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Based Community Microgrid: A Game-Theoretic

Model
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Chao Long, Member, IEEE, and Hoay Beng Gooi, Senior Member, IEEE
Abstract—This paper proposes a novel game-theoretic

model for peer-to-peer (P2P) energy trading among the pro-
sumers in a community. The buyers can adjust the energy
consumption behavior based on the price and quantity of
the energy offered by the sellers. There exist two separate
competitions during the trading process: (i) price competi-
tion among the sellers and (ii) seller selection competition
among the buyers. The price competition among the sellers
is modeled as a non-cooperative game. The evolutionary
game theory is used to model the dynamics of the buyers
for selecting sellers. Moreover, an M-leader and N-follower
Stackelberg game approach is used to model the interac-
tion between buyers and sellers. Two iterative algorithms
are proposed for the implementation of the games such
that an equilibrium state exists in each of the games. The
proposed method is applied to a small community micro-
grid with photo-voltaic (PV) and energy storage systems.
Simulation results show the convergence of the algorithms
and the effectiveness of the proposed model to handle the
P2P energy trading. The results also show that P2P energy
trading provides significant financial and technical benefits
to the community and it is emerging as an alternative to
cost-intensive energy storage systems.

Index Terms—Peer-to-peer energy trading, community
microgrid, prosumer, game theory, energy storage.

I. INTRODUCTION

ENVIRONMENTAL benefits, financial incentives, and re-
duction in electricity bills motivate house owners to in-

stall renewable based distributed generators and energy storage
units at residential buildings [1]. Increasing deployment of dis-
tributed generators and energy storage systems with intelligent
infrastructures enables the residential consumers to harness en-
ergy and inject into the distribution systems. This advancement
changes the residential consumers into prosumers. An entity
which has the capability to produce, consume, and possibly
also has demand response capacities is known as prosumer
[2]. A group of prosumers can be integrated as a prosumer
energy community. The small-scale power system in a house
is known as a prosumer nanogrid [3]. The terms prosumer
nanogrid and prosumer are used interchangeably in this paper.
Several nanogrids serving in close proximity can be combined
to form a community microgrid.

A community microgrid presents a new basis for distribution
grid with various operating constraints and business models. It
aims at extending the benefits of the traditional microgrid by
sharing the distributed energy resources (DERs) among multi-
ple prosumers. In addition, the on-site use of energy generated
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from local DERs through energy trading in a community is
more attractive than feeding the utility grid. This helps to
alleviate the adverse impacts on the power systems [4]. A
proper energy trading model is necessary to manage the local
energy trading among multiple prosumers.

The peer-to-peer (P2P) network is a widely used model
for resource sharing in the field of computer science where
resources are located in and provided by computers (i.e., peers)
at the edge of the network [5]. Since a community microgrid
consists of several prosumers in close proximity having their
own generation and demand, it can be modelled as a P2P
network. A P2P energy trading model seems to be suitable for
energy trading in the prosumer based community microgrid.
P2P energy trading is flexible between peers, where excess
energy from various small-scale DERs is traded locally [6].
The P2P model encourages local energy trading and demand
response (DR) to the available resources in a community [7].

Since P2P energy trading in a community microgrid is a new
concept, a proper modelling framework is required to define
the business models, to determine energy prices, as well as to
implement DR programs in a community. The business model
and energy pricing play a vital role because they determine the
suitability of P2P trading in a community microgrid in terms
of financial benefits. The business model also forms a basis
for the implementation of DR programs.

The remainder of the paper is organized as follows. In
Section II, state of the art is presented and major contributions
in this paper are highlighted. The proposed model of the
community microgrid for P2P energy trading is explained in
Section III followed by the detail of evolutionary game among
buyers in section IV. In Section V, detail of non-cooperative
game among sellers is presented. Stackelberg game between
sellers and buyers is explained in Section VI. Detail simulation
results are discussed in Section VII, and conclusion in Section
VIII.

II. STATE OF THE ART

A. Related Works

In [8], the authors have proposed a P2P energy trading
model for smart households. The optimal microgrid energy
and price for P2P trading are determined in order to minimize
the total energy cost. A customer-to-customer business based
on the architecture model for P2P energy trading is introduced
in [9]. The bidding system called Elecbay is proposed for
P2P trading and simulation is done using game theory. An
efficient and privacy-preserving P2P energy exchange scheme
in a smart grid environment is presented in [10], with the novel
optimization approach to increase efficient energy transfer
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without information leakage. In [11], a new algorithm has
been proposed for automating electricity trading by prosumers
in the P2P electricity market. A framework for performance
evaluation using several indices is proposed in [12] to assess
the economic performance of P2P energy sharing models. A
P2P index is developed to assess the feasibility of P2P energy
trading in low voltage distribution system in [7]. In [13], the
authors have introduced different P2P market paradigms using
bill sharing (BS), mid-market rate (MMR), and auction based
pricing strategies but DR is not considered.

In line with above works on P2P energy trading, many
researchers have carried out researches on demand response
management (DRM), energy sharing management, and real-
time pricing using various game theoretical approaches in
[4], [14]–[16]. In [15], authors have proposed a competitive
market based distributed mechanism for energy trading among
microgrids using multileader-multifollower Stackelberg game.
A Stackelberg game theory is used to study the DRM from
various aspects in [17]–[19]. A hybrid approach using stochas-
tic programming and Stackelberg game is presented in [14] to
coordinate energy sharing and energy consumption behavior
of prosumers by using internal prices.

In these works [4], [7], [13], [14], [20], a separate entity
acted as an energy trading coordinator and was responsible
for the execution of energy trading. There was no direct
communication between buyers and sellers. However, since
prosumers in a community are proactive, it is possible to
perform P2P energy trading in a community with less in-
volvement of energy trading coordinator (i.e., using the direct
communication or interaction between buyers and sellers).
The direct involvement of each prosumer during the trading
process is the main feature of P2P energy trading. It poses the
challenge of modeling the decision-making process of each
participant for the greater benefit of the entire community
microgrid while considering human factors such as rationality,
motivation, and environmental friendliness [21]. In situations
where there are many prosumers with conflicting interests, it
would be quite challenging either to capture such conflicting
interests in the decision-making process of each participant
or to motivate them to cooperate for achieving the goals of
P2P trading. Therefore, there should be a proper tool for
modeling the decision-making process such as deciding energy
price, incorporating DR in P2P energy trading in a community
microgrid. The modeling tool should be able to deliver the
energy management solution considering a diverse set of
constraints in a trading process. In this context, considering
the interactive and conflicting nature of energy trading in
a community microgrid, game theory is a very effective
tool for modeling the decision-making process of prosumers
participating in the P2P energy trading.

B. Major Contributions

The main contributions of this paper are summarized as
follows:

1) A novel game-theoretic model is proposed for P2P
energy trading using direct interactions between buyers
and sellers in a community microgrid considering the
DR capability and privacy of prosumers.
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Fig. 1: Structure of a community microgrid for P2P trading

2) The pricing competition among the sellers is modeled
as a non-cooperative game, dynamics of buyers in the
process of selecting sellers are modeled as an evolution-
ary game, and interaction between sellers and buyers is
modeled as a Stackelberg game.

3) A novel iterative algorithm is proposed to reach the
stable state in the evolutionary game among buyers for
the seller selection.

4) A novel distributed algorithm is proposed to obtain the
equilibrium in both non-cooperative game among sellers
and Stackelberg game between buyers and sellers.

III. SYSTEM MODEL

A. General Structure of Community Microgrid

Fig. 1 shows a structure of a smart community microgrid
comprising several prosumers. Each prosumer comprises loads
and PV systems. Prosumers may or may not have battery
energy storage systems (BESS) since deploying energy storage
systems in the residential level is costly. The PV system of a
prosumer is connected to the load and AC system through
DC/AC converter which is also known as PV inverter. If any
prosumer has both a PV system and a battery, they can be
connected via a DC coupled or an AC coupled topology. In
the DC coupled topology, the battery is connected to the PV
system at the DC side of the PV inverter through the DC/DC
bi-directional converter as shown in Prosumer 1 in Fig. 1. In
the AC coupled topology, the battery is connected to the PV
system at the AC side of the PV inverter through DC/AC bi-
directional converter as shown Prosumer 2 in Fig. 1.

All the prosumers in a community are connected to each
other through the bi-directional power and communication
links, and a whole community microgrid is connected to the
upstream utility grid via a one grid connection point. Smart
meters are installed at each prosumer. Also, each prosumer has
a local workstation with an energy management system called
prosumer energy management system (P-EMS). P2P energy
trading algorithm is integrated with the P-EMS software. The
smart meter measures the prosumer’s generation, consumption,
and energy transaction with other prosumers or with the grid
and sends information to the local workstation for processing.

We assume that there is an agent called P2P market operator
(P2PMO) which assists in energy trading in a P2P market
in a community. P2PMO is a part of the distribution system
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operator and is assumed to serve free of charge to assist
the P2P trading because P2P trading helps to reduce the
congestion in the distribution system. Since the prosumers
are serving nearby and the amount of energy traded in the
P2P market is small, we assume that transmission losses and
transmission cost are negligible. Smart meters are capable
of communicating with other entities and work stations are
powerful enough to carry out the computational tasks. During
the trading process, all the communication tasks are done
through the smart meters, and computations are performed in
local workstations.

With the existing infrastructures explained, the main aim
of the study is to develop an algorithm for the P2P energy
trading. The detailed working processes of smart meters,
communication systems and physical infrastructures in the
community microgrid are beyond the scope of this paper.

Let N =
{

1, 2, 3, ..., N
}

denote the set of the prosumers
in the community with n ∈ N and N , |N | gives the total
number of prosumers in the community. We assume that the
total operation time is divided into different slots of equal
interval ∆t. In this study we have considered ∆t = 1 hour.
Let T =

{
1, 2, 3, ..., T

}
denote the set of all operation time

slots with t ∈ T and T , |T | gives the total number of
operation time slots.

The PV generation profile of prosumer n during a day can
be defined as:

Gpv,n =
{
G1
pv,n, G

2
pv,n, G

3
pv,n, ..., G

T
pv,n

}
, n ∈ N (1)

The nominal demand profile of prosumer n during the same
period can be defined as:

Dn =
{
D1
n, D

2
n, D

3
n, ..., D

T
n

}
, n ∈ N (2)

The nominal demand represents the demand from regular
appliances before the implementation of any DR program and
the installation of BESS.

B. Battery Energy Storage Systems
Let Et−∆t

n and Etn denote the battery energy level of
prosumer n at the beginning and end of the time slot t, P tch,n
denote the battery charging power of prosumer n at time slot t,
and P tdch,n denote the battery discharging power of prosumer
n at time slot t. Let ηtch,n and ηtdch,n denote battery charging
and discharging efficiency of prosumer n. Assuming the self-
discharge of the battery is negligible and the charge/discharge
power remains constant during a time slot, the dynamics of
the battery level can be modeled as [22]

Etn = Et−∆t
n +

(
χtnP

t
ch,nη

t
ch,n −

ψtnP
t
dch,n

ηtdch,n

)
×∆t (3)

where χtn and ψtn are binary variables of prosumer n related
to charge and discharge states in time slot t.

To avoid simultaneous charging and discharging of the
battery

χtn + ψtn ≤ 1 (4)
In practical applications, the energy stored in a battery is

restricted within a certain range, i.e.,

Eminn ≤ Etn ≤ Emaxn (5)

where Emaxn is the maximum capacity of the battery and Eminn

is the minimum amount of energy that prevents the battery
from deep discharge.

The limits of charging and discharging power are deter-
mined by the size of the inverter as follows

0 ≤ P tch,n ≤ Pmaxch,n

0 ≤ P tdch,n ≤ Pmaxdch,n

(6)

where Pmaxch,n and Pminch,n are the maximum charging and dis-
charging power.

In the conventional peer-to-grid (P2G) trading, the excess
PV energy of the prosumer is used to charge the battery until
the battery is fully charged and the remaining is fed back to
the grid. The stored energy is used to meet the demand when
the PV generation is lower than the demand. The prosumer
buys energy from the grid when there is insufficient energy
from the PV and battery system.

In P2P energy trading, if any prosumer has excess PV
energy, the first priority is to supply to the neighbors who
have unmet consumption in the community and if there is
any remaining power, that is used to charge the battery. When
the demand is higher than the PV generation, some of the
unmet demand is satisfied by buying the PV power from the
neighbors through the P2P market at first, and the remaining,
if there is any, is met by discharging the own battery and
buying power from the grid. Furthermore, the stored energy
in a particular prosumer’s battery can be used to supply its
own demand only when that prosumer participates in the P2P
market. This is because if any prosumer can sell stored energy
in the P2P market, the prosumer having high storage capacity
and high excess generation during certain hours can influence
the market in other hours, which discourage other prosumers
to participate in the P2P market.

The use of battery systems should be justified by saving
due to its use. If Cc is the capital cost of the battery system
(i.e., the cost of the battery and converter); Cm is the annual
maintenance cost of the battery; and Ndays is the number of
days in a year, then the equivalent daily cost (EDC) of the
battery is given by [23]

EDC = Cc ×
r(1 + r)l

(1 + r)l − 1
× 1

Ndays
+

Cm
Ndays

(7)

where r is the discount rate and l is the lifetime of the battery
in years. The use of the battery is beneficial only if the saving
in a day is higher than the EDC.
C. Classification of Prosumers as a Seller and a Buyer

The generation-to-demand ratio (GDR) of a prosumer n ∈
N in a given time period t ∈ T is defined as

GDRtn =
Gtpv,n
Dt
n

(8)

Let S =
{
n ∈ N|GDRtn > 1

}
represent the set of sellers

at time slot t with index j ∈ S and S = |S| gives the total
number of sellers at time t.

Let B =
{
n ∈ N|GDRtn < 1

}
represent the set of buyers

at time slot t with index i ∈ B and B = |B| gives the total
number of buyers at time t.

The amount of power the prosumer j ∈ S can sell (export)
at time t is

P tex,j = (GDRtj − 1)Dt
j (9)

The maximum amount of power the prosumer i ∈ B can
procure at time t is

P tim,i = (1−GDRti)Dt
i (10)
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D. Non-flexible and Flexible Demand of Prosumer

Suppose that xtn, ytn and ztn represent the total demand, non-
flexible demand and flexible demand of the prosumer n ∈ N
at time t ∈ T respectively. The total demand of prosumer n
at any time t can be defined as:

xtn = ytn + ztn (11)
Let Yo,n and Zo,n denote the nominal non-flexible and

flexible demand profile of the prosumer n ∈ N . According to
(11), the nominal demand of the prosumer n can be expressed
as

Dn = Yo,n + Zo,n (12)
The critical (non-flexible) loads are fixed and has no contribu-
tion to DR. The total demand of the prosumer can be modified
by adjusting the flexible demand. The adjusted demand of the
prosumer n ∈ N at time t ∈ T can be defined as

xtn = yto,n + ztn (13)
where, yto,n is the nominal non-flexible demand of prosumer
n at time t.

Assume that all the flexible loads are continuous in nature.
Their reduction affects the comfort level and reduces the
energy cost of the prosumers.

If the amount of flexible load in nominal case at any time
t is βDt

n , then
0 ≤ ztn ≤ βDt

n, 0 ≤ β ≤ 1 (14)
where β is proportion of flexible demand.

E. Utility Function

The responses of different prosumers to the various scenar-
ios can be modeled by using the concept of utility function
[24]. The utility function is a method to quantify the level of
satisfaction or happiness that the prosumer receives when it
consumes certain amount of power.

If x is the power consumption level and λ is the parameter
to distinguish a prosumer from the others, the utility func-
tion can be represented by U(x, λ). There are two types of
utility functions frequently used for modeling the electricity
consumers. They are logarithmic utility function [14]–[17],
[25] and quadratic utility function [18], [19], [24].

In this paper, we consider a quadratic utility function to
quantify the satisfaction of prosumer n ∈ N at time t ∈ T .

utn(xtn) = λtnx
t
n −

θn
2

(xtn)2 xtn,min ≤ xtn ≤ xtn,max (15)

where λtn > 0 is a prosumer preference parameter character-
izing the prosumers’ behaviours, which vary from prosumer
to prosumer and may also vary along the time, and θn > 0
is a predetermined constant [24]. The terms xtn, xtn,min and
xtn,max are the actual power consumption, its lower limit and
upper limit for prosumer n at time t, respectively.

F. Welfare Function for Buyer and Seller

If any buyer i ∈ B chooses seller j ∈ S, the welfare function
of the buyer i can be defined as

W t
i = uti(x

t
i)− πtjxtj,i (16)

For any buyer i ∈ B,
xti,min ≤ xti ≤ xti,max
xti = xtj,i +Gti

(17)

Based on (17), the condition (18) is always true.

Multiple Sellers

Price competition

Non-cooperative game

Multiple Buyers

Seller selection

Evolutionary game

Price and amount 

of energy
Selection of sellers

Fig. 2: Two-levels of competition in P2P market
xtj,i,min = xti,min −Gti
xtj,i,max = xti,max −Gti
xtj,i,min ≤ xtj,i ≤ xtj,i,max

(18)

where πtj , x
t
j,i, x

t
j,i,min and xtj,i,max are the price decided by

seller j, actual power the buyer i buys from seller j and its
lower and upper power limits buyer i can buy from the seller j
at time t, respectively. Now, the welfare function of any buyer
i given by (16) can be expressed as

W t
i (xtj,i) = uti(x

t
j,i +Gti)− πtjxtj,i (19)

The welfare function of the seller j ∈ S can be defined as
W t
j = utj(x

t
j) + πtjmin(P tex,j , S

t
j) (20)

Stj is the total demand of electricity comes to seller j at time
t and is defined in (22). For any seller the nominal demand is
always satisfied so that xtj = Dt

j .
G. P2P Energy Trading Between Buyers and Sellers

The aim of P2P trading is to maximize the welfare of both
buyers and sellers, and reduce the dependency on the upstream
grid. P2P energy trading is carried out in the following steps:

1) Prosumers register into a P2P market as a seller or a
buyer based on their GDR.

2) After grouping of prosumers as a seller or a buyer,
P2PMO assigns a unique and encrypted identity to each
buyer and seller, which maintains the anonymity of
sellers and buyers ensuring privacy.

3) The P2PMO sends uniquely assigned buyers identities
to all sellers and sellers identities to all buyers. This
establishes direct communication between sellers and
buyers.

4) Each anonymous seller and each anonymous buyer par-
ticipate in a P2P energy trading game to obtain the stable
state.

5) Finally, P2PMO receives information about the final
price and amount of energy traded anonymously by
different prosumers to settle the financial transactions.

There are multiple sellers and multiple buyers in the commu-
nity. Two levels of competition exist in this multi-seller and
multi-buyer P2P energy trading market as shown in Fig. 2.

The competition at the higher level is among the sellers to
sell their excess energy to the group of buyers at the lower
level. In this paper, competition among the sellers is modeled
as a non-cooperative game. The competition at the lower level
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is among multiple buyers to select the sellers to buy energy
offered by them. In this paper, an evolutionary game approach
is used for competition among the buyers.

In addition to the separate competition at two levels of the
P2P market, there is a interaction between the two levels. The
main aim of this interaction between two levels is to set the
appropriate strategies for both sellers and buyers to maintain
the balance between supply and demand in the P2P market.
In this paper, interaction between the two levels is modeled
as a Stackelberg game.

IV. EVOLUTIONARY GAME AMONG BUYERS

In general, the players of the game are arranged in multiple
groups. In this paper, without loss of generality, all the buyers
are arranged in a single group and there is only one population
scenario in the game. The evolutionary game for P2P energy
trading in the community can be precisely defined as follows:

• Players: buyers i ∈ B
• Population: set of buyers
• Strategy: selection of seller
• Utility: welfare function of the buyers
We have arranged all the buyers in a single population

group, so all the buyers will show the same behavior, i.e.,
the strategy of each buyer in the population is identical. Each
buyer selects a seller to purchase power when they receive the
price announced by sellers. Each buyer then gradually adjusts
its selection strategy and acts independently in the selection
process [25].

Let γtj be the probability of the buyer i ∈ B choosing a
seller j ∈ S at time t, where 0 ≤ γtj ≤ 1 and

∑S
j=1 γ

t
j = 1.

Since the strategies of all the population (buyers) are identical,
the population state can be denoted as γt = [γt1, γ

t
2, γ

t
3, ..., γ

t
S ].

When buyer i selects seller j, the optimal amount of power
buyer i buying from seller j can be achieved by maximizing
the welfare given by (19) subject to (18). Mathematically,

xt∗j,i = arg max
xt
j,i

W t
i (21)

The total demand of electricity comes to the seller j at time
t is given by

Stj = γtj

B∑
i=1

xt∗j,i (22)

The supply-to-demand ratio (SDR) for seller j at time t can
be defined as

νtj =
P tex,j
Stj

=
P tex,j

γtj
∑B
i=1 x

t∗
j,i

=
αtj
γtj

(23)

where, αtj =
P t

ex,j∑B
i=1 x

t∗
j,i

and αtj , P
t
ex,j , and πtj are constant

during the evolution process.
The actual amount of power that buyer i buys from the

seller j at time t is given as

xtj,i,actual =

{
γtjx

t∗
j,i νtj ≥ 1

νtjγ
t
jx
t∗
j,i νtj < 1

(24)

Assume that the net utility of the seller j at time t can be
defined as the accumulated welfare of all buyers obtained from
seller j. There are two possibilities:

Case 1: If P tex,j ≥ Stj , then the net utility is

σtj =
1

2

B∑
i=1

θi(x
t∗
j,i)

2 + C (25)

Case 2: If P tex,j < Stj , then the net utility is

σtj =
[
νtj −

(νtj)
2

2

] B∑
i=1

θi(x
t∗
j,i)

2 + C (26)

In both (25) and (26), C =
(
λtiG

t
i − θi

2 (Gti)
2
)
.

The replicator dynamics is designed to depict the selection
dynamics of the buyers as follows:

∂γtj
∂t

= γti (σ
t
j − σt) (27)

where, σt denotes the average utility, and it can be calculated
as

σt =

S∑
j=1

γtjσ
t
j (28)

A stable condition at which population will not change its
selection is referred to as evolutionary stable strategy (ESS).
Mathematically,

∂γtj
∂t

= γ̇tj = 0 (29)

The condition for stable state in evolutionary game can also
be written as

σt1 = σt2 = ... = σtS = σt (30)
If we consider the dynamics of

∑S
j=1 γ

t
j , then

∂
∑S
j=1 γ

t
j

∂t
=

S∑
j=1

γtj(σ
t
j − σt) = σt − σt

S∑
j=1

γtj (31)

Using (29) and (31), it can be proved that
∑S
j=1 γ

t
j = 1

is always valid during the game. The equilibrium in the
evolutionary game is denoted by γt∗ = [γt∗1 , γ

t∗
2 , γ

t∗
3 , ..., γ

t∗
S ].

The convergence of the game to the evolutionary equilibrium
given in (29) using the replicator dynamics given in (27) can
be proved via Lyapunov theory [26]. A concept of multiple
populations is used when there is a large number of players
[25].

The replicator dynamics can be approximated by using the
discrete replicator in iterative way though it is time contin-
uous. The discrete replicator for approximation of replicator
dynamics is defined as follows:

γtj(k + 1) = γtj(k) + η1γ
t
j(k)

(
σtj(k)− σt(k)

)
(32)

The termination criterion is defined as
|σtj(k)− σt(k)|< ε (33)

where k is the iteration number, η1 is the adjustment param-
eter, and ε is a small positive constant.

The detail algorithm to reach the evolutionary equilibrium
is given in Algorithm 1.

V. NON-COOPERATIVE GAME AMONG SELLERS

Each seller aims at maximizing its own welfare by selling
the power to buyers who need it. They are non-cooperative and
behave in rational manner. A non-cooperative game is used to
model the competition among the sellers as follows:

• Players: selling role prosumers or sellers j ∈ S
• Strategy: the price πtj , ∀j ∈ S and ∀t ∈ T
• Utility: the welfare of the sellers

The welfare function of the seller j ∈ S given in (20) can be
re-written as

W t
j =

{
utj(x

t
j) + πtjS

t
j P tex,j > Stj

utj(x
t
j) + πtjP

t
ex,j P tex,j ≤ Stj

(34)
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Algorithm 1 Algorithm for evolutionary game among buyers
Input: Price vector πt = [πt1, π

t
2, ..., π

t
S ] from the sellers

Output: Equilibrium state γt∗ = [γt∗1 , γ
t∗
2 , ..., γ

t∗
S ]

Arbitrarily assign the initial population state
γt(1) = [γt1(1), γt2(1), ..., γtS(1)], such that

∑S
j=1 γ

t
j(1) = 1;

k = 0;
do

k = k + 1;
for all j ∈ S do

Compute xt∗j,i according to (21), ∀i ∈ B;
Compute the SDR νtj(k) according to (23);
if νtj(k) ≥ 1 then

Compute the net utility σtj(k) according to (25);
else

if νtj(k) < 1 then
Compute the net utility σtj(k) according to (26);

end if
end if

end for
Compute the average value of net utility σt(k) according

to (28);
Update the replicator dynamics according to (32);

while
(
|σtj(k)− σt(k)|> ε

)
;

The solution of the game is called Nash equilibrium (NE)
which includes the energy price and amount of energy sold.
NE exists in the game if [27]

• The player set is finite.
• The strategy sets are closed, convex, and bounded.
• The utility functions are continuous and quasi-concave in

the strategy space.
There are S number of sellers, so that the player set

is always finite. The game first starts by announcing the
price, πtj by the seller. There are limits on πtj such that
πtj ∈ [πtj,min, π

t
j,max]. The lower bound πtj,min is normally

determined by the generation cost and the operating expenses.
The upper bound πtj,max is fixed by the government policies.
The sellers must consider the price limits during the game.
In this paper, we choose feed-in-tariff (ρsell) as the lower
limit and the grid buying price (ρbuy) as the upper limit such
that πtj ∈ [ρsell, ρbuy]. Hence, the strategy sets are nonempty,
closed, bounded, and convex.

The utility function given in (34) is a continuous function
of πtj . Since the welfare W t

j of seller j increases with amount
of power for a given πtj , the seller shall assume that all the
available power to export (P tex,j) can be sold to the buyers.
The game will be stopped when all the P tex,j is sold or all Stj
is satisfied.

If P tex,j ≤ Stj , then
∂2(W t

j )

∂(πtj)
2

= 0 (35)

If P tex,j > Stj , the second order derivative of W t
j with

respect to πtj is given by

∂2(W t
j )

∂(πtj)
2

= −2λtj

B∑
i=1

1

θi
< 0 (36)

Combining (35) and (36), we get
∂2(W t

j )

∂(πt
j)2
≤ 0, so that W t

j is
always quasi-concave in πtj . Therefore, we can conclude that
NE exists in the non-cooperative game among the sellers.

VI. STACKELBERG GAME BETWEEN SELLERS AND
BUYERS

The interaction behaviors between the sellers and buyers can
be modeled as an M-leader and N-follower Stackelberg game.
The sellers are the multiple leaders and the buyers are the
multiple followers. Stackelberg game establishes a relationship
the evolutionary game and the non-cooperative game. The
output of the non-cooperative game, i.e., price vector, is used
as an input to the evolutionary game to update the seller
selection strategy. The output of the evolutionary game, i.e.,
evolutionary stable strategy or seller selection probability, is
used as an input to the non-cooperative game to update the
price vector. So, all the three games are related to each other.
All the buyers receive the announced price vector from the
sellers and participate in the evolutionary game. Once the
evolutionary stable strategy is obtained in the evolutionary
game, sellers update their price to obtain a NE, i.e., price.

The sellers are involved in a non-cooperative game and each
seller does not know the information of other sellers. In this
scenario, it is not possible to obtain the NE by analytical
method and iterative approach must be used. An iterative
distributed algorithm is designed to obtain the NE among the
sellers such that the Stackelberg equilibrium (SE) is reached
in the Stackelberg game between sellers and buyers. The price
updating strategy of the seller j is designed as follows:

πtj(l + 1) = πtj(l) + η2

(
Stj(l)− P tex,j

)
(37)

The termination criterion is defined as
|πtj(l + 1)− πtj(l)|< ε (38)

Alternatively, the termination criteria in (38) can be ex-
pressed as |Stj(l)− P tex,j |< ε (39)
where l is the iteration counter, η2 is the speed adjustment
parameter, and ε is a small positive number.

The energy trading game starts with an announcement of
the price vector from the sellers. The buyers then receive the
announced price vector and play the evolutionary game. When
the buyers obtain evolutionary equilibrium for a given price
vector, they send the information of ESS back to the sellers.
Once the sellers receive the updated strategy from the buyers,
they participate in the non-cooperative game and update their
price, and the process is repeated until the final equilibrium
state is reached. The detail process is given in Algorithm 2.

P2P energy trading algorithm proposed in this paper uses
an iterative pricing mechanism. The demand from the buyers
would change in response to the prices provided by the sellers,
and this change will, in turn, affects the sellers’ prices. If there
are large numbers of prosumers, change in the energy demand
may be too high so that the prices may oscillate heavily.
This fact may lead to an outcome where the seller selection
and pricing iteration never ends, i.e., the algorithm does not
converge. The convergence of the algorithm is essential for
its implementation. If the convergence cannot be guaranteed,
control measures should be taken to enhance the convergence
of the algorithm.
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Algorithm 2 Algorithm for Stackelberg Equilibrium
Input: Initial strategy of the sellers
Output: Stackelberg Equilibrium state

for all t ∈ T do
Randomly initialize πt(1) = [πt1(1), πt2(1), . . . , πtS(1)];
l = 0;
do
l = l + 1;
Execute Algorithm 1;
Compute the power demand Stj(l) of all the sellers ac-
cording to (22);
Update the price according to (37) and (40);
while

(
|Stj(l)− P tex,j |> ε

)
;

end for

The step length control method [28] is used to deal with
the effect of random exploration for better convergence of the
algorithm. The step length control at each iteration of price
update can be achieved by

max
(
πtj(l)−∆, πtj,min

)
≤ πtj(l + 1)

≤ min
(
πtj(l) + ∆, πtj,max

)
, ∆ = ζ|πtj(l)|

(40)

where ζ is a non-negative ramping rate.
This technique limits the ramping rate of the price in the

iterative process. The buyers reject any price that exceeds the
prescribed ramping rate so that all the sellers have to obey the
ramping rate limit. Since the buyers’ strategies are the response
to the sellers’ price, step length control method for price
update in Algorithm 2 ultimately improves the convergence
of Algorithm 1.

VII. SIMULATION RESULTS

This section presents the results of simulation studies to
assess the performance of proposed game-theoretic model
for P2P energy trading in a prosumer based community
microgrid. We consider a community microgrid consists of
five prosumers. The community microgrid is connected to the
utility grid, thus the prosumers can trade with each other
as well as the the retailers. Each prosumer has solar PV
system. Each prosumer has both the flexible and non-flexible
demand. The generation and load profiles of each prosumers
in the community are taken from [20]. For one day study
T =

{
1, 2, 3, ..., 24

}
.

The value of λti is selected randomly from [5,10], and θi is
taken as 0.5. Based on the actual electricity price of Singapore,
the buying price of electricity from the grid (ρbuy) is taken as
20 cents/kWh. The selling price to the grid (ρsell) is assumed
2 cents/kWh. Since the solar PV is used as a local generation,
we assume that the P2P market is active only during the day
time from 9:00 to 18:00. Prosumer 2 and Prosumer 5 have
installed the battery of 20 kWh capacity. Lithium-ion batteries
are considered is this work. The minimum battery capacity
Emini is 4 kWh, the charging/discharging efficiency is taken
as 90%, and the charging and discharging capacity assumed
to be 3 kW. The capital cost (Cc) of 20 kWh Tesla Powerwall
is 7,800 SGD [29]. The discount rate r is taken 5% in this
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Fig. 6: Convergence of mismatch between individual net utility
and average net utility at t = 11

paper and the lifetime is set to 15 years and maintenance cost
(Cm) for given size of the battery is 150 SGD.

Based on the value of GDR, the prosumers can behave
as sellers or buyers during the day time. The GDR of the
prosumers at each time slot is shown in Fig. 3. We choose
time slot 11 to demonstrate the performance of the proposed
method. At time slot 11, Prosumer 1 and Prosumer 5 are
treated as sellers and the remaining three prosumers are buyers.

A. Convergence of Evolutionary Game Among Buyers

Each buyer participates in evolutionary game to find the
probability of buying power from a particular seller, which is
an evolutionary stable strategy. Fig. 4 shows the convergence
characteristics of the evolutionary game and it depicts that
buyers converge to the stable strategy by executing Algorithm
1. The convergence characteristics of the average net utility is
shown in Fig. 5. The average net utility is settled at a certain
value after it reaches to a maximum value. The convergence
process of the mismatch between the individual net utility
and average net utility is shown in Fig. 6. Fig. 5 and Fig. 6
ensure that buyers get better welfare at the evolutionary stable
strategy.
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B. Convergence of Non-cooperative Game and Stackel-
berg Game

We proposed Algorithm 2 for two purposes: i) to perform
the price competition among the sellers using non-cooperative
game, and ii) to carry out the negotiation between the buyers
and the sellers using Stackelberg game. Since the sellers are
leaders of the game, the solution of the Stackelberg game is
an optimal response for the price announced by the sellers.

Fig. 7 shows the convergence characteristics of sellers price
to the NE. As the seller price approaches NE, the power
demand from the buyers to the seller also converges to a
certain value and ensures the existence of the Stackelberg equi-
librium in the trading process. The convergence characteristics
of power demand of sellers are shown in Fig. 8. The welfare of
the sellers gradually increase and settles at a certain maximum
value as shown in Fig. 9. The convergence characteristics of
SDR is given in Fig. 10 and they ensures that power demand
and supply match at the end of the game.

The amount of power (in kW) the buyer i can buy from the
seller j at the equilibrium state is given as

Buyers (2, 3, 4)

Sellers (1, 5)

[
3.31 84.38 43.56

3.31 84.45 43.56

]
The actual amount of power (in kW) the buyer buys from

the seller as given by (24) is

Buyers (2, 3, 4)

Sellers (1, 5)

[
0.8141 20.7529 10.7130

2.4959 63.6771 32.8470

]
The total power procured by Prosumer 2, Prosumer 3, and

Prosumer 4 from the P2P market is 3.31 kW, 84.43 kW, and
43.56 kW respectively, which satisfies the power requirement
of the buying role prosumers.

C. Comparison of Results

In this section, we have analyzed and compared the results
of proposed method with state of art from various aspects to
evaluate its performance. At first, We have considered three
cases: peer-to-grid (P2G) trading without BESS, P2P without
both DR and BESS, and P2P with DR but without BESS using
proposed game theoretic model. The total power imported
from the grid and the total power exported to the grid in above
three cases are shown in Fig.11 and Fig.12 respectively. The
effect of P2P trading and DR application can be observed
from t = 9 to t = 18 in Fig. 11 and Fig. 12 which is the
assumed operation time of the P2P market. In Fig. 11, the
power imported from grid reduces with the application of P2P
method and reduces further with the application of P2P method
with DR using proposed method. Similarly, power exported
from the grid is reduced with the application of P2P with
DR using proposed method compared to P2G but can be seen
nearly equal when compared with P2P without DR. Hence,
Fig. 11 and Fig. 12 highlight that proposed methodology
reduces the dependency on the grid by efficiently allocating
all the available energy within the community microgrid.

The overall cost of each prosumer using various approaches
of P2P trading is given in Table I. The total cost of the
community microgrid without BESS is shown in Fig. 13. It
consists of P2G trading, P2P trading with and without DR
using the proposed game-theoretic model, P2P without DR
using the BS method [13], P2P without DR using the MMR
method [13], and P2P without DR using the SDR method
[20]. It can be observed that the total cost from P2G trading is
highest among all methods and P2P trading with DR using the
proposed method is the lowest. Column 3 of Fig. 13 indicates
that the total cost from proposed method is less than the
cost obtained by the existing methods even if P2P trading is
implemented without DR. Furthermore, In Fig. 13 the cost of
the microgrid with DR using the proposed method can be seen
significantly less compared to the cost of microgrid using P2G
method. The cost of the microgrid with DR using the proposed
is only 88.13% of the cost in P2G trading. Therefore, we
can say that the proposed game-theoretic model is effective
to handle the P2P trading in a prosumer based community
microgrid on a daily basis.
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TABLE I: Overall daily cost of prosumers in various scenarios/methods

Scenario Overall cost without BESS (SGD) Overall cost with BESS (SGD)
P1 P2 P3 P4 P5 P1 P ∗

2 P3 P4 P ∗
5

P2G trading (Base case) 371.25 460.75 814.96 285.24 444.99 371.25 458.22 814.96 285.24 442.42
P2P with DR (proposed method) 314.63 390.71 699.64 258.95 431.17 314.63 389.85 699.64 258.95 428.20
P2P without DR (proposed method) 348.17 433.36 747.29 254.78 421.85 348.17 432.63 747.29 254.78 420.57
P2P without DR using BS method [13] 350.43 435.12 764.65 268.29 452.53 - - - - -
P2P without DR using MMR method [13] 343.64 444.92 776.00 272.89 406.57 - - - - -
P2P without DR using SDR method [20] 337.35 455.50 740.33 268.05 442.79 - - - - -
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The EDC of the battery is 2.45 SGD as given by (7). The
deployment of BESS is feasible only if the cost saving due
to the use of BESS is higher than the EDC. Compared to
base case (i.e., P2G trading without BESS), Prosumer 2 and
Prosumer 5 can save 0.08 SGD and 0.12 SGD respectively
in P2G trading with BESS. When all the prosumers in the
community participate in P2P trading using the proposed
method without both DR and BESS, Prosumer 2 and Prosumer
5 can save 27.39 SGD and 23.14 SGD respectively. If they
participate in P2P without DR but with BESS, Prosumer 2 can
save 25.67 SGD and Prosumer 5 can save 21.97 SGD. It can
be seen that the saving for the prosumers who installed BESS
is higher when they participate in P2P trading without BESS.
This is because when they participate in the P2P market, the

priority is to sell the excess energy in the P2P market. They
cannot fully utilize the battery capacity. It is not necessary that
all the prosumers have flexible loads, so the case without DR is
chosen for analysis. This study shows that participating in the
P2P energy trading in a community could be an alternative
to installing the cost-intensive energy storage systems. But,
the final conclusion cannot be drawn from the single case
study because the P2P market is not matured yet. Several
intensive studies and modifications regarding energy trading
structures, current policies and legal obligations are needed
before it comes in wide applications.

VIII. CONCLUSION

In this paper, we have presented a game-theoretic model for
real-time P2P energy trading in a prosumer based community
microgrid. Prosumers in a community involve in a P2P trading
is either a seller or a buyer. The interaction between the sellers
and buyers is modeled as a Stackelberg game, where sellers
are leaders and buyers are followers. The seller selection com-
petition among buyers is modeled as an evolutionary game and
an iterative algorithm is proposed to reach the stable state in
a game. Also, the price competition among sellers is modeled
as a non-cooperative game. A distributed iterative algorithm
is used to reach the equilibrium states in a non-cooperative
game and Stackelberg game. The proposed method is applied
to a small community microgrid with PV and energy storage
systems. Simulation results show that each game converges
to the stable state using the proposed algorithms. Simulation
results also show that the proposed model is effective to handle
the P2P energy trading in a community microgrid. The cost
of the microgrid is significantly reduced with P2P energy
trading in both cases: (i) with BESS and (ii) without BESS,
as compared to the cost in conventional P2G trading. This
work can be extended by considering the P2P network of
several community microgrids as well as the stochastic nature
of prosumers.
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