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1. Introduction

A rather common problem in multivariate statistical data analysis involves measuring the scatter of a data-set.

Classical approaches rely on the empirical covariance matrix (or a robust version of it). Most frequently, this matrix

is close to being degenerate, with several small eigenvalues. In such situations, many standard methods, including

analysis via the generalised variance, may not be applicable. Hence, the need of methods that concentrate their

attention on subspaces of appropriate dimensions. In [17], the authors introduced a class of extended generalised

k-variances for a probability measure µ on Rd with covariance matrix Σ = Σµ. These measures of dispersion are

indexed by an integer parameter k ∈ {1, . . . , d}. When k = 1 the generalised k-variance becomes Tr(Σ) and when

k = d we obtain the usual generalised variance det(Σ). For general 1 ≤ k ≤ d, the k-variance is the sum of the

determinants of all the k × k principal minors of Σ; that is, the sum of generalised variances for all k-dimensional

minors.

The simplicial nature of the results stems from a theorem which, up to a circumstantial multiplier, equates the

extended generalised variance to the expected squared volume of simplices formed from independent copies of the

random vector associated with µ; for the value k we take k + 1 copies.

A main idea of this paper is that an integral measure of dispersion generates a notion of potential at a general

point x and dependent on µ. A main result relates the notion of simplicial potential obtained here to a generalised

Mahalanobis distance, expressed as a weighted sum of such distances in every k-margin. We show also that the

potential arises from the directional derivative, towards x, of the simplicial variance, and that the matrix involved

in the generalised Mahalanobis distance is a particular generalised inverse of Σ, constructed from its characteristic

polynomial, when k = rank(Σ). Finally, simplicial potentials yield simplicial distances between two distributions,

depending on their means and covariances, which are particular Jeffreys-Bregman divergences, with interesting

features when the distributions are close to being singular.

The paper is organised as follows. Section 2 sets the notation and introduces the main notions of simplicial

variance and potential. The construction of empirical generalised k-variances is provided and the choice of k

is discussed. The generalised Mahalanobis distance and the simplicial distance between two distributions are

developed and studied in Section 3. Three examples are presented in Section 4, including a real-life example used

to illustrate the importance of the choice of an appropriate k.

2. Simplicial variances and potentials

2.1. Notation

• M is the set of non-degenerate probability measures on Borel sets of Rd with finite mean aµ and finite

non-zero covariance matrix Σµ.

• Λµ is the set of eigenvalues of Σµ.
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• Λ(Σ) is the set of eigenvalues of a square matrix Σ.

• k is an integer, k ∈ {1, . . . , d}.

• Vk(x0, . . . , xk) is the volume of the k-dimensional simplex (its length when k = 1 and area when k = 2)

formed by the k + 1 vertices x0, . . . , xk ∈ Rd.

• ek(L) is the elementary symmetric function of degree k of a set L = {ℓ1, . . . , ℓd}, defined as

ek(L) =
∑

1≤i1<···<ik≤d

ℓi1 . . . ℓik . (1)

• adj(C) is the adjoint of a k × k matrix C: if det(C) , 0 then adj(C) = det(C) · C−1, otherwise adj(C) is the

zero matrix of size k × k.

• bi1,...,ik = (bi1 , . . . , bik )
⊤ is the vector in R

k formed by extracting components from the vector b = (b1, . . . , bd)⊤ ∈
R

d, with 1 ≤ i1 < . . . < ik ≤ d.

• Bi1,...,ik is the principal k × k submatrix of a matrix B of size d × d formed by picking up rows and columns

with indices i1, . . . , ik, with 1 ≤ i1 < . . . < ik ≤ d.

• adj
(
Σi1,...,ik

)
is the d × d matrix formed from the k × k matrix adj

(
Σi1,...,ik

)
by inserting zeroes for all pairs of

indices (u, v) ∈ {1, . . . , d} × {1, . . . , d} such that u or v is not in {i1, . . . , ik}, with 1 ≤ i1 < . . . < ik ≤ d.

2.2. Integral measure of dispersion, directional derivative and potential

Consider any general functional ψ(µ) defined on M . From [7], ψ(µ) admits an unbiased estimator if and only

if it takes the form

ψ(µ) =

∫
. . .

∫
φ(x0, . . . , xk) µ(dx0) . . . µ(dxk) (2)

for some function φ. Without loss of generality, we can assume that the kernel φ is symmetric. From [8, Th. 2,

p. 2], there exists a unique symmetric unbiased estimator of ψ(µ), which is given by

ψ̂n(X1, . . . , Xn) =
(n − k − 1)!

n!

∑
φ(Xi0 , . . . , Xik ) , (3)

where the sum extends over all n!/(n − k − 1)! permutations of the sample Xn = {X1, . . . , Xn}. Moreover,

ψ̂n(X1, . . . , Xn) has minimum variance over all unbiased estimators of ψ(µ) [8, Th. 3, p. 3].

This paper investigates properties of particular measures of dispersion, or scatter, having the integral form (2)

with φ non negative (and non identically zero). A fundamental property here is that for any functional of this form

we can derive a potential which naturally arises from the notion of directional derivative.

The potential of µ at x for the functional ψ(·) in (2) is obtained by considering x0 = x as fixed:

Pµ(x) =

∫
. . .

∫
φ(x, x1, . . . , xk) µ(dx1) . . . µ(dxk) .

Clearly, ψ(µ) =
∫

Pµ(x) µ(dx). We show that the potential Pµ(x) is strongly related to the notion of directional

derivative of ψ(·) at µ in the direction of the delta-measure δx at x, defined as follows:

F(µ, x) =
∂ψ[(1 − α)µ + αδx]

∂α

∣∣∣
α=0+

.

Theorem 1. Potentials Pµ(x) are expressed through the directional derivatives F(µ, x) as

Pµ(x) =
1

k + 1
F(µ, x) + ψ(µ) . (4)
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Proof. We have

F(µ, x) = lim
α→0+

1

α



∫
. . .

∫
φ(x0, . . . , xk)


k∏

i=0

(µ + α(δx − µ))(dxi)

 − ψ(µ)



= (k + 1)

∫
. . .

∫
φ(x0, . . . , xk)(δx − µ)(dx0)


k∏

i=1

µ(dxi)



= (k + 1)
[
Pµ(x) − ψ(µ)

]
,

which yields (4).

Of particular interest are situations where the potential Pµ(x) is a convex function of x for any µ. In this case,

the potential Pµ(·) can be considered as an outlyingness function (perhaps with some normalisation), measuring

how far a point is from the core of the distribution, and Pµ(x) can also be considered as a measure of scatter of µ

around x; see, e.g., [22]. Any point x̄µ minimizing Pµ(x) (unique if Pµ(·) is strictly convex) can be considered as

a central point for µ and defines a generalised median for µ associated with ψ. If Pµ(x̄µ) > 0, it can be considered

as a central measure of scatter (around x̄µ), alternative to ψ(µ). The two measures of scatter Pµ(x̄µ) and ψ(µ) may

coincide in some cases; see [21, 22] and Section 2.6. Of course, all this is of special interest when µ is the empirical

measure of some sample.

2.3. Simplicial variances, directional derivatives and potentials

In the rest of the paper we consider the special case where φ(x0, . . . , xk) = V 2
k

(x0, . . . , xk) in (2), with Vk(x0, . . . , xk)

the volume of the k-dimensional simplex formed by the k + 1 vertices x0, . . . , xk. We denote by ψk(µ) the corre-

sponding functional, that is

ψk(µ) = Eµ{V 2
k (X0, . . . , Xk)} ,

which we call the simplicial k-variance of µ, extending the interpretation of the generalised variance of [1, Th. 7.5.2,

p. 268] to simplices of dimension smaller than d. In particular, for k = 1 we have

ψ1(µ) =

∫ ∫
‖x1 − x2‖2 µ(dx1)µ(dx2) = 2 Tr[Σµ] ,

twice the trace of the covariance matrix of µ. The potential of µ at x is then

Pk,µ(x) = Eµ{V 2
k (x, X1, . . . , Xk)} .

Geometrically, this is the expected squared volume of k-simplices formed by x and k random vectors independently

distributed with µ.

In [17], the authors have proved the following theorem and lemma.

Theorem 2. For any k ∈ {1, . . . , d} and µ ∈M , we have

ψk(µ) =
k + 1

k!
ek(Λµ) , (5)

with Λµ the set of eigenvalues of Σµ, the covariance matrix of µ, and ek(·) the elementary symmetric function of

degree k. Moreover, the functional ψ
1/k

k
(·) is concave on M .

In the following, we shall denote

Ψk(Σ) =
k + 1

k!
ek[Λ(Σ)] ,

with Λ(Σ) the set of eigenvalues of the matrix Σ, so that ψk(µ) = Ψk(Σµ). In particular, when k = d we get

ψd(µ) = (d + 1)/d! det(Σµ), which is proportional to the generalised variance widely used in multivariate statistics.

Lemma 1. The directional derivative of ψk(·) at µ in the direction δx is

Fk(µ, x) = (x − aµ)⊤∇k(µ)(x − aµ) − kψk(µ) ,

where aµ = Eµ{X} and ∇k(µ) is the d × d gradient matrix

∇k(µ) = ∂Ψk(A)/∂A
∣∣∣
A=Σµ

.
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Using Lemma 1 and (4), we obtain

Pk,µ(x) =
1

k + 1

[
(x − aµ)⊤∇k(µ)(x − aµ) + ψk(µ)

]
, (6)

where, using Lemma 2 in the Appendix, the gradient matrices ∇k(µ) can be computed as follows:

∇k(µ) =
k + 1

k!

k−1∑

i=0

(−1)iek−i−1(Λµ)Σi
µ . (7)

We obtain in particular

∇1(µ) = 2 Id ,

∇2(µ) =
3

2
[Tr(Σµ) Id − Σµ] ,

∇3(µ) =
1

3
[Tr2(Σµ) − Tr(Σ2

µ)] Id −
2

3
Tr(Σµ)Σµ +

2

3
Σ2
µ ,

∇d(µ) =
d + 1

d!
adj(Σµ) .

Note that Eµ{Pk,µ(X)} = ψk(µ) and (6) imply

Tr[Σµ∇k(µ)] = kψk(µ) . (8)

Also, Lemma 3 in the Appendix indicates that the gradient matrix ∇k(µ) is positive definite when rank(Σµ) ≥ k.

2.4. Empirical simplicial variances

Let Xn = {x1, . . . , xn} be a sample of n vectors of Rd, i.i.d. with the measure µ, and denote the sample mean

and variance-covariance matrix by

x̂n =
1

n

n∑

i=1

xi and Σ̂n =
1

n − 1

n∑

i=1

(xi − x̂n)(xi − x̂n)⊤ .

For k ≥ 1, consider the empirical estimate

(ψ̂k)n =

(
n

k + 1

)−1 ∑

1≤ j1< j2<···< jk+1≤n

V
2

k (x j1 , . . . , x jk+1
) ,

see (3). The following theorem is proved in [17].

Theorem 3. For {x1, . . . , xn} a sample of n vectors of Rd, i.i.d. with the measure µ, and for any k ∈ {1, . . . , d}, we

have

(ψ̂k)n =
(n − k − 1)!(n − 1)k

(n − 1)!
Ψk (̂Σn) , (9)

and (ψ̂k)n forms an unbiased estimator of ψk(µ) with minimum variance among all unbiased estimators.

The value of (ψ̂k)n only depends on Σ̂n, with E{(ψ̂k)n} = ψk(Σµ). From [20, Lemma A, p. 183], if Eµ{V 4
k

(X1, . . . , Xk+1)} <
∞, then the variance of (ψ̂k)n satisfies

var[(ψ̂k)n] =
(k + 1)2

n
varµ[Pk,µ(X)] + O(n−2) .

Other properties of U-statistics apply to the estimator (ψ̂k)n, including almost-sure consistency and the classical law

of the iterated logarithm, see [20, Section 5.4]. In particular, (ψ̂k)n is asymptotically normal,
√

n[(ψ̂k)n − ψk(µ)]
d→

N(0, (k + 1)2 varµ[Pk,µ(X)]). One may refer for instance to [15] for a comprehensive survey of results on the

asymptotic distribution of eigenvalues of empirical covariance matrices and the asymptotic moments of associated

elementary symmetric functions; see also [1, Chap. 7] and [5, Chap. 10]. The variance of (ψ̂k)n can also be

estimated by jackknife or bootstrap methods, see [8, Chap. 5].

4



2.5. Alternative representations of simplicial potentials

Refining the arguments used in [17] for proving Theorem 2, we establish the following property.

Theorem 4. For any µ ∈M , any k ∈ {1, . . . , d} and any x ∈ Rd, we have

Pk,µ(x) =
1

k!
ek

[
Λ

(
Σµ + (x − aµ)(x − aµ)⊤

)]
. (10)

Proof. Consider the squared volume V 2
k

(x, x1, . . . , xk). By the Binet-Cauchy formula, see, e.g., [6, vol. 1, p. 9], we

obtain

V
2

k (x, x1, . . . , xk) =
1

(k!)2
det





(x1 − x)⊤

(x2 − x)⊤

...

(xk − x)⊤



[(x1 − x) (x2 − x) · · · (xk − x)]


=
1

(k!)2

∑

1≤i1<i2<···<ik≤d

det2



{x1 − x}i1 · · · {xk − x}i1
...

...
...

{x1 − x}ik · · · {xk − x}ik



=
1

(k!)2

∑

1≤i1<i2<···<ik≤d

det


k∑

i=1

(xi − x)i1,...,ik (xi − x)
⊤

i1,...,ik

 .

From the definition of the potential Pk,µ(x), we obtain

Pk,µ(x) =

∫
. . .

∫
V

2
k (x, x1, . . . , xk)µ(dx1) . . . µ(dxk)

=
1

(k!)2

∑

1≤i1<i2<···<ik≤d

∫
. . .

∫
det


k∑

i=1

(xi − x)i1,...,ik (xi − x)
⊤

i1,...,ik

 µ(dx1) . . . µ(dxk) .

From Lemma 4 in the Appendix, with Zi = (xi − x)i1,...,ik , we get

Pk,µ(x) =
1

k!

∑

1≤i1<i2<···<ik≤d

det
[
Eµ{(X − x)i1,...,ik (X − x)⊤i1,...,ik }

]

=
1

k!

∑

1≤i1<i2<···<ik≤d

det
[
Eµ{(X − aµ)i1,...,ik (X − aµ)⊤i1,...,ik + (aµ − x)i1,...,ik (aµ − x)⊤i1,...,ik }

]

=
1

k!

∑

1≤i1<i2<···<ik≤d

det

{[
Σµ + (x − aµ)(x − aµ)⊤

]
i1,...,ik

}
. (11)

Lemma 5 in the Appendix completes the proof.

When all k× k principal minors of Σµ have rank at least k, Theorem 4 provides an alternative representation for

Pk,µ(x).

Corollary 1. When rank(Σi1,...,ik ) ≥ k for all 1 ≤ i1 < i2 < · · · < ik ≤ d, the gradient matrix ∇k(µ) in (6) can be

expressed as

∇k(µ) =
k + 1

k!

∑

1≤i1<i2<···<ik≤d

adj
(
Σi1,...,ik

)
, (12)

where we have denoted Σ = Σµ.

Proof. Each determinant det

{[
Σ + (x − aµ)(x − aµ)⊤

]
i1,...,ik

}
in (11) can be represented as

det

{[
Σ + (x − aµ)(x − aµ)⊤

]
i1,...,ik

}
=

[
1 + (x − aµ)⊤i1,...,ikΣ

−1
i1,...,ik

(x − aµ)i1,...,ik

]
det

(
Σi1,...,ik

)

= det
(
Σi1,...,ik

)
+ (x − a)⊤i1,...,ik adj

(
Σi1,...,ik

)
(x − a)i1,...,ik .

5



By Lemma 5 in the Appendix and Theorem 2, we have

1

k!

∑

1≤i1<i2<···<ik≤d

det
(
Σi1,...,ik

)
=

1

k!
ek(Λµ) =

1

k + 1
ψk(µ) .

Therefore, formula (11) yields

Pk,µ(x) =
1

k + 1
ψk(µ) +

1

k!

∑

1≤i1<i2<···<ik≤d

(x − a)⊤i1,...,ik adj
(
Σi1,...,ik

)
(x − a)i1,...,ik . (13)

The statement of the corollary follows from (13) and (6).

2.6. A generalisation of results of Wilks and van der Vaart

Equation (6) and Lemma 3 show that the potential Pk,µ(x) is a quadratic convex function of x, with minimum

value ψk(µ)/(k + 1) ≥ 0 attained at x = aµ. As mentioned in Section 2.2, when Pk,µ(aµ) > 0, it can be considered

as a central measure of scatter. The relations between Pk,µ(aµ) and ψk(µ) have been investigated by Wilks [22] and

van der Vaart [21] for the case k = d where ψd(µ) = (d+1)/d! det(Σµ). The following theorem extends their results

to general k ∈ {1, · · · , d}. Note that the case k = 1, with ψ1(µ) = 2 Tr[Σµ], is classical.

Theorem 5. For any µ ∈M and any k ∈ {1, . . . , d}, we have

aµ = arg min
x

Pk,µ(x) . (14)

Moreover,

Pk,µ(x) > Pk,µ(aµ) =
1

k!
ek(Λµ) =

ψk(µ)

k + 1
> 0

for all x , aµ if and only if rank(Σµ) ≥ k.

Proof. Equation (14) is a direct consequence of (6) and of the fact that the gradient matrix ∇k(µ) is non-negative

definite, see Lemma 3.

Assume first that rank(Σµ) ≥ k; then ek(Λµ) > 0 and ∇k(µ) is positive definite from Lemma 3. Therefore

Pk,µ(x) > Pk,µ(aµ) > 0 for x , aµ.

Assume now that rank(Σµ) < k, which implies Pk,µ(aµ) = 0. Choose any z , 0 in the subspace spanned by the

eigenvectors of Σµ corresponding to the non-zero eigenvalues of Σµ and consider the form (10) for Pk,µ(x). Since

the ranks of the matrices Σµ and Σµ + zz⊤ coincide, Pk,µ(x) = 0 for x = z + aµ.

2.7. Choosing k

Since the simplicial k-variance ψk(µ) is constructed from volumes of k-dimensional simplices, its standardised

version ψ
1/k

k
(·) allows us to compare scatters of different dimensional distributions, similarly to the standardised

generalised variance used by SenGupta [19] which corresponds to the case k = d. Newton inequalities for sym-

metric functions indicate that 
ek(Λµ)(

d

k

)


1/k

>


ek+1(Λµ)(

d

k+1

)


1/(k+1)

for all k = 1, . . . , d − 1 unless all eigenvalues in Λµ coincide, see [13, p. 213]. Also, one can check that, for any d,

(k!/[(k + 1)
(

d

k

)
])1/k increases with k, 1 ≤ k ≤ d. This implies that ψ

1/k

k
(µ) is strictly decreasing with k, also when all

eigenvalues in Λµ coincide. This remains true when considering the empirical version (9) with a large enough n,

since the correcting factor satisfies (n − k − 1)!(n − 1)k/(n − 1)! = 1 + k(k − 1)/(2n) + O(1/n2).

The consideration of ψ
1/k

k
(·) does not allow us to make a recommendation concerning the most appropriate k.

We can simply notice that ψ
1/k

k
(µ) = 0 when µ is concentrated in a d′-dimensional subspace with d′ < k. However,

numerical experimentation indicates that the estimation of the approximate dimensionality of a data-set is easier

by simple inspection of the eigenvalues of the empirical covariance matrix Σ̂n than by setting a threshold on values

of Ψk (̂Σn).

6



By extending the definition of ψ(·) in (2) to arbitrary positive measures, we may consider the variation of ψk(µ)

when µ is changed into µ + αδx for a small α. This corresponds to considering the influence function

Gk(µ, x) =
∂ψk[µ + αδx]

∂α

∣∣∣
α=0+

.

An appropriate k should then yield large values of Gk(µ, x) to achieve high sensitivity of the measure of scatter of

µ to deviations from µ. Similarly to Lemma 1, we obtain Gk(µ, x) = (x − aµ)⊤∇k(µ)(x − aµ). Averaging Gk(µ, X)

with X ∼ µ, we get from (8)

Eµ{Gk(µ, X)} = Tr[Σµ∇k(µ)] = kψk(µ) .

As a result, choosing k∗ that maximises kψk(µ) (or k (ψ̂k)n given by (9) for empirical data) appears most appropriate.

The value of k∗ depends on the scale of the data. As an example, assume that Σµ has d′ ≤ d eigenvalues equal

to β and d − d′ equal to zero. Then,

kψk(µ) =
k + 1

(k − 1)!

(
d′

k

)
βk , k ≤ d′ , (15)

and kψk(µ) = 0 for k > d′. To determine the associated k∗, we compute the ratio ρ(k) = kψk(µ)/[(k + 1)ψk+1(µ)] =

k(k + 1)2/[β(k + 2)(d′ − k)]. If β < 4/[3(d′ − 1)], then ρ(1) > 1 and k∗ = 1, if β > d′2(d′ − 1)/(d′ + 1) then

ρ(d′ − 1) < 1 and therefore k∗ = d′. Otherwise, we find t∗ as the solution of the cubic equation ρ(t) = 1 and get

k∗ = ⌈t∗⌉. Figure 1-left presents the evolution of kψk(µ) (in log scale) as a function of k for β = 20, 2 and 0.5,

from top to bottom, when d′ = 30; the corresponding values of k∗ are 17, 7 and 4, respectively. Figure 1-right

shows kψk(µ) (log scale) when Σµ has eigenvalues Λµ = {β, β/2, . . . , β/30, 0, . . . , 0}, also for β = 20 (top), 2 and

0.5 (bottom), with associated k∗ equal to 7, 3 and 2. Both figures indicate that a small k is preferable when Σµ
has small eigenvalues and illustrate the difficulty of estimating the true dimensionality of the data when there are

several eigenvalues smaller than one, due to the fast decrease of ψk(µ) as a function of k. This point is further

illustrated in the example of Section 4.3.

Figure 1: kψk(µ) for k = 1, . . . , d′ = 30, for β = 20 (top), 2 (middle) and 0.5 (bottom). Left: Λµ = {β, . . . , β, 0, . . . , 0} and kψk(µ)

is given by (15); Right: Λµ = {β, β/2, . . . , β/30, 0, . . . , 0}.

3. Simplicial Mahalanobis distances

3.1. From simplicial potentials to Mahalanobis distances

Consider a measure µ ∈M such that Pk,µ(aµ) = ek(Λµ)/k! > 0. For this measure we define the function

Ok,µ(x) =
Pk,µ(x)

Pk,µ(aµ)
− 1 = (x − aµ)⊤S k,µ(x − aµ) , (16)
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with

S k,µ =
∇k(µ)

ψk(µ)
, (17)

where the second equality follows from (6). In the special case k = d, (12) gives ∇d(µ) = (d + 1)/d! det(Σµ) · Σ−1
µ

and (5) gives ψd(µ) = (d + 1)/d! det(Σµ), so that

Od,µ(x) = (x − aµ)⊤Σ−1
µ (x − aµ) ,

which is exactly the original Mahalanobis distance [10]. We will call Ok,µ(·) the k-simplicial outlyingness function,

which can also be thought of as a simplicial Mahalanobis distance between x and µ. Geometrically, it is a suitably

normalised version of the expected squared volume of k-simplices formed by x and k random vectors independently

distributed according to µ, and measures the distance from x to the central point aµ.

The definition (16) of Ok,µ(x) implies that Ok,µ(x) ≥ 0 for any µ ∈ M , any k ∈ {1, . . . , d} and any x. Also,

Eµ{Pk,µ(X)} = ψk(µ) implies that Eµ{Ok,µ(X)} = k, and therefore

max
x∈X

Ok,µ(x) ≥ k (18)

for any set X having full measure, i.e., such that µ(X ) = 1. On the other hand, Theorem 4.1 in [17] gives a

necessary and sufficient condition on µ to have equality in (18) for a given set X : µ must maximise ψk(·) over the

set of all measures supported on X .

In view of Theorem 5,

min
x

Ok,µ(x) = Ok,µ(aµ) = 0

and Ok,µ(x) > 0 for all x , aµ. The quadratic form in (16) defines a metric on Rd, and we define the k-th order

simplicial Mahalanobis distance relative to µ (or simply k-distance) between z1 and z2 in Rd as

δk,µ(z1, z2) = Ok,µ(z1 − z2 + aµ) = (z1 − z2)⊤S k,µ(z1 − z2) .

The geometric interpretation of δk,µ(z1, z2) when µ = µn is a centralised empirical measure of a sample Xn is that

1 + δk,µ(z1, z2) is proportional to the sum of squared volumes of all simplices formed by z1 − z2 and all k-tuples of

the sample Xn.

As already mentioned, when k = d we get Od,µ(x) = (x − aµ)⊤Σ−1
µ (x − aµ). For k = 1, we obtain

O1,µ(x) = ‖x − aµ‖2/Tr(Σµ) ,

which is the usual squared Euclidean distance between x and aµ normalised by the trace of Σµ.

For general k, when all k × k principal minors of Σµ have rank at least k, from (5) and (12) we have

Ok,µ(x) =
1

ek(Λµ)

∑

1≤i1<i2<···<ik≤d

(x − aµ)⊤i1,...,ik adj
(
Σi1,...,ik

)
(x − aµ)i1,...,ik

=
1

ek(Λµ)

∑

1≤i1<i2<···<ik≤d

det(Σi1,...,ik ) · (x − aµ)⊤i1,...,ikΣ
−1
i1,...,ik

(x − aµ)i1,...,ik ,

where Σ = Σµ. Since ek(Λµ) =
∑

det(Σi1,...,ik ), see Lemma 5, the simplicial Mahalanobis distance of order k,

δk,µ(z1, z2), is then the weighted sum of the usual Mahalanobis distances of all k-th marginal vectors, with weights

given by the corresponding determinants.

3.2. Construction through characteristic polynomial and generalised inverse

The expression (7) of the gradient matrix ∇k(µ) allows us to express the matrix S k,µ in (16) in terms of the

characteristic polynomial of Σµ, and to show that S k,µ is a generalised inverse of Σµ when Σµ has rank k.

Denote by pµ(·) the characteristic polynomial of the d × d matrix Σµ,

pµ(λ) =

d∑

i=0

(−1)iei(Λµ)λd−i .
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For any k ∈ {1, . . . , d}, we introduce a truncated version pk,µ(λ) of pµ(λ) which only contains terms of degree at

least d − k,

pk,µ(λ) = λd−k

k∑

i=0

(−1)k−iek−i(Λµ)λi ,

which we rewrite as

pk,µ(λ) = λd−k(−1)k+1
[
λqk,µ(λ) − ek(Λµ)

]
, (19)

where

qk,µ(λ) =

k−1∑

i=0

(−1)iek−i−1(Λµ)λi . (20)

Comparing (7) with (20), we obtain ∇k(µ) = (k + 1)/k! qk,µ(Σµ). Therefore, S k,µ in (16) becomes

S k,µ =
qk,µ(Σµ)

ek(Λµ)
.

Theorem 6. If rank(Σµ) = k ≤ d, then the matrix S k,µ is a generalised inverse of Σµ (inverse if k = d). When Σµ has

eigenvalues λ1 ≥ · · · λk > λk+1 = · · · = λd = 0, S k,µ has eigenvalues ζ j = 1/λ j for j = 1, . . . , k and ζ j =
∑k

i=1 1/λi

for j = k + 1, . . . , d; moreover, S k,µ and Σµ have the same eigenspaces.

Proof. Assume rank(Σµ) = k ≤ d. We need to verify the generalised inverse condition ΣµS k,µΣµ = Σµ. We have:

ΣµS k,µΣµ − Σµ = Σµ
qk,µ(Σµ)

ek(Λµ)
Σµ − Σµ =

1

ek(Λµ)
Σµ

[
Σµqk,µ(Σµ) − ek(Λµ)Id

]
. (21)

Since rank(Σµ) = k, the characteristic polynomial pµ(·) of the matrix Σµ is equal to pk,µ(·). The matrix Σµ satisfies

its own characteristic equation, and therefore pk,µ(Σµ) = 0. In view of (19), this gives

Σd−k
µ

[
Σµqk,µ(Σµ) − ek(Λµ)Id

]
= 0 . (22)

If k = d or k = d − 1 this implies ΣµS k,µΣµ = Σµ, see (21).

Let us assume k < d − 1. From (22), all eigenvalues λi of the matrix Σµ satisfy

λd−k
i

[
λiqk,µ(λi) − ek(Λµ)

]
= 0 . (23)

For each i = 1, . . . , d this implies that either λi = 0 or
[
λiqk,µ(λi) − ek(Λµ)

]
= 0. In either case we obtain

λi

[
λiqk(λi) − ek(Λµ)

]
= 0, which yields ΣµS k,µΣµ = Σµ.

The fact that S k,µ is a polynomial in Σµ implies that they have the same eigenspaces. The eigenvalues ζ j of

S k,µ are qk,µ(λ j)/ek(Λµ). If λ j , 0, then (23) implies ζ j = 1/λ j. If λ j = 0, then (20) gives ζ j = ek−1(Λµ)/ek(Λµ) =∑k
i=1 1/λi.

3.3. A simplicial distance between two distributions

Let µ1 and µ2 be two probability measures in M . The average squared volume of a k-simplex with one vertex

coming from measure µ1 and k vertices i.i.d. from µ2 equals Eµ1
{Pk,µ2

(X)}. Symmetrising and normalising, we

naturally arrive at the following expression

∆k(µ1, µ2) =
1

2

[
Eµ1
{Ok,µ2

(X)} + Eµ2
{Ok,µ1

(X)}
]
− k ,

where Ok,µ(·) is the outlyingness function defined in (16). We shall informally consider ∆k(µ1, µ2) as a measure

of distance between µ1 and µ2, although ∆k(µ1, µ2) does not in general satisfy the triangular inequality and only

depends on the means and covariance matrices of µ1 and µ2. Expanding Eµ2
{Ok,µ1

(X)}, and denoting Σi = Σµi
and

ai = aµi
for i = 1, 2, we get

Eµ2
{Ok,µ1

(X)} = Tr(S k,µ1
Σ2) + (a2 − a1)⊤S k,µ1

(a2 − a1) ,
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therefore,

∆k(µ1, µ2) =
1

2

[
Tr(S k,µ1

Σ2) + Tr(S k,µ2
Σ1)

]
+ (a2 − a1)⊤

S k,µ1
+ S k,µ2

2
(a2 − a1) − k . (24)

Note that the substitution of the Moore-Penrose pseudo inverses Σ+
i

for S k,µi
in (24) would lead to negative distance

values for some measures with singular Σi.

Direct calculation shows that ∆k(µ1, µ2) corresponds to the Jeffreys-Bregman divergence between µ1 and µ2

(see [2, 14]) for lnψk(·), that is,

∆k(µ1, µ2) =
1

2

[
Flnψk

(µ1, µ2) + Flnψk
(µ2, µ1)

]
,

with Flnψk
(µ, ν) = Fk(µ, ν)/ψk(µ) the directional derivative of lnψk(·) at µ in the direction ν.

In the particular case when k = d and both matrices Σ1 and Σ2 are invertible, we obtain

∆d(µ1, µ2) =
1

2

[
Tr(Σ−1

1 Σ2) + Tr(Σ−1
2 Σ1)

]
+ (a2 − a1)⊤

Σ−1
1
+ Σ−1

2

2
(a2 − a1) − d ,

which is non negative since A + A−1 ≥ 2 Id for any d × d matrix A > 0, with equality if and only if A = Id.

Therefore, ∆d(µ1, µ2) = 0 implies a1 = a2 and Σ1 = Σ2. It resembles the Bhattacharyya distance between two

normal distributions,

∆B(µ1, µ2) =
1

2
ln

[
det(Σ1 + Σ2)
√

det(Σ1) det(Σ2)

]
+

1

4
(a2 − a1)⊤(Σ1 + Σ2)−1(a2 − a1) − d

2
ln(2) ,

but is not equivalent to it. In particular, ∆B(µ1, µ2) cannot be used when at least one of the distributions is singular,

whereas ∆k(µ1, µ2) can, see (24). The example in Section 4.2 gives an illustration with distributions close to

singularity.

When k = 1, S 1,µ = Id/Tr(Σµ), and therefore

∆1(µ1, µ2) =
1

2

[
Tr(Σ1)

Tr(Σ2)
+

Tr(Σ2)

Tr(Σ1)

]
+

1

2
‖a2 − a1‖2

[
1

Tr(Σ1)
+

1

Tr(Σ2)

]
− 1 ,

which is clearly non negative. However, ∆1(µ1, µ2) = 0 only implies a1 = a2 and Tr(Σ1) = Tr(Σ2), showing that

∆1 is arguably a less interesting measure of discrepancy between distributions. On the other hand, when k > 1 we

have the following property.

Theorem 7. For any k ∈ {2, . . . , d}, ∆k(µ1, µ2) ≥ 0 for any two measures µ1 and µ2 in M such that rank(Σ1) ≥ k

and rank(Σ2) ≥ k; moreover ∆k(µ1, µ2) = 0 implies a1 = a2 and Σ1 = Σ2.

Proof. The proof relies on the strict concavity of Ψ
1/k

k
(·), see Lemma 6 in the Appendix. Concavity implies that

ψ
1/k

k
(µ1) +

1

k

Tr {∇k(µ1)[Σ2 − Σ1]}
ψ

1−1/k

k
(µ1)

≥ ψ1/k

k
(µ2) ,

that is, Tr
[
S k,µ1
Σ2

]
≥ kψ

1/k

k
(µ2)/ψ

1/k

k
(µ1), see (8) and (17), with equality when Σ2 = γ2 Σ1 for some γ2 > 0 (γ2 , 0

since µ2 ∈M ). Similarly, Tr
[
S k,µ2
Σ1

]
≥ kψ

1/k

k
(µ1)/ψ

1/k

k
(µ2), with equality implying Σ1 = γ1 Σ2 for some γ1 > 0.

Therefore, (24) gives

∆k(µ1, µ2) ≥ k

2




ψ

1/k

k
(µ2)

ψ
1/k

k
(µ1)
+
ψ

1/k

k
(µ1)

ψ
1/k

k
(µ2)

 − 2

 + (a2 − a1)⊤
S k,µ1

+ S k,µ2

2
(a2 − a1) .

Since, from Lemma 3, S k,µ1
and S k,µ2

are positive definite, ∆k(µ1, µ2) ≥ 0, and equality implies that a1 = a2 and

ψk(µ1) = ψk(µ2). When k ≥ 2, equality also implies that Σ2 = γ Σ1 for some γ > 0, and γ = 1 since ψk(µ1) = ψk(µ2).
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4. Examples

4.1. Clustering with the simplicial Mahalanobis distance

We consider a clustering problem for which we apply a k-means algorithm with Lloyd’s type iterations [9], with

three different intra-class distances: the Euclidean distance (leading to the usual k-means algorithm), Mahalanobis

distance with Moore-Penrose pseudo-inverse if needed, and the k-simplicial Mahalanobis distance with k = 3.

We consider two examples, each with two clusters of n/2 = 50 points, respectively with d = 50 and d = 100.

The 50 points of cluster i are normally distributed N(bi,Wi), with b1 = 0, b2 = (1, 1, 0.5, 0.5, . . . , 0.5)⊤ for d = 50,

b2 = (1, 1, 0.1, 0.1, . . . , 0.1)⊤ for d = 100, and

W1 =



(
5 −4

−4 5

)
0

0 σ2
d

Id−2

 , W2 =



(
5 4

4 5

)
0

0 σ2
d

Id−2

 .

We used σ50 = 10−2 and σ100 = 10−9 and performed 1,000 runs of each algorithm (initialised in the same way for

each of the 1,000 samples, with 100 iterations every time). The performances of the algorithms are summarised in

Figure 2. We plot the empirical cdf, over the 1,000 runs, of the classification error rate introduced by Chipman and

Tibshirani [3], which gives the proportion of misclassified pairs in one run of the algorithm.

Figure 2: Empirical cdf, over the 1,000 runs, of the Classification Error Rates (CER) when clustering n = 100 points with the

Euclidean distance (dashed line), the Mahalanobis distance (dotted line) and the 3-simplicial Mahalanobis distance (solid line);

Left: d = 50; Right: d = 100.

The results illustrate the property that the substitution of the k-simplicial Mahalanobis distance for the usual one

may significantly improve performance of some classical algorithms of multivariate statistics, in cases when the

data are high-dimensional but lie very close to a subspace of much lower dimension. Choosing k = k∗ as suggested

in Section 2.7 at each iteration makes the algorithm slightly more complicated than when k is fixed at 3 and does

not yield any visible improvement in performance. When d = 100, in addition to the presence of a delta measure

at zero (which also exists for clustering with the Mahalanobis distance), the distribution of classification error rates

also has a mode at low error rates for the 3-simplicial Mahalanobis distance. For all three methods, the worst

misclassification occurs when all points are assigned to one cluster or when one cluster only contains two points

that should belong to different clusters (which gives here a CER value of n/[2(n − 1)] ≃ 0.505). The performance

of clustering with k-simplicial Mahalanobis distance significantly improves when increasing the number of points

in each cluster: for example, with 400 points in each cluster in the setting above with d = 50, perfect classification

is obtained in 1,000 repetitions for k = 3, 4, 5, 6. On the other hand, for clustering with Euclidean and Mahalanobis

distances, the CER remains similar to the case with 50 points per cluster depicted in Figure 2-left.
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4.2. Comparison between Bhattacharyya and simplicial distances

Consider two d-dimensional distributions µ1 and µ2 with means a1 and a2 and covariance matrices

Σ1 =



(
1 0

0 1

)
0

0 α2 Id−2

 , Σ2 =



(
5 4

4 5

)
0

0 β2 Id−2

 .

First, we set a1 = a2 = 0, α = 0.01 and β = 0.001. Figure 3-left shows that Bhattacharyya distance ∆B(µ1, µ2)

between the two distributions increases linearly with d, although intuitively the distributions look more similar as d

increases. Figure 3-right shows that the behaviour of simplicial distance ∆3(µ1, µ2) is consistent with this intuition.

For illustration, we have considered k = 3, but other values of k ≥ 2 yield similar behaviours.

Figure 3: Distance between µ1 and µ2 as a function of d ∈ {3, . . . , 50}. Left: Bhattacharyya distance ∆B(µ1, µ2); Right: simplicial

distance ∆3(µ1, µ2).

Now take β = α, but a2(1) = a2(2) = 1, the other components of a2 being left equal to zero, like all components

of a1. Again, intuitively the distributions are getting more similar as d increases, but ∆B(µ1, µ2) remains constant,

whereas ∆k(µ1, µ2) decreases with d for k ≥ 2.

4.3. Comparing scatters of Wine Recognition Data

In this section we illustrate the use of simplicial k-variances ψk for comparing scatters of different data-sets.

We consider the wine data-set of the machine-learning repository, see www.mir.cs.umass.edu/ml/datasets/

Wine, widely used in particular as a test-bed for comparing classifiers. Here we use the class labels and consider

the three classes of the data-set as three different data-sets. The data have dimension d = 14 and the sample

sizes are 59, 71 and 48. The eigenvalues of the three empirical covariance matrices are plotted in Figure 4-left

(in log scale). For each data-set, the leading eigenvalue is very large and several of them are much smaller than

one. Figure 4-right shows the values of the standardised empirical simplicial k-variances (ψ̂k)
1/k
n obtained using (9)

and the corresponding 2σ-confidence intervals computed by jackknifing as explained in [8, Chap. 5]. As already

mentioned in Section 2.7, ψ
1/k

k
is a decreasing function of k, and the decrease is very fast due to the presence of

small eigenvalues. Non-standardised values of (ψ̂k)n are shown in Figure 5-left, along with their 2σ-confidence

intervals (also computed with the jackknife). These two figures suggest that measuring scatter through ψ
1/k

k
(or ψk)

with a large k is doubtful in the presence of small eigenvalues. This true in particular for the generalised variance

for which k = d. Figure 5-right presents the values of (ψ̂k)n for k = 1, . . . , 5 together with their confidence intervals

(in log scale). The figure suggests that scatters of the three data-sets are slightly different.

Appendix

The Newton equations for symmetric functions and straightforward calculation yield the following properties.
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Figure 4: Left: eigenvalues (log scale) of the three empirical covariance matrices. Right: standardised empirical simplicial

k-variances (ψ̂k)
1/k
n and 2σ-confidence intervals.

Figure 5: Left: non-standardised empirical simplicial k-variances (ψ̂k)n and 2σ-confidence intervals. Right: values of (ψ̂k)n for

k = 1, . . . , 5 and 2σ-confidence intervals (log scale).

Lemma 2. Let Vi(A) = ei(Λ(A)), where Λ(A) is the set of eigenvalues of a square matrix A (not necessarily

symmetric). Then

Vk(A) =
1

k

k−1∑

i=0

(−1)i−1Vk−i(A)Tr(Ai) and
∂Vk(A)

∂A
=

k−1∑

i=0

(−1)iVk−i−1(A)(Ai)⊤ .

The next lemma indicates that ∇k(µ) is non-negative definite for any µ ∈ M and is positive definite when Σµ
has rank at least k.

Lemma 3. For any probability measure µ in M and any k in {1, . . . , d}, the gradient matrix ∇k(µ) is non-negative

definite. When the covariance matrix Σµ is such that rank(Σµ) ≥ k, then ∇k(µ) is positive definite.

Proof. The proof follows the same lines as in [18, Th. 7.5]. The function Ψ
1/k

k
(·) is concave, see [11, p. 116].

Therefore, the function lnΨk(·) is concave on the set of non-negative definite matrices, with gradient at Σ = Σµ
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given by ∇k(µ)/ψk(µ). Concavity implies that

lnΨk(Σµ + zz⊤) ≤ lnψk(µ) + Tr

[
zz⊤∇k(µ)

ψk(µ)

]
.

By the monotonicity of the eigenvalues, for all 1 ≤ i ≤ d, the i-th largest eigenvalue of Σµ + zz⊤ is larger than or

equal to the i-th largest eigenvalue of Σµ, the inequality being strict for at least one pair of eigenvalues. Therefore,

lnΨk(Σµ + zz⊤) ≥ lnψk(µ), and Tr[zz⊤∇k(µ)] = z⊤∇k(µ)z ≥ 0 for any z since ψk(µ) ≥ 0, showing that ∇k(µ) is

non-negative definite.

Suppose now that rank(Σµ) ≥ k ∈ {1, . . . , d} and take z , 0. This implies lnΨk(Σµ + zz⊤) > lnψk(µ), and

therefore z⊤∇k(µ)z > 0 since ψk(µ) = (k + 1)/k! ek(Λµ) > 0, which completes the proof.

Next lemma follows from [16, Th. 1].

Lemma 4. Let the k vectors Z1, . . . ,Zk ∈ Rk be i.i.d. with some probability measure µ, k ≥ 2. Then

Eµ

det


k∑

i=1

ZiZ
⊤
i



 = k! det
[
Eµ{Z1Z⊤1 }

]
.

The following property is proved in [11, p. 22].

Lemma 5. Let B be a non-negative definite d × d matrix with eigenvalues ΛB = (λ1,B, . . . , λd,B). Then
∑

1≤i1<i2<···<ik≤d

det[{B}(i1,...,ik)×(i1,...,ik)] =
∑

1≤i1<i2<···<ik≤d

λi1,B × · · · × λik ,B = ek (ΛB) .

Lemma 6. For any probability measure µ ∈ M , the function Ψ
1/k

k
(·) is strictly concave at Σµ for k ≥ 2 when

rank(Σµ) ≥ k, that is,

Ψ
1/k

k
[(1 − α)Σµ + αΣ] > (1 − α)Ψ

1/k

k
(Σµ) + αΨ

1/k

k
(Σ)

for any α ∈ (0, 1) and any symmetric non-negative definite matrix Σ , 0 not proportional to Σµ.

Proof. The function Ψ
1/k

k
(·) is concave, see Lemma 3. Suppose that

Ψ
1/k

k
[(1 − β)Σµ + βΣ] = (1 − β)Ψ

1/k

k
(Σµ) + βΨ

1/k

k
(Σ) (.1)

for some β > 0. We show that (.1) implies that Σ = γ Σµ for some γ ≥ 0.

Due to the concavity of Ψ
1/k

k
(·), (.1) implies

Ψ
1/k

k
[(1 − α)Σµ + αΣ] = (1 − α)Ψ

1/k

k
(Σµ) + αΨ

1/k

k
(Σ) , α ∈ (0, β) , (.2)

that is

e
1/k

k
{Λ[(1 − α)Σµ + αΣ]} = (1 − α) e

1/k

k
[Λ(Σµ)] + α e

1/k

k
[Λ(Σ)] , α ∈ (0, β) .

Now, Λ[(1− α)Σµ + αΣ] ≺ Λ[(1− α)Σµ]+Λ[αΣ], with ≺ denoting majorisation, see [4]. The strict Shur-concavity

of ek(·) for k > 1 [12, p. 115] then implies

ek{Λ[(1 − α)Σµ + αΣ]} ≥ ek{Λ[(1 − α)Σµ] + Λ[αΣ]} = ek[(1 − α)Λ(Σµ) + αΛ(Σ)] ,

with equality when Λ[(1 − α)Σµ + αΣ] = (1 − α)Λ(Σµ) + αΛ(Σ). Therefore, (.2) implies

e
1/k

k
[(1 − α)Λ(Σµ) + αΛ(Σ)] = (1 − α) e

1/k

k
[Λ(Σµ)] + α e

1/k

k
[Λ(Σ)] , α ∈ (0, β) ,

and the strict concavity of e
1/k

k
(·) for k > 1 [12, p. 116] implies that Λ(Σ) = γΛ(Σµ) for some γ ≥ 0.

We thus obtain Λ[(1 − α)Σµ + αΣ] = (1 − α + αγ)Λ(Σµ), α ∈ (0, β). Take any z with ‖z‖ = 1 in the eigenspace

of the largest eigenvalue λ of (1−α)Σµ +αΣ. We have λ = (1−α+αγ)λ′, with λ′ the largest eigenvalue of Σµ, and

λ = z⊤[(1 − α)Σµ + αΣ]z = (1 − α)z⊤Σµz + αz⊤Σz

≤ (1 − α) sup
‖z‖=1

z⊤Σµz + α sup
‖z‖=1

z⊤Σz = (1 − α + αγ)λ′ ,

implying that z is in the eigenspace of the largest eigenvalues λ′ and γλ′ of Σµ and Σ. By repeating the same

argument, we obtain that Σµ and Σ have the same eigenspaces, and therefore Σ = γ Σµ.
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