Electricity generation technology Total

(n)
%

GT CCPP
Sub-

critical

Ultra-

super-

critical

Solar

PV
Hydro Nuclear

Commission-

ing year(-)

1961-80 - - - - - 1 - 1 1.6%

1981-00 2 1 - - - 2 - 5 8.2%

2001-10 2 2 1 - - - - 5 8.2%

2011-20 20 24 1 - 2 - - 47 77.0%

2021-30 - - - 2 - - 1 3 4.9%

Ownership
Public 12 26 2 2 2 3 1 48 78.7%

Private 11 2 - - - - - 13 21.3%

Fuel

Natural

gas

10 24 - - - - - 34 60.7%

Oil 9 - - - - - - 9 16.1%

Duel fuel 5 3 - - - - - 8 14.3%

Coal - - 2 2 - - - 4 7.1%

Nuclear - - - - - - 1 1 1.8%
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Table 3.1: Background information on the cost data

Variable
Scale/

Category

Electricity generation technology Total

(n)
%

GT CCPP
Sub-

critical

Ultra-

super-

critical

Solar

PV
Hydro Nuclear

Installed

capacity

(MW)

<10 - - - - 2 - - 2 3.3%

10-100 8 7 - - - 3 - 18 29.5%

101-200 9 3 1 - - - - 13 21.3%

201-300 6 4 1 - - - - 11 18.0%

301-400 - 11 - - - - - 11 18.0%

401-500 - 3 - - - - - 3 4.9%

>500 - - - 2 - - 1 3 4.9%

500-600 1 2 - - - 1 - 4 6.6%

601-700 4 1 - - - - - 5 8.2%

Capital cost

(US$(2015)

/kW)

701-800 2 1 - - - - - 3 4.9%
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Table 3.1: Background information on the cost data

Variable
Scale/

Category

Electricity generation technology Total

(n)
%

GT CCPP
Sub-

critical

Ultra-

super-

critical

Solar

PV
Hydro Nuclear

801-900 6 4 - - - - - 10 16.4%

901-1000 2 4 - - - - - 6 9.8%

1001-

1100

- 5 - - - 1 - 6 9.8%

1101-

1200

2 2 - - - - - 4 6.6%

1201-

1300

1 3 1 - - - - 5 8.2%

1301-

1400

2 1 - - - - - 3 4.9%

1401-

1500

2 1 - - - - - 3 4.9%

1501-

1600

- - - - - - - 0 0.0%
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Table 3.1: Background information on the cost data

Variable
Scale/

Category

Electricity generation technology Total

(n)
%

GT CCPP
Sub-

critical

Ultra-

super-

critical

Solar

PV
Hydro Nuclear

1601-

1700

1 2 - - - - - 3 4.9%

1701-

1800

- - - - - - - 0 0.0%

1801-

1900

1 - - - - - - 1 1.6%

1901-

2000

- - 1 - - - - 1 1.6%

2001-

3000

- - - 1 1 - - 2 3.3%

3001-

4000

- 1 - 1 - - - 2 3.3%

4001-

5000

- - - - 1 - - 1 1.6%
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Table 3.1: Background information on the cost data

Variable
Scale/

Category

Electricity generation technology Total

(n)
%

GT CCPP
Sub-

critical

Ultra-

super-

critical

Solar

PV
Hydro Nuclear

5001-

6000

- - - - - - 1 1 1.6%

>6000 - - - - - 1 - 1 1.6%
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Second, country- and region-wise capital costs of power plants for the same tech-

nology used in Bangladesh were collected from the International Energy Agency's

(IEA) World Energy Investment Outlook 2014 (IEA, 2014) for USA, Japan, Rus-

sia, China, India, Brazil, Europe, the Middle East and Africa. There were three

data points for all the countries for 2012, 2020, and 2035. Data for Sri Lanka were

collected from `Long-Term Generation Expansion Planning Studies 2015- 2034' for

2015 (Samarasekara and Silva, 2015). In the case of USA, further data on cost and

performance of power generation technologies were collected from National Renew-

able Energy Laboratory (NREL) to augment the IEA data (NREL, 2012). There

were ten data points for the cost data from NREL for 2008, 2010, 2015, 2020, 2025,

2030, 2035, 2040, 2045 and 2050. Also, CPI score between 1995 and 2016 was col-

lected from Transparency International (TI) (TI, 2017).

Third, the average cost of power plants in Bangladesh was compared with that

of the identi�ed countries, regions and the World using 2015 as a base year. The

evolution of cost was also analysed for both public and private sectors in Bangladesh.

Pearson's test was conducted at normalised capital cost and CPI score to examine

the e�ect of corruption on power plant capital cost in Bangladesh. CPI data is

available only from 1995, which reduced the sample size down to 31 for the corre-

lation study. Among the collected cost data, power plants commissioned from 2004

to 2015 were considered. There were no cost data available for any power plants es-

tablished between 1995 and 2003. There were also some cost data for power plants

built before 1995. As the CPI index started in 1995, the cost data before that

was not considered for the correlation study. As the sample size is less than 50,

Shapiro-Wilk and Kolmogorov-Smirnov test of normality were conducted (Ghasemi

and Zahediasl, 2012) and Table 3.2 indicated that the distribution of interval data

was normal, supporting the selection of Pearson's test.

3.2 Cost of power plants in Bangladesh

Power generation technology is the critical factor for the variation in the capital

cost. For this study, initially, capital cost of various public and private power plants

in Bangladesh with varied technologies such as gas turbines (GT) and combined-
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Table 3.2: Test of normality. The data is normal because of the Sig. Value of the
Shapiro-Wilk Test was higher than 0.05.

CPIa
Kolmogorov-Smirnovb Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

$/kW
25 .172 14 .200* .882 14 .062
26 .139 7 .200* .974 7 .925
27 .185 7 .200* .916 7 .442

* This is a lower bound of the true signi�cance.
aCPI,has been omitted when CPI Index are 15,20 and 24 because $/kW
is constant.
b Lilliefors Signi�cance Correction.

cycle power plant (CCPP); subcritical and ultra-supercritical plants; hydroelectric;

nuclear and solar PV plants were compared with the world average, to �nd out the

cost di�erence. When the cost of GT and steam turbines (ST) are compared, public

power plants (hereafter plants) in Bangladesh are found to be approximately 2.2

times more expensive than that of the world mean (Figure 3.1A). The cost of public

GTs is even higher, around 1.5 times than the private plants in Bangladesh. In the

case of CCPP, public plants' mean is 1.2 and 1.7 times more expensive than that of

the world mean and the private plants' mean respectively (Table 3.3).

The private CCPP with an average cost of $540 /kW, where publicly owned ones

ranged from $853-3005 /kW (Figure 3.1B). Moreover, future planned public CCPP

cost range from $554-1612 /kW. Therefore, public CCPP in Bangladesh can be built

with as low-cost as China ($568 /kW between 2012 and 2020) to 19% greater than

that of the highest cost of USA ($1358 /kW between 2015 and 2020). The di�er-

ence between lowest and highest capital cost of CCPP (going to be commissioned

in 2017) is $1058 /kW, the equivalent of constructing almost two CCPP plants in

China. Cost di�erence can happen depending on the installed capacity. From long-

term generation expansion planning study of Sri Lanka, two separate CCPP cost

di�erence was $202 /kW depending on the installed capacity. The capital cost of

CCPP-Auto Diesel of 144 and 288 MW was $853 and $1055 /kW respectively in Sri

Lanka (Samarasekara and Silva, 2015), which means higher installed capacity may

reduce cost. However, in the case of Bangladesh, Siddhirganj 335 MW and Bibiana

(South) 383 MW CCPP plant would cost $1612 /kW and $873 /kW respectively

(operational by 2017). Though Bibiana (South) has 48 MW higher installed capac-

ity than that of the Siddhirganj, it would cost approximately half. On the other
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hand in the private sector, Meghnaghat 450 MW CCPP (Unit 2) was constructed

with $560 /kW in 2014.

Figure 3.1C&D compares the cost of coal power plants. The subcritical coal

plant, capital cost range from $1245-$1923 /kW, which is higher than the expense

of the USA in the upper bound, and Africa in lower bound. However, the cost of

the proposed ultra-supercritical power plant is going to be highest compared to the

rest of the world (Figure 3.1D).

In the case of renewable energy, Bangladesh has been utilizing hydroelectricity

from Kaptai power plant since 1962, making it the oldest active power plant in

Bangladesh with a capital cost of $6408 /kW for Unit 1 and 2, and parts of Unit 3.

Capital cost reduced with the construction of Unit 3 in 1982, from $6408 /kW to

$543 /kW (Figure 3.2B). Unit 3 was partially built during the construction of Unit

1 and 2 in 1962, which reduced the capital cost of completion of Unit 3 in 1982.

However, the capital cost for Unit 4 and 5 was $1075 /kW, which was constructed

in 1988. Unit 4 and 5 were constructed in an already established infrastructure with

facilities such as dam, reservoir during the construction of Unit 1, 2 and 3. There-

fore, Unit 4 and 5 had higher capital cost than that of Unit 3. While comparing the

capital cost of Bangladeshi hydroelectric plants with the world, the cost reported

for other countries were suggested for the construction of new plants.

Currently, Bangladesh has small-scale solar home systems in households, but no

signi�cant commercial, operational project. Two large solar PV plants are going to

be constructed in 2016-17 with an installed capacity of 5 and 7 MW costing $4906

/kW and $2391 /kW respectively (Figure 3.2A). Despite the continuing descending

trend in cost, one is costing higher than that of the highest in the world for that

year. Also, it is not clear why the di�erence in cost would be $2515 /kW for just 2

MW, almost two times more than the cost of establishing similar technology power

plant in China in 2020.

In the case of nuclear power plants, the planned power plant in Bangladesh would

be established with the assistance from Russia in 2024-2025. However, the capital

cost would be 1.45 times than that of Russia and almost equivalent to Japan (Figure
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Figure 3.1: Capital cost comparison among fossil fueled power plants from the
world with Bangladesh. In the case of GT/ST and CCPP, Bangladeshi public
power plant's mean capital cost is higher than that of the mean of private and

world counterparts. Surprisingly, private power plant's mean capital cost was lower
than the world mean for CCPP. Subcritical coal plant means capital cost is slightly
higher than that of global mean. However, ultra-supercritical mean capital cost of

Bangladesh would be signi�cantly greater than the world mean.
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3.2C).

Although power plants cost more in Bangladesh, the public plants are signi�-

cantly more expensive than the private ones, indicating that there may as well be

other factors related to public sector governance in play (Table 3.3). Further studies

may reveal other factors such as political instability, ine�cient project management

leading to construction delays and eventual increase in cost. However, the deep-

rooted and widespread corruption culture could have a higher impact on the capital

cost of the power plants, which needs further investigation with more data.
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Figure 3.2: Capital cost comparison among nuclear and renewable power plants
from di�erent country/regions with Bangladesh. In the case of solar PV plants,
mean capital cost of Bangladesh is lower than the world mean. However, the

installed capacity is only 12 MW. Mean capital cost for hydroelectric plants is also
lower than that of global mean capital cost. The reason behind this lower cost is
the later units were in the same plant side, which reduced the ancillary cost. For
nuclear only one plant is going to be built in Bangladesh by 2030 and its cost

would be signi�cantly higher than that of the world mean capital cost.

46



Table 3.3: The capital cost of power generation plants in the World and Bangladesh. Power plants in Bangladesh are further disaggregated
into public and private. Historical and projected costs are rounded to the nearest US$(2015).

Fuel Technology

Capital cost (US$(2015)/kW)

World Bangladesh (public) Bangladesh (private) Di�erence in Mean

Min Max Mean SD Min Max Mean SD Min Max Mean SD Public

&

Pri-

vate

World

&

Pub-

lic

World

&

Pri-

vate

Natural gas, oil
Gas turbine (GT) 361 741 551 190 680 1823 1177 336 545 1495 819 235 258 -626 -268

CCPP* 568 1381 974 407 545 3005 1164 505 560 848 704 144 460 -189 270

Coal
Subcritical 619 2168 1394 774 1245 1924 1584 479 -191

Ultra-supercritical 826 2374 1600 774 2867 3820 3343 477 -1743

Renewable
Solar PV* 1910 6198 4054 2144 2391 4907 3649 1258 405

Hydro-electric* 1755 3977 2866 1111 543 6409 2676 2648 190

Nuclear Nuclear** 2065 6883 4474 2409 5625 5625

* CCGT, Solar photovoltaics - Large-scale and Hydropower - large-scale in International Energy Agency's (IEA) World Energy Investment

Outlook 2014 (IEA, 2014).

** There is only one planned nuclear power plant in Bangladesh. Caution should, therefore, be applied when interpreting

the di�erence in mean.
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3.3 Cost evolution

The cost evolution in Bangladeshi public and private plants do not follow the same

trend. The cost of most of the power generation technology in the world reduces

with time (Neij, 2008). However, in the Bangladeshi public plants, the cost ap-

pears to be increasing (Figure 3.3). Among the operational power plants, GT, ST

and CCPP have been generating the most of electricity in Bangladesh in the last

three decades in both public and private sectors. For the cost evolution analysis,

the relatively new or less utilized technologies (subcritical, ultra-supercritical and

hydro) are not considered. Solar PV, nuclear are new technologies compared to

CCPP or GT in Bangladesh. The capital cost trend of CCPP is following a second

order polynomial and augmenting after 2010. In the case of the similar technology,

the private sector is showing a linear descending trend with only two data points.

Establishing cost of public GT/ST trend is third order polynomial and increasing

after 2014. However, private power plants with similar technology, demonstrating a

second order polynomial trend with a reduction in cost.

Independent-samples t-test was conducted to compare the capital cost in pub-

lic and private owned power plants. The cost of GT/ST and CCPP technologies

were considered for the tests. In the case of GT/ST, there was a signi�cant di�er-

ence in the capital cost of public (M=1226.09, SD=360.62) and private (M=751.68,

SD=108.80) owned power plants; t(11.97)=4.16, p=0.001. These results suggest

that GT/ST power plant ownership depending on being public and private in�u-

ences its capital cost. The test results suggest that public power plants have higher

capital cost. In the case of CCPP, there was not a signi�cant di�erence in the capital

cost of public (M=1075.33, SD=263.21) and private (M=704, SD=203.60) owned

power plants; t(19)=1.92, p=0.070. These results suggest that CCPP power plant

ownership depending on being public and private does not in�uence its capital cost.

However, the private CCPP power plants number was only two. With more data

points in the future, this analysis may be improved.
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Figure 3.3: Cost evolution of di�erent power generation technologies. In the case
of coal, one subcritical power plants and two future ultra-supercritical ones not
su�cient to see the cost evolution. For hydroelectric, solar PV and nuclear, the

power plant numbers are insu�cient for analysis of learning rate or cost evolution.
Under these circumstances, highly utilized technologies such as gas turbine/engine
and CCPP for public and private power plants were analyzed for cost evolution.
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3.4 E�ect of corruption on cost of power plants

Several reports and articles suggested that there has been signi�cant evidence of

corruption in electricity generation projects and operations, as well as in distribu-

tion system in Bangladesh (Khan and Rasheduzzman, 2013; TIB, 2016; Khan, 2007;

Kenny, 2007; D'costa, 2012; IBP, 2012; Ruth, 2002; Hossain and Tamim, 2005/06).

The measurement of corruption is complicated as it depends on complex variables

(Galtung, 2006). Therefore, no single source or polling method has yet been devel-

oped that can provide a convincing methodology (Lambsdor�, 2006). Transparency

International started CPI score for di�erent countries in 1995 to put the issue of

corruption on the international policy agenda (TI, 2017). For this study, CPI score

for Bangladesh was adopted to be analysed with the capital cost of power plants in

the same year to examine the e�ect of corruption on cost evolution. Before 2012,

CPI scores were ranked 0-10. However, the scale was amended in 2012 to the range

of 0-100, to demonstrate the better e�ect of corruption on the economy of a country

(TI, 2012). The CPI scores before 2012 were converted to 0-100 scale by multiplying

10 with the scores to compare the data from 2004-16. Higher CPI score is inter-

preted as lower corruption, which may result in reduced capital cost and vice versa

(Figure 3.4A&B). Only 42 public and private power plants (among studied 61) cost

data, which were built within 2004-16, were found and analyzed in this correlation

study. The cost data scarcity worked as a limitation in rendering a detailed rela-

tionship. With increased data available in the future, the correlation may improve.

Independent-samples t-test was conducted to compare the capital cost in public and

private owned power plants. There was a signi�cant di�erence in the capital cost of

public (M=1156.20, SD=332.40) and private (M=734.26, SD=118.29) owned power

plants; t(40)=4.09, p=0.000. These results suggest that being public and private

owned in�uences its capital cost. The test results suggest that public power plants

have higher capital cost.

To assess the relationship between the CPI score and the capital cost of power

plants in Bangladesh, Pearson's test for normally distributed interval data was con-

ducted. There was a negative correlation between the two variables, r = -0.477, n

= 42, p = 0.001 (Table 3.4). Figure 3.5 summarizes the results and demonstrated

that corruption in Bangladesh is negatively related to a capital cost of power plants
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Figure 3.4: (A) Average capital cost (2004-2016) and (B) CPI score (2004-2016).
Chart `B' is demonstrating that CPI index is not gradually reducing. Moreover,
the average capital cost of power plants is related to the change of CPI score.

Here, higher CPI score means lower corruption.

with R2=0.32 for annual CPI scores. Overall, there was a strong, negative correla-

tion between corruption and capital cost of power plants. Decreases in corruption

(increase in annual CPI score) were correlated with increased capital cost of power

plants. Corruption is a continual socio-economic phenomenon traversing through

years from megaproject construction and operation. CPI score represents an an-

nual performance of a country. Whereas the power plant megaproject constructions

usually go on for 2-7 years (GoB, 2015a). Furthermore to the Pearson's correlation

test between annual CPI score and capital costs, additional correlation study was

undertaken in this research to explore the relationship of the cost with biannual,

triannual and quadrennial average CPI scores. The main objective of the study

was to examine the correlation between di�erent temporal CPI scores and capital

costs. Table 3.4 summarizes the results. Figure 3.5 illustrated that the correlation

R2 value was better between the biannual CPI score and capital cost. However, the

Pearson's correlation test showed that the best relationship was between the annual

CPI scores and capital costs as the p-value was the lowest (Table 3.4).

The upper and lower limits of cost reduction per CPI score increase were $116.94
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Figure 3.5: Corruption vs. capital cost analysis for Bangladeshi power plants; (A)
Normalized capital cost vs. average annual CPI scores, (B) Normalized capital cost
vs. average biannual CPI scores, (C) Normalized capital cost vs. average triannual
CPI scores, and (D) Normalized capital cost vs. average quadrennial CPI scores.
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Table 3.4: Pearson correlation test between CPI score and capital cost per
installed capacity of power plants in Bangladesh

Annual
CPI
(-)

Biannual
average
CPI (-)

Triannual
average
CPI (-)

Quadrennial
average
CPI (-)

Capital cost
($/kW)

Pearson
Correlation

-.565** -.445** -.430** -.396**

Sig.
(2-tailed)

.001 .003 .004 .010

N 42 42 42 42
**. Correlation is signi�cant at the 0.01 level (2-tailed)

/kW and $45.47 /kW respectively. In some cases, the capital cost of public plants

was two times higher than that of the private ones for the similar technology and

time frame. Therefore, Bangladesh can reduce their cost of establishing power plants

by reducing corruption. The power plant projects are expensive, and the government

takes 66-94% (GoB, 2015a) of the total cost of loans from banks and aid organiza-

tions such as World Bank, Asian Development Bank. Higher capital cost means a

more signi�cant loan from funding bodies, which the government have to repay in

the future from the revenues. Larger repayment can put pressure on the economy

and people.

One of the reasons behind this signi�cant corruption was the lack of governance

in the energy sector. Implementing `Quick Enhancement of Electricity and Energy

Supply (Special Provisions) Act, 2010' enabled the government and responsible de-

partments with authority to take rapid energy development initiatives while bypass-

ing the 2006 public procurement law, with easy and quick procurement procedure

for investing in the energy sector outside the bar of jurisdiction of the court (GoB,

2016). Laws such as `Quick Enhancement of Electricity and Energy Supply (Special

Provisions) Act, 2010' raised signi�cant concern regarding transparency allowing

enhanced scope for corruption among the donors (Choudhury et al., 2010). The

�ndings of this study suggest that the corruption may have in�uenced the higher

cost of power plants in the past and increased after the implementation of the special

provisions act (2010).

53



3.5 Summary

As a rapidly developing economy, Bangladesh has been establishing and will continue

to build more power plants to support the growing demand for electricity. Liter-

ature suggested that there is a lack of research on the cost analysis of the rapidly

growing energy sector in Bangladesh; partially because of the data inadequacy and

lack of transparency in the government. Initially, a cost database was compiled from

di�erent resources for this study. For analyzing the cost of installing power plants in

Bangladesh, the cost (public and private) data were compared with the world. The

results demonstrated an intriguing aspect of a rapidly developing economy. Most of

the public plants showed higher capital cost compared to the world average. Also,

the cost of similar power generation technologies in private and public sector has

a signi�cant di�erence in Bangladesh. On top of the higher capital cost, the cost

evolution demonstrated that cost of establishing public power plants is augmenting

with time, whereas its opposite in private sector as well as in the world. In the

case of expanding cost, the analysis of this chapter showed a signi�cant correlation

between corruption and higher cost of power plants. Higher corruption may increase

the cost of a power plant in a developing context such as Bangladesh.

This chapter renders the opportunity to focus on the amendable condition of

corruption within the governmental system to reduce the cost of establishing public

power plants in Bangladesh. The government should implement more transparent

and supervised system for establishing power plants to reduce the adverse in�uences

of corruption on the megaprojects. Otherwise, there is a possibility the expensive

power plants would become into `white elephant' projects (Ross and Staw, 1993;

Lewis and Williams, 1985), where the output is smaller than that of investment.

The higher cost would impose an additional burden on the future economy.
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Chapter 4

Energy planning models

Energy planning models (EPMs) play an essential role in the development of the

energy sector at global, national and regional levels by enabling informed decision-

making. EPMs are especially crucial as signi�cant investments in innovative energy

research and planning are required for decarbonisation (Amorim et al., 2014). The

development of EPMs started in the late 1950's and early 1960s (Sterner, 2012) but

intensi�ed after the oil crisis of the 1970s in light of the realization of the e�ects of

exogenous political events on global and national energy supply (Barsky and Kilian,

2004). It was necessary, then, to critically assess the interrelationships between the

sources of energy supply and demand, as well as to identify pathways for long-term

development of the energy sector (Craig et al., 2002). The drive for global sustain-

ability in the 1990s �spurred in particular by the Rio Earth Summit in 1992 and

the 1995 report of the Intergovernmental Panel on Climate Change (IPCC) (IPCC,

2002)�brought forward the issue of GHG emissions and their impact on the envi-

ronment. As a result, further models were developed for projecting climate change

and investigating the environmental impact and its mitigation. However, given that

some two-thirds of global GHG emissions come from the electricity, heat, and trans-

portation sectors (IEA, 2015), the integration of the environmental aspects of energy

demand and supply within EPMs became necessary, providing a comprehensive pic-

ture of the interrelationships between energy, environment, and climate change.

Over the past four decades, a substantial number of EPMs have been developed

by researchers and organizations in di�erent countries, with various objectives and

scopes. EPMs range from the holistic � modeling the partial or whole energy system
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of a country, region or the world � to the more sectoral � providing projections of

the energy needs of, for example, transportation or industry. Given that the IEA

estimates the growth in energy demand over the next 23 years will be higher in

developing Asian countries than the rest of the world (IEA, 2017b) and future emis-

sions from growth regions will be critical in the current 1.5°C temperature discourse

(Pachauri et al., 2014), it is essential to understand how EPMs re�ect the challenges

being faced by decision-makers in di�erent parts of the world.

Previous work has reviewed EPMs of di�erent types. Suganthi and Samuel

(2012) categorised energy demand projection models based on their methods but

misclassi�ed bottom-up and top-down approaches. Bhattacharyya and Timilsina

(2010) analysed available EPMs for application in developing countries but did not

present details on relevant socio-economic parameters and their e�ect on policies.

Pfenninger et al. (2014) categorised EPMs into four types: energy system optimiza-

tion; energy system simulation; power system and electricity market and qualitative

and mixed methods. They recommended further development and integration of

innovative approaches into EPMs to address the complex interactions among disci-

plines such as social science, ecology, �nance, and behavioural psychology. Urban

et al. (2007) analysed twelve EPMs to investigate their suitability for developing

contexts and suggested that critical characteristics of developing countries such as

the informal economy and supply shortages were overlooked. The study identi�ed a

bias towards industrialised countries in the EPMs, yet speci�cs were not o�ered on

socio-economic drivers such as political stability (or lack thereof) and corruption in

energy markets in developing contexts.

In light of this, there is a lack of evidence-based analysis of contextual variations,

model structures, and relevant emerging socio-economic variables for EPMs in the

developing world context. To that end, thirty-four current, highly used, macro-

level EPMs were reviewed to investigate their applicability and de�ciency for energy

systems in developing countries. Our focus is on the factors that a�ect the demand

and supply of energy, as well as the rational development of the energy sector in a

developing country.
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4.1 Typology and structure of energy planning mod-

els

A meta-analysis of published literature on EPMs was conducted. The study focuses

on models predominantly used for the planning of energy systems and infrastructures

and that are more strategic, as opposed to operational. First, a preliminary study

was conducted to gather an overview of the topics related to EPMs that resulted

in the identi�cation of two main themes: energy demand and supply; and energy

information and emission models. Electronic databases namely Google Scholar, Sci-

enceDirect, JSTOR, IEEE Xplore, Scopus, Web of Science and other o�cial websites

with energy databanks speci�cally United Nations (UN), World Bank, International

Monetary Fund (IMF), International Energy Agency (IEA), Energy Information Ad-

ministration (EIA) were searched for relevant publications using the keywords listed

in Table 4.1. The keywords were categorised into �ve-word groups, which were

combined using the Boolean operator `AND', e.g. `Energy planning model' AND

`Forecasting' AND `Input variables' AND `Organization' AND `Global'. Based on

the search and the available literature, thirty-four models developed by international

organizations or institutions were selected for analysis (Table 4.2). In addition to

the published journal articles and books, manuals of di�erent models were investi-

gated to explore their structure and key components. The reviewed models were

categorized based on model objectives to contextualise the subsequent analysis and

discussion. Model structures were then analysed to investigate their relevance and

de�cits in developing contexts. For the categorization by model objective, four

categories were used: energy information systems, energy demand-supply, energy-

economic and energy emissions models. Table 2 illustrates EPM types, and their

inputs, outputs, and underlying methods. Five characteristics of input variables

were analysed: qualitative, quantitative, �nancial, aggregated and disaggregated.

Although �nancial data are typically classed as `quantitative', based on the exten-

sive use of these variables in di�erent models it was deemed worthwhile to include

them as a separate characteristic. The underlying methods were categorised into

accounting framework, regression, optimization, econiomic, simulation, and equi-

librium methods. Output variables were classi�ed into energy, emissions, and cost

measures.
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Table 4.1: Searched keywords and associated groups

Model Objective Components Origin of
develop-
ment

Geographical
applicabil-
ity

Energy planning Forecasting Input variables Organization Global
Energy informa-
tion

Projection Estimation
methods

Country Regional

Energy economic
Demand and Supply;
Demand; Supply Output variables Country

Energy supply and
demand Economic

Energy supply Emission control
Energy demand
Emission reduc-
tion

Among the analysed 34 models, quantitative and �nancial data are utilized in

34 and 32 models respectively. 27 models used disaggregated data as input vari-

ables. In the case of the output variables, most of the model's outputs are energy

(30 models), emission (29 models), and cost (28 models). Model outputs are often

normalised; e.g. cost/GDP, cost/capita, cost/generation, and emissions/GDP. Re-

viewed models adopted di�erent underlying methods for estimation and projection.

Optimization methods are widely utilized (13 models), followed by simulation (11

models) and economic (10 models) methods. Optimization methods are mostly ap-

plied to energy demand and supply, and economic models.

EPMs have three common components and a basic work �ow: input variables

� underlying estimation/projection methods � output variables. Key variations,

however, lie in the type, resolution (temporal and spatial), scope and time frame of

the input and output variables. Model objectives and the nature of the data most

often determine the choice of estimation/projection methods.

Primary input variables in the studied EPMs are quantitative, �nancial and

disaggregated. EPMs are numerical models and utilize quantitative data for calcu-

lation. Qualitative parameters are typically interpreted as ordinal data for modeling

purposes. While modeling energy infrastructure in a holistic approach to cover a

broader context, the supply, demand and socio-economic sectors require disaggre-

gated data for a better interpretation of the existing systems.
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Table 4.2: Characteristics of existing energy planning models

Model
Input variables* Method� Output variables�

Total Ref.
Qul Qua Fin Agg Dagg RE OP EC SM EQ AF En Em Co

Energy information system

E3 D D D D D D 6 LBST (2008)

CO2DB D D D D D 5 Strubegger

(2003)

Energy economic model

MAM D D D D�� D 5 EIA (2014)

MARKAL-

MACRO
D D D D D D�� D D D D 10 Manne and

Wene (1992)

MICRO-

MELODIE
D D D D D D�� D D D 9 Van Beeck

(1999)

TIMES-

MACRO
D D D D D D�� D D D 9 Remme and

Blesl (2006)

Energy demand-supply model

DECPAC D D D D D D D D 8 IAEA (2003)
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Table 4.2: Characteristics of existing energy planning models

Model
Input variables* Method� Output variables�

Total Ref.
Qul Qua Fin Agg Dagg RE OP EC SM EQ AF En Em Co

IKARUS D D D D D D D D D D 10 Martinsen

et al. (2004)

ENPEP D D D D D�� D** D D D 9 Van Beeck

(1999); Sahir

and Qureshi

(2006)

LEAP D D D D D�� D D D D D 10 Heaps (2012);

Takase

and Suzuki

(2011); Cai

et al. (2008)

POLES D D D D�� D D D 7 Kitous (2006)

MESSAGE-

III
D D D D D D 6 Messner et al.

(1996)

WASP D D D D D D D 7 IAEA (2001)
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Table 4.2: Characteristics of existing energy planning models

Model
Input variables* Method� Output variables�

Total Ref.
Qul Qua Fin Agg Dagg RE OP EC SM EQ AF En Em Co

MARKAL D D D D D D D 7 Loulou et al.

(2004)

TIMES D D D D D D D 7 Loulou et al.

(2005)

MEDEE D D D D D D 6 MacKenzie

(1982)

MAED D D D D 4 IAEA (2006)

NEMS D D D D D D D 7 EIA (2009)

ENERPLAN D D�� D D D 5 Van Beeck

(1999); Sahir

and Qureshi

(2006)

MESAP D D D D D D�� D D D D 10 Van Beeck

(1999)

Energy emissions model

UK 2050 D D D D D D D D 8 DECC (2013)
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Table 4.2: Characteristics of existing energy planning models

Model
Input variables* Method� Output variables�

Total Ref.
Qul Qua Fin Agg Dagg RE OP EC SM EQ AF En Em Co

BD 2050 D D D D D D D 7 BD2050

(2015)

MESAP

PlaNet
D D D D D D D D 8 Schlenzig

and Stei-

dle (2001);

Schlenzig

(1999)

EFOM-ENV D D D D D D D D 8 Van

Den Broek

et al. (1992)

IMAGE D D D D D D 6 Stehfest et al.

(2014)

AIM D D D D D D D 7 Kainuma

et al. (1999)

62



Table 4.2: Characteristics of existing energy planning models

Model
Input variables* Method� Output variables�

Total Ref.
Qul Qua Fin Agg Dagg RE OP EC SM EQ AF En Em Co

ASF D D D D D 5 Sankovski

et al. (2000)

GREEN D D D D D D D 7 Burniaux

et al. (1992);

Weyant

(1993)

ERM D D D D D D D 7 Dean and

Hoeller

(1992)

IEA D D D D�� D D D 7 Dean and

Hoeller

(1992)

CRTM D D D D D D D 7 Weyant

(1993); Dean

and Hoeller

(1992)
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Table 4.2: Characteristics of existing energy planning models

Model
Input variables* Method� Output variables�

Total Ref.
Qul Qua Fin Agg Dagg RE OP EC SM EQ AF En Em Co

MR D D D D D D D 7 Dean and

Hoeller

(1992)

WW D D D D D D D 7 Dean and

Hoeller

(1992)

SGM D D D D D D D 7 Brenkert

et al. (2004)

Total 3 34 32 10 27 8 13 10 11 7 3 30 29 28
* Input types: Qul (qualitative) Qua (quantitative), Fin (�nancial), Agg (aggregated) and Disag (disaggregated).
� Methods:RE (regression), OP (optimization), EC (economic � econometric, macroeconomic), SM (simulation),

EQ (equilibrium) and AF (accounting framework)
� Output types: En (energy�demand and/or supply), Em (emissions) and Co (cost).
** Economic equilibrium
�� Econometric
�� Macroeconomic
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In the case of underlying methods, optimization was utilized in fourteen models

because they would create an optimization loop as a way of testing whether the

selected output satis�es the de�ned constraints. In some models, especially energy

demand and supply models, the primary objective is to �nd the least cost solution

for the energy market. Optimization methods in such models would render the op-

portunity to test di�erent policies against the least cost option. However, simulation

methods were also utilized in a signi�cant number of models.

4.2 De�ciencies in existing EPMs

Most EPMs, if not all, were constructed in developed countries (Table 4.3) and

considered their energy systems, economic assumptions, and the extent to which

GHG emissions need to be reduced. While CO2 emissions per capita in high-income

countries are decreasing, they are increasing in the developing upper-middle and

middle-income countries, whose primary objective often is to improve access to con-

venient forms of energy. Table 4.3 demonstrated that some EPMs such as ENPEP,

LEAP, POLES, WASP, MARKAL, MAED and 2050 models were widely adopted

than others. The major decision making behind the EPM selection for adopting in

developing countries may depend on the availability of expertise of model develop-

ment, complexity level of modeling, and recommendations from the donor organi-

zations or consultants. Despite the fact that some EPMs have been widely adopted

for energy system planning in developing countries, they lack consideration of a

substantial number of issues a�ecting developing contexts; e.g. the e�ects of a lack

of innovation, and the varying nature of privatisation, decentralisation and compe-

tition in the energy industry(Pandey, 2002). Policy priorities in EPMs need to be

more country-speci�c or regional, because of the di�erences in objectives due to the

common socio-economic vulnerability or conditions, and geographical and climatic

characteristics. Indicators relevant to most developing economies include(Pandey,

2002): issues regarding resource management; assessment of energy alternatives; the

economic and technical challenges associated with the transformation of the energy

infrastructure from a centralised one to an intelligent and decentralised one; and

�nancial vulnerabilities in households. Addressing these in EPMs is necessary to

provide higher reliability of estimates.
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Table 4.3: Origin and use of EPMs

Model Developer
Country of

origin

Applied/

adopted in

developing

countries

Number of

countries

applied/

adopted

Ref.

E3 Database Ludwig-Bolkow-Systemtechnik GmbH Germany N/A LBST (2008)

CO2DB
International Institute for Applied

Systems Analysis (IIASA)
Austria N/A Strubegger (2003)

DECPAC
International Atomic Energy Agency

(IAEA)
Austria N/A IAEA (2003)

IKARUS

Former German Federal

Ministry of Education, Science, Research,

and Technology (BMFT)

Germany N/A Martinsen

et al.

(2004)

MAM U.S. Department of Energy USA N/A EIA (2014)

MARKAL-MACRO Brookhaven National Laboratory USA Yes Manne

and Wene

(1992)
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Table 4.3: Origin and use of EPMs

Model Developer
Country of

origin

Applied/

adopted in

developing

countries

Number of

countries

applied/

adopted

Ref.

MICRO-MELODIE

The Commissariat à l'énergie

atomique et aux énergies

alternatives (CEA)

France N/A Van Beeck (1999)

TIMES- MACRO

The Energy Technology Systems

Analysis Program (ETSAP),

International Energy Agency (IEA)

France N/A Remme

and Blesl

(2006)

ENPEP
International Atomic Energy Agency

(IAEA)
Austria Yes 60 IAEA (2014)

LEAP
Stockholm Environmental Institute,

Boston
USA Yes 190* SEI (2017)
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Table 4.3: Origin and use of EPMs

Model Developer
Country of

origin

Applied/

adopted in

developing

countries

Number of

countries

applied/

adopted

Ref.

Mesap PlaNet

Institutes für Energiewirtschaft und

Rationelle Energieanwendung (IER),

University of Stuttgart

Germany N/A Schlenzig

and Steidle

(2001)

EFOM-ENV
Institut Economics et Juridigue de

l'Energie (IEJE)
France Yes 20 CEERD (2017)

POLES

First developed by CNRS (France) and

now by CNRS / UPMF university,

Enerdata, and IPTS (Spain, European

Commission research center)

France Yes 57* Enerdata (2012)

MESSAGE-III
International Institute for Applied

System Analysis (IIASA)
Austria Yes Munasinghe

and Meier

(1993)
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Table 4.3: Origin and use of EPMs

Model Developer
Country of

origin

Applied/

adopted in

developing

countries

Number of

countries

applied/

adopted

Ref.

WASP
International Atomic Energy Agency

(IAEA)
Austria Yes 100 IAEA (2014)

MARKAL
International Energy Agency (IEA)/

ETSAP
France Yes 70* Munasinghe

and Meier

(1993); Gi-

annakidis

et al.

(2015)

MEDEE
Institut Economics et Juridigue de

l'Energie (IEJE), Grenoble
France Yes CEERD (2017)

MAED
International Atomic Energy Agency

(IAEA)
Austria Yes 40 IAEA (2006)

NEMS U.S. Department of Energy USA N/A EIA (2009)
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Table 4.3: Origin and use of EPMs

Model Developer
Country of

origin

Applied/

adopted in

developing

countries

Number of

countries

applied/

adopted

Ref.

ENERPLAN Tokyo Energy Analysis Group Japan Yes Munasinghe

and Meier

(1993)

MESAP

Institutes für Energiewirtschaft und

Rationelle Energieanwendung (IER),

University of Stuttgart

Germany Yes Voÿ et al. (1994)

UK 2050
Department of Energy & Climate

Change (DECC)
UK Yes 24*� DECC (2014a)

IMAGE
PBL Netherlands Environmental

Assessment Agency/ Utrecht University
Netherlands N/A Stehfest

et al.

(2014)
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Table 4.3: Origin and use of EPMs

Model Developer
Country of

origin

Applied/

adopted in

developing

countries

Number of

countries

applied/

adopted

Ref.

AIM
National Institute of Environmental

Studies (NIES)
Japan N/A Kainuma

et al.

(1999)

CRTM
Joint Center for

Satellite Data Assimilation (JCSDA)
USA N/A Dean and

Hoeller

(1992)

SGM

Paci�c Northwest

National Laboratory (PNNL) and is

maintained by the PNNL Joint

Global Change Research

Institute (JGCRI)

USA N/A Brenkert

et al.

(2004)
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Table 4.3: Origin and use of EPMs

Model Developer
Country of

origin

Applied/

adopted in

developing

countries

Number of

countries

applied/

adopted

Ref.

*Including all the countries that utilized the speci�c model

� Several 2050 pathways models have been constructed for the following developing countries: Vietnam,

Bangladesh, Thailand, Nigeria, Mexico, Mauritius, Indonesia, India, Colombia, China and Brazil. These models are roughly

based on the principles of UK2050 Pathways (DECC, 2014b), albeit with some minor country-speci�c additions.

Except BD2050, where electricity consumption is

modelled against various scenarios of GDP and population growth, all

models lack the consideration of socio-economic parameters. Political

instability, corruption, suppressed demand and climate change e�ects are not modelled in any of these developing

country pathways.
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In the following sections, the issue of suppressed demand in developing countries

is analysed, followed by a discussion of the di�erence in socio-economic characteris-

tics such as corruption and political stability, as well as their e�ect on the economy.

Subsequent sections explore the impact of data inadequacy on the development of

EPMs and the impact of climate change, focusing on the e�ect of energy planning on

land development and food production, as well as the role of extreme weather events.

Finally, the impact of poor characterisation of variables on EPMs is discussed.

4.2.1 `Suppressed' demand in developing countries

Suppressed demand refers to the incapability of the people or community or nation

to meet minimum services levels (MSL) necessary for human development (CC-

NUCC, 2012), such as clean and safe drinking water and adequate energy for cook-

ing and lighting because of some host barriers (Gavaldão et al., 2013). Barriers can

be a lack of infrastructure, low technology penetration, and poverty, particularly

the high costs of energy services compared to household incomes (Spalding-Fecher,

2015). Energy infrastructure barriers such as the lack of access to grid electricity

can lead to minimal or no use of electrical appliances. The barriers can also interact

to produce a situation where the population cannot a�ord energy for basic needs

because of low income and high unit cost. On the other hand, studies show that

the reduced unit cost often results in higher demand for energy. For example, the

transition from kerosene to electric lighting in developing countries reduced the unit

cost of light by more than 90% but augmented the consumption of lighting services

(lumens) by a factor of 40 (Spalding-Fecher, 2015; Barnes et al., 2002; IEG, 2008).

In the case of the technology barrier, the penetration of speci�c technology among

the population can be hindered by the higher initial cost. This cost can be compen-

sated by high income and policy incentives (such as tax reduction on the technology

or subsidies) by governments.

Emissions from developing countries are much lower than the global average be-

cause of suppressed energy demand. Energy consumption of many household needs,

such as heating and cooking, and lighting, may not re�ect the real demand. Addi-

tionally, suppressed electricity demand is hard to register in developing countries,

for example- when the household have greater buying capacity how much the elec-
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tricity demand is going to be increased is complex to model for developing contexts.

Therefore, there is a lack of consideration of suppressed demand in EPMs which can

result in an inaccurate estimation of baselines for Clean Development Mechanism

(CDM) projects (UNFCCC, 2017). More speci�cally, CDM rules state that `the

baseline may include a scenario where future anthropogenic emissions by sources

are projected to rise above current levels, due to the speci�c circumstances of the

host Party' (UNFCCC, 2001). However, a UNFCCC report (paragraph 35 of Deci-

sion 2/CMP.5 (UNFCCC, 2010)) encouraged the CDM Executive Board `to further

explore the possibility of including in baseline and monitoring methodologies, as ap-

propriate, a scenario where future anthropogenic emissions by sources are projected

to rise above current levels due to speci�c circumstances of the host Party'. These

guidelines explicitly di�erentiate energy contexts between developed and developing

countries. None of the reviewed EPMs considered the CDM guidelines, which may

increase error in future energy planning strategies for developing contexts.

4.2.2 Di�erence in socio-economic characteristics

Developed countries have di�erent socioeconomic attributes than those of develop-

ing countries. The literature suggests that political instability a�ects the economic

growth of a country(Alesina et al., 1996), especially GDP growth(Aisen and Veiga,

2013). The rate of change of stability is lower in developed countries that are of-

ten characterised by steady GDP growth (Figure4.1a-e). However, all developing

countries do not necessarily demonstrate a similar association between GDP growth

and political stability, which varies substantially (Figure4.1f-j). There are also ex-

ceptions. Despite the negative progression of political stability, some countries have

positive GDP growth (e.g. Japan, Germany, Philippines, and Bangladesh). Devel-

oped economies mostly maintain steady progress on the positive side of the political

stability scale (that is, they have a political stability score of 0 to 2.5), while the

same parameter is on the negative side of the scale in most of the developing coun-

tries (that is, the score ranges from 0 to -2.5). In most developed country EPMs,

GDP is the only socio-economic parameter for demand projection. Considering

GDP growth or GDP volume alone is thus unlikely to represent the nuances of the

economic structure of a developing country. More integrative modeling is, therefore,

required for predicting future energy demand while accounting for the structural
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changes in the economy. The increasing share of industry and services in the eco-

nomic output with a corresponding rise in energy use and emissions in developing

countries has the potential to further augment world GHG emissions, despite the

decreasing trend for emissions in high-income countries.

Along with the stage of economic development, the intensity and distribution of

economic activities in�uence a country's energy consumption. The analysis of GDP

per capita against electricity consumption in Figure 4.2 shows a positive relation-

ship; i.e. electricity consumption increases with the growth in GDP. The coe�cients

of determination (R2) in the plots are very high for low and lower-middle-income

countries as compared to the upper-middle and high-income countries. In high-

income countries, the change in GDP per capita has little in�uence on electricity

consumption. In contrast, an increase in GDP per capita signi�cantly ampli�es

electricity consumption in low and lower-middle-income countries, as previously re-

ported (Debnath et al., 2015). This ampli�cation in energy consumption may have

resulted from the presence of suppressed demand.

The trends in per capita gross national income (GNI) and energy consump-

tion for the period 1960-2013 of eighteen randomly selected countries from four

World Bank economic classi�cations are illustrated in Figure 4.3. The high and

upper-middle-income countries, the relation between GNI per capita and electricity

consumption per capita has a logarithmic progression, which denotes that when a

country reaches a stable income level, the energy consumption becomes linear in

characteristic (Figure 4.3). In the case of developing contexts with lower middle

and low income, the increase in GNI boosts up the electricity consumption expo-

nentially (Figure 4.3), because GNI/capita augmentation in�uences the `suppressed'

demand by allowing more people to access electricity. Moreover, improved buying

capacity enables consumers to buy and utilize more electronic products, resulting in

exponential electricity consumption growth. After reaching a stable economic stage,

the energy consumption growth slows steadily (Medlock and Soligo, 2001), despite

the fact that the GDP can keep rising.
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Figure 4.1: GDP growth vs political stability trends in developed (a-e) and
developing countries (f-j). Here, the �tted regression line visually depicts the trend

in the data. Data source WB (2014); Kaufmann and Kraay (2014)
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Figure 4.2: GDP per capita vs electricity consumption from 1995 to 2013. The R2
values denote the coe�cient of determination, and it measures how close the data

to the �tted regression line (The solid lines). Data source WB (2014)
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Figure 4.3: Growth trends across developed and developing countries. (A) Growth in GNI per capita of di�erent countries from 1960 to 2014.
(B) Growth trends in electricity consumption of di�erent countries from 1960 to 2014. In panel (B), the trends in the data are visually
depicted by �tted regression lines. The y-axis values are on a logarithmic scale, and the dashed and solid lines denote exponential and

logarithmic progression of the data, respectively. The income group classi�cation used here is that from the World Bank list of economies
(July 2015): low income, $1,045 or less; lower middle income, $1,046�4,125; upper middle income, $4,126�12,735; and high income, $12,736 or

more. Data source WB (2014)
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In developing economies, corruption in�uences policy decisions, including the

procurement of mega projects�often resulting in the selection of higher cost op-

tions (Mauro, 1995; Aladwani, 2016), that may bene�t the decision maker(s) to the

detriment of the environment and economy. For example, post-2009, Bangladesh's

increased dependence on volatile international energy markets for oil imports was

due to the growth in for-pro�t, private sector oil-based generation plants operat-

ing during o�-peak hours that resulted in greater macroeconomic risks (Mourshed,

2013). The sub-optimal decision to increase oil-based electricity generation beyond

peak generation capacity requirements has been reported as ad-hoc and short-sighted

(Mourshed, 2013).

Evidence suggests that reduced corruption can result in a signi�cant increase in

GDP; e.g. if Bangladesh can enhance its bureaucratic integrity and e�ciency to the

level of Uruguay its annual GDP growth would elevate by over half a percentage

(Mauro, 1995). Figure 4.4 compares in�ation with the Corruption Perceptions Index

(CPI) of di�erent nations. Countries with higher CPI scores are less corrupt and

more developed and in most cases, have less in�ation. In contrast, countries with

higher levels of corruption tend to have higher in�ation. The economic in�ation rate

is associated with the size of the national debt of a country. Energy projects are

typically big and require signi�cant investments. Loans from international �nan-

cial organizations such as the World Bank, Asian Development Bank (ADB) and

International Monetary Fund (IMF), and local and international banks, constitute

a large proportion of energy investments in developing countries. Corruption has

been reported in all life cycle stages of energy projects, but most evidence on its

existence and extent are reported for the tendering process, (Wells, 2015) which di-

rectly increases the project cost and corresponding loan amount. The terms of these

loans are typically longer (e.g. decades) and interest rates are higher, due to the

perceived risks of political instability and in�ation�resulting in higher repayment

cost and increased national debt. The consequences of increased pressures on public

�nance are the inevitable rise in personal and sometimes business tax rates, further

increasing in�ation. Another impact of a corruption-related increase in macroeco-

nomic stress is the detrimental e�ect on social and economic development, as money

intended for these sectors is often reallocated for debt repayment (Mourshed, 2013).
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Figure 4.4: Comparison of corruption perceptions with in�ation and consumer
prices. Corruption Perceptions Index (CPI) 2014 vs. In�ation (2014) among the
top and bottom 35 countries of the CPI list. High-income countries where EPMs
have originated are illustrated by hollow purple diamond shapes. For detail, see

Table 4.3. Data source WB (2014); TI (2014)
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Comparatively low levels of corruption in developed countries have limited ef-

fects on energy projects and the economy, the modeling of which is, therefore, low

in priority. In contrast, energy project procurement, management and operation in

developing countries are evidently corrupted with severe impacts on the economy

(Lovei and McKechnie, 2000). Corruption and its e�ects on micro- and macroeco-

nomic performance in all life cycle stages of energy planning should, therefore, be

an integral part of any modeling e�ort in developing countries.

Among the 34 reviewed EPMs, none of them addressed the implications of cor-

ruption on the energy economy. In addition to corruption, none of the reviewed

models considered the e�ect of political instability on the economy, which was found

to be prominent in developing contexts. Also, the in�uence of per capita income

change drives energy consumption di�erently in developing economies than that of

developed ones; this aspect was also found to be less elaborately modelled in the

reviewed EPMs.

4.2.3 Data inadequacy

Estimation/projection quality in EPMs depend on data adequacy and accuracy, as

historical trends determine the future projection. EPMs are mostly mathematical

models in which data inadequacy can result in inaccurate estimation or at least

increase the uncertainty of prediction. Also, incomplete data records hinder the

assessment of potential interrelations among the variables, rendering the EPM de-

velopment process di�cult. Data inadequacy is reported to be more pronounced

in developing contexts than that of developed ones (Nye, 1967; Vera and Langlois,

2007; Geng et al., 2016), in particular regarding the required level of disaggregation

and resolution, as well as the provenance of data. Careful considerations should be

given, especially in developing contexts, to the collection of quality-assured data.

On the other hand, modeling approaches should be �exible enough to accommo-

date incomplete historical data up to an acceptable limit while compensating for

the possible variations in temporal and spatial resolutions.
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4.2.4 Climate change impact

Climate change is projected to disproportionately impact some developing countries

(e.g. Bangladesh, Philippines, Malawi and India) not only because of their devel-

opment status and perceived shortcomings in adaptation capacity but also because

of their inherent geographical and social vulnerabilities. Moreover, the global en-

ergy system is transitioning away from centralised generation and management to a

more distributed, intermittent renewable energy and land-based system, where land

and infrastructure resilience to natural hazards is becoming increasingly important,

even for energy planning (McLellan et al., 2012). The impacts of climate change

on the broader economy and environment require the consideration of region- and

country-speci�c parameters for resilience, adaptation, mitigation, and development

in EPMs. None of the EPMs reviewed considers the impacts of climate change.

Even energy emissions models consider only energy related emissions and may also

consider their future evolution from decarbonisation perspectives.

Energy vs. land vs. food

Land-based economic sectors are particularly vulnerable to sea level rise, as well as

natural disasters such as �oods, tsunamis, and landslides due to increased precip-

itation, all of whose occurrence is projected to increase. Developing countries are

particularly vulnerable to these impacts because of their tropical and sub-tropical

locations and geomorphology (Alcántara-Ayala, 2002). For projected sea level rises

of 45 and 100 cm, up to 15,600 and 30,000 km2 of land area respectively will be

permanently �ooded in Bangladesh (Butzengeiger and Horstmann, 2004), corre-

sponding to up to about one-�fth of the country's total land area. The production

of rice, the staple food, will decrease from 236 to 96 kg/capita-year if the sea level

rises by 32 cm by 2050 and 30 kg/capita-year if the rise is 88 cm by 2100 (DoE,

2006). In the case of Maldives, the entire island country would drown if the sea level

rises, as the highest point is only 2.4m higher than the sea level. Moreover, energy

infrastructure in several countries is vulnerable to sea level rise (Khan et al., 2013;

Wadey et al., 2013), as they are situated near the water resource such as river and

sea for cooling purpose (Greenpeace, 2007). The direct impacts of climate change

on energy systems are thus related to energy infrastructure resilience and energy

production when vulnerable lands are used for energy crops.

83



As a matter of course, and in line with the theoretical discourse on stages of

economic growth, the least developed and developing countries aim to become de-

veloping and developed respectively�representing a gradual shift in focus from agri-

cultural towards more industrialised societies (Archibugi, 1997). Industrial develop-

ment is often manifested in the transformation of agrarian lands into industries and

energy infrastructures in the populated countries with severe shortages of buildable

land�which a�ect food production. The situation is exacerbated when a signi�cant

share of arable land is allocated to energy crop production, leading to a con�ict

between the goals of energy and food securities�both of which are critical issues for

developing countries with relatively large population and modest land mass, such as

Bangladesh. Of the 34 studied models, only BD2050 considered the e�ects of energy

sector development (e.g. land-based bioenergy) on food production (BD2050, 2015).

Before BD2050's launch in 2015, the International Atomic Energy Agency's (IAEA)

Wien Automatic System Planning package (WASP) was predominantly used for en-

ergy planning. WASP is essentially an optimum solution �nder for the supply-side

expansion and is mostly unsuitable for modeling land-based interactions. The in-

creasing interactions between food, land and energy, therefore, need to be modelled

and assessed holistically for informed decision-making.

E�ects of extreme weather events

Extreme weather events are typically rare, yet climate change will make some of

these events more likely to occur and more likely to be severe (EPA, 2016). Slow-

onset events such as heatwaves and unexpected low temperatures have a direct

e�ect on comfort related energy demand (Ravanelli and Jay, 2016), in addition

to the resulting increased mortality, especially among the elderly, children and the

in�rm. While e�ects such as these are common to both the developing and developed

countries, the amplitude and duration of extreme events, as well as the inability

to cope with their sudden onset are often more pronounced in tropical and sub-

tropical developing countries; e.g. heatwaves in India and Pakistan in 2015 (Herring

et al., 2016). Air conditioning accounts for 28% of electricity consumption in the

hottest months in Delhi, India (Johansson et al., 2012). Although India started its

�rst energy e�ciency rating for air conditioning and labelling programme in 2006
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(Conti et al., 2016), aimed at reducing annual electricity demand by 27 TWh by

2020 (McNeil and Iyer, 2008), a heatwave can escalate that demand (Miller et al.,

2008). Climate change impacts are seldom considered in EPMs likely because they

originate in developed countries that have been shown to be less vulnerable than

developing countries where climate change can cause immense damages (Yohe et al.,

2006). None of the reviewed EPMs considered the climate change impact. BD2050

only explored the implication of energy policies on food security. That does not

necessarily explore the impact of climate change in Bangladesh. Energy demand

projection and infrastructure resilience should, therefore, consider the probability of

extreme weather events, especially in EPMs for developing countries.

4.2.5 E�ects of poor characterisation

Poor characterisation of the energy system and its underlying socio-economic param-

eters can lead to inappropriate modeling of future energy and emissions scenarios in

both developed and developing countries (Table 4.4). Inaccurate projections a�ect

energy system planning and infrastructure development, especially in the long term.

Furthermore, energy dynamics in developing countries are complicated because of

the prevalence and di�erent distribution of the following socio-economic and politi-

cal parameters: political stability, energy use characteristics of the extremely poor,

the pervasiveness of small unregistered businesses, the presence of large informal sec-

tors, corruption, and subsidies. Moreover, most of these aspects have seldom been

addressed in a reasonable level of detail in the literature. The gap in knowledge is

exacerbated by the limited availability of modeling expertise in developing countries.

Complexities such as these make the energy models in developing countries more

vulnerable to poor characterization than that of the developed ones.

4.3 Implications and considerations for EPMs

Although developing countries have lower per-capita GHG emissions than those of

developed countries, there is a marked increasing trend in emissions since 1990.

The rate of change is often higher than previously projected. For example, despite

the energy system being mostly based on renewable energy (93.3% of the total in
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Table 4.4: E�ect of poor characterisations of energy systems and economies of
developing countries in energy planning models

Model typologies E�ect of poor characterisations
Mathematical procedures
Regression, economic,
simulations and
accounting frameworks

Fragmented or inaccurate data and relations in the
calculation can prompt incorrect results

Optimisation
Calculated best solutions may be incorrect,
because of the inadequate interpretation of economy
and resources framework.

Equilibrium
Overlooking the disequilibrium of business sectors and
overestimate business sector impacts that
prompt contorted results Urban et al. (2007).

Modeling approaches

Top-down model
Incorrect or incomplete linkage or data in model
frameworks results in incorrectly computed outputs

Bottom-up model
In�uenced by inappropriate
or incomplete relations and information
in the frameworks, leading to incorrect results

Hybrid model

Hybrid models could lead to
inconclusive results due to inappropriate interrelations
of di�erent parts of the system with economic and
scienti�c data.

2010), per capita, CO2 emissions in Costa Rica increased by 78.6% between 1990

and 2011 (WB, 2017a). Similarly, higher emissions growth rates can be found for

United Nations Framework Convention on Climate Change (UNFCCC) non-Annex

countries that did not have an emissions reduction target (WB, 2014). In con-

trast, most developed countries demonstrate a decreasing trend. CO2 emissions

from the middle-income nations already surpassed that of the high-income countries

as illustrated in Figure 1d. Upper-middle-income nations are also about to exceed

the emissions from high-income countries. Although India and China dominate in

emissions growth at present, Brazil, India, Indonesia, China and South Africa are

projected to eclipse global GHG emissions in 2050 (Marchal et al., 2011). According

to the 2017 IEA World Energy Outlook (IEA, 2017b), China will start to decrease

CO2 emissions from 2030 but will still emit 2.8 times more in 2040 than in 2000. On

the other hand, CO2 emissions from advanced economies started to decline in 2014,

and by 2040, they will emit 0.3 times less than in 2000. However, CO2 emissions

from the rest of the world will keep increasing gradually, and will collectively emit

2.4 times more CO2 by 2040 than in 2000.

The current discourse on economic development is that along with Brazil, Rus-
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Table 4.5: Applicability of suggested variables in existing EPMs.

Variables
Types of models

Energy in-
formation
systems

Energy
demand-
supply
model

Energy
economic
model

Energy
emissions
model

Political stability D D

Corruption D

Suppressed demand D D D D

Climate change im-
pacts

D D D

sia, India, China and South Africa (BRICS), eleven further countries, known by the

numeronym N-11� Bangladesh, Egypt, Indonesia, Iran, Mexico, Nigeria, Pakistan,

the Philippines, Turkey, South Korea and Vietnam � have a high potential of becom-

ing among the world's largest economies in the 21st century (Lawson et al., 2007).

Projections of energy demand growth in smaller economies but with more signi�cant

populations have primarily been inaccurate. For example, the 2010 Power Sector

Master Plan (PSMP) projected that primary energy demand in Bangladesh in 2030

would be 616 TWh (JICA and TEPCO, 2011), which was later revised up in 2015

Plan to 860 TWh in the `business as usual' (BaU) scenario�a 40% increase in the

projected amount within �ve years (JICA and TEPCO, 2016). The updated pro-

jected demand can be ascribed to �awed assumptions of the probability of demand

growth and the lack of the consideration of suppressed demand. Policies based on

inaccurate projections are unlikely to be e�cient and sustainable.

The consideration of the identi�ed de�ciencies in developing contexts and their

treatment in energy planning models need to be context speci�c, both regarding

integration with existing models and for the development of new ones. In cases

where empirical relationships between de�cient parameters and outcome variables

are well established and accepted by the stakeholders, the decision on integration

versus new EPM development will depend on the complexity of integration with the

existing model and the potential for contribution in policy development and energy

planning. On the other hand, not all de�ciencies need to be accounted for in all

model types. Table 4.5 provides an applicability matrix of the identi�ed variables

against model typologies.

A summary of potential considerations for the identi�ed de�ciencies for the devel-
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opment of or integration into future country/region speci�c localized EPMs follows.

Suppressed demand. Detailed relationships between the constituent variables

of energy demand � such as the elasticity between income threshold and buying ca-

pacity and grid connectivity � need to be addressed in EPMs for developing contexts.

Dynamics between political stability and economic growth. Not all de-

veloping countries share similar political stability. If there exists an evident correla-

tion between economic growth and political stability, it should ideally be explicitly

modelled in the EPM. Where the relationship is not conclusive, further research

needs to be conducted, even for implicit or proxy considerations.

In�uence of corruption on the energy economy. The treatment of corrup-

tion in models should be context speci�c. Multiplier based modeling will be time

and cost e�ective if a signi�cant relationship exists between corruption and outcome

indicators. In cases where the relationship is not apparent or cannot be mathemat-

ically formulated, conveniently, underlying causes can be investigated further.

Data gathering, validation and sharing. A structured data gathering and

sharing system can contribute to the enhanced accuracy of the EPMs, as well as the

e�ectiveness of the resulting policies.

Climate change impacts on energy infrastructure and systems. De-

pending on the country-speci�c impacts of climate change on energy systems and

infrastructure, its degree of incorporation in EPMs can be varied. If the projected

climate change has a signi�cant e�ect on future energy infrastructure and systems,

it should be modelled explicitly, especially for land-based variables such as land use,

distributed energy generation, food production and bioenergy. In most cases, the

explicit modeling of climate change impacts would require further investigations on

the interactions between related variables.

In the case of Bangladesh, corruption was found to have greater impact on en-

ergy planning (Chapter 3) that should be modeled initially. After that, suppressed

demand and climate change impact modeling should have more importance in the
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case of EPM development for Bangladesh. Political stability should also be modeled

to increase the contextual consideration to elevate the accuracy of future planning

of energy sectors in a cost e�ective way.

4.4 Summary

Distinct di�erences exist between the evolution of energy systems in developing and

developed countries, as a response to varying social, technical, economic and envi-

ronmental stimuli. Developed countries primarily aim to reduce climate-a�ecting

GHG emissions while enhancing energy security. In contrast, developing countries

are predominantly concerned with increasing access to conventional forms of energy

through infrastructure expansion, which is often seen as a prerequisite for economic

and social development. Despite the di�erences in overall policy goals, EPMs play

a central role in energy sector development and transformation in both developing

and developed countries. Current EPMs were mostly created in developed coun-

tries, often with the assumptions and biases of the country and region in which they

were developed. Recognising the importance of EPMs in shaping the energy future,

the analysis of 34 EPMs revealed several important shortcomings for the developing

context.

A key �nding from this chapter is the lack of consideration in the analysed

EPMs of the unique socioeconomic characteristics in developing countries such as

suppressed demand, corruption, and political instability. Disregarding suppressed

energy demand can potentially underestimate total demand, rendering future plan-

ning inaccurate and ine�ective, especially for long-horizon planning such as 2050

pathways. Corruption is a complex socio-economic factor and can increase capital

and operation costs of energy projects and infrastructure in some developing coun-

tries, a�ecting sustainability. Also, the economy is sometimes linked with political

instability which, on its own can a�ect energy infrastructure resilience.

Apart from the developing context-speci�c socio-economic de�ciencies in the

current EPMs, climate change impact on land availability and food production is

likely to alter the dynamics of energy-food-emissions interactions, especially in the

highly populated developing countries. Increasing penetration of distributed energy
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resources and bioenergy goals require that EPMs should now consider land-based

interactions between energy, food, and environment for future planning and devel-

opment.

Country-speci�c trends in GHG emissions are also evolving. Collectively, middle-

and upper-income countries now emit more than that of the high-income countries

since 2007. Emissions are increasing at a much faster rate in developing economies

than previously projected. EPMs can play an essential role in setting the emerging

economies towards a low-carbon pathway while enhancing access to energy. Most

reviewed EPMs were initially intended for their country/region of origin in the devel-

oped world, embedding the contexts in which they were designed. Their later use in

developing countries demonstrated their potential for informed decision-making on

energy systems planning. However, the identi�ed shortcomings in this chapter sug-

gest that the formulation of localized EPMs are essential not only for the countries

concerned but also for a low-carbon pathway for the world.
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Chapter 5

Forecasting methods

Previous studies on forecasting methods of EPMs either divided the topic into its

areas of application or the broad categories of underlying techniques. Application

areas are always evolving � through the integration of new domains and concepts,

as well as by expanding the breadth and depth of a modeled domain. The di�-

culty arises when previously categorized application areas are not �exible enough

to accommodate a new area. For example, behavioral energy conservation is an im-

portant environmental psychology aspect of climate and energy debate; and widely

considered for the modeling of energy use in buildings and transportation, as well

as for national energy demand forecasting and policy making.1 On the other hand,

dividing forecasting methods based on the underlying techniques has similar issues.

For example, Weron classi�ed forecasting methods into two broad categories� statis-

tical approaches and arti�cial intelligence (AI) based techniques (Weron, 2007). The

developments in computing over the past decades have enabled the use of compute-

intensive methods for improved accuracy and reduced computation time, thereby

enhancing their applicability. AI techniques are now widely used to tune up pa-

rameters in statistical models. Moreover, some soft computing or computational

intelligence2 techniques routinely use advanced statistical concepts. Therefore, cat-

1Examples of the use of behavioral aspects of public energy conservation in policy making
can be found in Japan's Third National Communication under the United Nations Framework
Convention on Climate Change (UNFCC) (http://unfccc.int/resource/docs/natc/japnc3.
pdf) and Energy Outlook of Vietnam through 2025 (http://open_jicareport.jica.go.jp/pdf/
11899796_02.pdf)

2It can be argued that the so called AI methods used in forecasting are in fact, more speci�cally,
computational intelligence (CI) techniques, also known as soft computing in AI. For further infor-
mation on how computational intelligence branched out from general AI, initially to distinguish
neural networks from hard AI but later to incorporate fuzzy systems and evolutionary computa-
tion, the reader is referred to the history of IEEE Computational Intelligence Society (CIS) at
http://ethw.org/IEEE_Computational_Intelligence_Society_History
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egorizing the forecasting methods as either statistical or arti�cial intelligence not

only gives an inaccurate account but also hinders the informed comprehension of

the strengths and weaknesses of di�erent approaches. The hybridization of methods

to suit application areas is characterized by data incompleteness and uncertainty;

temporal and spatial variability; and domain features � all of which mandates a new

classi�cation scheme.

Existing reviews thus lack a comprehensive coverage regarding scope, accuracy,

and applicability. The objective of this review is, therefore, to analyze the methods

utilized in di�erent EPMs to investigate their accuracy, objective, temporal and

spatial extents with a view to identifying the factors behind the choice of forecasting

methods. Findings of this study would bene�t researchers in gaining an appreciation

of the methods, as well as enable them to select appropriate forecasting methods for

future research.

5.1 Methodology

A state-of-the-art systematic review was undertaken on published electronic re-

sources for the study of underlying forecasting methods in EPMs. A preliminary

study was conducted to gather an overview of the topics related to forecasting meth-

ods in energy planning. The identi�ed main topics were: energy demand and supply

model and forecasting; energy planning models; emission reduction models; time se-

ries analysis; and forecasting. These topics were used to identify relevant keywords,

listed in Table 5.1. Keywords were then utilized to search electronic databases:

Google Scholar, ScienceDirect, Scopus, Ei Compendex and Web of Science, for rel-

evant publications on forecasting methods of EPMs.

Table 5.1: Searched keywords and associated groups

Model Objective Geographical extent Time horizon
Energy Forecasting Global Short
Electricity Projection Regional Medium
Energy information County Long
Energy economic
Energy supply and/or demand
Emission reduction
Energy planning
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An advanced search was conducted within the databases by categorizing key-

words into four-word groups and by combining them using the Boolean operator

`AND.' The search was conducted in two stages. Firstly, the model, objective and

geographical extent keywords were used. Secondly, the model, objectives, methods,

and analysis measures were applied. The initial search results at each stage were

re�ned by applying the following inclusion criteria:

(i) Objective: Energy forecasting

(ii) Language: English

(iii) Sources: Publications from journals related to energy and core forecasting and

planning of energy; fossil fuel; renewable energy, and carbon emissions.

Abstracts of the selected publications were scrutinized. Articles were chosen

for review if the substance was within the scope of the study. A further search

was conducted on the recognized authors who had contributed noticeably in related

�elds. 600 publications were found from the search. The criteria for retention were:

(a) Studies covering energy demand and supply forecasting

(b) Studies with signi�cant contribution in forecasting of GHG emissions

(c) Studies on forecasting methods for energy planning

(d) Key review articles from established authors/institutions in the area of energy

forecasting and planning models

Finally, 483 publications and reviews on energy forecasting and planning were

retained for analysis and interpretation.

5.2 Classi�cation

Forecasting involves the predictions of the future based on the analysis of trends of

present and past data, comprising three major components: input variables (past

and present data), forecasting/estimation methods (analysis of trends) and output

variables (future predictions), as shown in Figure 5.1. Based on the number of tech-

niques used for trend analysis, the investigated methods can be broadly classi�ed

into two main types: stand-alone and hybrid. Stand-alone methods apply a single
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technique for analyzing trends whereas hybrid methods integrate more than one

stand-alone techniques. In most cases, the purpose of hybridization is to rationalize

or make reliable forecast output and to yield higher projection accuracy.

Figure 5.1: Basic forecasting or estimation model structure

Based on the type of techniques, stand-alone methods are divided into three cat-

egories: statistical, computational intelligence (CI) and mathematical programming

(MP). Hybrid methods are divided into four: statistical-statistical, statistical-CI,

CI-CI and statistical-MP methods. Some of the reviewed literature utilized multi-

ple stand-alone and/or hybrid methods for comparison and critique. To obtain a

comprehensive picture in this paper, underlying techniques in hybrid methods are

also separately accounted for in the stand-alone method categories in Tables 5.2, 3.

The methods are also analyzed by geographical extent and forecasting time

frame. Geographical extent was divided into three categories: global, regional and

country. Global refers to the whole world; regional for a part of the world; e.g.,

Asia, Europe, G-8, and Sub-Saharan Africa; and country for an individual country.

Models with geographical extent covering parts of a country are incorporated in the

country category for brevity.

The time frame of the forecasted models ranges from hours to 100 years. Grubb

et al. (1993) suggested �ve years or less for the short-term, between 3 and 15 years

for the medium-term, and ten years or more for the long-term. However, this classi-

�cation creates confusion for the medium- and long-term projections because of the
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overlapping time spans. This research, therefore, utilizes the following de�nitions

for time span or modeling horizons: short- (t < 3), medium- (3 ≤ t ≤ 15) and

long-term (t > 15), where t is time span in years.

The statistical and CI & MP based classi�cation is presented in Tables 5.2 and

5.3 respectively, illustrating the techniques used, geographical extent and forecasting

time frame, as well as the number of studies and references.

It is evident from the analysis of 483 studies that diversity in statistical methods

is more prominent than computational intelligence and mathematical programming.

28 di�erent statistical methods have been used, compared to 22 CI and one MP for

forecasting. Among the statistical methods in Table 5.2, autoregressive integrated

moving average (ARIMA) (46 models) followed by linear regression (LR) (39 mod-

els), autoregressive moving average (ARMA) (22 models) and logistic regression

(LoR) (19 models). However, cointegration was widely used (48 models) technique

to analyze the relationship among the variables. ARIMA, LR and other statistical

methods were utilized to forecast.

With regard to CI techniques, ANN was used in 194 models, followed by SVM (58

models), FL (40 models), GA (39 models), PSO (34 models) and GM (29 models)

(Table 5.3). In respect to geographical extent, global and regional models mostly

adopt statistical methods. However, country-based models utilized a wide range of

methods (statistical and CI) for forecasting (Tables 5.2 and 5.3).

Forecasting models, which adopted metaheuristic methods to develop a hybrid

method, utilized genetic algorithm and particle swarm optimization most of the

time. Also, global models utilized metaheuristic methods such as GA, PSO and Ar-

ti�cial bee colony optimization (ABCO). Moreover, country wise forecasting models

utilized a wide range of methods both metaheuristic and MP. In case of the temporal

span, statistical methods are suitable for short-term (Table 5.2), and CI methods

are suitable for all temporal (Short, medium and long) forecasting (Table 5.3).
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Table 5.2: Analysis of stand-alone statistical methods utilized in forecasting models (For more information on the source please check A.1)

Methods
Geographical extend Time frame of forecasting Number of

modelsGlobal Region Country Short Medium Long

Linear regression (LR) D - D D D D 39

Nonlinear regression (NLR) - - D D D D 3

Logistic regression (LoR) - D D D D D 19

Nonparametric regression (NR) - - D D - - 3

Partial least squares regression (PLSR) - - D - D - 2

Stepwise regression (SR) - - D D D - 7

Moving average (MA) - - D - D - 4

Autoregressive integrated moving average (ARIMA) - D D D D D 46

Seasonal autoregressive integrated moving average (SARIMA) - - D D D D 13

Autoregressive moving average model with exogenous inputs

(ARMAX)
- - D D D - 10

Autoregressive moving average (ARMA) - - D D - - 22

Vector autoregression (VAR) D D D - D D 13

Bayesian vector autoregression (BVAR) - - D D D - 4

Structural Time Series Model (STSM) - - D - D D 3
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Table 5.2: Analysis of stand-alone statistical methods utilized in forecasting models (For more information on the source please check A.1)

Methods
Geographical extend Time frame of forecasting Number of

modelsGlobal Region Country Short Medium Long

VARIMA - - D D - - 1

Generalized autoregressive conditional heteroskedasticity (GARCH) - D D D D - 14

Seasonal exponential form of generalized autoregressive conditional

heteroscedasticity (SEGARCH)
- - D D - - 1

Exponential generalized autoregressive conditional

heteroscedasticity (EGARCH)
- - D D - - 1

Winters model with exponential form of generalized autoregressive

conditional heteroscedasticity (WARCH)
- - D D - - 1

Autoregressive distributed lag (ARDL) - D D - D D 6

Log-linear analysis (LA) - D D - D D 4

Geometric progression (GP) - - D - D D 3

Transcendental logarithmic (Translog) - - D - D D 2

Polynomial curve model (PCM) - - D - D - 1

Partial adjustment model (PAM) - - D D D - 4

Analysis of variance (ANOVA) - - D - D D 7
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Table 5.2: Analysis of stand-alone statistical methods utilized in forecasting models (For more information on the source please check A.1)

Methods
Geographical extend Time frame of forecasting Number of

modelsGlobal Region Country Short Medium Long

Unit root test and/or Cointegration D D D D D D 48

Decomposition - D D D D D 16

Total number 3 8 28 18 22 14

Percentage of all

statistical methods (%)
11% 29% 100% 64% 79% 50%
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Table 5.3: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models (For
more information on the source please check A.2)

Methods
Geographical extend Time frame of forecasting

Number of models
Global Region Country Short Medium Long

Computational intelligence (CI) methods

Support vector machine (SVM) - D D D D D 58

Decision tree* - - D D D - 4

Arti�cial neural network (ANN) D D D D D D 194

Abductive networks - - D D - - 2

Expert system - - D D D - 7

Grey prediction (GM/GP) - - D D D D 29

Fuzzy logic (FL) - - D D D D 40

Genetic algorithm (GA) D - D D D D 39

Arti�cial bee colony optimization (ABCO) D - D D - D 4

Ant colony optimization (ACO) - - D D D D 10

Particle swarm optimization (PSO) D - D D D D 34

Gravitational search algorithm (GSA) - - D D - D 4

Chaotic ant swarm optimization (CAS) - - D D D - 2
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Table 5.3: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models (For
more information on the source please check A.2)

Methods
Geographical extend Time frame of forecasting

Number of models
Global Region Country Short Medium Long

Di�erential evolution (DE) - - D D D D 4

Harmony search (HS) - - D - - D 1

Evolutionary algorithm (EA) - - D D - - 1

Memetic algorithms (MA) - - D D - - 1

Immune algorithm (IA) - - D - D - 1

Simulated annealing algorithms (SA) - - D D D - 6

Fire�y algorithm (FA) - D D D - - 4

Cuckoo search algorithm (CSA) - D D D - - 2

Mathematical programming (MP) methods

Nonlinear programming (NLP) - - D - - D 1

Total number 4 4 22 19 13 12
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Table 5.3: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models (For
more information on the source please check A.2)

Methods
Geographical extend Time frame of forecasting

Number of models
Global Region Country Short Medium Long

Percentage

of all

CI and MP

methods (%)

18% 18% 100% 86% 59% 55%

*Random forest was included under decision tree modeling as they are collection of decision trees in the modeling.
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5.3 Stand-alone methods

Most of the analyzed models adopted stand-alone methods, which can be divided

into three categories- statistical, computational intelligence (CI) and mathematical

programming (MP) methods.

5.3.1 Statistical methods

Statistics methods investigate the accumulation, examination, elucidation, presen-

tation, and association of data [18] and can be divided into several categories from

the analyzed models. For example:

Regression analysis

There are di�erent regression methods for forecasting. Among, the regression meth-

ods six methods were utilized in the studied models. The methods were: Linear

regression (LR), ordinary least squares (OLS), nonlinear regression (NLR), logistic

regression (LoR), nonparametric regression (NR), partial least squares regression

(PLSR) and stepwise regression (SR).

Thirty-nine reviewed models utilized linear regression (LR) method. LR is ap-

plied to model the relationship between two variables by �tting a linear equation to

observed data (Song et al., 2005). Among the reviewed models which utilized LR,

89.7% models forecasted energy and electricity demand.

Three forecasting models utilized non-linear regression (NLR). Bilgili et al. fore-

casted the electricity consumptions of Turkey with NLR (Bilgili et al., 2012). Ghiassi

et al. proposed a dynamic arti�cial neural network (DAN2) model for forecasting

nonlinear processes and compared to NLR; the method was e�ective for forecasting

nonlinear processes (Ghiassi and Nangoy, 2009). Tsekouras et al. developed a non-

linear multivariable regression to midterm energy forecasting of power systems of

Greece (Tsekouras et al., 2007). Logistic or logit regression (LoR) was applied in 19

reviewed models, of which 68.4% models forecasted energy and electricity demand.

Three models utilized nonparametric regression (NR) method. NR establishes

model according to the data from larger sample sizes. Charytoniuk et al. developed
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a short-time load forecasting model by applying NR Charytoniuk et al. (1998). An-

other study applied NR model to short-term wind power forecasting (Wang et al.,

2010a). Jónsson et al. presented an analysis of how dayahead electricity spot prices

are a�ected by day-ahead wind power forecasts. The author utilized NR to assess

the wind power forecast (Jónsson et al., 2010).

Partial least squares regression (PLSR) was applied in two forecasting models.

Zhang et al. forecasted China's transport energy demand for 2010, 2015 and 2020

with PLSR method. The results demonstrated transport energy demand for 2020

will reach a level of around 433.13 million tons of coal equivalent (Mtce) and 468.26

Mtce, respectively (Zhang et al., 2009). Meng et al. analyzed and forecasted China's

annual electricity consumption with PLSR. It showed real estate and relative indus-

try electricity consumption was a�ected by unusual development (Meng and Niu,

2011a).

Seven models forecasted with stepwise regression (SR) method. Ekonomou uti-

lized SR to estimate energy consumption of Greece for 2005�2015 to compare with

the results produced by LR and ANN method (Ekonomou, 2010). Tso et al. uti-

lized SR method to predict electricity consumption in Hong Kong (Tso and Yau,

2007). Rao et al. utilized SR to select the relevant cross-products to be used in a

non-homothetic Translog function to forecast and analysis of demand for petroleum

products in India (Rao and Parikh, 1996). Aranda et al. utilized SR to select the

correct model form to predict the annual energy consumption in the Spanish banking

sector (Aranda et al., 2012).

Univariate time series methods

Among the studied models, �ve univariate time series methods were utilized. The

methods were: moving average (MA), autoregressive integrated moving average

(ARIMA), seasonal autoregressive integrated moving average (SARIMA), autore-

gressive moving average model with exogenous inputs (ARMAX) and autoregressive

moving average (ARMA).

Four forecasting models utilized moving average (MA). Azadeh et al. forecasted
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electricity consumption in Iran with moving average (MA) to make the data trend-

free to train the ANN. Also forecasted electricity consumption to compare the pre-

dicted results (Azadeh et al., 2007a). Xu et al. combined two statistical methods

to model to forecast natural gas consumption in China from 2009 to 2015. One of

the methods was MA (Xu and Wang, 2010). In another study, Zhu et al. developed

an improved hybrid model (MA-C-WH) to forecast electricity demand in China,

which utilized MA (Zhu et al., 2011). Li et al. applied single and double MA for

forecasting power output of a grid-connected photovoltaic system (Li et al., 2014).

The general form of Autoregressive integrated moving average (ARIMA) is ARIMA

(p,d,q) where p is the order of the auto-regressive part, d is the order of the di�er-

encing, and q is the order of the moving average process. Some ARIMA had the

seasonal and non-seasonal part, and denoted as ARIMA (p,d,q) (P,D,Q)s where P,

D, Q is the seasonal part of the model, S the number of periods per season. Among

the analyzed models, ARIMA was applied in 46 models (Tables 5.2 and 5.4). Among

the ARIMA models, 46% forecasted energy and electricity demand.
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Table 5.4: ARIMA model objectives and structures

Objective Year
ARIMA Structure

Ref.
p,d,q (p,d,q) (P,D,Q)s

Electricity load 2005 2,2,1 - Pai and Hong (2005)

Electricity load 2013 1,1,1 - Ju and Hong (2013)

Electricity demand 2003 0,1,0 - Hsu and Chen (2003a)

Wind speed 2010 1,0,0; 2,0,0 - Cadenas and Rivera (2010)

Electricity demand 2006 0,1,1; 0,0,2; 3,2,0 (0,1,1)12 Gonzalez-Romera et al. (2006)

Electricity demand 2008 - (0,1,1) (0,1,1)12 González-Romera et al. (2008)

Wind speed 2007 - (0,1,1) (0,1,1)12 Cadenas and Rivera (2007)

Electricity demand 1997 - (1,1,0) (1,1,0)12 Abdel-Aal and Al-Garni (1997)

Electricity load 2011 1,1,1 - Hong (2011)

Electricity demand 2011 0,2,2; 1,2,1; 1,1,0; 0,2,0 - Kandananond (2011)

Energy demand 1999 1,1,1; 1,2,1 - Al-Saba and El-Amin (1999)

Global solar radiation 2000 - (1,0,1) (0,1,1) Sfetsos and Coonick (2000)

Electricity demand 1999 - (0,1,1) (0,1,1) Gonzales Chavez et al. (1999)

Electricity demand 1999 - (1,1,0) (0,1,1) Gonzales Chavez et al. (1999)

Black-coal production 1999 - (1,0,1) (0,1,1) Gonzales Chavez et al. (1999)
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Table 5.4: ARIMA model objectives and structures

Objective Year
ARIMA Structure

Ref.
p,d,q (p,d,q) (P,D,Q)s

Antracite production 1999 - (0,1,1) (0,1,1) Gonzales Chavez et al. (1999)

Electricity generation 1999 - (0,1,3) (1,1,0) Gonzales Chavez et al. (1999)

Solar radiation 2009 - (1,0,0) (1,1,0) Reikard (2009)

Electricity demand 2015 1,1,1 - Wang et al. (2015b)

Electricity price 2002 2,1,1 - Ierapetritou et al. (2002)

Natural gas demand 2010 36,1,0 - Erdogdu (2010)

Electricity demand 2007 13,2,0 - Erdogdu (2007)

Power output of a grid

connected photovoltaic

system

2014 1,1,1 - Li et al. (2014)

Load forecasting 2009 2,2,1 - Hong (2009a)

Electricity demand 2006 0,1,0 - Zhou et al. (2006)

CO2 emissions, energy

demand and economic

growth

2012 - - Pao et al. (2012)

Electricity price 2010 - - Tan et al. (2010)
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Table 5.4: ARIMA model objectives and structures

Objective Year
ARIMA Structure

Ref.
p,d,q (p,d,q) (P,D,Q)s

Energy demand 2007 - - Ediger and Akar (2007)

Electricity price 2008 - - Bowden and Payne (2008)

CO2 emissions, energy

demand, and economic

growth

2011 - - Pao and Tsai (2011a)

Electricity load 2001 - - Amjady (2001)

Electricity price 2003 - - Contreras et al. (2003)

Fossil fuel production 2006 - - Ediger et al. (2006)

Electricity demand 2001 - - Saab et al. (2001)

Electricity load 1987 - - Hagan and Behr (1987)

Electricity demand 1993 - - Harris and Liu (1993)

Electricity load 1995 - - Cho et al. (1995)

Electricity price 2005 - - Conejo et al. (2005)

Electricity demand 2009 - - Sumer et al. (2009)

Wind speed 2009 - - Kavasseri and Seetharaman (2009)
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Table 5.4: ARIMA model objectives and structures

Objective Year
ARIMA Structure

Ref.
p,d,q (p,d,q) (P,D,Q)s

Natural gas demand 1991 - - Liu and Lin (1991)

Electricity demand 2012 - - Lee and Tong (2012)

Wind speed 2011 - - Guo et al. (2011)

Wind speed and

electricity generation
2012 - - Shi et al. (2012)

108



Seasonal autoregressive integrated moving average (SARIMA) was applied in

13 projection models (Table 5.2). Zhu et al. developed MA-CWH model to fore-

cast electricity demand in China and utilized the results from a SARIMA model

to compare the accuracy of the proposed model (Zhu et al., 2011). Cadenas et

al. forecasted wind speed with integrated ARIMA and ANN to compare with the

results from SARIMA for Oaxaca, Mexico (Cadenas and Rivera, 2007). Jeong et

al. applied SARIMA for determining the annual energy cost budget in educational

facilities. In this study, models for elementary, middle, and high schools SARIMA

(13, 1, 0) (0, 1, 0), SARIMA (6, 1, 1) (0, 1, 0), and SARIMA (6, 1, 1)(0, 1, 0) respec-

tively were developed (Jeong et al., 2014). Ediger et al. applied SARIMA methods

to forecast primary energy demand of Turkey from 2005 to 2020 (Ediger and Akar,

2007). Monthly energy forecasting model for Thailand was developed with SARIMA

(l,0,1)(0,1,0)12 (Damrongkulkamjorn and Churueang, 2005). Ediger et al. applied

SARIMA to forecast production of fossil fuel sources in Turkey (Ediger and Akar,

2007). Forecasting electricity demand with SARIMA (0,1,1)(1,1,1) by Sumer et al.

in (Sumer et al., 2009). Bouzerdoum et al. applied SARIMA for short-term power

forecasting of a small-scale grid-connected photovoltaic plant (Bouzerdoum et al.,

2013). Guo et al. applied SARIMA for forecasting wind speed in Hexi Corridor of

China (Guo et al., 2011). Wang et al. developed electricity demand forecasting with

SARIMAmethod for China (Wang et al., 2012c). Boata et al. developed hourly solar

irradiation forecasting model with SARIMA (1,0,1)(1,0,1)24 (Boata and Paulescu,

2014). Wang et al. applied SARIMA to forecast electric load in (Wang et al., 2010b).

Autoregressive moving average model with exogenous inputs (ARMAX) was uti-

lized in 10 forecasting models (Table 5.2). Darbellay et al. applied ARMAX to

forecast Czech electricity demand (Darbellay and Slama, 2000). Li et al. developed

a forecasting model for the power output of a grid-connected photovoltaic system

with ARMAX (Li et al., 2014). González et al. applied SARMAX for forecasting

power prices (González et al., 2012). Bakhat et al. applied ARMAX for estima-

tion of tourism-induced electricity consumption in Balearics Islands, Spain (Bakhat

and Rosselló, 2011). For short-term load forecasting, Wang et al. utilized ARMAX

based on an evolutionary algorithm and particle swarm optimization (Wang et al.,

2008). Lira et al. utilized ARMAX for short-term electricity prices forecasting of

Colombia (Lira et al., 2009). Hickey et al. developed four ARMAX�GARCH models
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for forecasting hourly electricity prices (Hickey et al., 2012).

Autoregressive moving average (ARMA) is a statistical method consist of two

polynomials- autoregressive (AR) and moving average (MA). Among the reviewed

models, 22 utilized ARMA (Table 5.2), of which 32% and 27% were utilized for

energy & electricity demand and load forecasting respectively.

Multivariate time series methods

Vector autoregression (VAR) was applied in 13 reviewed models (Table 5.2). Among

these 13 models, 77% models forecasted energy and electricity demand. Bayesian

vector autoregression (BVAR) was applied in four reviewed models (Table 5.2).

Chandramowli et al. forecasted New Jersey's electricity demand with BVAR (Chan-

dramowli and Lahr, 2012). To forecast energy consumption in China from 2004 to

2010, Crompton et al. applied BVAR and concluded energy demand would rise at

an annual average rate of 3.8% (Crompton and Wu, 2005). Energy consumption

and projected growth were modeled with BVAR for selected Caribbean countries in

(Francis et al., 2007). The Bayesian hierarchical model was developed for one-hour-

ahead wind Speed Prediction in (Miranda and Dunn, 2006). Multivariate VARIMA

(0,1,1) model was applied to model and forecast fossil fuels, CO2 and electricity

prices and their volatilities. VARIMA approach gives better results in the case of

electricity prices. However, the time span of forecasting tends to be short (García-

Martos et al., 2013).

Structural time series model (STSM) was utilized by Dilaver et al. to predicted

that Turkish industrial electricity demand would be somewhere between 97 and

148 TWh by 2020 industrial electricity demand (Dilaver and Hunt, 2011a). In

another study, Dilaver et al. predicted Turkish aggregate electricity demand would

be somewhere between 259 TWh and 368 TWh in 2020 by utilizing STSM (Dilaver

and Hunt, 2011b).

Autoregressive conditional heteroscedasticity (ARCH) methods

Generalized autoregressive conditional heteroskedasticity (GARCH) was applied in

fourteen models. GARCH can be both univariate and multivariate (Wang and Wu,
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2012). Seasonal generalized autoregressive conditional heteroscedasticity (SEGARCH)

and Winters model with an exponential form of generalized autoregressive condi-

tional heteroscedasticity (WARCH) were applied to forecast energy consumption in

Taiwan by developing nonlinear hybrid models with ANN (Pao, 2009). Exponential

generalized autoregressive conditional heteroscedasticity (EGARCH) method was

utilized by Bowden et al. for short-term forecasting of electricity prices (Bowden

and Payne, 2008).

Others

Six analyzed model utilized autoregressive distributed lag (ARDL) (Table 5.2).

Dilaver et al. forecasted industrial electricity demand (Dilaver and Hunt, 2011a)

and aggregate electricity demand (Dilaver and Hunt, 2011b) in Turkey with ARDL.

In another study, Dilaver et al. predicted Turkish aggregate electricity demand

would be somewhere between 259 TWh and 368 TWh in 2020 by utilizing ARDL.

Adom et al. utilized ARDL to forecast electricity demand in Ghana to be within

20,453 and 34,867 GWh by the year 2020 for analyzed three scenarios (Adom and

Bekoe, 2012). Kim et al. forecasted energy demand of South Korea for 2000�2005

after reviewing the 1990s (Kim et al., 2001). Zachariadis T. forecasted electric-

ity consumption in Cyprus with ARDL (Zachariadis, 2010). Vita et al. developed

ARDL bounds testing approach to estimate the long-run elasticities of the Namibian

energy demand (De Vita et al., 2006).

Among the reviewed models, four models applied log-linear analysis (LA) (Table

5.2). Parikh et al. used the LA to project the demand for petroleum projects and

natural gas in India. The study projected the demand of petroleum products to

be 147 and 162MT in the business as usual scenario (BAU) of 6% and optimistic

scenario (OS) of 8% GDP growth, respectively for 2011�2012 (Parikh et al., 2007).

In another study, Pilli-Sihvola utilized the log-linear econometric model to project

and examine the impact of gradually warming climate on the heating and cooling

demand in �ve European countries form 2008�2050 (Pilli-Sihvola et al., 2010). Li-

manond et al. project transport energy consumption in Thailand from 2010 to 2030

with LA (Limanond et al., 2011). Wadud et al. projected natural gas demand in

Bangladesh from 2009 to 2025 with log-linear Cobb�Douglas method (Wadud et al.,
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2011).

Geometric progression (GP) was utilized in three studied models (Table 5.2).

Mackay et al. forecasted crude oil and natural gas supplies and demands from 1995

to 2010 for France (Mackay and Probert, 1995b) and Denmark (Mackay and Probert,

1995a) by utilizing geometric progression method. In a separate study, Mackay et

al. forecasted liquid fossil fuel supplies and demands for the UK with geometric

progression method (Mackay and Probert, 2001).

Transcendental logarithmic (Translog) was applied in two forecasting models

(Table 5.2). Rao et al. developed a translog model on a non-homothetic translog

function to forecast and analyze the demand for petroleum products in India (Rao

and Parikh, 1996). Furtado et al. forecasted petroleum consumption in Brazil

up to 2000 with translog model along with logistic and learning model. The study

demonstrated that translog model performed better than logistic and learning model

(Furtado and Suslick, 1993).

Polynomial curve model (PCM) is one of the trend extrapolation methods best

modeled with polynomial equations. Xu et al. combined two statistical methods to

forecast natural gas consumption in China from 2009 to 2015; one of the methods

was PCM (Xu and Wang, 2010).

Four reviewed models utilized partial adjustment model (PAM) for forecasting

(Table 5.2). Nasr et al. utilized PAM to develop an econometric model to estimate

electricity consumption of post-war Lebanon (Nasr et al., 2000). Adom et al. iden-

ti�ed the factors that a�ect aggregate electricity demand in Ghana and forecasted

electrical consumption from 2012 to 2020 with PAM and ARDL (Adom and Bekoe,

2012). To analyze the demand for natural gas in Kuwait, PAM was utilized in

(Eltony, 1996).

Seven models utilized analysis of variance (ANOVA) (Table 5.2). ANOVA was

applied to compare the selected ANN, regression and actual data of forecasting elec-

tricity consumption (Azadeh and Faiz, 2011; Azadeh et al., 2007a). ANOVA F-test

was applied for ANN, simulated-based ANN, time series and actual test data for
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forecasting electrical energy consumption in Iran (Azadeh et al., 2008b).

Cointegration implies restrictions on multivariate time series and is widely be-

lieved that it can produce better long-horizon forecasting (Christo�ersen and Diebold,

1998). Unit root test and/or Cointegration was utilized in 48 models (Table 5.2).

The major objective of applying cointegration method was to �nd the relations

among the variables of a model. Nasr et al. utilized cointegration method to de-

velop an econometric model to estimate electricity consumption of post-war Lebanon

(Nasr et al., 2000). Decomposition was utilized in 16 analyzed models (Table 5.2).

5.3.2 Computational intelligence (CI) methods

There were 22 methods utilized in the analyzed models. The real life problems have

nonlinear characteristics while forecasting, especially for energy planning. Computa-

tional methods were used for prediction problems where mathematical formulae and

prior data on the relationship between inputs and outputs are unknown (Curram

and Mingers, 1994). The applied CI methods can be divided into four categories.

Machine learning methods

Arti�cial Neural Network (ANN) was highly utilized method for various objectives.

Inspired by the human brain, ANN can learn and generalize from samples and anal-

yses unpretentious useful connections among the information regardless of the pos-

sibility that the fundamental connections are obscure or di�cult to portray (Zhang

et al., 1998). A schematic diagram of feed-forward neural network architecture is

shown in Figure 5.2. ANN has three layers: input, hidden and output. In Figure 5.2,

only one hidden layer is shown, and the number can be more than that depending

on the complexity of the analyzed problem. Each neuron is connected to every other

neuron of the previous layer through adaptable synaptic weight. A training process

is carried out to train ANN by modifying the connection weights, and weights are

adjusted to produce the desired outputs as shown in Figure 5.3. Description of basic

ANN method can be found in (Ahmad et al., 2016).
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Figure 5.2: ANN schematic diagram

Figure 5.3: ANN process; adopted from (Ahmad et al., 2016)

Among the reviewed models, 194 models applied ANN or di�erent form of NN.

The detailed analysis of ANN can be found in Table A.3, which is demonstrating

layer number, neuron number in di�erent layers and neuron composition of di�erent
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NN models, which di�ers depending on the objective. According to reviewed liter-

ature, NN structure with two hidden layers produced best results for the monthly

load forecasting, the peak load forecasting and the daily total load forecasting mod-

ules (Yalcinoz and Eminoglu, 2005). However, one hidden layer is su�cient for most

forecasting problems according to Zhang et al. (1998). In another study, the perfor-

mance of the hierarchical model on long-term peakload forecasts outperformed the

multilayer perceptron (Carpinteiro et al., 2007). Analysis of reviewed models re-

vealed that 83% models utilized three layer neuron structure with one hidden layer.

Only 6% and 17% models used two and four neuron layers respectively. 49%, 38%,

78% and 11% of the neuron structures had less than �ve neurons respectively in the

�rst, second, third and fourth layer. In the case of the �rst and second layer, 26%

and 43% of the neuron structures respectively had neuron numbers between 5 and

10. Moreover, 23% and 18% neuron structures had more than ten neurons in the

�rst and second layers respectively. Only 8% neuron structures had more than ten

neurons in the third layer, which is only 1% in fourth layer (Table A.3).

Support vector machine (SVM) was utilized in 58 forecasting models (Table 5.3).

Yuan et al. developed a short-term wind power prediction model with least squares

support vector machine (LSSVM) because the kernel function and the related pa-

rameters of the LSSVM in�uence the greater accuracy of the prediction (Yuan et al.,

2015). Some of the models utilized Support vector regression (SVR), which is SVM

applied to the case of regression. Ju et al. utilized SVR and seasonal SVR fore-

cast electricity load in Taiwan (Ju and Hong, 2013). Among the reviewed models,

41.4%, 22.4%, and 20.7% forecasted electric load, renewable energy, and energy &

electricity demand.

Abductive networks is a machine learning method. It was found to be applied

in two forecasting models (Table 5.3). Abdel-Aal, R.E. utilized AIM (abductory

inductive mechanism) and GMDH (group method of data handling) approach for

forecasting monthly energy demand. AIM is a supervised inductive machine-learning

tool. It automatically develops abductive network models form a database of input

and output variables. GMDH is a learning algorithm and formalized paradigm for

iterated (multi-phase) polynomial regression (Abdel-Aal, 2008). In another study,

Abdel-Aal et al. utilized AIM monthly electric energy consumption in eastern Saudi
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Arabia and demonstrated that AIM performed better than that of regression method

(Abdel-Aal et al., 1997).

Decision tree develops an empirical tree which represents a segmentation of the

data and able to classify and predict categorical variables. The segment is developed

by applying a series of simple rules/logic. The advantage of the decision tree is

that it produces a model which have segments of the system with interpretable

rules or logic statements (Tso and Yau, 2007). However, it performs poorly with

nonlinear and noisy data (Curram and Mingers, 1994). Tso et al. utilized decision

tree method to predict electricity consumption in Hong Kong (Tso and Yau, 2007).

Yu et al. developed a building energy demand predictive model with a decision tree

and demonstrated high accuracy with 93% for training data and 92% for test data

(Yu et al., 2010).

Knowledge-based methods

Expert systems were applied in seven models (Table 5.3). Most of the models utilized

expert system for short-term load forecasting (Ho et al., 1992; Rahman and Bhatna-

gar, 1988; Ho et al., 1990; Rahman and Hazim, 1996; Jabbour et al., 1988). Ghanbari

et al. applied cooperative ant colony optimization-genetic algorithm (COR-ACO-

GA) for energy demand forecasting with knowledge-based expert systems, which

yielded better accuracy (Ghanbari et al., 2013). In another study, Ghanbari et al.

integrated ant colony optimization (ACO), genetic algorithm (GA) and fuzzy logic

to develop a load forecasting expert system (Ghanbari et al., 2011).

Uncertainty methods

Fuzzy logic was applied in 40 models (Table 5.3). In the analyzed models, the fuzzy

method was proved to be e�cient with the incomplete or limited dataset. The the-

ory of fuzzy sets is the foundation of the fuzzy logic. The basic description of the

method can be found in (Elias and Hatziargyriou, 2009).

Grey prediction (GM) belongs to the family of the grey system among which

the GM (1, 1) model is the most frequently used. GM methods adopt essential

part of the grey theory (GT) which deals with systems with uncertain and de�cient
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data (Lin et al., 2004; Deng, 1989). The real world systems are modeled with the

assumptions based on the inadequate information (Liu and Lin, 2006). GM method

has been successfully adopted for forecasting models in di�erent disciplines. Among

the reviewed models, twenty-nine models applied GM. The basic description of the

method can be found in (Akay and Atak, 2007).

Metaheuristic methods

Evolutionary methods are a subset of metaheuristic methods which uses mechanisms

inspired by natural biological evolution, such as reproduction, mutation, recombi-

nation, and selection. There were several types of metaheuristic methods applied in

forecasting models-

Genetic algorithm (GA) was utilized in thirty-nine forecasting models. The basic

description of the method can be found in (Canyurt and Ozturk, 2008). Forouzanfar

et al. forecasted natural gas consumption for residential and commercial sectors in

Iran with LoR. However, to make the process simpler, two di�erent methods are pro-

posed to estimate the logistic parameters, of which one was GA based (Forouzanfar

et al., 2010). Zhang et al. utilized stimulated annealing algorithms with chaotic GA

to develop a hybrid method to assist an SVR model in improving load forecasting

performance (Zhang et al., 2012). Assareh et al. applied GA for forecasting energy

demand (Assareh et al., 2012) and oil demand (Assareh et al., 2010) in Iran based

on population, GDP, import, and export. Chaturvedi et al. applied GA for electric

load forecasting (Chaturvedi et al., 1995). The objective of themodels, the purpose

of GA in that model and the publishing year can be found in Table 5.5. Among the

reviewed models, 27% utilized GA for parameter optimization in the hybrid methods.
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Table 5.5: The purpose of GA in the reviewed hybrid models

Forecasted variable
Purpose of GA

Year Ref.
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Electricity demand D - - D - - - - - 2007 Azadeh

et al.

(2007b)

Electricity load - - D - D - - - - 2009 Shayeghi

et al.

(2009)

Hydro energy potential - - D - D D - - - 2010 Cinar et al.

(2010)

Electricity demand - D D - D - - - - 2015 Yu et al.

(2015)

Electricity demand - - D - - - - - - 2015 Wang et al.

(2015b)
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Table 5.5: The purpose of GA in the reviewed hybrid models

Forecasted variable
Purpose of GA

Year Ref.
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Electricity load D - - - - - - - - 2013 Hu et al.

(2013)

Energy demand - - - - - - D - - 2013 Ghanbari

et al.

(2013)

Electricity load - - - - - - D - - 2011 Ghanbari

et al.

(2011)

Electricity load - D - - - - - - - 2009 Hong

(2009a)

NOx Emission - - - - D - - - - 2013 Samsami

(2013)
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Table 5.5: The purpose of GA in the reviewed hybrid models

Forecasted variable
Purpose of GA

Year Ref.
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Energy demand - - - D - - - - - 2012 Yu et al.

(2012c)

Energy demand - - - D - - - - - 2012 Yu et al.

(2012b)

Energy demand - D - - - - - - - 2012 Yu and

Zhu (2012)

Energy demand - - - - - - - D - 2011 Lee and

Tong

(2011)

Energy demand - - - - - - - D - 2012 Lee and

Tong

(2012)
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Table 5.5: The purpose of GA in the reviewed hybrid models

Forecasted variable
Purpose of GA

Year Ref.
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Energy distribution* - - - - - - - - D 2000 Da Silva

et al.

(2000)

Energy distribution* - - D - - - - - - 2006 Sirikum

and

Techani-

tisawad

(2006)

Energy demand - D - - - - - - - 2004 Ceylan

and Oz-

turk

(2004)
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Table 5.5: The purpose of GA in the reviewed hybrid models

Forecasted variable
Purpose of GA

Year Ref.
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Electricity demand - - - - - - - - D 2005 Ozturk

and Cey-

lan (2005)

Electricity demand - D - - - - - - - 2005 Ozturk

et al.

(2005)

Petroleum exergy

production & demand
- - - - D - - - - 2004 Ozturk

et al.

(2004)

Transport energy demand - - - - D - - - - 2005 Haldenbilen

and Cey-

lan (2005)
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Table 5.5: The purpose of GA in the reviewed hybrid models

Forecasted variable
Purpose of GA

Year Ref.

P
ar
am

et
er

tu
ni
ng

P
ar
am

et
er

op
ti
m
iz
at
io
n

M
od
el
st
ru
ct
ur
e

op
ti
m
iz
at
io
n

C
oe
�
ci
en
ts

op
ti
m
iz
at
io
n

W
ei
gh
ti
ng

fa
ct
or
s
va
lu
e

L
ea
rn
in
g
ra
te

D
at
ab
as
e

ge
ne
ra
ti
on
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Oil demand - D - - - - - - - 2006 Canyurt

and

Öztürk

(2006)

Electricity demand - D - D - - - - - 2007 Azadeh

and

Tarverdian

(2007)

Natural gas demand - D - - - - - - - 2009 Xie and Li

(2009)

Global CO2 emission - - - - D - - - - 2012 Kavoosi

et al.

(2012)
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Table 5.5: The purpose of GA in the reviewed hybrid models

Forecasted variable
Purpose of GA

Year Ref.
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PV power generation - D - - - - - - - 2015 Chu et al.

(2015)

Total number 2 9 5 4 7 1 2 2 2

% 6% 26% 15% 12% 21% 3% 6% 6% 6%

* Transmission network expansion planning (TNEP), Power generation expansion planning (PGEP)
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An evolutionary algorithm (EA) was utilized in only one forecasting model.

Wang et al. utilized a hybrid optimization method based on evolution algorithm

and particle swarm optimization to improve the accuracy of forecasting ARMAX

model (Wang et al., 2008).

Memetic algorithm (MA) was applied in one forecasting model. For forecasting

electricity load, Hu et al. applied �re�y algorithm (FA) based memetic algorithm

(FA-MA) to determine the parameters of SVR model appropriately (Hu et al., 2013).

Particle swarm optimization (PSO) was applied in 34 models (Table 5.3). Zhu

et al. developed an improved hybrid model (MA-C-WH), which utilized MA and

adaptive particle swarm optimization (APSO) algorithm to forecast electricity de-

mand in China. APSO was utilized to determine weight coe�cients of the MA-C

forecasting model, and the objective function of this optimization problem was to

minimize the MAPE (Zhu et al., 2011). Kiran et al. applied PSO to develop an

ACO-PSO hybrid method to forecast energy demand of Turkey (K�ran et al., 2012).

The proposed ACOPSO method by Kiran et al. was applied for to forecast the wind

power output of Binaloud wind farm in Iran in Rahmani et al. (2013). Assareh et al.

applied PSO for forecasting energy demand (Assareh et al., 2012) and oil demand

(Assareh et al., 2010) in Iran based on based on population, GDP, import, and ex-

port. AlRashidi et al. constructed long-term electric load forecasting model with

PSO (AlRashidi and El-Naggar, 2010). Also for modeling and forecasting long-term

natural gas consumption in Iran PSO was utilized (Kamrani, 2010). Abdelfatah et

al. constructed a global CO2 emissions forecasting model with PSO (Abdelfatah

et al., 2013). The objective of the models, the purpose of PSO in that model and

the publishing year can be found in Table 5.6. Among the reviewed models, 33%

utilized PSO for parameter optimization in the hybrid methods. The basic descrip-

tion of the method can be found in (Boeringer and Werner, 2003; Niu et al., 2009).
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Table 5.6: The purpose of PSO in the reviewed hybrid models

Forecasted variable
Purpose of PSO

Year Ref.
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Electricity load - - - - - - - 2009 Niu et al. (2009)

Electricity demand - D - - D - - 2015 Yu et al. (2015)

Electricity load - - - - D - - 2009 Bashir and El-Hawary

(2009)

Electricity demand - D - - - - - 2012 Wang et al. (2012c)

Electricity load - - - - - - D 2008 Wang et al. (2008)

Electricity load D - - - - - - 2013 Hu et al. (2013)

Electricity load - D - - - - - 2009 Hong (2009a)

NOx emission - - - - D - - 2013 Samsami (2013)

Energy demand - D - - - - - 2014 Cao et al. (2014)

Energy demand - - - D - - - 2012 Yu et al. (2012c)

Energy demand - - - D - - - 2012 Yu et al. (2012b)
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Table 5.6: The purpose of PSO in the reviewed hybrid models

Forecasted variable
Purpose of PSO

Year Ref.
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Energy demand - D - - - - - 2012 Yu and Zhu (2012)

Economic emissions - - - - - D - 2013 Aghaei et al. (2013)

Electricity load - - - - D - - 2010 Wang et al. (2010b)

Electricity demand - - - - - - D 2008 El-Telbany and El-Karmi

(2008)

Electricity

consumption
- - D - - - - 2011 Assareh et al. (2011)

Energy demand - - - - D - - 2014 Nazari et al. (2014)

Energy demand - D D - - - - 2012 Yu et al. (2012a)

Wind power D - - - - - - 2015 Osório et al. (2015)

Electricity load - D - - - - - 2014 Bahrami et al. (2014)
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Table 5.6: The purpose of PSO in the reviewed hybrid models

Forecasted variable
Purpose of PSO

Year Ref.
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Total number

of models
2 7 2 2 5 1 2

% 10% 33% 10% 10% 24% 5% 10%
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Arti�cial bee colony optimization (ABCO) was applied in four forecasting models

among the reviewed models (Table 5.3). For forecasting world CO2 emissions, BCO

was utilized for �nding optimal values of weighting factors for forecasting (Behrang

et al., 2011a). Chaotic arti�cial bee colony algorithm was applied for electric load

forecasting to determine suitable values of its three parameters for forecasting (Hong,

2011).

Ant colony optimization (ACO) was utilized in ten forecasting models (Table

5.3). For energy demand forecasting, Ghanbari et al. applied Cooperative Ant

Colony Optimization (COR-ACO) to learn fuzzy linguistic rules (degree of coopera-

tion between database and rule base), which would yield better accuracy (Ghanbari

et al., 2013). In another study, Ghanbari et al. applied ACO-GA to generate op-

timal knowledge base (KB) for an expert system to forecast load (Ghanbari et al.,

2011). Niu et al. applied ACO with SVM model to forecast short-term power load,

where ACO to pre-process the data which in�uence uncertain factors in forecast-

ing (Niu et al., 2010). A NOx emission forecasting model for Iran utilized ACO

to estimate optimal values of weighting factors regarding actual data in (Samsami,

2013). To estimate energy demand of Turkey, ACO was applied in (Duran Toksar�,

2007). In another study, to forecast energy demand of Turkey, ACO was applied

to develop ACOPSO hybrid method (K�ran et al., 2012). For estimating the net

electrical energy generation and demand of Turkey, ACO was applied based on the

GDP, population, import and export (Toksar�, 2009). ACO based hybrid method

was applied for to forecast the wind power output of Binaloud wind farm in Iran in

(Rahmani et al., 2013). Yu et al. applied ACO to forecast energy demand of China

(Yu et al., 2012c) and primary energy demand of China (Yu et al., 2012b).

Chaotic ant swarm optimization (CAS) is deterministic chaotic optimization

method inspired by behaviors of real ants (Li et al., 2006), which was utilized by

two models (Table 5.3). Hong et al. for electric load forecasting. In the proposed

model CAS was applied to improve the forecasting performance of SVR by searching

its suitable parameters combination (Hong, 2010). For electric load forecasting with

SVR model, Hong W. C. applied CAS to determine suitable parameter combination

for the model (Hong, 2009a).
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Di�erential evolution (DE) was applied in three of the analyzed models (Table

5.3). Wang et al. developed a load forecasting model with DE and SVR (Wang

et al., 2012b). In another study, adaptive di�erential evolution (ADE) was applied

with BPNN for developing a method for electricity demand forecasting in (Wang

et al., 2015b). For short -term load forecasting, Xiaobo et al. developed a GRA-DE-

SVR model, where DE to optimize parameters of SVR model (Xiaobo et al., 2014).

Gravitational search algorithm (GSA) was applied assist to develop three demand

estimation models to forecast oil consumption based on socio-economic indicators in

(Behrang et al., 2011b). GSA was utilized to forecast electricity load in Taiwan to

assist the seasonal SVR model in (Ju and Hong, 2013). GSA was applied to optimize

the parameters of the LSSVM model developed by Yuan et al. to short-term wind

power prediction model (Yuan et al., 2015). Gavrilas et al. proposed a model of

electric load forecasting with GSA combined with regression method and Kohonen

neural networks (Gavrilas et al., 2014).

Harmony search (HS) was utilized to develop HArmony Search Transport En-

ergy Demand Estimation (HASTEDE) model, in a study conducted by Ceylan et al.

to project the transport sector energy consumption in Turkey. The results demon-

strated overestimation of transport sector energy consumption by about 26%, and

linear and exponential forms underestimate by about 21%, compared to Ministry

of Energy and Natural Resources projections. The study pointed out the under,

and overestimation might be the outcome of the choice of modeling parameters and

procedures (Ceylan et al., 2008).

Immune algorithm (IA) was applied for electric load forecasting model, where

IA determined the parameter selection of SVR model (Hong, 2009b).

Simulated annealing algorithms (SA) is an evolutionary method was applied in

six models (Table 5.3). Zhang et al. utilized SA with chaotic GA to develop a

hybrid method to assist an SVR model in improving load forecasting performance

[104]. Pai et al. utilized SA algorithms were employed to choose the parameters of

an SVM model to forecast electricity load in Taiwan (Pai and Hong, 2005). Hong,

W.-C. developed SVMSA model for load forecasting, where SA was applied to de-
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termining appropriate parameter combination for SVR model (Hong, 2009a).

Moreover, Fire�y algorithm (FA) and Cuckoo search algorithm (CSA) are two

metaheuristic methods utilized in four and two forecasting models respectively to

develop a hybrid methodology in recent times (Table 5.3).

5.3.3 Mathematical programming (MP)

Mathematical programming or mathematical optimization prescribes best solution/s

from a set of available alternatives under some conditions. Among the analyzed mod-

els, one mathematical programming methods were found- Nonlinear programming

(NLP). Forouzanfar et al. forecasted natural gas consumption for residential and

commercial sectors in Iran with LoR. However, to make the process simpler, two

di�erent methods are proposed to estimate the logistic parameters, of which one was

GA based (Forouzanfar et al., 2010).

5.4 Hybrid methods

In some models, for speci�c reasons (i.e., parameter tuning, elevating accuracy) dif-

ferent stand-alone methods were combined to construct hybrid methods. Hybrid

methods were utilized to develop the assumptions and parameters in some forecast-

ing models (Wang and Huang, 2007). The hybrid methods found in analyzed models

can be divided into following four categories:

5.4.1 Statistical-statistical methods

Xu et al. combined MA and PCM to develop a Polynomial Curve and Moving Aver-

age Combination Projection (PCMACP) model to forecast natural gas consumption

in China from 2009 to 2015. The model demonstrated, the average annual growth

rate will increase, and the natural gas consumption will reach 171,600 million cubic

meters in 2015 in China (Xu and Wang, 2010). To estimate the long-run elasticities

of the Namibian energy demand, Vita et al. applied ARDL bounds testing approach

to cointegration (De Vita et al., 2006).
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Tan et al. developed a day-ahead electricity price forecasting model by com-

bining Wavelet (WT)�GARCH�ARIMA (Tan et al., 2010). Bowden et al. applied

ARIMA-EGARCH-M for short-term forecasting of electricity prices (Bowden and

Payne, 2008). Hickey et al. developed four ARMAX�GARCH models for forecast-

ing hourly electricity prices. The four models were- GARCH (1,1), EGARCH (1,1),

APARCH (1,1) and CGARCH (1,1) power ARCH (PARCH), where EGARCH is ex-

ponential GARCH; APARCH is asymmetric power ARCH, and CGARCH is Com-

ponent GARCH (Hickey et al., 2012). Liu et al. developed ARMA-GARCH mod-

els (ARMA-SGARCH, ARMAQGARCH, ARMA-GJRGARCH, ARMA-EGARCH,

and ARMA-NGARCH) and their form of ARMA� GARCH-in-mean to forecast

short-term electricity prices (Liu and Shi, 2013).

5.4.2 Statistical-CI methods

Pao developed nonlinear hybrid models with SEGARCH and WARCH with ANN

to forecast energy consumption in Taiwan (Pao, 2009). For wind speed forecast-

ing Cadenas et al. developed a ARIMA-ANN model (Cadenas and Rivera, 2010).

González-Romera et al. developed an hybrid method where the periodic behavior

was forecasted with a Fourier series while the trend was predicted with a neural net-

work (González-Romera et al., 2008). For forecasting symbolic interval time series,

Maia et al. developed an ARMA-ANN model, where it performed better than that

of ARMA (Maia et al., 2006). Kandananond, K. developed prediction models of

the electricity demand in Thailand with NN, MLR and ARIMA methods to develop

ANN-MLR and ANN-ARIMA hybrid methods (Kandananond, 2011). ANN model

using statistical feature parameters (ANN-SFP) and historical data series (ANN-

HDS) was applied for short-term solar irradiance forecasting (STSIF) (Wang et al.,

2012a). Shi et al. applied ARIMA with ANN and SVM to develop two hybrid

models of ARIMAANN and ARIMA-SVM for forecasting of wind speed and wind

power generation (Shi et al., 2012). Bouzerdoum et al. developed SARIMA-SVM

model for short-term power forecasting of a small-scale grid-connected photovoltaic

plant (Bouzerdoum et al., 2013). Guo et al. developed a hybrid Seasonal Auto-

Regression Integrated Moving Average and Least Square Support Vector Machine

(SARIMA-LSSVM) model for forecasting wind speed in Hexi Corridor of China

(Guo et al., 2011). Wang et al. applied PSO optimal Fourier approach on resid-
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ual modi�cation of SARIMA to develop F-S-SARIMA model to forecast electricity

demand for China (Wang et al., 2012c). Wang et al. developed a combined model

to forecast electric load. For the model SARIMA, seasonal exponential smoothing

(S-ESM) and Weighted SVM (W-SVM) was constructed by linear combination and

APSO was utilized for determining weight coe�cients of combined forecasting model

(Wang et al., 2010b). Wang et al. applied seasonal decomposition with LSSVR for

hydropower consumption forecasting in China (Wang et al., 2011).

Song et al. applied fuzzy regression analysis in the short-term load forecasting

problem (Song et al., 2005). Xu et al. applied GM (1,1) with ARMA to develop

GM-ARMA model to forecast energy consumption for Guangdong Province of China

(Xu et al., 2015). Amin-Naseri et al. developed a model for daily electrical peak

load forecasting (PLF) with feed-forward neural network (FFNN) method, where the

Davies�Bouldin validity index was introduced to determine the best clusters (Amin-

Naseri and Soroush, 2008). Forouzanfar et al. forecasted natural gas consumption

for residential and commercial sectors in Iran by utilization of LoR. However, GA

based approach was proposed to estimate the logistic parameters, to make process

simpler (Forouzanfar et al., 2010). Zhu et al. developed an improved hybrid model

(MA-C-WH), which utilized MA and adaptive particle swarm optimization algo-

rithm to forecast electricity demand in China (Zhu et al., 2011). An electric load

forecasting model was developed with regression method combined with GSA or Ko-

honen neural networks (Gavrilas et al., 2014). GSA was applied to estimate optimal

weighting factors for three demand estimation models to forecast oil consumption

based on socio-economic indicators up to 2030 (Behrang et al., 2011b).

5.4.3 CI-CI methods

To forecast solar radiation, Chen et al. developed a fuzzy neural network (FNN)

model with ANN and fuzzy logic (Chen et al., 2013). The fuzzy neural network was

applied for day-ahead price forecasting of electricity markets in (Amjady, 2006).

Bazmi et al. utilized adaptive neuro-fuzzy network (ANFIS) for electricity demand

forecasting for the state of Johor, Malaysia (Bazmi et al., 2012). In another study,

Zahedi et al. applied neurofuzzy network for electricity demand forecasting for On-

tario province, Canada (Zahedi et al., 2013). Esen et al. utilized the neuro-fuzzy
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network for forecasting performances of ground-coupled heat pump system [151].

Forecasting model of mean hourly global solar radiation was developed with ANFIS

(Sfetsos and Coonick, 2000). Akdemir et al. utilized ANFIS for long-term load

forecasting (Akdemir and Çetinkaya, 2012). Chen et al. applied a collaborative

principal component analysis and fuzzy feed- forward neural network (PCA-FFNN)

approach for long-term load forecasting (Chen and Wang, 2012). In another study

Chen, T. applied a collaborative fuzzy-neural approach for long-term load forecast-

ing (Chen, 2012). Chang et al. applied weighted evolving fuzzy neural network

for monthly electricity demand forecasting in Taiwan (Chang et al., 2011). FNN

was also applied for short-term load forecasting in (Bakirtzis et al., 1995; Srinivasan

et al., 1995; Papadakis et al., 1998). Padmakumari et al. applied FNN for long-term

land use based distribution load forecasting (Padmakumari et al., 1999).

In case of metaheuristic methods, genetic algorithm (GA), Particle swarm opti-

mization (PSO) and Ant colony optimization (ACO) were mostly utilized methods.

El-Telbany et al. applied PSO and BP algorithm to train NN model to forecast elec-

tricity demand in Jordan (El-Telbany and El-Karmi, 2008). Ghanbari et al. applied

cooperative ant colony optimization-genetic algorithm (COR-ACO-GA) for energy

demand forecasting with knowledge-based expert systems, which yielded better ac-

curacy than ANFIS and ANN (Ghanbari et al., 2013). Ghanbari et al. integrated

ACO, GA and fuzzy logic to develop a hybrid method to construct a load fore-

casting expert system for Iran in Ghanbari et al. (2011). Niu et al. developed

ACO-SVM model for forecasting short-term power load (Niu et al., 2010). A NOx

emission forecasting model for Iran, where GA, PSO, and ACO were applied to es-

timate optimal values of weighting factors regarding actual data in Samsami (2013).

In another study, to forecast energy demand of Turkey, ACO-PSO based hybrid

method was applied (K�ran et al., 2012). Hybrid ACO-PSO method was applied

for to forecast the wind power output of Binaloud wind farm in Iran in (Rahmani

et al., 2013). To forecast Annual electricity demand, Yu et al. utilized GA to op-

timizes the structure and PSO-GA to the parameters of the basis and weights of

the Radial Basis Function (RBF) neural network (Yu et al., 2015). Yu et al. ap-

plied PSO�GA approach for forecasting energy demand of China (Yu et al., 2012c)

and primary energy demand of China (Yu et al., 2012b). In another study, Yu et

al. utilized improved PSO-GA to forecast energy demand for China (Yu and Zhu,
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2012). Lee et al. constructed a GP-based GM(1, 1) model (Lee and Tong, 2011) and

hybrid dynamic GPGM model (Lee and Tong, 2012) to predict energy consumption.

Hu et al. applied �re�y algorithm (FA) based memetic algorithm (FA-MA) to

appropriately determine the parameters of SVR model for load forecasting [108].

Hong, W.-C. developed IA-SVR model for electric load forecasting (Hong, 2009b).

Fan et al. integrated two machine learning techniques: Bayesian clustering by dy-

namics (BCD) and SVR to forecast the electricity load (Fan et al., 2008).

Hsu et al. developed an improved GM (1, 1) model that combines residual mod-

i�cation with ANN sign estimations (Hsu and Chen, 2003a). For predicting hourly

load demand Bashir et al. applied ANNs and utilized PSO algorithm to adjust the

network's weights in the training phase of the ANNs (Bashir and El-Hawary, 2009).

Xie et al. constructed improved natural gas consumption GM (1, 1) model by ap-

plying GM for optimizing parameters (Xie and Li, 2009).

Zhang et al. utilized SA with chaotic GA to develop a chaotic genetic algorithm-

simulated annealing algorithm (CGASA), with an SVR model to improve load fore-

casting. The proposed CGASA was utilized for the internal randomness of chaotic

iterations to overcome premature local optimum, which yielded better accuracy

(Zhang et al., 2012). SA algorithms were employed to choose the parameters of an

SVM model to develop SVMSA method to forecast electricity load in Taiwan in Pai

and Hong (2005). Ko et al. combined SVR, radial basis function neural network

(RBFNN), and dual extended Kalamn �lter (DEKF) to develop an SVR-DEKF-

RBFNN model for short-term load forecasting (Ko and Lee, 2013). To forecast

electric load, CAS was applied to improve the forecasting performance of SVR by

searching its suitable parameters combination in Hong (2010). Azadeh et al. de-

veloped electrical energy consumption forecasting models with GM-ANN method,

where GA tuned parameters and the best coe�cients with minimum error were

identi�ed for ANN (Azadeh et al., 2007b). Cinar et al. applied GA to determine the

hidden layer neuron numbers for GA-FFBPNN model to forecast the hydro energy

potential of Turkey (Cinar et al., 2010). Xiaobo et al. developed a GRA-DE-SVR

model for short-term load forecasting with DE and SVR (Xiaobo et al., 2014).

135



For forecasting world CO2 emissions, BCO was utilized for �nding optimal values

of weighting factors for forecasting with ANN (Behrang et al., 2011a). In another

study, chaotic arti�cial bee colony algorithm was applied to determine suitable val-

ues of its three parameters for electric load forecasting (Hong, 2011). Continue

genetic algorithm was applied to determine the number of neurons in the hidden

layer and connecting weights for ANN model to forecast short-term electricity load

(Shayeghi et al., 2009). For accurate forecasting of electric load, Hong W.-C. ap-

plied CAS, CGA, CPSO, and SA with SVR model, to determine suitable parameter

combination for the model (Hong, 2009a).

GSA was utilized to assist the seasonal SVR model to develop SVRGSA and

SSVRGSA for forecasting electricity load in Taiwan in Ju and Hong (2013). Yuan

et al. developed an LSSVM-GSA model to short-term wind power prediction model

where GSA was applied to optimize the parameters of the LSSVM (Yuan et al.,

2015). Niu et al. applied particle swarm optimization (PSO) as a training algo-

rithm to obtain the weights of the forecasting methods (i.e., a method of propor-

tional (MP), LR, GM, and BPNN) (Niu et al., 2009). Wang et al. developed a

load forecasting model with DE and SVR, where DE algorithm was used to choose

the appropriate parameters for the SVR model (Wang et al., 2012b). Wang et

al. applied ADE-BPNN forecasting method for developing prediction for electric-

ity demand ompared with di�erent methods (i.e., ARIMA, BPNN, GA�BPNN,

DE�BPNN, SSVRCGASA, and TF-e-SVR-SA) (Wang et al., 2015b). Cao et al.

applied quantum-behaved particle swarm optimization (QPSO) to optimize the pa-

rameters for the SVR model and developed an SVR-QPSO model to forecast the

energy demand of China (Cao et al., 2014).

5.4.4 Statistical-MP methods

Forouzanfar et al. forecasted natural gas consumption for residential and commer-

cial sectors in Iran by utilization of LoR. However, NLP and GA based approach

were proposed to estimate the logistic parameters, to make the process simpler

(Forouzanfar et al., 2010).
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5.5 Discussion

5.5.1 Accuracy

An accurate forecasting of energy (demand and supply) and relevant parameters is

critical to making informed decisions on energy infrastructure for power generation

and distribution. Forecasting accuracy is determined using di�erent performance

evaluation measures. Root mean square error (RMSE), mean absolute error (MAE)

and mean absolute percentage forecast error (MAPE) were mostly utilized (Pao,

2009; Niu et al., 2009; Pai and Hong, 2005; Chen et al., 2013; Nguyen and Nabney,

2010; Mohandes et al., 1998a; Mandal et al., 2006). Among other methods, mean

absolute deviation (MAD), normalized root-mean-square error measure (NRMSE),

standard error of prediction (SEP) and absolute relative error (ARE) were also ap-

plied (Wang et al., 2012c; Pai and Hong, 2005; Xu et al., 2015; Nguyen and Nabney,

2010). The accuracy evaluation methods were di�erent in various models. The

di�erent choice of accuracy methods made is hard to categorize the methods from

best to worst because the methods were not evaluated with same data or for the

similar aim Under this circumstances, this study focused on the accuracy results of

the reviewed models and their comparisons to �nd out which model performs better

in speci�c objective (Table A.4).

This study found that combination of statistical methods performs better than

that of stand-alone statistical methods and (Bianco et al., 2013; Pao, 2009; Shen

et al., 2013; Li et al., 2012; Wang and Wu, 2012; Bowden and Payne, 2008; Tan

et al., 2010; Rentziou et al., 2012; Mohamed and Bodger, 2005b; Nguyen and Nab-

ney, 2010)in most of the cases, CI methods outperformed statistical methods (Pao,

2006). Moreover, hybrid methods performed superiorly in accuracy to CI methods

(Table A.4). In case of forecasting nonlinear and discontinuous data, machine learn-

ing methods performed better than that of statistical methods (Zhang et al., 1998;

Hsu and Chen, 2003a; Hill et al., 1994). When the relationship between the variables

is not known, or complex machine learning methods can forecast the data, which

is di�cult to handle statistically (Paliwal and Kumar, 2009). In some studies, au-

thors combined machine learning methods with statistical methods to increase the

accuracy (Abdel-Aal et al., 1997; González-Romera et al., 2008; Shi et al., 2012;
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Esen et al., 2008a; Srinivasan, 2008). However, machine learning methods tend to

be complex in learning and application, while statistical methods are easy to adopt

(Zhao and Magoulès, 2012). Some authors noted the learning complexity of meth-

ods in�uence the choice of forecasting techniques (Forouzanfar et al., 2010). Data

availability also a�ects the choice of forecasting method.

ANN is a data-driven method and requires a large amount of data for higher

forecasting accuracy (DominikSlezak and Mirkin, 2011). In case of incomplete data

sets, fuzzy logic is better. However, the accuracy level is not always satisfactory

(DominikSlezak and Mirkin, 2011). Grey prediction is another useful method while

working with uncertainty problems with the small sample; incomplete and discrete

data (Shen et al., 2013; Li et al., 2012). Signi�cant numbers of authors advocated

the utilization of hybridization methods to enhance the accuracy of the forecasting

models. On the other hand, it would add more complexity in the model structure.

5.5.2 Temporal analysis

Based on the analysis of the previous EPMs, the research on forecasting models

started in 1985, after the oil shock/crisis of 1970's (Figure 5.4). At the starting

period, the number of models was low. After the United Nations Framework Con-

vention on Climate Change (UNFCCC) committed State Parties to reduce GHG

gas emission created by anthropogenic CO2 emission systems, the development of

forecasting EPMs started to rise from 1995 because energy sector has been one of

the highest global emissions sources.

The number of models started to increase from 2005 when the Kyoto Protocol

was entered into force in 2005. The number of models published escalated from 12 to

25 within 2004�2005. In the last 12 years, 76% EPMs were developed (Figure 5.4).

The highest number of models (46) was developed in 2010. However, the number of

EPMs reduced to 34 in 2011 & 2012. In 2013 and 2014, the published model number

reduced to 20 and 24 respectively. The EPM number elevated to 27 in 2015. Up

to June 2017, six models were published with the objective of forecasting in energy

planning sector.
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Figure 5.4: Publishing year of the studied models

Among the forecasting methods, statistical methods were the �rst to rise in use

from 2005. Before 1990, statistical methods were mostly utilized (Figure 5.5). After

1990's use of machine learning methods started to rise. From 2007, the use of ma-

chine learning methods augmented signi�cantly as well as with statistical methods.

After 2009 the integration of metaheuristic methods in forecasting started to grow.

In 2015, 56 models utilized CI methods which is four times more than that of the

statistical ones (14 models). The CI method use is demonstrating an exponential

growth in past 12 years, where statistical methods are showing a gradual descend

since 2010 (Figure 5.5). A major cause of the growth may be the better accuracy of

the CI methods (Table A.4) and higher speed in computational capabilities (Moewes

and Nürnberger, 2013).

5.5.3 Geographical analysis

Continent-wise, all the continents with human habitation developed EPMs. Accord-

ing to United Nations, there 269 countries in the world (UN, 2013). Among these

countries, forecasting models were developed for only 59 countries. Among all the

countries, the highest number of forecasting models were developed in China. Total

122 models were developed in China with 27 of the 50 analyzed methods of this study.
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Figure 5.5: Publishing year of the models with methods utilized in energy planning
models
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In Europe, there are 53 countries (UN, 2013), but only 18 countries developed en-

ergy planning forecasting models. The countries were- UK, Ireland, France, Nether-

lands, Denmark, Germany, Spain, Portugal, Italy, Croatia, Romania, Russia, Czech

Republic, Hungary, Poland, Cyprus, Greece, and Turkey. However, most of the

models were developed in the UK, Turkey, Spain, and Greece (Figure 5.6).

There are 41 counties in North America (UN, 2013). However, only six countries

(Haiti, Jamaica, Trinidad and Tobago, Mexico, USA and Canada) developed models

for energy forecasting. Most of the models among these countries were developed in

the USA (Figure 5.6).

The continent of Oceania contains 25 countries (UN, 2013), of which only Aus-

tralia and New Zealand developed models. In this region other 23 countries of

Melanesia, Micronesia and Polynesia are considered developing regions (UN, 2013).

This concludes the fact that in this continent only developed countries established

energy forecasting models.

In Asia, Japan, China, Hong Kong, Taiwan, South Korea, Jordan, Lebanon,

Oman, Saudi Arabia, Kuwait, Iran, Pakistan, India, Bangladesh, Sri Lanka, Nepal,

Indonesia, Singapore, Philippines, Malaysia, and Thailand developed forecasting

models for energy planning. Therefore, 21 countries among 50 countries (UN, 2013)

of the continents developed forecasting models. In Asia, the only developed economy

is established in Japan. Along with Japan, other developing countries also estab-

lished some models. In Asia, China, Taiwan, Iran, and India developed a higher

number of forecasting models.

Africa has 58 countries, of which only �ve courtiers developed forecasting mod-

els. Namibia, Ghana, Algeria, Tunisia and South Africa established 2, 4, 2, 1 and

�ve models respectively.

Among 14 countries of South America, Ecuador, Peru, Chile, Venezuela, Columbia,

Argentina and Brazil adopted forecasting model for energy planning. Brazil devel-

oped the most number of models.
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Figure 5.6: Country wise number of models utilizing (A) Statistical, (B) CI and
MP forecasting methods

Among the studied 483 models, twelve models were developed for global fore-

casting (Table 5.2). LR, ANN, GA, ABCO, and PSO were utilized for forecasting

for global geographical extent (Figure 5.6).

However, 30 models were established for regional geographical extent. The re-

gions considered were- OECD countries, G-7 countries, Europe, CIS Countries, GCC

countries, BRIC country, Middle East, North America, South America, Asia and de-

veloping countries. Among the 30 models, eight models were developed for Europe.

From the analysis of the geographical extent, it is evident that developed economies

have more EPMs than that of developing and least developed ones (Figure 5.6).
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Figure 5.7: Objectives of the models

Statistical methods are utilized for developed, developing and least developed con-

texts. However, CI methods are widely used in developed contexts (Figure 5.6).

5.5.4 Objective based analysis

The studied EPMs had di�erent objectives. From the analysis of 483 models, 11

objectives were identi�ed (Table A.5). These were energy and electricity demand,

energy supply, renewable energy, GHG emissions, energy economic, socio-economic,

energy and electricity price, load forecasting, planning and policy analysis, per-

formance analysis and model development. Among the 28 statistical forecasting

methods, ARIMA was used for nine objectives, while LR complied with seven ob-

jectives, followed by ARMA (6 objectives) (Table A.5). Among the 28 statistical

methods, 23 were utilized for energy and electricity demand forecasting in 53.9% of

the reviewed 483 models (Table A.5).

Among the CI and MP methods, ANN was utilized for nine objectives, followed
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by GM for seven objectives. FL, SMV, PSO, and ACO were utilized for six objec-

tives each. Moreover, GA was utilized for achieving �ve of the objectives (Table

A.6). Among the 22 CI and MP methods, 13 and 18 methods were utilized for

energy and electricity demand, and electric load forecasting respectively. In the re-

viewed 483 models, 73%, 38%, 18% and 13% of the model objectives were energy

and electricity demand, electric load, renewable energy, and energy & electricity

price forecasting respectively. For energy and electricity demand forecasting, statis-

tical methods were used in 18% more models than that of CI and MP. However, CI

methods were utilized in 28% and 4% more in electric load and renewable energy

forecasting models respectively than that of statistical ones (Figure 5.7).

Among the 50 analyzed methods, a maximum number of methods (23 statistical,

12 CI and one MP) were utilized to develop energy and electricity demand forecasting

models. Second highest number of methods (8 statistical and 18 CI) were utilized

to forecast electric load. Third highest number of methods (7 statistical and 9 CI)

were used for renewable energy forecasting (Tables A.5 & A.6).

5.6 Summary

Energy planning models assist stakeholders to assess the impact of current and future

energy policies. The accuracy of EPMs depends on applying appropriate forecast-

ing methods for demand and supply sector projections. Among all the forecasting

methods, choice of appropriate one depends on di�erent factors. The complexity

and nature, as well as, the objective of the research problem are one of the critical

determinants of method choice. Other important factors of forecasting method se-

lection can be accuracy and estimation adaptability with incomplete data-set.

The review of 483 EPMs, revealed the use of �fty di�erent methods between

1985 and June 2017. Among the 50 identi�ed methods, statistical, computational

intelligence (CI) and mathematical programming (MP) methods were 28, 21 and

one respectively. Among CI methods, ANN was utilized in 194 EPMs, followed by

SVM (58 models), FL (40 models), GA (39 models), PSO (34 models) and GM (29

models). In the case of statistical methods, ARIMA, LR, and ARMA were utilized

in 46, 39 and 22 EPMs respectively for forecasting. Evidently, CI methods were
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widely utilized than that of statistical ones for electric load and renewable energy

forecasting. However, statistical methods were used in 18% more models than that

of CI and MP for energy and electricity demand forecasting. The accuracy of CI

methods for forecasting was better than that of statistical ones. A signi�cant num-

ber of forecasting models utilized multiple stand-alone methods to develop a hybrid

approach because they yielded higher accuracy than that of stand-alone ones. In

case of incomplete data-set, some CI methods such as fuzzy logic and grey prediction

outperformed other stand-alone ones.

The analysis of the studied model objectives showed that most of the forecasting

methods were applied to forecast energy demand and electrical load. The devel-

opment of the forecasting models started from 1985, it spiked after 2005, and it

is continuing. Most numbers of models were developed in 2010. In case of the

geographical extent, although most of the models were established for developed

countries, some of the developing countries also established forecasting models. The

highest number of models were developed for China.
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Chapter 6

Drivers for energy sector

decarbonisation

Estimation and forecasting of the cost of reducing carbon emissions are signi�cantly

challenging due to the uncertainty of exogenous (e.g., population, GDP), and en-

dogenous assumptions, as well as the volatility of the energy market (Weyant, 1993).

The limitation of existing global models are (Weyant, 1993)�

• They exclude socioeconomic nuances of developing countries; and

• Typically treated simplistically. Sometimes aggregated together because the lack

of appropriate data for the countries involved and computational constraints

due to model size.

Cost models of decarbonization has four components- the baseline input assump-

tions to the analysis, the speci�cation of the control scenario being considered, the

structure of the model employed to make the projection and the cost measure(s)

reported (Weyant, 1993). Based on the components, the structure of cost model

would be an input-output model with a structure such as input � mathematical

estimation and forecasting� Output.

The analysis of existing EMPs in chapter 4 revealed the shortcomings of models

constructed with developed countries while adopted for developing contexts. The

major shortcomings in generalized model structures were addressing the contextual

local characteristics in a developing country such as corruption, political instabil-

ity, suppressed demand and climate change impact. For this study, BD2050 energy
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and emissions model (BD2050, 2015) was utilized for baseline energy demand, sup-

ply and emissions assumptions form 2010 to 2050 for the projection of demand,

energy generation and GHG emissions. Because BD2050 is a detailed bottom-up

energy and emissions localized model developed for Bangladesh's energy demand

and supply sector. The modeling approach of BD2050 was rendered to be partic-

ularly suitable for Bangladesh to establish a cost model and examine the e�ect of

corruption on energy market. The supply sector assumptions for Bangladesh were

updated to forecast the potential of generation resources for di�erent scenarios. The

cost model acts as an extension of the energy and emissions pathway model (Figure

6.1). The proposed model of decarbonization in this study has four interconnected

layers, such as- policy, socioeconomic, energy and cost layer (Figure 6.1). For a

reliable forecasting and decision making, all these layers are more or less signi�cant

for a cost of decarbonization model for developing and least developed countries.

The socioeconomic, energy and cost layers have three parts- input variables, mathe-

matical estimation and forecasting, and the output variables. Policy layer feeds into

the input variables.

6.1 `BD2050 � Bangladesh 2050 Energy and Emis-

sions Pathways' model

BD 2050 model was developed for the energy sector planning for Bangladesh from

2010-2050. The primary goal is to analyze the energy security in Bangladesh up to

2050 under di�erent scenarios. The model has demand and supply domains. The

demand domain is comprised of building, industry, transport, agriculture, and food

sector. The supply domain is comprised of the operational and potential energy

generation sources for Bangladesh, such as- coal, natural gas, liquid hydrocarbon,

nuclear, wind, solar, geothermal, hydro, waste and biomass. Moreover, the energy

fuel and transmission & distribution sectors were modeled in BD 2050. The build-

ing sector is divided into three categories- rural, urban household, and commercial

building sector. Also, the transport sector has four categories- passenger, freight,

international aviation, and shipping. There is also a socioeconomic sector, where

demographic, economic analysis was undertaken to support the assumptions in other

sectors. Assumptions from BD 2050 utilized for projecting electricity demand 2010-
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Figure 6.1: Cost model structure (red lines denote the possible links and �ow
between BD2050 � `Bangladesh 2050 Energy and Emissions Pathways' model and

proposed cost model
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2050 (BD2050, 2015):

(i) Socioeconomic:

(a) The population of Bangladesh would be 245 million by 2050 (WB, 2015a),

which will be 1.62 times than that of 2010.

(b) The rural and urban population would be 48% and 52% respectively

by 2050. The household size would be 2.5 and 2.7 in urban and rural

households respectively (BD2050, 2015).

(c) The annual GDP growth would be 7.3%. The GDP would be 16.94 times

by 2050 than that of 2010.

(ii) Building sector:

(a) The GDP-electricity demand index would reach three and 2.5 times for

rural and urban households respectively by 2050 than that of 2010.

(b) In a commercial building, heating technology mix would be 90%-10%-0%

for gas-electric-solar respectively.

(c) The cooking technology mix would be 90%-10% for gas-electric respec-

tively in commercial buildings.

(d) The lighting technology mix would be 40%-25%-30%-5% of the household

and commercial spaces by 2050 for incandescent-�uorescent-CFL-LED

respectively.

(e) The appliance assumptions for di�erent types of commercial buildings

were described in Table 6.1.

(iii) Transport sector:

(a) For passenger transport, the modal share would be walk-bike-car-motorbikes-

bus-rail-IWT-domestic air-international air travel (15.6%-31.3%-20.0%-

13.3%-7.0%-1.4%-2.0%-0.5%-8.9%) by 2050 (BD2050, 2015).

(b) Occupancies (pax/vehicle-km) in 2050 per mode: motorbikes, auto-rickshaws

(1.2); cars, vans (2.2); buses (42); inland water travel (60); railways (0.37)

and domestic air travel1 (0.65). The 2010 estimations were based on

(Karim, 1999).
1Unit for railways and domestic air travel was pax/seat-km
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Table 6.1: Appliances for di�erent commercial buildings (percentage of the total
�oor area) (BD2050, 2015)
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O�ce 76.5 75 100 40.4 76.5 20 20 100
Retail 100 75 100 90 100 20 20 100
School 60.8 75 100 100 0 20 20 100
Hospital 100 75 100 100 100 100 100 100
Others 100 75 100 100 76.5 20 20 100

(c) The technology penetration in passenger transport sector of Bangladesh

was described in Table 6.2.

(d) The rail, road and IWT freight capacity would be 0.8, 403 and 3 billion

(bn) ton-km respectively by 2050. The modal share would be road-rail-

IWT (88%-3%-9%). There will be no electric freight.

(e) The road and IWT freight e�ciency would be 3.17 and 0.24 TWh per bn

vehicle-km.

(f) In the case of international shipping, the number of barrels used per day

for bunkering would be 72.95 by 2050, which would be 17.8 times than

that of 2010.

(g) In the case of international aviation, the average number of occupancies

would be 110 per �ight by 2050, which would be two times than that of

2010.

(iv) Industry sector:

(a) The general index of manufacturing industries was described in Table 6.3.

(b) The energy mix in the industrial sector would be electricity-gaseous hydrocarbon-

solar heating (60%-10%-30%).

(v) Agriculture sector:
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Table 6.2: Penetration of Technology (Percentage of passenger-km) in the
transport sector of Bangladesh (BD2050, 2015)

Mode Technology 2010 2050
Bike Bike 100% 100%

LMT
ICE 86% 94%
CNG 14% 6%
EV 0% 0%

Car

ICE 49% 78%
CNG 51% 22%
PHEV 0% 0%
EV 0% 0%
FCV 0% 0%

Bus

ICE 87% 94%
CNG 12% 5%
HEV 1% 0%
EV 0% 0%
FCV 0% 0%

Rail
Diesel 100% 100%
Electric 0% 0%

IWT
Diesel 100% 100%
EV 0% 0%
FCV 0% 0%

Air Air 100% 100%

Table 6.3: General index of manufacturing in Bangladesh; estimation based on
(BBS, 2011, 2012, 2014, 2015, 2016)

Industry
General index of manufacturing
2010 2050

Food, beverage & tobacco

1

2.36
Jute, cotton, woven apparel &
leather 11

Wood products including furniture 2.5
Paper and paper products 2.36
Chemical, petroleum & rubber 2.84
Non-metallic products 2.36
Basic metal products 4.95
Fabricated metal products 3.24
Telecom BTS tower 1.4
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(a) The farm power index would be 1.57 times in 2050 than that of 2010.

(b) The fuel mix in agriculture sector would be electric-diesel-solar (8%-92%-

0%) in 2050 for irrigation and vehicle operation such as a tractor, power

tillers.

6.2 Cost model

The cost model has three parts- input, mathematical estimation and forecasting,

and output (Figure 6.1). In the input, the baseline cost assumptions from the

collected capital, operation and maintenance, and fuel cost data of power generation

technologies (Table 6.4). The collected technology-wise cost data was estimated by

multiplying with forecasted installed capacity of the energy supply sector from 2010

to 2050. The baselines cost and energy assumptions utilize equation 6.1 and 6.2,

to forecast the total cost of energy generation sector development in Bangladesh in

2010-2050. The output from cost model is in USD (2010) value. The total energy

demand, generation and GHG emissions from the BD 2050 model feed into the

evaluation stage (Figure 6.1), where the total cost, unmet demand, and cost per

unit emissions and per unit generation were evaluated according to the acceptance

criteria to �nd the cost of decarbonization for Bangladesh under various emissions

scenarios. For cost estimation the following equations were utilized:

TCSy =
∑
y∈Y

∑
a∈A

∑
f∈F

fdy(IN(y,a).CC(y,a) + IC(y,a).OC(y,a) + F(y,a).FC(y,f)) (6.1)

fdy = fd2010/(1 + rdy)
5 (6.2)

For the discount factor calculation, the discount rate was considered 5% annually

(CIA, 2018).

In the case of corruption, the cost analysis in chapter 3 demonstrated a statis-

tically signi�cant relationship between the capital cost of establishing power plants

and the level of corruption in Bangladesh. Modeling a socioeconomic parameter

such as corruption is complex as discussed in section 4.3. In this model corruption

was not modeled as multiplier or index based. In chapter 3, private power plants

demonstrated signi�cant high capital cost and better association with corruption
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than that of private ones. The upper limit of the cost model assumption were from

the capital cost of the public power plants as shown in table 6.4. Moreover, the lower

limit of cost assumptions were mostly from private sector cost as they showed the

lowest in Bangladesh as compared to the public ones. In the case of new generation

technologies, the world lower limit from the IEA (2014) database was considered

(Table 6.4).
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Table 6.4: Baseline cost assumption for di�erent energy generation technology; data source BPDB (2017a); GoB (2015a); IEA (2014); JICA
and TEPCO (2011); NEI (2016)

Fuel type
Generation

technology

Capital cost

(US$2010)/

Installed capacity

(kW)

O&M cost (US$2010)/

unit generation (kWh)

Fuel cost(US$2010)/

unit generation

(USD/kWh)

High Low

Annual

change

rate (%)

High Low

Annual

change

rate (%)

High Low

Annual

change

rate (%)

Natural gas
GT/ST,

CCPP
1950 697 3 2.37* 0.26* 4.4 0.031 0.33

Coal

Subcritical 1924 1245 0.18 35** 21** 0.18 0.012

0.7
Supercritical 2400 700 0.18 48** 28** 0.18 0.015

Ultra-

supercritical
3845 800 0.18 56** 32** 0.18 0.015

Integrated

Gasi�cation

Combined

Cycle

2900 1100 0.18 77** 50** 0.18 0.015
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Table 6.4: Baseline cost assumption for di�erent energy generation technology; data source BPDB (2017a); GoB (2015a); IEA (2014); JICA
and TEPCO (2011); NEI (2016)

Fuel type
Generation

technology

Capital cost

(US$2010)/

Installed capacity

(kW)

O&M cost (US$2010)/

unit generation (kWh)

Fuel cost(US$2010)/

unit generation

(USD/kWh)

High Low

Annual

change

rate (%)

High Low

Annual

change

rate (%)

High Low

Annual

change

rate (%)

Liquid

hydrocarbon
GT/ST 1654 550 1.57 31.32* 4.23* 4.5 0.055 0.34

Nuclear Nuclear 5625 2000 0.13 133** 112** -

0.13�
6.77** 0.8** 0.4

Renewable

Hydro 2128 1700 -0.3� 0.14* 0.053* -0.6� -

Solar PV 4938 1850 0.6 21** 18** 0.6 -

Geothermal 2980 2070 0.4 42** 41** 0.3 -

O�shore

wind
5390 4440 2.8 163** 155** 2.8 -

155



Table 6.4: Baseline cost assumption for di�erent energy generation technology; data source BPDB (2017a); GoB (2015a); IEA (2014); JICA
and TEPCO (2011); NEI (2016)

Fuel type
Generation

technology

Capital cost

(US$2010)/

Installed capacity

(kW)

O&M cost (US$2010)/

unit generation (kWh)

Fuel cost(US$2010)/

unit generation

(USD/kWh)

High Low

Annual

change

rate (%)

High Low

Annual

change

rate (%)

High Low

Annual

change

rate (%)

Onshore

wind
1890 1300

(IEA,

2014)

0.4 39** 35 ** 0.4 -

* Unit: BDT/kWh

** Unit: USD/kW
� Cost increases
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6.3 Limitations and scope

The modeling approach took comprehensive set of technologically and economically

feasible energy generation alternatives into account to analyze di�erent energy devel-

opment pathways for Bangladesh up to 2050. Individually, the cost of decarbonizing

the energy sector can be examined under di�erent scenarios, as well as the capability

of the scenarios in supplying the forecasted demand can be investigated.

There are some limitations of the model such as instead of modeling endogenous

learning curve e�ects; the study adopted exogenous cost data for the technologies

not applied in Bangladesh. Learning curve e�ect states that with average time cost

of power plants reduce certain percentage when the cumulative volume of installed

capacity of generation technology doubles in a geographical extent (i.e., Global, re-

gional, country) (Jägemann et al., 2013). In the case of Bangladesh, private and

public natural gas and liquid hydrocarbon based power plants have been established

in general. But the cost di�erence between private and public power plants were

signi�cant (Chapter 3). Moreover, the public plant cost for gas-based generations

were found to be increasing in Bangladesh (Chapter 3). As per literature, the cost

of power plants are supposed to reduce with time (Neij, 2008). For the inconsistency

in the cost evolution in Bangladesh, the costs of di�erent generation technologies

were considered as constant variables in this cost model. However, coal and hydro-

electric plants are one with several units. There are no nuclear, wind, wave, tidal,

commercial solar PV or thermal at present in Bangladesh. For these renewable and

nuclear technologies, the exogenous cost was adopted from reliable resources such as

IEA, EIA and other studies. Another major limitations of the study was the lack of

cost data for Bangladesh. For analyzing cost of the energy generation technologies,

cost of the 61 power plants was collected and examined among the operational 113

power plants.

6.4 Scenario de�nition

The decarbonization of energy sector of Bangladesh can be achieved by various en-

ergy mixes. To analyze the implication of di�erent decarbonization pathways for

energy sector of Bangladesh under di�erent economic conditions, six di�erent emis-
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sions scenarios were examined in this study such as business as usual (BAU), current

policy scenario (CPS), high-carbon scenario (HCS), medium-carbon scenario (MCS),

low-carbon scenario (LCS) and zero-emissions scenario (ZCS) for the energy gener-

ation sector (Figure 6.2). The installed capacity assumptions of di�erent scenarios

were calculated form the potential analysis in each electricity generation sector of

Bangladesh. The decarbonization scenarios are described in later part of this sec-

tion. The cost of decarbonization critically depends on the economic conditions and

there were three economic conditions such as low, average and high cost scenarios,

considered in this research. The cost of decarbonization analysis scenarios are de-

�ned in Table 6.5.

Regarding future cost, the decarbonization scenario assumptions range from very

pessimistic 'high cost' to optimistic projection 'low cost' as shown in Table 6.5. Low

and high cost assumptions were mentioned in Table 6.4. The average cost is the mean

of low and high cost assumptions. The high range of cost was assumed to be con-

stant from 2010 to 2050. Lower range of cost was assumed to reduce over time with

the annual rate mentioned in Table 6.4. The high range of cost assumptions in some

but not all energy generation technologies denoted the public sector cost associated

with corruption, and low assumptions were associated with global or Bangladesh's

private sector lower assumptions from the cost data described in appendix B and

discussed in Chapter 3. The di�erence in future pessimistic high and optimistic

low cost assumptions is greater for less mature technologies for Bangladesh such as

geothermal, o�shore and onshore wind, nuclear, because of the higher uncertainty.

Cost of decarbonization also depends on the electricity demand. If the demand is

high the cost will increase to decarbonize the system. Reducing demand can also

decrease the cost of decarbonization. In this model, the demand was considered

to be constantly increasing under BAU scenario of BD2050 model. The e�ect of

demand reduction on cost of decarbonization is out of the scope of this research.

In the cost model, the capital, O&M and fuel cost, and installed capacity of

power plants were considered variable over time. Other parameters such as power

plant's generation e�ciency factor, GHG emissions factors and technical lifetimes

were considered to be constant as par BD2050 model. The imported capacity was

assumed to be 484 TWh in 2015 and unchanged afterwards up to 2050.
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Table 6.5: Scenario matrix

Emissions Scenarios
Economic scenarios

Low cost Average cost High cost
BAU B-L B-A B-H
CPS C-L C-A C-H
HCS H-L H-A H-H
MCS M-L M-A M-H
LCS L-L L-A L-H
ZCS Z-L Z-A Z-H

6.4.1 Business as usual (BAU)

BAU scenario for energy sector of Bangladesh refers to the continuation of current

installed capacity and no new build power generation capacity. Under this scenario,

the derating capacity of the base year was considered in the baseline assumptions

from 2010 to 2050.

In the case of coal power plant, there will be no new built, installed capacity in

2010-2050. The 250 MW installed capacity in 2010 would remain unchanged un-

til 2050. Natural gas-based power plant installed capacity was 4821 MW in 2010.

Moreover, there will be no new gas-based power plant built in Bangladesh up to 2050

under BAU. However, because of the derating of power plants over time and retire-

ment, there will be no power plant operational after 2045. The installed capacity for

liquid hydrocarbon based power plants was 1918 MW in 2010, which elevated to 2623

MW by 2015. Under BAU, there would be no new liquid hydrocarbon based power

plant built after 2015, and the installed capacity would reduce to zero by 2040 due

to derating and retirement. The retirement age of liquid hydrocarbon based power

plants is 3-15 years because of the contracts with the government, where they were

established to support peak load (MoF, 2009). On the other hand, Gas Turbines

(GT) and Combined-Cycle Power Plants (CCPP) have an average lifespan of 30-40

years and additional 12-25 years after extension (Lipiak et al., 2006). That is why

cumulative liquid hydrocarbon based power plants would retire before natural gas-

based power plants.

Nuclear power plants are not operational in Bangladesh at the moment. Al-

though, there is a plan of building a new power plant in Rooppur by 2025, the

model assumed no nuclear plant built in Bangladesh under BAU.
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For wind-based power generation, there were no large o�shore and onshore in-

stalled capacity in Bangladesh in 2010. For BAU, the installed capacity was assumed

to be zero up to 2050. However, there were 20KW collective installed capacity estab-

lished in Bangladesh as small hybrid and stand-alone applications at various public

facilities (UNDP, 2013). The 20KW installed capacity was considered as small on-

shore generation capacity in 2010. Under BAU, small onshore installed capacity was

assumed to remain same up to 2050 and no new wind turbine would be built.

There is no tidal range, tidal stream and wave-based power generation capacity

in Bangladesh in 2010. The installed capacity for the tidal and wave-based genera-

tion capacity was assumed to remain to zero up to 2050.

There was no grid-connected Solar Photovoltaic (Solar PV) installed capacity in

Bangladesh in 2010. However, there were o�-grid Solar Home System (SHS) oper-

ational in 2010. The total installed capacity of SHS was 39.57 MW in 2010, which

increased to 189.03 MW by 2015. Under BAU, the total installed capacity would

reduce to zero by 2040 as the lifespan of solar cells was assumed to be 25 years

(Jordan and Kurtz, 2013).

The only hydroelectric power plant situated in Kaptai (230 MW) was operational

in 2010. It is assumed that under BAU, the installed capacity would remain same

up to 2050. There are no geothermal, biomass and waste-based power plants in

Bangladesh. Under BAU assumption, there will be no geothermal power plants

operational by 2050.

6.4.2 Current policy scenario (CPS)

Current policy scenario (CPS) was developed with the present policies undertaken

by the government of Bangladesh for the supply sector development up to 2030.

The Power System Master Plan 2010 (PSMP 2010) paved the future planning of

Bangladesh power sector from 2010 to 2030, which was prepared by JICA and

TEPCO for BPDB (JICA and TEPCO, 2011). PSMP 2010 master plan focuses on

coal-based generation increase to a fuel mix of coal-gas-others (50%-25%-25%) by
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2030 (JICA and TEPCO, 2011). All energy generation technologies in the model

would maintain current government policies as assumptions from 2010 to 2050.

In the case of coal power plants, installed capacity would be 250 MW up to

2015, which will increase to 4800 MW by 2020. The installed capacity would reach

8850MW by 2025 and 19650 MW by 2030. As the PSMP 2010 was planned for up

to 2030, the installed capacity would follow the trend of the master plan after 2030

in the model. Moreover, due to the derating factor of the power plants, the installed

capacity would reach increase 4600 MW every 10 years after 2030 and reach to 29050

MW by 2050.

According to PSMP 2010, Bangladesh would shift its natural gas (4821 MW in

2010) dominating energy generation sector towards coal-based one. For this reason,

the natural gas based installed capacity of would reduce after 2020. The gas-based

power plant capacity would be 12163 MW by 2020. No new gas-based power plants

will be commissioned after 2020. The total installed capacity of gas-based power

plants would reduce to 10771 MW by 2025 as the old power plants start to retire.

By 2040, only 5610 MW installed capacity would be operational due to the derating

factor and retirement of the old plants. There will be no natural gas-based power

plant operational by 2050 under the CPS.

The installed capacity of liquid hydrocarbon based power plants was 1918 MW

in 2010. According to PSMP 2010, the government would keep building liquid

hydrocarbon-based plants up to 2030 to supply the peak loads. Under the CPS, no

liquid hydrocarbon-based plant established after 2030 was assumed. So the installed

capacity would reduce to 1200 MW by 2035 and 800 MW by 2040. Eventually, there

would be no liquid hydrocarbon-based plants after 2045.

In the case of nuclear power plants, Rooppur nuclear power plant is one unit

of 2000 MW would be operational by 2020 and another unit with 2000 MW would

start supplying to the grid by 2025. Under CPS, we assumed that there would be no

new nuclear power plants after 2025 and the installed capacity would remain 4000

MW up to 2050.
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There were no large o�shore and onshore installed capacity in Bangladesh in

2010. The installed capacity of large o�shore wind power plants was assumed to be

100 MW by 2015 according to PSMP 2010 (JICA and TEPCO, 2011). The onshore

wind installed capacity would increase 20 MW in 2015 and no more new built after

that up to 2050. Under CPS, the installed capacity was assumed to remain 100 MW

up to 2050. The small onshore generation capacity was 20 KW in 2010. For CPS,

small onshore installed capacity was assumed to remain same up to 2050, and no

new wind turbine would be built. There is no tidal range, tidal stream and wave-

based power generation capacity in Bangladesh in 2010. Under CPS, the installed

capacity for the tidal and wave-based generation capacity was assumed to remain

to zero up to 2050.

The installed capacity of o�-grid SHS was 39.57MW in 2010, which increased

to 550 MW by 2015 because of the 500 MW solar irrigation project (GoB, 2013).

According to IDCOL, there will be another 2000 MW grid-connected solar installed

capacity in Bangladesh (IDCOL, 2017). Under CPS assumption, the total installed

capacity would increase to 2550 MW by 2020, which will rise to 14550 MW by 2050

if additional 2000 MW is built every �ve years.

The only hydroelectric power plant situated in Kaptai (230 MW) installed ca-

pacity was operational in 2010. Under CPS the installed capacity would be 332 MW

by 2015 and would remain same up to 2050. There are no geothermal, biomass and

waste-based power plants in Bangladesh. Under CPS assumption, there will be no

geothermal power plants operational by 2050.

6.4.3 High-carbon scenario (HCS)

Under the HCS, the supply sector would be dominated by fossil fuel such as coal,

natural gas, and liquid hydrocarbon-based energy generation. Under the HCS, the

installed capacity would maintain the PSMP 2010. The coal power plant installed

capacity was 250 MW in 2010. According to PSMP 2010, the coal power installed

capacity would be 8850 MW in 2025 and 19650 MW by 2030, which denotes a 10800

MW rise within �ve years. Under the HCS, we assumed that the installed capacity
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would elevate 10000 MW every �ve years up to 2050. The installed capacity for coal

power plant would be 59650 MW in 2050.

In the case of natural gas-based power plants, the cumulative installed capacity

would follow the PSMP 2010 masterplan and would be 8854 MW by 2030. The in-

stalled capacity was 4821 MW in 2010, which would be 9379 MW and 12163 MW in

2015 and 2020 respectively. After that, the installed capacity would start to reduce

as there would be no new plant built. The installed capacity increased 4558 MW

between 2010 and 2015. According to PSMP 2010, the gas-based installed capacity

would elevate to 2784 MW between 2015 and 2020. Under HCS, we assumed that

the installed capacity would increase 5000 MW every �ve years and reach to 28854

MW by 2050.

The installed capacity for liquid hydrocarbon based power plant was 1918 MW

in 2010. According to PSMP 2010, the installed capacity would be 2623 MW in

2015, which would reduce to 1755 MW by 2020. The installed capacity would rise

again to 2155 MW and 2240 MW in 2025 and 2030 respectively. According to PSMP

2010, there would be 400 MW rise between 2020 and 2025. Under HCS, the liquid

hydrocarbon based power plant was assumed to have a 400 MW additional installed

capacity every �ve years after 2030, which would result in 3840 MW capacity by

2050.

According to PAMP 2010, nuclear power installed capacity would be 2000 MW

and 4000 MW in 2020 and 2025 respectively (JICA and TEPCO, 2011). Under the

HCS, the installed capacity was assumed to remain 4000 MW up to 2050. In the

case of solar PV, the total installed capacity would increase to 2550 MW by 2020,

and it will remain same up to 2050.

In the case of large o�shore, onshore and small onshore wind turbines, and

hydroelectric plants, the installed capacity would be same as CPS. Under HCS

assumption, there will be no geothermal power plants operational by 2050.

163



6.4.4 Medium-carbon scenario (MCS)

In the case of medium-carbon scenario (MCS), the energy mix would be dominated

by fossil fuels with the support from renewables. The fossil fuel (coal, natural gas,

and liquid hydrocarbon) and nuclear electricity generation installed capacity would

remain same as HCS up to 2050. In the case of solar PV, the total installed capac-

ity would increase to 2550 MW by 2020, which will gradually rise to 114.87 GW

by 2050. For that 60% of the urban & industrial built space (525 km2), and 40%

of the rural settlement area (7064 km2) is used for solar electricity generating in

Bangladesh.

In the case of large o�shore, onshore and small onshore wind turbines, and

hydroelectric plants, the installed capacity would be same as CPS. Under MCS

assumptions, there will be no geothermal power plants operational by 2050.

6.4.5 Low-carbon scenario (LCS)

Under the low-carbon scenario (LCS) renewable and nuclear energy dominate the

energy generation sector of Bangladesh. As present PSMP 2010 masterplan pro-

poses a fossil fuel dominating future supply sector, LCS would not be entirely fossil

fuel free. The cumulative coal power installed capacity would maintain CPS up to

2030 and then additional 5000 MW would be built every �ve years, which will make

the total capacity 39650 MW by 2050. Other than the coal-based power plants,

there would be no gas and liquid hydrocarbon based power plants operational by

2045.

According to PSMP 2010, nuclear power installed capacity would be 2000 MW

and 4000 MW in 2020 and 2025 respectively. Under the LCS, we assumed the in-

stalled capacity would increase 2000 MW every �ve years up to 2050. The total

installed capacity for nuclear power generations would be 14000 MW in 2050. In

the case of solar PV, the total installed capacity would increase to 2550 MW by

2020, which will gradually rise to 225.76 GW by 2050. For that 90% of the urban &

industrial built space (789 km2), and 80% of the rural settlement area (15895 km2)

are used for solar electricity generating in Bangladesh.
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In the case of large o�shore, onshore and small onshore wind turbines the in-

stalled capacity would be same as CPS. Under LCS assumption, there will be no

geothermal, biomass and waste-based power plants operational by 2050. The hydro-

electric power installed capacity was 230 MW in 2010 which would be 545 MW by

2050 because 140 and 75 MW plants would be operational in Sangu and Matamuhuri

respectively by 2020 (Mondal and Denich, 2010).

6.4.6 Zero-carbon scenario (ZCS)

In the case of zero-carbon scenario (ZCS), the energy mix would be dominated by

the renewable resources. The fossil fuel based (coal, natural gas, and liquid hydro-

carbon) energy generation would follow the BAU.

The nuclear, solar PV based and hydroelectric installed capacity would follow

the LCS. In the case of o�shore and onshore large wind installed capacity would in-

crease respectively 20 MW and 50 MW annually up to 2050 under the ZCS. Under

ZCS, o�shore and onshore installed capacity would reach 500 MW and 1150 MW

respectively in 2050. The installed capacity of small wind turbines would increase

20 KW every �ve years from 2015 up to 2050. The total installed capacity would

reach 0.18 MW by 2050.

In the case of geothermal energy generation, Bangladesh has a potential of

1000MW (Hasan et al., 2013). Under ZCS, we assumed that there would be 200

MW (Hasan et al., 2013) geothermal power generation plants would be operational

in Bangladesh by 2020. Additional 200 MW installed capacity would increase every

ten years to reach 800 MW by 2050.

6.5 Result and discussion

The results of the scenarios analysis are discussed in this section. The subsequent

investigation and discussion are structured as follows: Section 6.5.1 provides an

overview of the total cost and cost of decarbonization associated with six emissions

and three economic scenarios. The implication of the change in the energy mix on

GHG emissions and cost are discussed in Section 6.5.2. Section 6.5.3 analyzes the
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Figure 6.2: Energy mix of Bangladesh in 2010 and analyzed scenarios in 2050. The
assumptions of di�erent scenarios were calculated form the potential analysis in

each electricity generation sector of Bangladesh with BD2050 (2015).

in�uence of generation technology maturity on the GHG emissions and cost. After

that, the e�ect of corruption on the cost of decarbonization is discussed in Section

6.5.4. Finally, Section 6.5.5 provides the discussion on the in�uence of demand

reduction on the cost of decarbonization.

6.5.1 Overview of total cost and cost of decarbonization of

energy generation sector

The total cost comprises discounted capital, operation and maintenance (O&M),

and fuel cost of Bangladesh's energy sector under di�erent emissions scenarios in a

speci�c year. Moreover, the total cost is illustrated with the range of expenditure

in a speci�c year with low, average and high cost. The total cost was estimated in

billions(bn) US$(2010). The total coat of the energy generation and distribution

system development elevates in Bangladesh by 2050 under all the scenarios as it's

a rapidly developing sector and still approximately 40% of the population does not

have access to grid electricity. However, the cost varies signi�cantly between scenar-

ios with and without decarbonization policies because of adopting GHG emissions
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Figure 6.3: Installed capacity 2010-2050 under (A)BAU, (B)CPS, (C)HCS,
(D)MCS, (E)LCS and (F)ZCS
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reduction strategies such as changing the energy mix and establishing new gen-

eration technologies requires substantial investments. Therefore, the total cost is

increasing linearly and would be approximately below $200 bn in 2050 under BAU,

CPS, and HCS because there is no decarbonization policy involved. Whereas, the

cost starts to rise exponentially with the adoption of emissions reduction strategies

under MCS, LCS, and ZCS, and would reach up to approximately $716 bn by 2050

(Figure 6.4).

The total cost under B-A scenario would be $49 bn by 2050, which would be 2.4

times higher than that of 2010. The range of total cost would be $72 bn and $35 bn

under the B-H and B-L scenarios (Figure 6.4). If Bangladesh maintains its present

policies in action, the cost would be $66 bn by 2030 and eventually $75 bn in 2050

under C-A scenario which would be $26 bn higher than that of B-A. The total cost

range would be $114 bn and $51 bn under the C-H and C-L scenarios, respectively

(Figure 6.4). The total cost would increase to $119 bn in 2050, which would be 5.7

times higher than that of 2010, under H-A scenario. The total cost would have a

linear growth under H-A between 2010 and 2050. The range of total cost would

be between $183 bn and $79 bn under the H-H and H-L scenarios in 2050 (Figure

6.4). The total cost of energy sector development under H-A would be 2.4 and 1.5

times higher compared to B-A and C-A scenarios in 2050, respectively. Under M-A

scenario, the cost of Bangladesh's energy sector development would be $419 bn in

2050, which would be 3.5 times higher than that of H-A. The total cost would be

$403 bn by 2050 for L-A scenario, which would be 3.4 times higher compared to

H-A, but 4% lower than that of M-A. The total cost range would be between $696

bn and $202 bn under L-H and L-L scenarios in 2050. Under the Z-A scenario, the

total cost would reach to $638 bn in 2050, which would be 3 times higher than that

of H-A. However, total cost under Z-A would be 13% and 9% lower than that of

M-A and L-A respectively.

The cost of decarbonization refers to the di�erence between no emissions reduc-

tion scenario HCS and scenarios with emissions reduction strategies such as MCS,

LCS, and ZCS. For example, the cost of decarbonizing Bangladesh's energy gener-

ation sector under ZCS would be derived by subtracting the total cost of ZCS from

the total cost of HCS in a speci�c year. BAU and CPS were not considered for

the analysis of the cost of decarbonization because HCS has the highest GHG emis-

sions by 2050 among the three scenarios without any emissions reduction strategies
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Figure 6.4: Total cost under (A)BAU, (B)CPS, (C)HCS, (D)MCS, (E)LCS and
(F)ZCS from 2010 to 2050
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(Figure 6.5D). The cost of decarbonization would be $300 bn in 2050 under M-A

(Figure 6.5A). The high and low range of the cost would be $533 bn and $137 bn

by 2050, respectively. The cost of decarbonization would reduce to $284 bn in 2050

under L-A, which would be a 5.5% reduction compared to M-A. The cost range

would be between $513 bn, and $123 bn for LCS in 2050. Under the Z-A, the cost

of decarbonization would reduce to $251 bn by 2050, which would be 19.6% and

13.4% lower compared to M-A and L-A, respectively (Figure 6.5A). Moreover, the

cost range of decarbonization for ZCS would be between $456 bn and $105 bn in

2050.

6.5.2 Change in the energy mix

Change in energy mix can signi�cantly in�uence the GHG emissions in the future

as well as contribute to the cost of decarbonization for Bangladesh.

Implication on GHG emissions

The electricity generation highly depends on fossil fuels in Bangladesh (BPDB,

2017b). The GHG emissions from electricity generation sector were 23.6 MtCO2e in

2010. Under the BAU scenario, the GHG emissions would reduce to 1.3 MtCO2e,

as there will be no new power plant established after 2010 (Figure 6.5D). Under

the present government policies driven CPS, the total GHG emissions would rise

to 129.7 MtCO2e by 2050, 5.5 times higher compared to 2010 (Figure 6.5D). The

current policies direction towards fossil fuel dominating energy mix of Bangladesh

would induce the rise in total GHG emissions. Under fossil fuel dominating HCS,

the GHG emissions will reach 15 times by 2050 as compared to 2010 (Figure 6.5D),

resulting in 1355% increase in total emissions from electricity generation. Under the

MCS, the fossil fuel installed capacity will be same as HCS, and only renewables

and nuclear capacity will increase 70 times by 2050. Therefore, the GHG emissions

for MCS will be the same as HCS for 2010-2050.

In the case of LCS, the renewables and nuclear are going to dominate the energy

mix of Bangladesh by 2050. Due to the partial fossil fuel dependency in energy mix,

the total GHG emissions will rise 11 times by 2050 than that of 2010. Although, the

total GHG emissions would reduce by 23% in 2050 under LCS compared to MCS
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Figure 6.5: Cost of decarbonization under (A)MCS, (B)LCS and (C)ZCS from
2010 to 2050, (D) Total GHG emissions under di�erent analyzed scenarios

2010-2050, (E) Unmet demand for analyzed scenarios.
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Figure 6.6: Accumulated (A) Capital, (B) O&M abd (C) fuel cost under di�erent
analyzed scenarios in 2050
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and HCS. Under the ZCS, the total GHG emissions would not diminish entirely be-

cause of the already established and under construction coal and gas power plants

by 2015. The coal-based power plants started to be established in Bangladesh in

2006 (BPDB, 2017b). All the coal power plants will be operational even after 2050

because of their more than 40 years lifespan (IEA, 2005). However, the total emis-

sions would reduce by 73% and 65% in 2050 under ZCS as compared to MCS and

LCS, respectively.

Emissions intensity of electricity generation was 0.79 kgCO2e/kWh in 2010,

which would be 0.47 kgCO2e/kWh under BAU in 2050. The emissions inten-

sity would increase to 0.55 and 0.60 kgCO2e/kWh under CPS and HCS in 2050,

respectively. However, the emissions intensity would decrease to 0.34 and 0.28

kgCO2e/kWh for MCS and LCS, respectively. The LCS o�ers lower emissions per

unit electricity generation because of the higher concentration towards renewable

and nuclear technologies. The lowest emissions will be 0.14 kgCO2e/kWh under the

ZCS in 2050.

The GHG emissions per capita were 0.47 tCO2 in 2010. The emissions intensity

per capita for HCS and MCS will be 2 tCO2 2050, which will be 4.2 times that of

2010. In the case of LCS, the per capita GHG emissions will increase 3.5 times by

2050 than that of 2010. Moreover, the lowest emissions reduction from energy sector

will be possible in Bangladeshi energy sector under ZCS. The per capita emissions

will be 0.93 tCO2e in 2050 under ZCS, which will be two times higher than that of

2010.

Implication on the total cost and cost of decarbonization

Cost is a driving factor for future energy policy development. The capital, O&M,

and fuel cost was 57%, 15%, and 28% of the total cost of $33 bn in 2010, respectively.

Under the B-A scenario, the total cost of electricity generation will increase 62.4%

in 2050 in comparison to 2010. Although the installed capacity is reducing because

of no new power plants being built after 2015, the fuel cost will elevate 236% in 2050

than that of 2010. Under B-A scenario, 63% and 35% of the total cost would be

fuel and capital cost in 2050, respectively. In the case of C-A, the total cost would
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increase 23% by 2050 than that of 2010, of which 36%, 6%, and 60% will be capital,

O&M, and fuel cost respectively.

In the case of H-A, the total cost of the supply sector will increase to $119 bn by

2050 (Figure 6.7), of which 45% and 49% will be capital and fuel cost respectively.

Under M-A, the total cost of the energy sector will rise to $419 bn by 2050, which

will be 3.8 times higher than that of H-A. Of the $419 bn, 83% will be a capital

cost, as the major investment will be in solar PV and nuclear electricity generation

as well as the fossil fuel based ones. In the case of L-A, the total cost will reach

$404 Billion in 2050 (Figure 6.7), which is 4% less than that of M-A. Capital cost

will be 87% of the total cost under L-A. The total cost of energy sector would be

higher up to 2030 under L-A compared to M-A, because of the initial higher capital

cost of renewable energy technologies. Under M-A, the total cost would surpass L-A

in 2030-2050, mostly because of the fuel cost (Figure 6.6C). In the case of Z-A, the

total expense will be $368 bn in 2050 for energy system (Figure 6.7), of which 88%

will be the capital cost (Figure 6.7). Among all the analyzed scenarios, M-A o�ers

the highest total cost of energy system development by 2050 in Bangladesh.

In 2050, 83% of the energy generation would be fossil fuel based whereas only 17%

would be nuclear and renewables under HCS. Shifting the energy mix from fossil fuel

to renewables dominating, would exponentially increase the cost of decarbonization

by 2050 for MCS, LCS, and ZCS (Figure 6.5 A, B, C), predominantly because of

capital cost of renewable technologies (Figure 6.7). The energy mix would have 72%

of the generated electricity from nuclear and renewables sources for MCS, which

would elevate to 80% under LCS in 2050. Under the ZCS, the energy mix would

have the highest amount (93%) of energy from nuclear and renewables sources.

The capital cost of energy sector would be $347 bn in 2050, a 6.6 times increment

under M-A compared to H-A. The cost of decarbonization would be $300 bn in 2050

under M-A, which translates into 60% of the total cost ($419 bn) of the energy sector

development. Under the L-A, the capital cost would be approximately similar to

M-A. Moreover, the fuel cost would be 25% lower for L-A than that of M-A in 2050.

However, the cost of decarbonization would be $284 bn by 2050 under L-A, which

means 58% of the total cost ($404 bn). In 2050, the cost of decarbonization would

reach to $249 bn under Z-A, which would be 52% of the total cost ($368 bn).
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Figure 6.7: Cost breakdown in 2010 and under di�erent scenarios in 2050

6.5.3 Implication of technological maturity on the cost of de-

carbonization

Most of the fossil fuel based power plants, particularly gas and liquid hydrocarbon

based ones, have been operational in Bangladesh for last three decades. However,

coal-based power plants started operating in 2006. The present Barapukuria coal-

based power plant is a sub-critical power plant. The planned coal-based power plants

are going to be ultra-supercritical. Therefore, gas and liquid hydrocarbon based

power plants are matured technology; and coal, nuclear, solar, wind and geothermal

are considered new technology in Bangladesh. The di�erence between the high and

low cost for matured technology is lower than that of the new ones. As a result, the

scenarios with emissions reduction strategies show higher cost di�erence than that

of the HCS. The di�erence between the high and low range of capital cost would

be $86 bn in 2050 under HCS. The capital cost range from $633 bn to $153 bn in

2050 under the M-H and M-L scenarios, which means di�erence of $480 bn under

MCS. Moreover, the cost di�erence between the high and low range would be $481

bn and $445 bn in 2050 under LCS and ZCS, respectively. Studies suggest that over

time the matured technology reduces cost (Neij, 2008), which denotes that the cost

of energy sector development in Bangladesh may reduce in the future.

6.5.4 In�uence of corruption on the cost of decarbonization

According to the correlation study in Chapter 3, the cost of public power plants

showed a statistically signi�cant relationship with corruption in Bangladesh. In the

case of gas, liquid hydrocarbon, coal, solar and nuclear power plants, the cost range
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was derived from the cost database (Appendix B) developed for this study. The high

cost range for gas, liquid hydrocarbon, coal, solar and nuclear power plants repre-

sented the public plants. The lower limit of the cost range is based on private or

global average cost of establishing the power plant. Under the decarbonization sce-

narios, the county may develop the energy sector with a lower limit, if the corruption

is under control.

The cost of decarbonization would be $533 bn in 2050 under the M-H scenario

(Figure 6.5). Under lower corruption assumptions, the cost of decarbonization can

reduce 44% under M-A than that of M-H. If the corruption level can be minimized

to maintain the lower limit of the cost of energy sector future development, the

cost of decarbonization can be reduced 74% under M-L scenario compared to M-H.

Similarly, the cost of decarbonization can be reduced 76% and 77% under L-L and

Z-L scenarios compared to L-H and Z-H, respectively. If Bangladesh can control

the level of corruption and build power plants with the lower limit, the total cost

would be $182 bn under the Z-L scenario, whereas the upper limit of energy sector

development for H-H would be $184 bn in 2050 (Figure 6.4). Therefore, control of

corruption in the energy sector can signi�cantly in�uence the cost of decarbonization

in Bangladesh.

6.5.5 In�uence of demand reduction on the cost of decar-

bonization

The scenarios were analyzed with the capability of meeting the projected demand

for 2010-2050. Under the BAU scenario, the generation would reduce 89% in 2050

compared to 2010 (Figure 6.8). On the other hand, the electricity demand was

projected to be 36 times greater within the similar time span, resulting in 830 TWh

unmet demand by 2050 (Figure 6.5E). If Bangladesh follows CPS, the electricity

generation would increase 7.4 times by 2050 (Figure 6.8) but there would be 615

TWh unmet demand (Figure 6.5E). Under CPS, the energy mix would be coal-based

(57%) by 2030, as planned by PSMP 2010 (JICA and TEPCO, 2011), which would

reach 61% by 2050 (Figure 6.8).

Under the HCS, the electricity generation would increase 19 times in 2050 than

that of 2010 but the projected demand would not be met. The unmet demand would

be 267 TWh in 2050 (Figure 6.5E). Under the HCS, the electricity generation will
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increase 19 times in 2050 compared to 2010. The total generation would be 1000

TWh by 2050 under MCS, which will be 33 times higher than that of 2010 (Figure

6.8). For LCS, the energy generation will elevate 31 times in 2050 than that of 2010.

The ZCS also cannot meet the electricity demand by 2050. There would be 172

TWh unmet demand (Figure 6.5E) despite the 22 times generation increase in 2050

than that of 2010 under ZCS (Figure 6.8). The projected electricity demand would

be met only under MCS and LCS (Figure 6.5E).

The electricity generation cost in 2010 was $3/kWh, which will be $48, $1.19

and $1.01 under BAU, CPS, and HCS respectively in 2050. However, generation

cost will increase to $2.75 and $2.81/kWh under MCS and LCS respectively. Under

ZCS, the generation cost will increase to $3.63/kWh. The generation cost will be

32% and 29% lower under MCS and LCS respectively than that of ZCS, as well as

these scenarios, will meet the electricity demand by 2050. Therefore, Bangladesh

would need mixed energy generation sector of fossil fuel-based and renewable-based

technologies. Although, zero-carbon energy generation sector is not going to be

possible for Bangladesh by 2050, concentrating on LCS may pave the road towards

a zero carbon future. Also, LCS would be cheaper than that of MCS by 2050

because of the lower fuel cost. This lower fuel cost incentive can also drive the

energy sector towards lower dependency on the imported fuel and eventually on

volatile international fossil fuel market.

Demand reduction can act as a important driver for reducing cost of decar-

bonization for Bangladesh. The cost of decarbonization would be $300 bn and $284

bn under M-A and L-A, respectively. The cost of decarbonization can be $248 bn

by 2050 under Z-A. Evidently, Z-A would not meet the projected demand (Figure

6.5E). However, 20% reduction in demand by 2050 can make the decarbonizaiton

of Bangladesh's energy sector possible under ZCS with the cost range between $454

bn and $103 bn.

6.6 Summary

The cost model methodology and the cost assumptions was elaborated in this chap-

ter. The cost model was developed as a extension of BD2050- energy and emissions

pathway model. The total energy demand from 2010 to 2050 was estimated with the

BD2050 model under BAU scenario. The major assumptions of the demand sector
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Figure 6.8: Total electricity generation from di�erent supply sector 2010-2050
under (A)BAU, (B)CPS, (C)HCS, (D)MCS, (E)LCS and (F)ZCS
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was also described in this chapter. Moreover, the scenario matrix, de�nition, and

limitation of the cost model was discussed. At the end, the scenarios which were

analyzed for the cost of decarbonization were elaborated.

The total cost and cost of decarbonization was described in the initial part of this

chapter. The analysis showed the e�ect of a change in the energy mix, technological

maturity, and corruption on the cost of decarbonization. The present direction

of energy sector development has been fossil fuel dominating especially coal-based

for the future energy mix in Bangladesh. The emissions analysis suggested that the

GHG emissions will reach 15 times by 2050 under HCS as compared to 2010. Change

in energy mix towards renewable and nuclear can reduce the future emissions by 23%

in 2050 under LCS. The projected emissions can be reduced 73% under ZCS than

that of HCS. The cost of decarbonization would be highest in 2050 under MCS, which

would be 1.05 and 1.20 times than that of LCS and ZCS. Technological maturity also

in�uences the cost of decarbonization. The cost range di�erence is lower for matured

technologies compared to new technologies. The higher cost of decarbonization is

also associated with the adoption of relatively new renewable technologies in the

energy system. In the case of Bangladesh, corruption in energy sector found to be

the biggest catalyst in reducing the cost of decarbonization. Results showed that

if the country can minimize the e�ect of corruption in the energy sector, it can

reduce the cost of decarbonization 45-77% by 2050 under MCS, LCS, and ZCS.

Moreover, the analysis of generation and capability of the scenarios in meeting the

projected demand suggested that reduction in demand may also reduce the cost of

decarbonization.
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Chapter 7

Conclusion and future work

The outcomes of the study are concluded in this chapter. The conclusion section

summarizes the study outcomes and evaluates against the research questions. More-

over, the future prospect from this study is described in future work section.

7.1 Conclusion

A cost model was developed in this study to investigate the cost of decarboniza-

tion under di�erent emissions and economic conditions for Bangladesh from 2010 to

2050. To conclude the �ndings of this study, the research questions addressed at the

beginning will be answered in this section.

•What are the present state and future direction of energy sector of

Bangladesh?

(i) How did the energy demand and supply sector developed historically?

(ii) What is the future direction of the energy sector development?

Initially, the historical energy demand and supply scenario of Bangladesh was

investigated in Chapter 2. Moreover, the future direction of the energy sector of

Bangladesh was analyzed. Studies suggest that, Bangladesh is going to anticipate

a high exponential increase in electricity demand because of the rapidly growing

economy. The energy sector has been getting a massive makeover in the last decade

to meet the high demand, which is going to continue up to next couple of decades.

The electricity demand had been slowly growing since 1971, which took a signi�-

cant leap in the 2000's, and it will eventually keep elevating. Not only the demand
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sector but also the supply and distribution component of the electricity sector have

been observing a rapid growth. The present electricity generation is natural gas

dominating and going for a mixed fueled scenario in the future, which would be

predominantly coal-based. The majority of coal-based power plants would operate

with imported coal. Already, the dependency on imported petroleum-based rental

and quick rental power plants proved to be a questionable endeavor, which elevated

the generation cost and exposed the Bangladeshi energy sector to the volatile global

petroleum market. The further dependency on imported coal may pose more se-

vere constraint on the generation sector as well as the economy of Bangladesh. The

direction towards high GHG emissions intensive generation sector development is

questionable at the time when signi�cant discussion going on in Bangladesh as well

as international stages about the future high emission-intensive energy development.

•What are the costs of developing di�erent types of power plants in

Bangladesh?

(i) What are the capital cost of di�erent energy generation technologies in Bangladesh?

(ii) How did the cost of power plants evolved in Bangladesh?

(iii) What can we learn about the cost of energy sector in Bangladesh compared to

the rest of the world?

(iv) If the cost is higher or lower, what are the reasons behind the di�erence?

The cost dynamics of Bangladesh's energy sector was examined in Chapter 3.

For analyzing the cost of establishing power plants in Bangladesh, the cost (public

and private) data were collected and compared with the world. The results demon-

strated an intriguing aspect of a rapidly developing economy. Most of the public

plants showed higher capital cost compared to the world average. Also, the cost

of similar power generation technologies in private and public sector has a signi�-

cant di�erence in Bangladesh. On top of the higher capital cost, the cost evolution

demonstrated that cost of establishing public power plants is augmenting with time,

whereas its opposite in private sector as well as in the most of the cases globally. In

the case of increased cost, a statistically signi�cant correlation between corruption

and higher cost of power plants was found. Therefore, corruption may increase the
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cost of a power plant in a developing context such as Bangladesh.

After the analysis of the energy sector and the cost of establishing power plants

in Bangladesh, the state-of-the-art of energy planning models was undertaken in

Chapter 4. Current EPMs were mostly created in developed countries, often with

the assumptions and biases of the country and region in which they were developed.

Recognising the importance of EPMs in shaping the energy future, the analysis of

34 EPMs revealed several important shortcomings for the developing context. A

key �nding from the review is the lack of consideration in the analyzed EPMs of the

unique socioeconomic characteristics in developing countries such as suppressed de-

mand, corruption, and political instability. Disregarding suppressed energy demand

can potentially underestimate total demand, rendering future planning inaccurate

and ine�ective, especially for long-horizon planning such as 2050 pathways. Corrup-

tion is a complex socio-economic factor and can increase capital and operation costs

of energy projects and infrastructure in some developing countries, a�ecting sus-

tainability. Also, the economy is often linked with political instability, which on its

own can a�ect energy infrastructure resilience. Apart from the developing context-

speci�c socio-economic de�ciencies in the current EPMs, climate change impact

on land availability and food production is likely to alter the dynamics of energy-

food-emissions interactions, especially in the highly populated developing countries.

Increasing penetration of distributed energy resources and bioenergy goals require

that EPMs should now consider land-based interactions between energy, food, and

the environment for future planning and development. From the analysis, it was

evident that localized EPMs are very important in energy sector development in

developing contexts such as Bangladesh.

In addition to the analysis of EPMs, another systematic review was conducted

on the forecasting methods of EPMs in Chapter 5. The review of 483 EPMs, re-

vealed the use of �fty di�erent methods between 1985 and June 2017. Among the

50 identi�ed methods, statistical, computational intelligence (CI) and mathematical

programming (MP) methods were 28, 21 and one, respectively. Among CI methods,

ANN was utilized in 194 EPMs, followed by SVM (58 models), FL (40 models), GA

(39 models), PSO (34 models) and GM (29 models). In the case of statistical meth-

ods, ARIMA, LR, and ARMA were utilized in 46, 39 and 22 EPMs respectively for
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forecasting. Evidently, CI methods were widely utilized than that of statistical ones

for electric load and renewable energy forecasting. However, statistical methods

were used in 18% more models than that of CI and MP for energy and electricity

demand forecasting. The accuracy of CI methods for forecasting was better than

that of statistical ones. A signi�cant number of forecasting models utilized multiple

stand-alone methods to develop a hybrid approach because they yielded higher accu-

racy than that of stand-alone ones. In case of incomplete data-set, some CI methods

such as fuzzy logic and grey prediction outperformed other stand-alone ones. The

analysis of the studied model objectives showed that most of the forecasting meth-

ods were applied to forecast energy demand and electrical load. The development

of the forecasting models started in 1985, it spiked after 2005, and it is continuing.

Most numbers of models were developed in 2010. In case of the geographical extent,

although most of the models were established for developed countries, some of the

developing countries also established forecasting models. The highest number of

models were developed for China.

•How can the cost of decarbonization be modeled for Bangladesh up to

2050?

The objective of this study was to evaluate the current policies and future en-

ergy mix to investigate the cost of decarbonizing Bangladesh's energy sector. For

the investigation, a cost model was developed in Chapter 6. The cost model was

developed as an extension of the `BD2050 � Bangladesh 2050 Energy and Emissions

Pathways' model. BD2050 model was utilized for the energy demand, supply and

emissions projection. The assumptions for demand sector in BD2050 to estimate

and forecast the total electricity demand from 2010 to 2050, were brie�y described

in Section 6.1. The cost model structure and mathematical equations used in the

model along with the cost assumptions were also described in Section 6.2.

Six di�erent emissions scenarios were evaluated- business as usual (BAU), cur-

rent policy scenario (CPS), high-carbon scenario (HCS), medium-carbon scenario

(MCS), low-carbon scenario (LCS) and zero-emissions scenario (ZCS). The emis-

sions scenarios were described in Section 6.4. In addition to the emissions scenarios,

there were three economic scenarios such as low, average and high cost considered

in the study. Total 18 emissions-economic scenarios were analyzed in this study.
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•What would be the total cost of decarbonizing the energy sector of

Bangladesh?

(i) What would be the impact of change in energy mix on the cost of decaboniza-

tion, emissions and demand?

(ii) What would be the e�ect of technological maturity on the cost of decaboniza-

tion?

(iii) What would be the in�uence of corruption on the cost of decabonization?

The scenario-based analysis with the cost model developed in Chapter 6 was

discussed in Section 6.5. The total cost of future development of energy sector and

the cost of decarbonization of Bangladesh was discussed. Also, the discussion elab-

orated on the in�uence of change in the energy mix, generation technology maturity

and corruption on the cost of decarbonization. The total cost and cost of decar-

bonization would elevate would elevate exponentially by 2050 under MCS, LCS, and

ZCS because of adopting emissions reduction strategies for energy sector. The high

capital cost of new renewable technologies would drive the elevated cost. The results

showed that zero-carbon future might not be possible for Bangladesh by 2050. There

will be operational coal power plants by 2050, which were established in 2006. More-

over, the projected demand cannot be met under ZCS, as well as BAU, CPS, and

HCS. Only MCS and LCS can supply the projected energy needed for Bangladesh

by 2050. The emissions intensity would be 0.34 and 0.28 kgCO2e/kWh for MCS and

LCS respectively. The cost of decarbonizing the energy sector of Bangladesh would

be $2.75 and $2.81/kWh under MCS and LCS respectively. In the case of total

cost, the MCS is 4% expensive than that of LCS one. LCS would have higher coat

than that of MCS up to 2030 due to the high capital cost of renewable technologies.

However, the total cost under LCS would start to be lower than of MCS after 2035

for the fossil fuel cost. Although, the high dependency on �uctuating renewable

resources such as solar PV may result in load-shedding under LCS. On the other

hand, high dependency on imported fossil fuel under MCS may eventually expose

the Bangladeshi energy sector to volatile international fossil fuel market.

The study suggests that the cost of decarbonization can be reduced by controlling
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the corruption in energy sector in Bangladesh. Reducing the e�ect of corruption on

the energy sector can reduce the cost of decarbonization 45-77% by 2050 under

MCS, LCS, and ZCS. Another major driver for reducing cost of decarbonization

can be demand reduction. A 20% reduction in demand by 2050 can make the

decarbonizaiton of Bangladesh's energy sector possible under ZCS with the cost

range between $454 bn and $103 bn, which would also denote a 73% GHG emissions

by 2050 than that of projected highest emissions under HCS and MCS.

7.2 Contribution of the thesis

The contribution of the thesis are as follows:

(i) The problems rising and may come out of the energy sector development in

Bangladesh was pointed out by analyzing the mater plans and collected his-

torical data.

(ii) A cost database was developed for the baseline assumptions. Data analysis

demonstrated that the capital cost for public power plants were higher than

that of private ones. Moreover, a statistically signi�cant relationship between

corruption and higher cost of public power plants was found.

(iii) Challenges and gaps in EPMs originated in developed countries were identi�ed

for implementing in developing contexts.

(iv) Analysis of the forecasting methods revealed the mostly utilized method among

the reviewed 50 methods.

(v) Developing a cost model to calculate the cost of decarbonization as a extension

with the BD2050 model.

(vi) The cost of decarbonization was analyzed under six emissions and three eco-

nomic scenarios.

(vii) The drivers of total cost and cost of decarbonization for energy sector of

Bangladesh were identi�ed and analyzed.

(viii) The drivers of reducing the cost of decarbonization were identi�ed.
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7.3 Future works

Recommendations for further work are as follows:

(i) Collecting and Enriching the database with more cost data to analyze the

relationship between capital cost and corruption.

(ii) Analysing the di�erent components of capital cost such as land value, machin-

ery cost, construction expanse should be analyzed in detail upon collecting

detailed data to �nd which part is more prone to corruption based cost in-

crease.

(iii) Collecting and analyzing the cost data of energy generation technologies which

are new at present.

(iv) Analyzing the variables of suppressed demand, political stability, corruption,

climate change impact in terms of food security and extreme weather, and

their relationships with energy sector in Bangladesh to incorporate in the

energy planning model

(v) Develop an optimization module to incorporate with BD2050 and cost model

to �nd the least cost scenario under varied emissions scenarios.
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Table A.1: Forecasting models analyzed for investigating stand-alone statistical methods

Methods Ref.

Linear regression (LR) Song et al. (2005); Bilgili et al. (2012); Ekonomou (2010); Mackay and Probert (1995a,b, 2001); Niu et al. (2009);

Yu et al. (2012c,b); Xiaobo et al. (2014); Kandananond (2011); Amin-Naseri and Soroush (2008); Lee and Tong

(2011); Nguyen and Nabney (2010); Bianco et al. (2009, 2013); Rentziou et al. (2012); Mohamed and Bodger

(2005b); Pao (2006); Papalexopoulos and Hesterberg (1990); Melikoglu (2013); Bolton (1985); Sharma et al.

(2002); Gori et al. (2007); Haida and Muto (1994); Yumurtaci and Asmaz (2004); Arsenault et al. (1995); Köne

and Büke (2010); ZhiDong (2003); Egelioglu et al. (2001); Bianco et al. (2014b); Chi et al. (2009); Kankal et al.

(2011); Elattar et al. (2010); Ramsami and Oree (2015); De Felice et al. (2015); Baldacci et al. (2016); Khan

(2015); Zhang and Yang (2015)

Nonlinear regression (NLR) Bilgili et al. (2012); Ghiassi and Nangoy (2009); Tsekouras et al. (2007)

Logistic regression (LoR) Mackay and Probert (2001); Furtado and Suslick (1993); Forouzanfar et al. (2010); Melikoglu (2013); Mohamed

and Bodger (2005a); Gutiérrez et al. (2005); Siemek et al. (2003); Bodger and Tay (1987); Purohit and Kandpal

(2005); Carolin Mabel and Fernandez (2008); Bessec and Fouquau (2008); Meng and Niu (2011b); Nel and

Cooper (2008); Skiadas et al. (1993); McNeil and Letschert (2005); Daim et al. (2012); Debnath et al. (2015);

Bianco et al. (2014a); Shaikh and Ji (2016)

Nonparametric regression

(NR)
Charytoniuk et al. (1998); Wang et al. (2010a); Jónsson et al. (2010)
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Table A.1: Forecasting models analyzed for investigating stand-alone statistical methods

Methods Ref.

Partial least squares

regression (PLSR)
Zhang et al. (2009); Meng and Niu (2011a)

Stepwise regression (SR) Ekonomou (2010); Tso and Yau (2007); Rao and Parikh (1996); Aranda et al. (2012); Ramsami and Oree (2015);

Soldo et al. (2014); Poto£nik et al. (2014)

Moving average (MA) Azadeh et al. (2007a); Xu and Wang (2010); Zhu et al. (2011); Li et al. (2014)

Autoregressive integrated

moving average (ARIMA)
Li et al. (2014); Cadenas and Rivera (2007); Ediger and Akar (2007); Ediger et al. (2006); Sumer et al. (2009);

Guo et al. (2011); Darbellay and Slama (2000); Bowden and Payne (2008); Hu et al. (2013); Hong (2011, 2009a);

Wang et al. (2015b); Pai and Hong (2005); Tan et al. (2010); Cadenas et al. (2010); González-Romera et al.

(2008); Kandananond (2011); Shi et al. (2012); Lee and Tong (2012); Contreras et al. (2003); Pao and Tsai

(2011a); Gonzalez-Romera et al. (2006); Ierapetritou et al. (2002); Erdogdu (2010); Abdel-Aal and Al-Garni

(1997); Gonzales Chavez et al. (1999); Saab et al. (2001); Hagan and Behr (1987); Amjady (2001); Harris and

Liu (1993); Erdogdu (2007); Cho et al. (1995); Conejo et al. (2005); Reikard (2009); Kavasseri and Seetharaman

(2009); Liu and Lin (1991); Cadenas and Rivera (2010); Azadeh et al. (2007b); Zhou et al. (2006); Wang and

Hu (2015); Nobre et al. (2016); Wang et al. (2016); Bracale and De Falco (2015); Barak and Sadegh (2016); Sen

et al. (2016)
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Table A.1: Forecasting models analyzed for investigating stand-alone statistical methods

Methods Ref.

Seasonal autoregressive

integrated moving

average (SARIMA)

Zhu et al. (2011); Cadenas and Rivera (2007); Jeong et al. (2014); Ediger and Akar (2007); Damrongkulkamjorn

and Churueang (2005); Ediger et al. (2006); Sumer et al. (2009); Bouzerdoum et al. (2013); Guo et al. (2011);

Wang et al. (2012c); Boata and Paulescu (2014); Wang et al. (2010b); Yang et al. (2016)

Autoregressive moving

average model with

exogenous inputs

(ARMAX)

Li et al. (2014); González et al. (2012); Bakhat and Rosselló (2011); Wang et al. (2008); Lira et al. (2009);

Hickey et al. (2012); Pao (2006); Arciniegas and Rueda (2008); Yan and Chowdhury (2013, 2014b)

Autoregressive moving

average (ARMA)
González et al. (2012); Xiaobo et al. (2014); Liu and Shi (2013); Maia et al. (2006); Xu et al. (2015); El-Telbany

and El-Karmi (2008); Srinivasan (2008); Hagan and Behr (1987); Cadenas et al. (2010); Nowicka-Zagrajek and

Weron (2002); Pappas et al. (2008); Fan and McDonald (1994); Al-Shobaki and Mohsen (2008); Topalli et al.

(2006); Torres et al. (2005); Pappas et al. (2010); Taylor (2010); Crespo Cuaresma et al. (2004); Chu et al.

(2015); Yang et al. (2017); Kavousi-Fard et al. (2014); Zhu et al. (2015)
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Table A.1: Forecasting models analyzed for investigating stand-alone statistical methods

Methods Ref.

Vector autoregression

(VAR)
Chandramowli and Lahr (2012); Nasr et al. (2000); McAvinchey and Yannopoulos (2003); Ghosh (2006); Sari

and Soytas (2004); Lee and Chien (2010); Kulshreshtha and Parikh (2000); Abosedra et al. (2009); Narayan and

Prasad (2008); Inglesi (2010); García-Ascanio and Maté (2010); Athukorala and Wilson (2010); Baumeister and

Kilian (2015)

Bayesian vector

autoregression (BVAR)
Chandramowli and Lahr (2012); Crompton and Wu (2005); Francis et al. (2007); Miranda and Dunn (2006)

Structural Time Series

Model (STSM)
Dilaver and Hunt (2011a,b); Amarawickrama and Hunt (2008)

VARIMA García-Martos et al. (2013)

Generalized autoregressive

conditional heteroskedasticity

(GARCH)

Bakhat and Rosselló (2011); Hickey et al. (2012); Wang and Wu (2012); Tan et al. (2010); Liu and Shi (2013);

Cao et al. (2014); Wang et al. (2016); Wei et al. (2010); Garcia et al. (2005); Kang et al. (2009); Sadorsky (2006);

Diongue et al. (2009); Li et al. (2017); Zhang et al. (2015)
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Table A.1: Forecasting models analyzed for investigating stand-alone statistical methods

Methods Ref.

Seasonal exponential

form of generalized

autoregressive

conditional

heteroscedasticity

(SEGARCH)

Pao (2009)

Exponential generalized

autoregressive conditional

heteroscedasticity

(EGARCH)

Bowden and Payne (2008)

Winters model with

exponential form

of generalized

autoregressive

conditional

heteroscedasticity

(WARCH)

Pao (2009)
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Table A.1: Forecasting models analyzed for investigating stand-alone statistical methods

Methods Ref.

Autoregressive

distributed

lag (ARDL)

Dilaver and Hunt (2011a,b); Adom and Bekoe (2012); Kim et al. (2001); Zachariadis (2010); De Vita et al.

(2006)

Log-linear

analysis (LA)
Parikh et al. (2007); Pilli-Sihvola et al. (2010); Limanond et al. (2011); Wadud et al. (2011)

Geometric progression

(GP)
Mackay and Probert (1995a,b, 2001)

Transcendental

logarithmic (Translog)
Rao and Parikh (1996); Furtado and Suslick (1993)

Polynomial curve

model (PCM)
Xu and Wang (2010)

Partial adjustment

model (PAM)
Adom and Bekoe (2012); Nasr et al. (2000); Eltony (1996); Erdogdu (2007)

Analysis of variance

(ANOVA)
Azadeh et al. (2007a); Azadeh and Faiz (2011); Azadeh et al. (2008b); Al-Ghandoor et al. (2008, 2009); Azadeh

et al. (2008a); Trejo-Perea et al. (2009)
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Table A.1: Forecasting models analyzed for investigating stand-alone statistical methods

Methods Ref.

Unit root test

and/or

Cointegration

Adom and Bekoe (2012); De Vita et al. (2006); Nasr et al. (2000); Eltony (1996); Erdogdu (2007); Ghosh

(2006); Athukorala and Wilson (2010); Amarawickrama and Hunt (2008); Li et al. (2017); Pao and Tsai (2011b);

Kwakwa (2012); Narayan and Smyth (2007); Narayan et al. (2007); Smith et al. (1995); Masih and Masih (1996a);

Fouquet et al. (1997); Glasure (2002); Hondroyiannis et al. (2002); Galindo (2005); Lee and Chang (2005); Al-

Iriani (2006); Chen and Lee (2007); Lise and Van Montfort (2007); Zhao and Wu (2007); Feng et al. (2009);

Sadorsky (2009b,a); Narayan et al. (2010); Apergis and Payne (2010); Sadorsky (2011); Hatzigeorgiou et al.

(2011); Masih and Masih (1996b); Lin Chan and Kam Lee (1997); Eltony and Al-Mutairi (1995); Ramanathan

(1999); Alves and De Losso da Silveira Bueno (2003); Akinboade et al. (2008); Park and Zhao (2010); Zou and

Chau (2006); Ziramba (2010); Gallo et al. (2010); Silk and Joutz (1997); Narayan and Smyth (2005); Zachariadis

and Pashourtidou (2007); Yuan et al. (2007); Odhiambo (2009); Yoo and Kwak (2010); Lim et al. (2014)

Decomposition Damrongkulkamjorn and Churueang (2005); Dilaver and Hunt (2011a,b); Sánchez-Úbeda and Berzosa (2007);

Ang (1995a,b); Ang and Lee (1996); Ang and Zhang (2000); Sun (2001); Tao (2010); Afshar and Bigdeli (2011);

He et al. (2011); Kawase et al. (2006); An et al. (2013); Xiong et al. (2014); Wang et al. (2017)
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Table A.2: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models

Methods Reference

Computational intelligence (CI) methods

Support vector

machine (SVM)

Ekonomou (2010); Guo et al. (2011); Wang et al. (2010b); Yuan et al. (2015); Ju and Hong (2013); Zhang et al.

(2012); Hu et al. (2013); Hong (2011,?); Niu et al. (2010); Hong (2009a); Wang et al. (2012b, 2015b); Xiaobo

et al. (2014); Hong (2009b); Pai and Hong (2005); Shi et al. (2012); Wang et al. (2011); Fan et al. (2008); Ko

and Lee (2013); Cao et al. (2014); Li et al. (2012); Elattar et al. (2010); De Felice et al. (2015); Soldo et al.

(2014); Wang and Hu (2015); Wang et al. (2016); Yan and Chowdhury (2014b); Yang et al. (2017); Kavousi-

Fard et al. (2014); Zhu et al. (2015); Zhang et al. (2015); Xiong et al. (2014); Kavaklioglu (2011); Wang et al.

(2009); Mohandes et al. (2004); Niu et al. (2008); Hong et al. (2013); Patil and Patil (2015); Ji et al. (2007);

KÜÇÜKDEN�Z (2010); Chen and Chang (2004); Wu and Chang (2006); Ying and Pan (2008); Wang et al.

(2015a); Hu et al. (2015a); Rana et al. (2016); Lauret et al. (2015); Feijoo et al. (2016); Hu et al. (2015c, 2014);

Cecati et al. (2015); Yan and Chowdhury (2014a); Abdoos et al. (2015); Chen et al. (2015); Bai and Li (2016);

Deo et al. (2016)

Decision tree* Tso and Yau (2007); Yu et al. (2010); Ibarra-Berastegi et al. (2015); Lahouar and Ben Hadj Slama (2015)
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Table A.2: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models

Methods Reference

Arti�cial neural

network (ANN)

Bilgili et al. (2012); Ghiassi and Nangoy (2009); Ekonomou (2010); Tso and Yau (2007); Azadeh et al. (2007a);

Cadenas and Rivera (2007); Jeong et al. (2014); Darbellay and Slama (2000); Pao (2009); Limanond et al. (2011);

Azadeh and Faiz (2011); Azadeh et al. (2008b); Yalcinoz and Eminoglu (2005); Carpinteiro et al. (2007); Abdel-

Aal (2008); Ho et al. (1992); Ghanbari et al. (2013); Hu et al. (2013); Niu et al. (2009); Behrang et al. (2011a);

Hong (2009a); Wang et al. (2012b, 2015b); Behrang et al. (2011b); Cadenas et al. (2010); González-Romera

et al. (2008); Maia et al. (2006); Kandananond (2011); Wang et al. (2012a); Shi et al. (2012); Amin-Naseri

and Soroush (2008); Chen et al. (2013); Amjady (2006); Bazmi et al. (2012); Zahedi et al. (2013); Esen et al.

(2008a); Sfetsos and Coonick (2000); Akdemir and Çetinkaya (2012); Chen and Wang (2012); Chen (2012);

Chang et al. (2011); Bakirtzis et al. (1995); Srinivasan et al. (1995); Padmakumari et al. (1999); El-Telbany and

El-Karmi (2008); Yu et al. (2015); Hsu and Chen (2003a); Bashir and El-Hawary (2009); Ko and Lee (2013);

Azadeh et al. (2007b); Cinar et al. (2010); Shayeghi et al. (2009); Cao et al. (2014); Nguyen and Nabney (2010);

Mohandes et al. (1998a); Mandal et al. (2006); Srinivasan (2008); Li et al. (2012); Pao (2006); Kankal et al.

(2011); Ramsami and Oree (2015); Soldo et al. (2014); Poto£nik et al. (2014); Gonzalez-Romera et al. (2006);

Cadenas and Rivera (2010); Wang et al. (2016); Barak and Sadegh (2016); Yang et al. (2016); Arciniegas and

Rueda (2008); Topalli et al. (2006)
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Table A.2: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models

Methods Reference

Chu et al. (2015); Yang et al. (2017); Kavousi-Fard et al. (2014); Zhu et al. (2015); García-Ascanio and Maté

(2010); Azadeh et al. (2008a); Trejo-Perea et al. (2009); An et al. (2013); Mohandes et al. (2004); Patil and

Patil (2015); KÜÇÜKDEN�Z (2010); Ying and Pan (2008); Rana et al. (2016); Lauret et al. (2015); Cecati et al.

(2015); Abdoos et al. (2015); Bai and Li (2016); Khashei and Bijari (2010); Sun et al. (2011); Hsu and Chen

(2003b); Chakraborty and Simoes (2008); Al-Saba and El-Amin (1999); Es et al. (2014); Hamzaçebi (2007);

Sözen et al. (2005b); Sözen (2009); Sözen and Arcaklioglu (2007); Murat and Ceylan (2006); Liu et al. (1991);

Aydinalp et al. (2002); Ermis et al. (2007); Sözen et al. (2007); Geem and Roper (2009); Geem (2011); Xue et al.

(2011); Hsu and Yang (1991); Park et al. (1991); Lee et al. (1992); Peng et al. (1992); Chen et al. (1992); Lu

et al. (1993); Papalexopoulos et al. (1994); Sforna and Proverbio (1995); Mohammed et al. (1995); Khotanzad

et al. (1995, 1996); Bakirtzis et al. (1996); Chow and Leung (1996); Vermaak and Botha (1998); Hobbs et al.

(1998); Khotanzad et al. (1998); Gao and Tsoukalas (2001); Gareta et al. (2006); Kandil et al. (2006); Santos

et al. (2007); Al-Shareef et al. (2008); Vahidinasab et al. (2008); Catalão et al. (2007); Pao (2007); Xiao et al.

(2009); Kurban and Filik (2009); Siwek et al. (2009); Islam et al. (1995); González-Romera et al. (2007); AlShehri

(1999); Ghiassi et al. (2006); Xia et al. (2010); Chaturvedi et al. (2010); Benaouda et al. (2006); Beccali et al.

(2004); Amjady and Keynia (2008); Sözen et al. (2005a); Kavaklioglu et al. (2009); Dorvlo et al. (2002); Nizami

and Al-Garni (1995); González and Zamarreño (2005); Mohandes et al. (1998b)
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Table A.2: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models

Methods Reference

Ringwood et al. (2001); Esen et al. (2008b); Sideratos and Hatziargyriou (2007); Marquez et al. (2013); Fonte

et al. (2005); Lee et al. (2012); �zgi et al. (2012); Szkuta et al. (1999); Cadenas and Rivera (2009); Wang

and Liang (2009); Kermanshahi and Iwamiya (2002); Swarup and Satish (2002); Asgharizadeh and Taghizadeh

(2012); Hamzaçebi (2008); Kiartzis et al. (1995); Sözen et al. (2005c, 2004); Saini (2008); Lauret et al. (2008);

Assareh et al. (2011); Yu et al. (2012a); Pai (2006); Dolara et al. (2015); Mellit et al. (2014); Kashyap et al. (2015);

Laoua� et al. (2016); Ortiz et al. (2016); Sandhu et al. (2016); Osório et al. (2015); Singh et al. (2017); Kouhi

and Keynia (2013); Kouhi et al. (2014); Chaturvedi et al. (2015); Ghofrani et al. (2015); Rana and Koprinska

(2016); Khwaja et al. (2015); Li et al. (2015, 2016); Liu et al. (2014); Hernández et al. (2014); Sharma et al.

(2016); Kim (2015); Chae et al. (2016); Szoplik (2015); Panapakidis and Dagoumas (2017); Zjavka (2015)

Abductive net-

works

Abdel-Aal (2008); Abdel-Aal et al. (1997)

Expert system Ho et al. (1992); Rahman and Bhatnagar (1988); Ho et al. (1990); Rahman and Hazim (1996); Jabbour et al.

(1988); Ghanbari et al. (2013, 2011)
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Table A.2: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models

Methods Reference

Grey prediction

(GM/GP)

Guo et al. (2011); Akay and Atak (2007); Niu et al. (2009); Xu et al. (2015); Lee and Tong (2011, 2012); Hsu

and Chen (2003a); Xie and Li (2009); Li et al. (2012); Pao and Tsai (2011a); Zhou et al. (2006); Xue et al.

(2011); Pao et al. (2012); Lin et al. (2011); Lu et al. (2009); Ma and Wu (2009); Kumar and Jain (2010); Lee

and Shih (2011); Yao et al. (2003); Wang (2007); Yao and Chi (2004); Bianco et al. (2010); Mu et al. (2004); Pi

et al. (2010); Hamzacebi and Es (2014); Wang (2009); Bahrami et al. (2014); Tsai et al. (2017); Wu et al. (2015)

Fuzzy logic (FL) Song et al. (2005); Boata and Paulescu (2014); Lira et al. (2009); Ghanbari et al. (2011); Elias and Hatziargyriou

(2009); Chen et al. (2013); Bazmi et al. (2012); Zahedi et al. (2013); Esen et al. (2008a); Sfetsos and Coonick

(2000); Akdemir and Çetinkaya (2012); Chen and Wang (2012); Chen (2012); Chang et al. (2011); Bakirtzis

et al. (1995); Srinivasan et al. (1995); Papadakis et al. (1998); Padmakumari et al. (1999); Wang et al. (2016);

Barak and Sadegh (2016); Yang et al. (2016); Arciniegas and Rueda (2008); Ying and Pan (2008); Chakraborty

and Simoes (2008); Sideratos and Hatziargyriou (2007); Pai (2006); Laoua� et al. (2016); Osório et al. (2015);

Chaturvedi et al. (2015); Panapakidis and Dagoumas (2017); Kucukali and Baris (2010); Kiartzis et al. (2000);

Miranda and Monteiro (2000); Mamlook et al. (2009); Ahmadi et al. (2012); Jain et al. (2009); Lau et al. (2008);

Al-Ghandoor et al. (2012); Mori and Nakano (2016)
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Table A.2: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models

Methods Reference

Genetic algo-

rithm (GA)

Ghanbari et al. (2013, 2011); Canyurt and Ozturk (2008); Forouzanfar et al. (2010); Zhang et al. (2012); Assareh

et al. (2012, 2010); Chaturvedi et al. (1995); Hu et al. (2013); Samsami (2013); Yu et al. (2012c,b); Hong (2009a);

Wang et al. (2015b); Chang et al. (2011); Yu et al. (2015); Yu and Zhu (2012); Lee and Tong (2011, 2012); Xie

and Li (2009); Azadeh et al. (2007b); Cinar et al. (2010); Azadeh and Tarverdian (2007); Barak and Sadegh

(2016); Chu et al. (2015); Kavousi-Fard et al. (2014); Hong et al. (2013); Ying and Pan (2008); Chaturvedi et al.

(2015); Panapakidis and Dagoumas (2017); Da Silva et al. (2000); Sirikum and Techanitisawad (2006); Ceylan

and Ozturk (2004); Ozturk et al. (2005); Haldenbilen and Ceylan (2005); Canyurt and Öztürk (2006); Ozturk

et al. (2004); Ozturk and Ceylan (2005); Kavoosi et al. (2012)

Arti�cial bee

colony optimiza-

tion (ABCO)

Behrang et al. (2011a); Hong (2011); Kavousi-Fard et al. (2014); Li et al. (2015)

Ant colony opti-

mization (ACO)

Ghanbari et al. (2013, 2011); K�ran et al. (2012); Rahmani et al. (2013); Niu et al. (2010); Samsami (2013);

Duran Toksar� (2007); Toksar� (2009); Yu et al. (2012c,b)
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Table A.2: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models

Methods Reference

Particle swarm

optimization

(PSO)

Zhu et al. (2011); Wang et al. (2012c, 2010b, 2008); Assareh et al. (2012, 2010); Hu et al. (2013); K�ran et al.

(2012); Rahmani et al. (2013); AlRashidi and El-Naggar (2010); Kamrani (2010); Abdelfatah et al. (2013); Niu

et al. (2009); Samsami (2013); Yu et al. (2012c,b); Hong (2009a); El-Telbany and El-Karmi (2008); Yu et al.

(2015); Yu and Zhu (2012); Bashir and El-Hawary (2009); Cao et al. (2014); Barak and Sadegh (2016); Zhang

et al. (2015); Hu et al. (2014); Chen et al. (2015); Assareh et al. (2011); Yu et al. (2012a); Osório et al. (2015);

Liu et al. (2014); Bahrami et al. (2014); Mori and Nakano (2016); Aghaei et al. (2013); Nazari et al. (2014)

Gravitational

search algorithm

(GSA)

Yuan et al. (2015); Ju and Hong (2013); Behrang et al. (2011b); Gavrilas et al. (2014)

Chaotic ant

swarm optimiza-

tion (CAS)

Hong (2010, 2009a)

Di�erential evo-

lution (DE)

Wang et al. (2012b, 2015b); Xiaobo et al. (2014); Kouhi et al. (2014)

Harmony search

(HS)

Ceylan et al. (2008)
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Table A.2: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models

Methods Reference

Evolutionary al-

gorithm (EA)

Wang et al. (2008)

Memetic algo-

rithms (MA)

Hu et al. (2013)

Immune algo-

rithm (IA)

Ceylan et al. (2008)

Simulated

annealing algo-

rithms (SA)

Zhang et al. (2012); Hu et al. (2013); Hong (2009a); Pai and Hong (2005); Hu et al. (2015a); Wang et al. (2015b)

Fire�y algo-

rithm (FA)

Hu et al. (2013); Kavousi-Fard et al. (2014); Hu et al. (2015c,b)

Cuckoo search

algorithm (CSA)

Wang et al. (2016); Kim (2015)

Mathematical programming (MP) methods

Nonlinear pro-

gramming

(NLP)

Forouzanfar et al. (2010)
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Table A.2: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models

Methods Reference

*Random forest was included under decision tree modeling as they are collection of decision trees in the modeling.
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Electricity

demand
2006 - D -

- D - - D D - - - - - 5-5-1

Pao (2006)D - - D D - - - - - 5-6-1

D - - - D D - - - - - 4-8-2

Electricity

demand
2012 - D - D - - - D - - - D D - - 4-20-17-1 Bilgili et al.

(2012)

Energy

demand
2010 - - D - D - - - D D - - - - - 8-36-1 Ekonomou

(2010)

Electricity

load
2008 - D -

D - - D - D - - - - - 9-10-1 Amin-Naseri

and Soroush

(2008)

- D - - - D D - - - - - 10-31-1

- D - - - D D - - - - - 8-17-1

- D - D - - D - - - - - 9-2-1
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

- - D - - D - D - D - - 12-16-6-1

Electricity

demand
2007 - - D D - - D - D - - - - - 5-5-1 Azadeh et al.

(2007a)

Energy

demand
2011 - D D

D - - D - D - - - - - 5-10-1 Limanond

et al. (2011)

- D - D - - D - D - - 5-5-5-1

- - D D - - D - - - - - 12�4�1

Energy

demand
2008 - D -

- D - D - D - - - - - 12�5�1 Abdel-Aal

(2008)

- - D - D - D - - - - - 12�6�1

D - - - D - D - - - - - 3�5�1

Energy

demand
2009 - D -

- - D - - D - - - - - 2-3-1
Pao (2009)

D - - D - - D - - - - - 2-4-1
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Solar

radiation
1998 - D - - - - D - D - - - - - 4-10-1 Mohandes

et al. (1998a)

Wind

speed
2010 D D -

- - D - - - - - - - - 3-1 Cadenas and

Rivera (2010)

D - - D - - - - - - - - 2-1

D - - D - - D - - - - - 3-3-1

D - - D - - D - - - - - 3-2-1

Electricity

demand
2000 - D - - D - D D - - - - - 6-6-1 Darbellay

and Slama

(2000)

Wind

speed
2007 D - - D - - D - - - - - - - - 3-1 Cadenas and

Rivera (2007)
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Electricity

demand
2011 - D - - D - - D - D - - - - - 5-12-1 Azadeh and

Faiz (2011)

Electricity

demand
2013 - D - - - D - - D - - D - - - 48-97-48 An et al.

(2013)

Electricity

demand
2012 - D - D - - D - - D - - - - - 1-2-1 Li et al.

(2012)

Time-series

forecasting
2010 - D -

D - D - - D - - - - - 8-3-1 Khashei and

Bijari (2010)

- D - D - - D - - - - - 8-4-1

- - D D - - D - - - - - 12-4-1

D - - D - - D - - - - - 4-4-1

- D - - D - D - - - - - 7-5-1
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Electricity

demand
2007 - D D

- - D - - D - - - - - 2-2-1 Azadeh and

Tarverdian

(2007)

D - - - D - - D - D - - 2-10-10-1

D - - - - D - - D D - - 2-20-20-1

Electricity

demand
2008 - D - D - - D - - D - - - - - 3-2-1 Azadeh et al.

(2008b)

Electricity

demand
2008 - - D D - - D - - D - - D - - 5�3�2�1 Azadeh et al.

(2008a)

Electricity

load
2003 - D - D - - D - - D - - - - - 3-2-1 Hsu and Chen

(2003b)
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Electricity

load
2005 - - D

D - - D - - D D - - 6-5-8-1 Yalcinoz and

Eminoglu

(2005)

- D - - D - - D - D - - 9-5-8-1

Energy

demand
2009 - D -

- - - D - D - - - - - 4-5-1 Trejo-Perea

et al. (2009)

D - - D - - D - - - - - 4-4-1

D - - D - - D - - - - - 4-3-1

D - - D - - D - - - - - 4-2-1

Electricity

demand
2011 - D -

- - - D - D - - - - - 4-10-1 Kandananond

(2011)

D - - - D - D - - - - - 4-6-1

D - - - D - D - - - - - 4-8-1

D - - - D - D - - - - - 4-6-1
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

D - - - D - D - - - - - 4-5-1

Energy

demand
1999 - D -

- - - D - D - - - - - 2-7-1 Al-Saba and

El-Amin

(1999)

D - - - D - D - - - - - 3-7-1

D - - - D - D - - - - - 4-7-1

- D - - D - D - - - - - 5-7-1

Electricity

demand
2007 - D - D - - D - - D - - - - - 4-2-4 Hamzaçebi

(2007)

Energy

demand
2005 - - D

D - D - - D - - D - - 5-4-4-1 Sözen et al.

(2005b)

- D - D - - D - - D - - 7-4-4-1
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Energy

demand
2002 - D -

- D - - D D - - - - - 55-27-1 Aydinalp

et al. (2002)

- - D D - - D - - - - - 55-02-1

Electricity

load
1994 - D - - - D - - D - - D - - - 77-24-24 Papalexopoulos

et al. (1994)

Electricity

load
1996 - D - - - D - - D - - D - - - 63-24-24 Bakirtzis

et al. (1996)

Electricity

load
1993 - D -

- D - D - D - - - - - 29-8-1

Lu et al. (1993)- - D - D - D - - - - - 22-5-1

- - D - - D - - D - - - 39-10-24

Electricity

load
1992 - D - - D - - D - D - - - - - 5-8-1 Peng et al.

(1992)

251



Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Electricity

load
1996 - D - - - D - - D - - D - - - 81-81-24 Chow and Le-

ung (1996)

Electricity

load
1998 - D -

- D - - D D - - - - - 15-(7-12)*-1 Vermaak and

Botha (1998)

- - D - - D D - - - - -
7-(10-16)

�-1

Electricity

load
2006 - D - - - D - - D D - - - - - 32-65-1 Kandil et al.

(2006)

Electricity

load
2008 - D - D - - D - - D - - - - - 4-3-1 Al-Shareef

et al. (2008)

Electricity

price
2007 - D - D - - - D - D - - - - - 5-7-1 Pao (2007)
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Electricity

load
2009 - - D - - D - - D - - D - - D 19-20-15-24 Siwek et al.

(2009)

Electricity

demand
1999 - D - D - - - D - D - - - - - 3-5-1 AlShehri

(1999)

Electricity

demand
2015 - D - - D - D - - D - - - - - 5�3�1 Yu et al.

(2015)

Solar

energy

potential

2005 - D - - D - - D - D - - - - - 6-6-1 Sözen et al.

(2005a)

Electricity

demand
2001 - D -

- - - D - D - - - - - 2-6-1 Ringwood

et al. (2001)

D - - - D - D - - - - - 3-9-1
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

D - - - D - D - - - - - 3-5-1

D - - D - - D - - - - - 1-3-1

Wind

speed
2005 - D - - - D - - D D - - - - - 14-15-1 Fonte et al.

(2005)

Wind

speed
2012 - D - - D - - D - D - - - - - 5-10-1 Lee et al.

(2012)

Wind

speed
2009 D D -

- - D - - - - - - - - 3-1 Cadenas and

Rivera (2009)

D - - D - - - - - - - - 2-1

D - - D - - D - - - - - 3-3-1

D - - D - - D - - - - - 3-2-1
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Electricity

price
1999 - D - - - D - - D D - - - - - 15-15-1 Szkuta et al.

(1999)

Electricity

demand
2013 - D - D - - - D - D - - - - - 4-6-1 Ghanbari

et al. (2013)

Natural

gas demand
2013 - D - D - - - D - D - - - - - 3-5-1 Ghanbari

et al. (2013)

Oil

products

demand

2013 - D - D - - D - - D - - - - - 2-3-1 Ghanbari

et al. (2013)

Energy

demand
2009 - D - - D - - D - D - - - - - 7-8-1 Wang and

Liang (2009)
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Table A.3: ANN model objectives and structures

Forecasted

variable
Year

No. of

layers
No. of neurons in layers Neuron

composi-

tion

Ref.

2 3 4
1st 2nd 3rd 4th

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

<
5

5
-1
0

>
1
0

Electricity

load
2008 - - D - - D - D - - D - D - - 11-5-5-1 Saini (2008)

Electricity

demand
1999 - D -

- - D - - D - - - - - 3-2-1 Padmakumari

et al. (1999)

D - - D - - D - - - - - 3-1-1

Electricity

demand
2015 - D - - - D D - - D - - - - - 12-4-1 Wang et al.

(2015b)

Total number 3 44 9 48 25 22 37 42 17 76 6 8 11 0 1

% 6% 83% 17% 49% 26% 23% 38% 43% 18% 78% 6% 8% 11% 0% 1%

* Number of hidden layer neurons form week 1 to 21 ranged from 7 to 12 for feedforward networks

� Number of hidden layer neurons form week 1 to 21 ranged from 10 to 16 for recurrent networks
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Electricity

price

WT-

GARCH-

ARIMA

1.61 - - - - - -

WT-GARCH-

ARIMA

Tan et al.

(2010)

ARIMA 10.61 - - - - - -

ARIMA-

GARCH

8.65 - - - - - -

WT-

ARIMA

6.37 - - - - - -

Electricity

consumption

AR

(1)+HPF

- 4.64� - - - - -

AR (1)+HPF

Saab et al.

(2001)

AR (1) - 7.23� - - - - -

ARIMA - 6.11� - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Power

from

PV system

ARMAX 38.88 - 104.77 77.27 - - -

ARMAX

Li et al.

(2014)

ARIMA 76.66 - 172.96 140.9 - - -

Single

moving

average

82.09 - 190.59 153.8 - - -

Double

moving

average

88.1 - 180.25 152 - - -

Single

exponential

smoothing

72.93 - 180.95 141.5 - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Double

exponential

smoothing

72.85 - 181.04 141.5 - - -

Holte

Winter's

additive

72.36 - 185.1 144.6 - - -

Holte

Winter's

multiplicative

75.94 - 185.43 146.5 - - -

Electricity

consumption

(48 historical

data)

LR 8.6 1341.57 1508.96 - - - -

ANN

Pao (2006)

RSREG** 9.51 1489.72 1701.9 - - - -

ARMAX 4.83 764.9 931.13 - - - -

ANN 3.19 460.74 635.38 - - - -

Electricity

consumption

(132 historical

data)

LR 8.84 1376.26 1542.43 - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

RSREG** 7.58 1171.78 1295.43 - - - -

ARMAX 8.88 1386.99 1566.34 - - - -

ANN 4.02 598.65 709.25 - - - -

Energy

consumption
WARCH 2.9 - - - - - -

WARCH-ANN

Pao (2007)

SEGARCH 3.65 - - - - - -

WARCH-

ANN

2.56 - - - - - -

SEGARCH-

ANN

2.98 - - - - - -

Electricity

demand

PSO

(training)
2.42 - - - - - -

PSO

El-Telbany

and El-Karmi

(2008)
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

PSO

(test set)
2.52 - - - - - -

BP

algorithm

(training)

3.2 - - - - - -

BP

algorithm

(test set)

2.82 - - - - - -

ARMA

(training)
3.98 - - - - - -

ARMA

(test set)
3.93 - - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Energy

consumption

GPGM (1, 1)

(training)
2.59 - - - - - -

GPGM (1, 1)

Lee and Tong

(2011)

GPGM (1, 1)

(test set)
20.23 - - - - - -

GM(1,1)

(training)
4.13 - - - - - -

GM(1,1)

(test set)
26.21 - - - - - -

LR

(training)
4.2 - - - - - -

LR (test set) 27.76 - - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Energy

consumption

Hybrid

dynamic

GM

0.4 874.19 1383.11 - - - -

Hybrid

dynamic

GM

Lee and Tong

(2012)

GM (1,1) 16.94 26945.07 30384.99 - - - -

NDGM(1,1) 33.33 73052.8 93230.75 - - - -

ARIMA 17.99 41890.49 59271.76 - - - -

GP 5.12 10631.51 13325.14 - - - -

Hybrid

GM(1,1)
4.93 9949.13 12054.78 - - - -

Mid-term

load

forecasting

DLS-SVM 1.082 - - - - - -

DLS-SVM

(Niu et al.,

2008)

LS-SMV 1.101 - - - - - - Wu and

Chang (2006)
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

SMV 2.149 - - - - - - Chen and

Chang (2004)

Solar

radiation

FNN 6.03-

9.65

- - - - - -

FNN

(Chen et al.,

2013)

ARIMA

and

descriptive

statistics

Around

30

- - - - - - Nomiyama

et al. (2011)

Fuzzy logic 13.9 -

20.2

- - - - - - Chen et al.

(2013)

ANN 10.9-

20.3

- - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Power

demand

GM (1,1) 3.88 - - - - - - Improved GM

(1,1)

Hsu and Chen

(2003a)

Improved

GM (1,1)
1.29 - - - - - -

ARIMA 2.27 - - - - - -

CO2

emission
ARIMA 2.75 9.81 11.25 - - - -

GP (4 year)

Pao and Tsai

(2011a)

GP (4 year) 2.46 8.78 11.25 - - - -

GP (5 year) 4.22 15.27 17.6 - - - -

GP (6 year) 2.6 9.29 11.75 - - - -

Energy

consumption

ARIMA 1.75 158.11 174.36 - - - -

ARIMA
GP (4 year) 4.4 427.07 627.61 - - - -

GP (5 year) 3.32 320.06 455.69 - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

GP (6 year) 2.45 231.23 304.28 - - - -

Economic

growth

(GDP)

ARIMA 4.17 32.06 41.49 - - - -

GP (4 year)
GP (4 year) 1.81 13.69 19.15 - - - -

GP (5 year) 3.41 26.17 36.9 - - - -

GP (6 year) 5.44 41.45 55.84 - - - -

Energy

consumption

GM - - - - - - 7.17

GM-ARMA

Xu et al.

(2015)

ARMA - - - - - - 7.62

GM-ARMA - - - - - - 4.39

Wind speed SARIMA-

LSSVM

6.76 - - - - - - SARIMA-

LSSVM

(Guo et al.,

2011)

ARIMA 18.08 - - - - - -

SARIMA 11.08 - - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

LSSVM 8.83 - - - - - -

GM 8.93 - - - - - -

ARIMA-

SVM

14.81 - - - - - -

Electric

load

ARIMA 6.044 - - - - - -

SSVRCGA

Zhu et al.

(2011)

SVRCGA 3.382 - - - - - -

SSVRCGA 2.695 - - - - - -

Electric

load

SVRCPSO 1.61 - - - - - -

SVRCPSO Hong (2009a)
SVRPSO 3.14 - - - - - -

SVMSA 1.76 - - - - - -

ARIMA 10.31 - - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Electricity

demand

SARIMA 6.08 - - - - - - MA-C-WH Zhu et al.

(2011)

MA-C-H 3.86 - - - - - -

MA-C-WH 3.69 - - - - - -

Electric

load

SSVRCGASA 3.73 - - - - - -

SSVRCGASA

Zhang et al.

(2012)

TF-ε-SVR-

SA

3.799 - - - - - -

ARIMA 6.04 - - - - - -

Electric

load

(Eastern

regional)

SVRCAS 2.23 - - - - - -

SVRCPSO

Hong (2010)

SVRCPSO 2.19 - - - - - -

SVRCGA 2.57 - - - - - -

Regression 4.1 - - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

ANN 3.6 - - - - - -

Electric load ARIMA 6.04 - - - - - - SRSVRCABC Hong (2011)

TF-ε-SVR-

SA

3.8 - - - - - -

SSVRCABC 3.06 - - - - - -

SRSVRCABC 2.39 - - - - - -

Electric

load

ARIMA 10.31 - - 13788 0.105997 - -

SVMSA

Pai and Hong

(2005)

GRNN 5.18 - - 6758 0.054732 - -

SVMSA 1.76 - - 2,448 0.026357 - -

Electric

load

SSVRGSA 2.587 - - - - - -

SSVRGSA

Ju and Hong

(2013)

ARIMA 6.044 - - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

SVRGSA 3.199 - - - - - -

TF-ε-SVR-

SA

3.799 - - - - - -

Electricity

demand

ADE-BPNN 1.725 3.0623 3.9925 - - - -

ADE-BPNN

Wang et al.

(2015b)

ARIMA 6.044 10.6641 12.3787 - - - -

BPNN 3.341 5.9958 6.987 - - - -

GA-BPNN 3.168 5.5618 6.9285 - - - -

DE-BPNN 3.08 5.4004 6.8622 - - - -

SSVRCGASA 1.901 3.4347 4.1822 - - - -

TF-ε-SVR-

SA

3.799 6.9694 8.6167 - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Electric load SVM - - 12.37† - - - - GRA-DE-SVR Xiaobo et al.

(2014)

GRA-DE-

SVR

- - 10.85† - - - -

ARMA - - 10.93† - - - -

LR - - 11.99† - - - -

Natural gas

consumption

PCMACP -3.42 - - - - - -

PCMACP

Xu and Wang

(2010)

Polynomial

Curve (2nd

order)

-10.75 - - - - - -

BP neural

network
-10.68 - - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

GM -39.61 - - - - - -

Energy

consumption

WARCH-

ANN

2.56 404184.2 531545.14 - - - -

WARCH-ANN

Pao (2009)

WARCH 2.9 474189.2 643744.33 - - - -

SEGARCH 3.65 606629.3 824500.08 - - - -

SEGARCH-

ANN

2.98 464632.4 596013.96 - - - -

Petroleum

consumption

WARCH-

ANN

3.51 112542.5 134832.21 - - - -

WARCH-ANN
WARCH 4.08 134300.1 165753.68 - - - -

SEGARCH 4.88 167031.1 204369.84 - - - -

SEGARCH-

ANN

3.71 122320.1 148234.91 - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Electricity

demand

F-S-

SARIMA***

2.19 - 4.91 - - 2.65 -

F-S-SARIMA

Wang et al.

(2012c)

SARIMA 3.28 - 6.67 - - 3.74 -

F-SARIMA 2.75 - 6.57 - - 3.68 -

S-SARIMA 2.91 - 6.25 - - 3.37 -

Electricity

demand

COR-ACO-

GA

- - 1292.381 - - - - COR-ACO-GA Ghanbari

et al. (2013)

ANFIS - - 4563.398 - - - -

ANN - - 6323.944 - - - -

Natural

gas

demand

COR-ACO-

GA

- - 648.31 - - - -

ANFIS - - 1206.816 - - - -

ANN - - 2178.246 - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

Oil

products

demand

COR-ACO-

GA

- - 3.750578 - - - -

ANFIS - - 8.795963 - - - -

ANN - - 11.05846 - - - -

Electricity

price
BPANN 29.46 8.5021 - - - - - DCANN Wang et al.

(2016)

FNN 22.03 6.8929 - - - - -

LSSVM 9.5 4.4632 - - - - -

ARFIMA 35.08 8.8737 - - - - -

GARCH 25.11 7.2425 - - - - -

DCANN 8.87 4.2611 - - - - -

Electric load ARMA 2.3688 34.0608 2.9198 - - - - SVR-MFA Kavousi-Fard

et al. (2014)
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

ANN 1.9569 28.8032 2.6396 - - - -

SVR-GA 1.8501 27.3499 2.1943 - - - -

SVR-HBMO 1.8375 26.5383 2.0007 - - - -

SVR-FA 1.8051 26.1718 2.5667 - - - -

SVR-PSO 1.7381 24.0145 2.1399 - - - -

SVR-MFA 1.6909 22.5423 2.0604 - - - -

Energy

demand

SC-SVR 2.36 3913.88 - - - - -

SC-SVR

Bai and Li

(2016)

LSSVR 4.77 8285.22 - - - - -

BPNN 3.61 4549.69 - - - - -

Energy

demand
ARMA 6.1 13.6 - - - - -

FNF-SVRLP

Zhu et al.

(2015)

ANN 5.3 11.9 - - - - -
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Table A.4: Method-wise accuracy of the selected reviewed models

Forecasting

objective
Methods

Accuracy*
Best method Ref.

M
A
P
E
(%

)

M
A
E
(-
)

R
M
S
E
(-
)

M
A
D
(-
)

N
R
M
S
E
(-
)

S
E
P
(-
)

A
R
E
(%

)

SVRLP 4.4 10.4 - - - - -

FNF-

SVRLP

3.8 9.2 - - - - -

*,Accuracy metrics: Mean absolute percentage forecast error (MAPE), mean absolute error (MAE), root mean square error (RMSE),

mean absolute deviation (MAD), normalized root-mean-square error measure (NRMSE),

standard error of prediction (SEP) and absolute relative error (ARE)

** Response surface regression model (RSREG)

*** PSO optimal Fourier approach on residual modi�cation of SARIMA was applied
†The values in the study was reported in percentage (%)
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Table A.5: Statistical method-wise objective of the reviewed models

Objectives
Energy

Demand

Energy

Supply

Renewable

energy

GHG

emiss-

ions

Energy

economic

Socio

economic

Energy

and

electricity

price

Load

foreca-

sting

Planning

and/or

Policy

analysis

Perfor-

mance

Model

develop-

ment
Total %

Methods

LR D D - D D - D D - - D 7 9.0%

NLR D D - D D - - - - - D 5 6.4%

LoR D D D D - - - - - - - 4 5.1%

NR - - D - - - - D - - - 2 2.6%

PLSR D - - - - - - - - - - 1 1.3%

GP D - - - - - - - - - - 1 1.3%

Log

linear

analysis

D - - - D - - - - - - 2 2.6%

Translog D - - - - - - - - - - 1 1.3%

Polynomial

curve

model

D - - - - - - - - - - 1 1.3%
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Table A.5: Statistical method-wise objective of the reviewed models

Objectives
Energy

Demand

Energy

Supply

Renewable

energy

GHG

emiss-

ions

Energy

economic

Socio

economic

Energy

and

electricity

price

Load

foreca-

sting

Planning

and/or

Policy

analysis

Perfor-

mance

Model

develop-

ment
Total %

Methods

MA D - - - - - - - - - - 1 1.3%

ARIMA D D D D D D D D - - D 9 11.5%

SARIMA D D D - D - - D - - - 5 6.4%

ARMAX - - D - - - D D - - - 3 3.8%

ARMA D - D D - - D D - - D 6 7.7%

ANOVA D - - D - - - - - - - 2 2.6%

SR D D - - - - - - - - - 2 2.6%

VAR D - - - - - D - - - - 2 2.6%

ARDL D - - - - D D - - - - 3 3.8%

PAM D - - - - - - - - - - 1 1.3%

GARCH D - - - D - D - - - - 3 3.8%

SEGARCH D - - - - - - - - - - 1 1.3%
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Table A.5: Statistical method-wise objective of the reviewed models

Objectives
Energy

Demand

Energy

Supply

Renewable

energy

GHG

emiss-

ions

Energy

economic

Socio

economic

Energy

and

electricity

price

Load

foreca-

sting

Planning

and/or

Policy

analysis

Perfor-

mance

Model

develop-

ment
Total %

Methods

EGARCH - - - - - - D - - - - 1 1.3%

WARCH D - - - - - - - - - - 1 1.3%

Decompo-

sition
D D - D - - D D - - D 6 7.7%

Unit root

test and/or

Cointegr-

ation

D - - D D D D - - - - 5 6.4%

BVAR D - D - - - - D - - - 3 3.8%

Number

of

methods

23 7 7 8 7 3 10 8 0 0 5
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Table A.5: Statistical method-wise objective of the reviewed models

Objectives
Energy

Demand

Energy

Supply

Renewable

energy

GHG

emiss-

ions

Energy

economic

Socio

economic

Energy

and

electricity

price

Load

foreca-

sting

Planning

and/or

Policy

analysis

Perfor-

mance

Model

develop-

ment
Total %

Methods

Number

of

models

186 11 29 29 14 15 32 23 0 0 6

Percentage

of model

(%)

53.9% 3.2% 8.4% 8.4% 4.1% 4.3% 9.3% 6.7% 0.0% 0.0% 1.7%
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Table A.6: CI and mathematical method-wise objective of the reviewed models

Objectives
Energy

Demand

Energy

Supply

Renewable

energy

GHG

emiss-

ions

Energy

economic

Socio

economic

Energy

and

electricity

price

Load

foreca-

sting

Planning

and/or

Policy

analysis

Perfor-

mance

Model

develop-

ment
Total %

Methods

SVM D - D - D - D D - - D 6 8.7%

Decision tree D - D - - - - D - - - 3 4.3%

ANN D D D D D - D D - D D 9 13.0%

Abductive

networks
D - - - - - - - - - - 1 1.4%

Grey

prediction
D D D D - D D D - - - 7 10.1%

Fuzzy

logic
D - D - - - D D D D - 6 8.7%

Expert

system
D - - - - - - D - - - 2 2.9%

GA D - - D - - - D D - D 5 7.2%

ABCO - - - D - - - D - - - 2 2.9%
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Table A.6: CI and mathematical method-wise objective of the reviewed models

Objectives
Energy

Demand

Energy

Supply

Renewable

energy

GHG

emiss-

ions

Energy

economic

Socio

economic

Energy

and

electricity

price

Load

foreca-

sting

Planning

and/or

Policy

analysis

Perfor-

mance

Model

develop-

ment
Total %

Methods

ACO D D D D - - - D D - - 6 8.7%

PSO D - D D - - D D D - - 6 10.1%

GSA D - D - - - - D - - - 3 4.3%

CAS - - - - - - - D - - - 1 1.4%

DE - - - - - - - D - - D 2 2.9%

HS D - - - - - - - - - - 1 1.4%

EA - - - - - - - D - - - 1 1.4%

MA - - - - - - - D - - - 1 1.4%

IA - - - - - - - D - - - 1 1.4%

SA - - D - - - - D - - - 2 2.9%

FA - - - - - - - D - - - 1 1.4%

CSA - - - - - - D - - - - 1 1.4%
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Table A.6: CI and mathematical method-wise objective of the reviewed models

Objectives
Energy

Demand

Energy

Supply

Renewable

energy

GHG

emiss-

ions

Energy

economic

Socio

economic

Energy

and

electricity

price

Load

foreca-

sting

Planning

and/or

Policy

analysis

Perfor-

mance

Model

develop-

ment
Total %

Methods

NLP D - - - - - - - - - - 1 1.4%

Number

of

methods

23 7 7 8 7 3 10 8 0 0 5

Number

of

models

186 11 29 29 14 15 32 23 0 0 6

Percentage

of model

(%)

53.9% 3.2% 8.4% 8.4% 4.1% 4.3% 9.3% 6.7% 0.0% 0.0% 1.7%
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Cost data
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Table B.1: Cost database of di�erent power plants of Bangladesh; data source (BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014)

Generation

technology
Power plants

Future/

existing

Public/

private

Types of

fuel
Year

Installed

capacity

Capital cost/

installed capacity

Gas turbine

Ghorasal ST: Unit-6 Future Public Gas 2018 206 1634.24

Ghorashal 365 MW CCPP Future Public Gas
2017 363 881.53

Ghorashal 365 MW CCPP Future Public Gas

Siddhirgonj ST Existing Public Gas 2004 150 1822.94

Siddhirganj: 2Ö120MW

Peaking power plant
Existing Public Gas 2012 210 680.21

Raozan: Unit-2 Existing Public Gas 1997 210 937.29

Sikalbaha Peaking GT Existing Public Gas 2010 150 1392.32

Ashuganj : 50 MW GE Existing Public Gas 2011 53 743.52

Sylhet 150 MW GT Existing Public Gas
2012

142
856.90

Bhola 225 MW CCPP ST Future Public Gas 75

Raozan 25 MW Dual Fuel

Power Plant
Existing Public Gas/HFO 2013 25 1131.14

Sikalbaha 225 MW CCPP Future Public Gas/HSD 2016 225 1145.04

Khulna 150MW GT Existing Public Gas/HSD 2013 158 1277.31

Sirajganj 225 MW CCPP: Unit-2 Future Public Gas/HSD 2016 220 1439.95
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Table B.1: Cost database of di�erent power plants of Bangladesh; data source (BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014)

Generation

technology
Power plants

Future/

existing

Public/

private

Types of

fuel
Year

Installed

capacity

Capital cost/

installed capacity

Chapainababgaonj 100 MW Future Public HFO 2016 104 1363.57

Ghorashal (Regent) Existing Private Gas 2014 108 767.58

Ashuganj 195MW Modular

(United)
Existing Private Gas 2015 210.7 806.83

Katpotti 52.50 MW power plant Existing Private HFO 2015 51 544.52

Nababganj55 MW power plant Future Private HFO 2015 55 814.39

Patenga 50MW (Barakatullah) Existing Private HFO 2014 50 809.17

Chittagong ECPV 108 MW Existing Private HFO 2013 108 843.81

Lakdhanvi-52.2 MW Existing Private Gas/HFO 2015 52 673.08

Khulna (KPCL-1) Existing Private HFO 1998 110 1495.31

Khulna (KPCL-2) Existing Private HFO 2011 115 687.19

Noapara (Khanjahan Ali-

KPCL-III)
Existing Private HFO 2011 40 658.56

Rajlanka 52 MW Existing Private HFO 2014 52 911.67

CCPP

Ghorasal : Unit-3 Future Public Gas 2017 400 798.87

Haripur CCPP: Unit 1 Existing Public Gas
2001

273
865.25
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Table B.1: Cost database of di�erent power plants of Bangladesh; data source (BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014)

Generation

technology
Power plants

Future/

existing

Public/

private

Types of

fuel
Year

Installed

capacity

Capital cost/

installed capacity

Haripur CCPP: Unit 2 Existing Public Gas 139

Haripur CCPP: 412 MW Future Public Gas 2014 360 884.97

Siddhirganj: 335 MW Future Public Gas 2017 335 1612.12

Ashuganj : 225 MW GT, ST Existing Public Gas 2015 225 969.49

Ashuganj : 450 MW (South) Future Public Gas 2015 375 1132.23

Ashuganj : 450 MW (North) Future Public Gas 2017 450 962.50

Chandpur CCPP (Cengda

eng. Co., China)
Existing Public Gas 2012 106

991.09

Chandpur CCPP (Cengda

eng. Co., China)
Existing Public Gas 2012 57

Fenchugonj CCPP 1: Unit 1 Existing Public Gas 1994 32

3005.26Fenchugonj CCPP 1: Unit 2 Existing Public Gas
1995

32

Fenchugonj CCPP 1: Unit 3 Existing Public Gas 33

Fenchugonj CCPP 2: Unit 1 Existing Public Gas

2011

35

1024.62Fenchugonj CCPP 2: Unit 2 Existing Public Gas 35

Fenchugonj CCPP 2: Unit 3 Existing Public Gas 35
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Table B.1: Cost database of di�erent power plants of Bangladesh; data source (BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014)

Generation

technology
Power plants

Future/

existing

Public/

private

Types of

fuel
Year

Installed

capacity

Capital cost/

installed capacity

Shahjibazar CCPP Existing Public Gas 2017 80 544.59

Shahjibazar 330 MW CCPP Future Public Gas 2016 330 1097.75

Sylhet 150 MW to 225 MW

CCPP
Existing Public Gas 2017 75 1201.75

Bibiana 400 MW CCPP: Unit 3 Future Public Gas 2017 400 1069.45

Bibiana 383 MW CCPP: South Future Public Gas 2017 383 873.43

Bheramara 360 MW CCPP Future Public Gas 2017 360 1465.14

Bhola 225 MW CCPP GT-1,2 Future Public Gas 2015 150 1170.06

Baghabari 100 MW to 150 MW Existing Public Gas 2017 50 1308.99

Khulna 150MW to 225 MW Future Public Gas/HSD 2015 75 1643.04

Sirajganj CCPP Existing Public Gas/HSD 2014 225 653.50

Sirajganj 225 MW CCPP: Unit-3 Future Public Gas 2018 225 1035.28

Ashuganj : 450 MW (South) Future Public Gas 2017 450 1059.31

Shahjibazar 2x35 to 105 MW

conversion
Future Public Gas 2016 35 1244.77

Ashuganj : 400 MW (East) Future Public Gas 2020 400 933.55
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Table B.1: Cost database of di�erent power plants of Bangladesh; data source (BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014)

Generation

technology
Power plants

Future/

existing

Public/

private

Types of

fuel
Year

Installed

capacity

Capital cost/

installed capacity

Khulna 330 MW CCPP Future Public Gas 2019 330 1256.04

Meghnaghat CCPP Existing Private Gas 2002 450 847.97

Meghnaghat 450 MW CCPP

(Unit 2) Summit
Existing Private Gas/HSD 2014 335 560.04

Sub critical

coal

Barapukuria ST: Unit-1 Existing Public Coal
2006

125
1923.84

Barapukuria ST: Unit-2 Existing Public Coal 125

Barapukuria ST: Unit-3 Future Public Coal 2018 275 1245.14

Ultra Super

Critical

Maheshkhali: Coal Fired

power plant
Future Public Coal 2022 1200 2866.95

Matarbari 1200 MW coal

based power plant
Future Public Coal 2021 1200 3820.01

Solar

Kaptai 5 MW solar power

plant
Future Public 2016 5 4906.75

Hatia 7 MW solar power

plant
Future Public 2016 7 2391.08

Hydro Kaptai Hydro: Unit-1 Existing Public 1962 40 6408.55
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Table B.1: Cost database of di�erent power plants of Bangladesh; data source (BPDB, 2008, 2009, 2010, 2011, 2012, 2013, 2014)

Generation

technology
Power plants

Future/

existing

Public/

private

Types of

fuel
Year

Installed

capacity

Capital cost/

installed capacity

Kaptai Hydro: Unit-2 Existing Public 40

Kaptai Hydro: Unit-3 Existing Public 1982 50 543.38

Kaptai Hydro: Unit-4 Existing Public
1988

50
1075.95

Kaptai Hydro: Unit-5 Existing Public 50

Nuclear
Rooppur 1 Future Public 2024 1200

5625.00
Rooppur 2 Future Public 2025 1200290



Appendix C

Publications

The publications from this study are as follows-

(i) Debnath, KB and Mourshed, M. (2018) Challenges and gaps for energy

planning models in the developing-world context. Nature energy, Na-

ture Publishing Group. DOI: 10.1038/s41560-018-0095-2.

Reprinted in `Grand Challenges: India's research solutions to real-world prob-

lems' (April 2018) published by Nature India.

(ii) Debnath, KB and Mourshed, M. (2018) Forecasting methods of energy

planning models. Renewable and sustainable energy reviews, Elsevier BV.

DOI: 10.1016/j.rser.2018.02.002

(iii) Debnath, KB and Mourshed, M. (2018)Corruption signi�cantly increases

the cost of power plants in developing contexts. Frontiers in Energy

Research, Frontiers. DOI: 10.3389/fenrg.2018.00008
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