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S U M M A R Y
Under some conditions, dense parts of the lower crust or mantle lithosphere can become
unstable, deform internally and sink into the less dense, underlying asthenosphere. Two end-
member mechanisms for this process are delamination and dripping. Numerical calculations
are used to compare the time taken for each instability to grow from initiation to the point
of rapid descent through the asthenosphere. This growth period is an order of magnitude
shorter for delamination than dripping. For delamination, the growth rate varies proportionally
to the buoyancy and viscosity of the sinking material, as with dripping. It also depends on
the relative thickness (L ′

c) and viscosity (η′
c) of the weak layer which decouples the sinking

material from the upper crust, varying proportionally to L ′2
c /η

′ 2
3

c . As instabilities commonly
resemble a mix of dripping and delamination, the analysis of initial instability growth includes
a range of mechanisms in-between. Dripping which begins with a large perturbation and low
η′

c reproduces many of the characteristic features of delamination, yet its growth timescale is
still an order of magnitude slower. Previous diagnostic features of delamination may therefore
be ambiguous and if rheology is to be inferred from observed timescales, it is important that
delamination and this ‘triggered dripping’ are distinguished. Transitions from one mechanism
or morphology to another, during the initial growth stage, are also examined. 3-D models
demonstrate that when η′

c is small, a dripping, planar sheet will only transition into 3-D drips
if the initial triggering perturbation is less than a third of the dense material’s thickness. This
transition occurs more easily at large η′

c, so rheological heterogeneity may be responsible for
morphological transitions through time. We also calculate the rates at which delamination
grows too slowly to outpace cooling of the upwelling asthenosphere, resulting in stalling and
switching to dripping. Common lithospheric viscosities and observed timescales indicate that
both instability transitions are feasible. Overall, the timescale and persistence of delamination
depends on three parameter groups, which characterize the properties of the anomalously
dense material, weak lower crustal layer and relative rate of thermal diffusion. These scalings
appear to unify the varying results of previous delamination studies.

Key words: Instability analysis; Numerical modelling; Dynamics: gravity and tectonics;
Dynamics of lithosphere and mantle; Intra-plate processes.

1 I N T RO D U C T I O N

Although continents are generally buoyant enough to resist recy-
cling by mantle convection, anomalously dense eclogitic lower crust
can form through prograde metamorphism (Kay & Kay 1993) or
partial melting (Lee et al. 2006) and dense mantle lithosphere by
cooling (Poudjom Djomani et al. 2001). If this dense continental
material is perturbed and sinks into the mantle (Fig. 1), its evo-
lution is typically thought to evolve by dripping (technically the
Rayleigh–Taylor Instability, RTI, Chandrasekhar 1961; Houseman
& Molnar 1997) or delamination (Bird 1979). Which mechanism

dominates depends firstly on whether prerequisite conditions are
met and then on which one can develop more quickly. Delamination
requires a weak lower crust and has to be triggered by an external
geological process which can effectively displace the lithosphere-
asthenosphere interface up to meet the lower crust (Morency &
Doin 2004). Dripping also requires a large triggering perturba-
tion or stress-dependent weakening of cold lithosphere, in order
to develop more quickly than thermal diffusion can smooth out
any perturbation of the lithosphere-asthenosphere interface (Conrad
& Molnar 1997; Molnar & Jones 2004). These initial conditions
can be present to varying degrees and attributed to a range of
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Figure 1. Schematic diagram of the initial conditions and the three mechanisms that can develop depending on these conditions. The primary parameters
which are varied are the initial step-size D and the decollement viscosity ηc, while the other parameters are described in Table 1. Density and viscosity are
shown in brackets for each material and the parameters are set up so they can be applied to any dense body thickness, density and viscosity. For an initial
D = 0, the subsequent flow follows the Rayleigh–Taylor Instability (RTI) model and is referred to as the dripping mechanism. Its flow is characterized by high
internal shearing and even though the Moho may be displaced, the top of the dense body remains connected to the decollement layer. Delamination can be
triggered when D = L, so that the asthenosphere is adjacent to the decollement, which also needs to be weak enough that it can subsequently flow and allow
the dense body to peel away. Delamination occurs with negligible shear-strain of the dense body. If D > 0, as may be the case if tectonic strain produces a
large perturbation as suggested by Stern et al. (2013), the instability still grows primarily by thickening, with non-negligible shear-strain, but may have an
appearance similar to delamination. This hybrid mechanism is referred to as ‘triggered dripping’. In 3-D models (inset), the morphology of the sinking material
is characterized as either a ‘drip’, which has a circular shape in horizontal cross-section, or being ‘planar’, in which the sinking material is sheet-like.

instabilities globally, as described in the following discussion, lead-
ing to the appearance of a range of instabilities between the dripping
and delamination end-members. Numerical models are used in this
study to demonstrate that there are three discrete instability mecha-
nisms (Fig. 1) which are triggered by specific conditions and evolve
with significantly contrasting dynamics.

Dripping instabilities which grow from a small amplitude per-
turbation (Chandrasekhar 1961) have been proposed to explain the
evolution of sinking lithosphere beneath the Carpathians (Lorinczi
& Houseman 2009) and the switch from shortening to extension
observed in Tibet and the Basin and Range, USA, amongst other
examples (Houseman & Molnar 1997). Stress-dependent weaken-
ing is important in such models, as the instability timescale pre-
dicted using the relatively high viscosity of cold mantle lithosphere
or lower crustal eclogite, is much slower than typically observed.
Even with such weakening, dripping from a small perturbation typ-
ically occurs too slowly to reproduce observed timescales (Molnar
& Jones 2004).

Dripping triggered by a large amplitude perturbation (Canright
& Morris 1993), hereafter abbreviated to ‘triggered dripping’, can
reproduce the rapid <10 Ma removal timescale of the sinking lower
crust and mantle lithosphere beneath the Sierra Nevada, USA, as-
suming that the eastern edge of the dense material had been thinned
locally by 50 per cent and separated from the strong upper crust by

a weak layer (Molnar & Jones 2004). The instability timescale is
slower by at least an order of magnitude in the absence of either of
these two criteria. Molnar & Jones (2004) subsequently suggested
that the dense material was effectively stable, until a zone of local-
ized strain migrated from the Basin and Range region (detailed by
Jones et al. 2004) and triggered the rapid instability.

Dripping may also have been triggered by large amplitude per-
turbation of the cold lithosphere beneath the North Island, New
Zealand (Stern et al. 2013). The mantle lithosphere is inferred to
have effectively thinned by 85 per cent, as a result of strike-slip
offset, generated by subduction zone migration over the last 5 Ma
(detailed by Lamb 2011). A weak lower crust was proposed to ex-
plain the significant southward migration of the instability. Such
a weak layer is a requirement for delamination (Bird 1979) and at
high displacement the mantle lithosphere is modelled by Stern et al.
(2013) as peeling away from the crust. If only the peeled state is
observed, it would be difficult to discern whether the instability had
been triggered by thinning of the mantle lithosphere of 85 per cent
or 100 per cent, the latter required for delamination. It is therefore
unclear whether there is a significant difference in the mechanisms
of instabilities beginning with the conditions for triggered dripping
and delamination.

Delamination can be triggered in models when the dense lower
crust and/or mantle lithosphere layer is thinned by 100 per cent.
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Some models of the Sierra Nevada instability involve thinning
of the mechanical lithosphere by 100 per cent, invoked as an
imposed weak region resulting from subduction-related hydration
(Valera et al. 2014) or dynamic plastic weakening related to
the localization of the previously discussed Basin and Range
deformation (Le Pourhiet et al. 2006). In active subduction zones,
such as beneath the Andes and previously beneath Tibet, a mixture
of eclogitic lower crust and cold mantle lithosphere is inferred to
have delaminated when significant effective thinning was triggered
by slab roll-back (Sobolev & Babeyko 2005) or when weak eclogite
sunk through the mantle lithosphere and generated a weak channel
(Krystopowicz & Currie 2013).

1.1 Range of mechanisms and corresponding growth rates

The identification of dripping, triggered dripping and delamina-
tion instabilities combine to give a complete mechanism map,
which depends on the lower crustal strength and initial perturba-
tion size. Morency & Doin (2004), Göğüş & Pysklywec (2008)
and Krystopowicz & Currie (2013) describe specific lower crustal
viscosity thresholds, above which delamination does not initiate
and the instability takes considerably longer to grow. This discrete
behaviour may occur due to the use of plasticity. The triggered drip-
ping models of Stern et al. (2013) do not include plasticity and the
weak lower crust is imposed. These models begin with the condi-
tions for triggered dripping, but evolve in a way which qualitatively
resembles delamination, potentially indicating that the mechanics
and dynamics of delamination are not significantly different to trig-
gered dripping. This is difficult to test quantitatively, because there
is no general framework for quantifying how long it takes for a
dense layer with a given thickness, density and viscosity, to thicken
by a significant amount, depending on whether triggered dripping
or delamination occur.

The sinking velocity increases through time for dripping,
triggered dripping and delamination (Canright & Morris 1993;
Houseman & Molnar 1997; Bajolet et al. 2012), so the charac-
teristic growth timescale is a measure of acceleration. In linear
stability analysis this is called the growth rate, τ (Chandrasekhar
1961). The instability growth rate is well understood for the dripping
end-member and can be easily calculated from existing models by
scaling non-dimensional growth rates by the properties of any given
dense material (Houseman & Molnar 1997). There is no equivalent
simple calculation of the delamination growth rate, though previous
studies have shown which parameters it is likely to depend on. Bird
& Baumgardner (1981) and Bajolet et al. (2012) have shown that the
delamination growth time is influenced by the rheology and thick-
nesses of the lower crust, though there is no mathematical model
or scaling describing this dependence. The delamination timescale
also appears to vary, potentially linearly, with the density and vis-
cosity of the unstable material (Bajolet et al. 2012; Krystopowicz &
Currie 2013; Wang & Currie 2015). Alternatively, Le Pourhiet et al.
(2006) argue that the rheology of the asthenosphere, rather than
lithosphere, predominately controls the sinking velocity of delam-
inating material. The conditions for the initiation of delamination
also depend on many parameters, including the largest initial den-
sity anomaly (Krystopowicz & Currie 2013) and plastic strength
of the lithosphere (Morency & Doin 2004), though the processes
leading to mechanism initiation are not considered in this study.

The growth rates of the instabilities varying between the dripping
and delamination end-members could be used to predict which
instability mechanism is most effective for recycling dense sub-

continental material on Earth. This prediction cannot be clearly
made by comparing previous studies. In the models of Göğüş &
Pysklywec (2008), delamination (‘DEL’) takes 1.2 Ma to displace
the lithosphere by about 230 km and is approximately 10 × faster
than dripping beginning with a significant perturbation (‘DRIP-1’).
This rapid <5 Ma timescale is shared by other delamination models,
such as ‘Model 2’ in Krystopowicz & Currie (2013), ‘Simulation 6’
in Morency & Doin (2004) and ‘Delamination 2’ in Wang & Currie
(2015). The rapid recycling occurs in these models occurs only
after the conditions for delamination are dynamically generated,
which can take <40 Ma. The triggered dripping mechanism can
also grow to a significant vertical displacement within ∼5 Ma, for
stress-dependent rheology (Molnar & Jones 2004). As in Göğüş &
Pysklywec (2008), Wang & Currie (2015) calculated a comparative
dripping model, beginning from a small amplitude perturbation, but
sinking occurs as quickly as for delamination.

Overall, it is unclear if dense material would always sink more
quickly if delamination is triggered, compared to dripping with var-
ious initial perturbations. The difficulty in making this comparison
is most likely due to contrasts in rheological assumptions, density
profiles and initial conditions, between the different studies. In this
study, scaling laws and non-dimensional growth rates are measured
from numerical models which are simplified for this purpose. In do-
ing so, the initial evolution of delamination is directly compared to
the analytical dripping model, which also applies to triggered drip-
ping, so that the fundamental timescales of the three mechanisms
can be described in an equivalent manner.

1.2 Delamination definition

Delamination is typically defined as being any mechanism which
involves the separation of the dense layer from the crust as it sinks.
This definition does not prescribe how the sinking body should be
deformed internally, for example if it thickens, or what physical
process results in its increasing velocity. We assume a more pre-
cise definition of delamination, by assuming a delaminating body
deforms by viscous bending, as in Bird (1979). If it is assumed
that the dense layer bends with uniform curvature (Fig. 1), then it
deforms by pure bending, for which it should peel away with neg-
ligible internal shear-strain. Most existing models of delamination
appear to approximately meet this definition during the initial peel-
ing of the dense layer from the crust (Morency & Doin 2004; Göğüş
& Pysklywec 2008; Bajolet et al. 2012; Gray & Pysklywec 2012;
Wang & Currie 2015).

The models of Stern et al. (2013) reproduce some characteristics
of delamination: the migration of asymmetric topography (Göğüş &
Pysklywec 2008; Wang & Currie 2015) and the peeling away from
a low viscosity lower crust (Bird & Baumgardner 1981; Morency &
Doin 2004). The lithosphere however, undergoes significant shear-
strain as it sinks. A similar deformation style has been inferred seis-
mologically for the sinking material beneath the Colorado Plateau
(Levander et al. 2011), where the lithosphere appears to have peeled
away from the lower crust by ∼40 km, but through internal strain
the base of the lithosphere has been displaced to a depth of 250 km.
Such instabilities deform in a different way to our specific definition
of delamination and their sinking velocity evolution may therefore
also differ, as is argued in this study. The definition of the delam-
ination mechanism as occurring with negligible shear-strain is an
important aspect of this analysis, as it will be shown that insta-
bilities such as modelled by Stern et al. (2013), which share the
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characteristics of delamination without satisfying our definition,
actually follow the analytic dripping growth models instead.

1.3 Temperature-dependent instability transitions

Given the specific conditions required to initiate delamination, it is
plausible that a change in these conditions could force an instability
to switch from delamination to dripping. The required low viscosity
decollement zone could plausibly increase in viscosity through time
due to cooling. Valera et al. (2014) observed that after 5 Ma, the
asthenosphere flowing into the lower crust above the peeling mantle
lithosphere cooled down, increasing the viscosity of this region.
There may plausibly be relative thermal diffusion timescales at
which this is likely to happen and could explain the mixture of
peeling and lithospheric thickening which appears to have occurred
below the western Colorado Plateau (Levander et al. 2011). 2-D
thermal models are used to calculate how slowly delamination must
evolve for significant cooling to occur, as well as to test whether
this instability switch can occur.

Additionally, a switch in ‘3-D morphology’ (Fig. 1, inset) could
occur during instability growth. The preferential morphology of
dripping is the localized ‘drip morphology’, though if the litho-
sphere is significantly perturbed with an initial planar displace-
ment, it could grow with a ‘planar morphology’ (Ribe 1998; Kaus
& Podladchikov 2001). Delamination is typically modelled as a 2-D
process, peeling in only one direction with a ‘planar morphology’.
There is the possibility that 2-D modelling is biased towards delam-
ination and that some modelled instabilities in 3-D would switch to
3-D drips. With the increasing influence of thermal diffusion, it is
also possible that small wavelength drips could be thermally erased
more quickly than large wavelength 2-D perturbations. We inves-
tigate whether this morphology switch is likely to occur and how
it may be affected by the weak lower crust and large lithospheric
perturbation required for delamination to occur.

Such a morphology transition may have occurred during the evo-
lution of the sinking dense lower crust beneath the Sierra Nevada,
USA. The dense body appears to have originally extended ∼450 km
along strike of the batholith, whereas the current extent observed in
tomography is ∼100 km (Frassetto et al. 2011; Gilbert et al. 2012;
Jones et al. 2014). As the dense lower crust extent has not changed
considerably perpendicular to the batholith strike, this is a transition
from a planar to a drip morphology. The initial large perturbation
on the eastern side of the dense body (Molnar & Jones 2004; Valera
et al. 2014) if it extended along the entire 450 km extent, as well
as a weak lower crust, are likely to make the transition to a drip
morphology more difficult. The conditions for such a transition to
occur are tested using the temperature-dependent 3-D numerical
models.

1.4 Rayleigh–Taylor instability theory

The velocity of dripping material through time has long been
described by the RTI model (Chandrasekhar 1961; Turcotte &
Schubert 2014). It consists of two layers of fluid, in this case the
dense lower crustal and/or lithospheric layer and the asthenosphere
of lower density below (Fig. 1), separated by a horizontal interface
which is perturbed by a displacement w. The initial value of w,
denoted w0, is generally assumed to small compared to the thick-
ness of the dense layer. This configuration is unconditionally un-
stable and its initial evolution is greatly simplified using the ‘small
displacement’ assumption: that the growing perturbation displace-

ment is small compared to the dense layer thickness. In this case the
perturbation grows exponentially with a growth rate τ (eq. 1, sym-
bols in Table 1). τ can be separated into a buoyancy flow timescale,
�ρgL/η and a non-dimensional part, τ ′, which depends on bound-
ary conditions, the rheology of the crust and asthenosphere, as well
as a range of other problem-specific parameters. The buoyancy flow
timescale depends on the difference by which the dense layer is
denser than the underlying asthenosphere (�ρ), the gravitational
acceleration (g), the dense layer thickness (L) and the viscosity of
the dense layer (η):

w = w0eτ (λ)t

τ = �ρgL

η
τ ′(λ). (1)

The small displacement RTI solution is typically simplified using
Fourier decomposition (Chandrasekhar 1961), expressing the per-
turbation as the summation of waveforms, each with a wavelength
λ and its own τ ′. Because w grows exponentially through time, the
velocity field can be well approximated by the term in this sum
with the highest growth rate. The general approach in analytical
modelling (e.g. Chandrasekhar 1961; Houseman & Molnar 1997;
Conrad & Molnar 1999) is then to solve the dependence of τ ′ on λ,
taking the maximum τ and the corresponding λ. The small displace-
ment instability growth is then described by the simple expression
eq. (1), using these values of τ ′ and λ, as well as the buoyancy
flow timescale. τ ′(k) has been calculated analytically for a range of
density and viscosity profiles, non-linear rheologies and multiple
layers (Conrad & Molnar 1999; Houseman & Molnar 1997; Neil &
Houseman 1999), all demonstrating good agreement with the early
growth in numerical calculations.

As eq. (1) is only valid for small displacements of w, Canright
& Morris (1993) developed analytic non-linear models, for cases
in which the sinking body is much more viscous than the astheno-
sphere and has a free-slip boundary condition at its top surface. At
high w, instabilities approximately grow according to a hyperbolic
function of time (eq. 2), which agrees with numerical calculations
(Neil & Houseman 1999). Eq. (2) has been expressed here using the
same variables and non-dimensionalization of time as introduced
for the small displacement analysis. The super-exponential growth
rate then again depends on the buoyancy flow timescale and a non-
dimensional growth rate τ ′

2. In the models of Canright & Morris
(1993), τ ′

2 = 0.125. However, it varies from this in cases where the
assumption of a free-slip dense layer surface is no longer valid,
but large w growth still follows a hyperbolic relationship (Neil &
Houseman 1999). The displacement rapidly approaches infinity as
t approaches the singularity in eq. (1) at t = (τ 2(w0 + L))−1, at
which point either the drip breaks off or forms a vertical channel.
Using steady subduction as an analogue, flow in a vertical chan-
nel is likely to occur at a constant ‘Stokes creeping flow’ velocity
(Capitanio et al. 2007). Instability growth in Canright & Morris’
(1993) model occurs through localized thickening of the dense body
and is therefore not necessarily applicable to peeling instabilities
where this is negligible.

w =
(

1

w0 + L
− τ2 t

L

)−1

− L

τ2 = �ρgL

η
τ ′

2 (2)

Two or three analytic models can then be used to represent the
complete growth of a RTI (Fig. 2): first it follows the ‘small displace-
ment’ exponential growth at growth rate τ , then super-exponential
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Table 1. Commonly used symbols.

Symbol Meaning Non-dimensionalization

w Displacement of the dense body-asthenosphere interface perturbation w′ = w/L
wm Displacement of the dense body-crust interface (the Moho) w′

m = wm/w

ẇ Interface perturbation velocity (vertical component) ẇ′ = ẇ η/(�ρgL2)
t Time elapsed since triggering t′ = t �ρgL/η

w0, ẇ0 Values of w and ẇ at t = 0
D Initial step perturbation size D′ = D/L
ηc Decollement viscosity η′

c = ηc/η

η Dense body viscosity –
L Dense body thickness –
Lc Decollement thickness L ′

c = Lc/L
�ρ Density contrast between the dense body and asthenosphere –
�P Pressure anomaly at the decollement edge (not an independent variable) –
ρ0 Asthenospheric density –
g Gravitational acceleration –
τ Initial exponential growth rate τ ′ = τ η/(�ρgL)
τ 2 Secondary non-linear growth rate τ ′

2 = τ2 η/(�ρgL)
σ s Isostatic compensation stress σ ′

s = σs/(�ρgL)
ẑ, ŝ Vectors pointing down and perpendicular to step –
λ, λmax Perturbation wavelength: individual or specifically the fastest growing –

Temperature-dependent model parameters

Raδ , Ra Boundary layer and mantle convection Rayleigh Numbers –
T, �T Temperature field and the mantle potential temperature T ′ = T/�T
κ Thermal diffusivity –
α Coefficient of thermal expansion –
β Arbitrary viscosity scaling coefficient –

Figure 2. Typical non-dimensionalized perturbation displacement (w′) over dimensionless time (t′) for the RTI (thick, red solid line), D′ = 0 and η′
c = 1. The

analysis includes both the total displacement w′ and the individual contribution from the fastest growing wavelength w′(λmax). The latter is only important
when D′ = 0. Blue dashed lines denote the fitted analytic models of τ and τ 2 from eqs (1) and (2). We only analyse the initial exponential growth and beginning
of the following super-exponential growth, though flow will eventually reach a constant velocity, probably characterized as ‘Stokes creeping flow’ (Capitanio
et al. 2007) or the drip will break off.

growth with growth rate τ 2, after which the drip breaks off or forms a
sheet with a constant velocity. The initial exponential growth phase
(‘initial growth’, Fig. 2) is the primary focus of this study, because
it is the slowest phase in the instability evolution and controls the
time taken for a typically insignificant w0 to grow to a prominent

displacement. When the instability reaches the super-exponential
growth phase, its velocity has typically grown by an order of
magnitude and its transit through the upper mantle occurs rela-
tively quickly (‘rapid descent’, Fig. 2). As the increasing velocity of
a delaminating body is likely to occur by a different mechanism to
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dripping, delamination may not necessarily be characterized using
eqs (1) and (2). However, the two part analytical model (Fig. 2)
is used as a reference, so that the relative evolution of RTIs and
delamination can be quantified.

1.5 Delamination theory

The fundamental mechanism which allows material to delaminate
has not been studied to the same detail as the RTI. Bird (1979) de-
veloped an analytic model for predicting the initial sinking velocity
(ẇ) of delaminating lithosphere at small displacement (eq. 3). It
assumes that the asthenosphere has intruded up into the lithosphere
and into a weak middle to lower crustal layer, referred to as the
decollement (Fig. 1). In his model, the relatively buoyant astheno-
sphere produces a pressure anomaly at the decollement edge (�P),
which generates horizontal decollement flow and triggers delami-
nation. The deforming decollement is modelled as Poiseuille flow,
for which the pressure anomaly linearly decreases in the decolle-
ment away from the dense body edge. This pressure gradient in the
decollement is coupled to the resisting viscous bending stress of
the dense body below, as it peels away. By combining the Poiseuille
flow and viscous bending models, Bird calculated the initial verti-
cal velocity for delamination (eq. 3). This analytic theory depends
on additional parameters to the RTI: the thickness (Lc) and viscos-
ity (ηc) of the decollement. �P is also not necessarily the same
magnitude as the pressure anomaly driving the RTI, depending on
the model formulation:

ẇ = �P Lc

6
1
3 Lη

1
3 η

2
3
c

. (3)

The delamination velocity in analogue models increases with
time (Bajolet et al. 2012). Bird & Baumgardner (1981) modelled
delamination at high displacement using a combination of analytical
and numerical techniques. Their calculated delamination velocity is
proportional to the stress load at the edge of the body and therefore
the amount of material already delaminated. They reasoned then that
its growth should be exponential through time, though this hasn’t
been tested. Analogue materials engineering models (McEwan &
Taylor 1966) have produced a similar relationship between peeling
velocity and applied stress.

The delamination model (eq. 3) assumes that the initial grav-
itational energy is dissipated only through decollement flow and
dense body bending. As was previously a point of contention in
the subduction literature (Capitanio et al. 2007), there remains the
possibility that passive mantle flow could play a significant role in
dissipating energy. Le Pourhiet et al. (2006) argue that delamination
is limited primarily by asthenospheric flow. While this may be true
for a delaminating body when it has completely peeled away, it has
been unclear if the lithospheric viscosity η limits the initial growth
up to this point, as it does for the initial velocity in eq. (3).

2 M E T H O D O L O G Y

Our primary objective is to compare the initial instability growth
timescales of the dripping, triggered dripping and delamination
mechanisms. Making this comparison involves first quantifying
which mechanism is triggered by a given amount of initial litho-
spheric thinning and given decollement strength (D and ηc, Fig. 1).
The relative timescales are then compared using equivalent mea-
surements of instability growth for each. We aim to make this anal-
ysis generalized, so that the dynamic consequences of triggering a

particular mechanism can be assessed for any region with dense
lower crust and/or mantle lithosphere.

The primary analysis uses a set of 2-D numerical models, de-
scribed here. They solve the Stokes equation and ignore thermal
diffusion. A secondary part of the analysis uses 2-D and 3-D
temperature-dependent models to address thermal diffusion effects,
which are described later. The initial conditions (Fig. 1) assume the
triggering of a particular mechanism a priori, so that the focus of the
analysis is the initial growing period which immediately follows.
Whether dripping, triggered dripping or delamination occurs is con-
trolled by two parameters, D and ηc. D is the size of a large, step
perturbation, which is superimposed upon the smaller, random per-
turbations. It represents a change in the material’s thickness which
may have been generated by previous deformation, such as strike-
slip faulting (Stern et al. 2013) or thinning due to plastic failure
(Morency & Doin 2004). ηc has been introduced and controls the
strength of the middle to lower crust, where a low value reproduces
the jelly-sandwich rheological profile (Burov et al. 2006). Delami-
nation is generally provoked when D = L and ηc is smaller than η

by a couple of orders of magnitude. We define triggered dripping
as occurring when D > 0, provided delamination does not occur.
D and ηc are generally the only two parameters which are varied,
so that the gravitational potential energy and the viscosity of the
sinking body are constant.

Anomalously high density rocks (�ρ > 0) could form in the lower
crust or mantle lithosphere in a number of ways. Eclogite can form
in the lower crust, with a density 100–600 kg m−3 higher than the
asthenosphere, as a restitic by-product of crustal melting (Lee et al.
2006) or through prograde metamorphism of crustal mafic rocks
during orogenesis-related burial (Krystopowicz & Currie 2013).
Additionally, though mantle lithosphere is typically 30–75 kg m−3

less dense than the asthenosphere when it forms, its density in-
creases to 30–50 kg m−3 higher than the asthenosphere once it has
cooled to a steady-state geotherm (Poudjom Djomani et al. 2001,
fig. 4 therein). The iron-depletion of mantle lithosphere is typically
greater with age, such that the density contrast �ρ between Protero-
zoic lithosphere and the asthenosphere is approximately 30 per cent
smaller than for Phanerozoic lithosphere. Archean lithosphere gen-
erally remains less dense than the asthenosphere, even with a cold
geotherm.

Though unstable materials can have a range of densities and
thicknesses, all models are non-dimensionalized and therefore can
be applied to any of the described dense materials. It is assumed
that the unstable material, which could be dense lower crust and/or
mantle lithosphere, can be represented as a single material referred
to as the ‘dense body’, with a homogeneous density greater than the
asthenosphere by �ρ and thickness L. All quantities are expressed
as being proportional to either the buoyancy flow timescale�ρgL /
η or the distance L (non-dimensionalization) and so the results can
be applied to any dense body using a simple post-processing calcu-
lation (dimensionalization). The simplistic dense body formulation
should be only cautiously applied to situations in which the sinking
material is separated from the asthenosphere or decollement layer
by a material which cannot be incorporated into the dense body
average, for example, dense lower crust sinking through strong and
buoyant mantle lithosphere. Unlike, for example, the models of
Krystopowicz & Currie (2013), there are no dynamic densification
processes included in this approach. �ρ therefore represents the
density of the dense body after eclogite has formed in the lower
crust or the mantle lithosphere has cooled.

The majority of models are 2-D and assume that temperature
diffusion is negligible on the instability timescale. Each material
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has a constant and homogeneous density, which is set relative to the
asthenosphere’s density (ρ0) and the anomalous density contrast
driving instability (�ρ). The dense body has a density of ρ0 + �ρ.
The upper crust has a density of ρ0 − 15�ρ. For ρ0 = 3300 kg m−3

and �ρ ≥ 30 kg m−3, this results in a crust which is <2850 kg m−3

and strongly resists sinking. The decollement material is set to a
neutral buoyancy, with a density of ρ0.

Model geometry is defined relative to the dense body thickness
L. Generally, the upper crust and decollement layers have equal
thicknesses and together form 30 per cent of the total lithosphere
thickness, so that each has a thickness of approximately 0.21L.
Though the decollement thickness (Lc) is an important parameter
for delamination, it is generally held constant at Lc = 0.21L in order
to focus on the effect of varying ηc instead, though it is varied briefly
in order to test scaling laws. The total model domain height is set
to 6 × the total lithosphere thickness, equivalent to 8.57L.

The starting small amplitude perturbation (w0) is set as a co-
sine series of five random wavelengths, chosen from a set of in-
teger number of waves in the model domain. These wavelengths
can range from 0.73L to 25.71L. This range includes wavelengths
with the maximum growth rate for analytic models, including with
a weak crust or free surface (Houseman & Molnar 1997; Neil &
Houseman 1999). The total perturbation amplitude is approximately
0.1L. Higher resolution RTI models with perturbations with smaller
amplitudes and delamination models with no small amplitude per-
turbations have been tested and the results are unaffected. The ran-
dom wavelength selection can miss the fastest growing wavelength.
This is important for D = 0 and for calculating the instantaneous
velocity at w0, so these models are repeated multiple times with dif-
ferent wavelength collections and the highest τ is used. It is ensured
that at least some of these include the fastest growing wavelength,
calculated from an analytic RTI solution with equivalent layer thick-
nesses and η′

c, as described later.
A Newtonian rheology is used for all models, as the primary

focus is the comparison of the simplest delamination instability
and RTI cases. Each material has a homogeneous viscosity. For
the dense body, this assumes that any stress-dependence or inter-
nal layering can be encapsulated by an average η. For the RTI, a
stress-dependent viscosity with an exponent of three approximately
doubles the maximum growth rate, but does not affect the corre-
sponding wavelength (Conrad & Molnar 1997). Stress-dependence
would therefore effectively halve η in eq. (1). In the models, de-
lamination is driven by the same buoyancy stress as dripping, so
stress-dependence will likely play an equal or greater role, depend-
ing on the magnitude of bending stresses. Additionally, lithospheric
stresses generated at high displacement (w) can potentially cause
lithospheric necking and break-off, if the lithosphere is modelled
with a finite yield strength (Morency & Doin 2004; Krystopowicz
& Currie 2013). The Newtonian rheology in our models does not
allow this break-off to occur. Our delamination growth timescales
are therefore conservative.

The model domain edges all use the free-slip boundary condi-
tion (BC). This is equivalent to assuming that all stresses at the
domain top are balanced by topography, that the model base cor-
responds to a substantial viscosity increase at the 660 km mantle
discontinuity and that flow is symmetrical at the walls. Though the
ceiling BC is set as free-slip, the decollement and dense body es-
sentially have a no-slip ceiling, as the upper crustal material has a
viscosity of three and six orders of magnitude higher than the dense
body and asthenosphere respectively. The upper crustal layer repre-
sents a strong intra-plate crust and is set to a constant thickness of
0.21L.

The finite-element Lagrangian particle-in-cell code Underworld
is used to solve the Stokes equation, assuming incompressibility and
plane-strain (Moresi et al. 2007). The code has been benchmarked
for the RTI (Moresi et al. 2001). A Cartesian mesh is used with
model domain length:height ratios of 3:1 and a uniformly spaced
element resolution of 1296 × 432, as required to accurately measure
w′(λmax). Each element is populated with at least 20 particles. The
model domain depth represents the upper mantle and is six times
the thickness of the whole lithosphere.

Parameter non-dimensionalization is described in Table 1 and
denoted by a primed variable (t′, τ ′, etc.). Time is always scaled
using the buoyancy to viscous stress ratio which arises in the analytic
model. Application of this scaling to delamination assumes that flow
is generated by the negative buoyancy of the dense body compared to
the asthenosphere and the dominant resisting viscosity also belongs
to the dense body. The latter would not be the case if energy is
primarily dissipated in the asthenosphere, which is ruled out below.
Scaling of the decollement parameters are relative to the dense body,
as delamination depends on the interplay between dense body and
decollement flow.

2.1 2-D and 3-D temperature-dependent models

A secondary objective of this work is to quantify the conditions
required for thermal diffusion to influence instability growth. 2-D
models are designed to explore whether delamination can be pro-
hibited by cooling of the initially thinned lithosphere. 3-D models
are designed to quantify the amplitude of an initially planar per-
turbation required to prevent 3-D drips from growing (Fig. 1, ‘3-D
Morphology’), particularly as a function of decollement strength
and relative thermal diffusion.

A second set of models is required to address these objectives,
as the primary set of models is temperature-independent. These
secondary models solve for temperature diffusion and may be 2-
D or 3-D, coupling the thermal advection-diffusion equation to the
Stokes equations (Moresi et al. 2007). They are designed identically
to the primary set of models, except where noted. The temperature-
dependence in Underworld has been extensively benchmarked for
thermal convection (Moresi & Solomatov 1995). The temperature-
dependent 2-D models use a coarser resolution of 384 × 128, due
to the higher computation cost of the coupled equations and the
calculation of more time-steps in order to study the instabilities
at high amplitude and with thermal convection. The 3-D models
use height:length:width ratios of 1:3:2 and a coarser resolution
of 128 × 288 × 192. The 3-D mesh is also uniformly spaced
and each element is populated with at least 20 particles. These
temperature-dependent models begin with an arbitrary temperature
(T) field. The surface temperature is maintained as zero and the
entire asthenosphere is set to a homogeneous value, �T. �T is the
‘potential mantle temperature’ and is the temperature of the man-
tle if it is adiabatically transported to the surface. The base of the
model domain is maintained as �T, to prevent any upwellings. The
model walls are set as insulating. The Moho is set to 0.5�T, while
separate crust and dense body linear geotherms are set to ensure the
temperature field is continuous. As all temperatures are relative to
�T, T is non-dimensionalized as: T ′ = T/�T.

Only the density and viscosity of the dense body and astheno-
sphere differ from the primary (temperature-independent) models.
The density of both the dense body and asthenosphere is set ac-
cording to: ρ0(1 − α(T − �T)), where ρ0 is the material density
at T = �T and α is the coefficient of thermal expansion. ρ0 is
identical for the dense body and asthenosphere, so that the density
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varies continuously across the asthenosphere-dense body interface.
α is set for the dense body such that its average density is ρ0 + �ρ.
In the asthenosphere, α is chosen so as to set the thermal convec-
tion Rayleigh number, defined as Ra = α�Tρ0gL3/(10−3ηκ), to
108, ensuring vigorous convection. κ is the thermal diffusivity and
is homogeneous across the model domain and 10−3η the astheno-
spheric viscosity at �T. The models are intended to be applicable
to a range of dimensionalized growth rates, rather than for example
a particular κ or �ρ, so the ratio of instability flow timescale to
thermal diffusion timescale is varied. This relative timescale only
depends on the boundary layer Rayleigh number, defined in eq. (4)
and varied from Raδ = 2.79 to 103:

Raδ = �ρgL3

ηκ
. (4)

Temperature-dependent viscosity varies according to an arbitrary
exponential law: μβeE ′/(T ′+T ′

0). E′ is the activation energy, after it
has been non-dimensionalized by �T and the gas constant. It is a
constant set to E′ = 13.82, which results in a maximum viscos-
ity contrast of 108. T ′

0 is an arbitrary non-dimensional temperature
which offsets the non-dimensional temperature T ′, used for exam-
ple in mantle convection modelling (Lenardic & Kaula 1996), to
avoid the extreme viscosity variations at low temperatures which
arise for T ′

0 = 0. It is a constant set to T ′
0 = 0.5. β is an arbitrary

scaling coefficient, where β = 10−7 and β = 6.3 × 10−6 for the
asthenosphere and dense body respectively. These β values give the
dense body an initial average viscosity of μ and the asthenosphere
a viscosity of 10−3μ at T ′ = 1, both equivalent to the temperature-
independent models. The dense body viscosity initially varies by
two orders of magnitude. The asthenospheric viscosity varies from
10−1μ to 10μ for 0.5 < T ′ < 0.25, so asthenosphere which has
risen to the Moho would increase to a viscosity in this lower range
once it cools.

2.2 Measurements

Models are characterized by measuring the perturbation displace-
ment (w) and velocity (ẇ) through time. As the initial conditions
represent the triggering of a particular mechanism, the velocity at
t = 0, referred to as the initial velocity ẇ0, importantly measures
how rapid flow is when the transition from effective stability to
instability occurs. A variety of other measurements are taken when
the deepest part of the dense body reaches w′ = 1.43. This refer-
ence displacement is typically the end of the initial growth period
(Fig. 2) and as the lithosphere has doubled in thickness, is a dis-
placement which is observable in seismological studies (e.g. Zandt
et al. 2004). The interface between the dense body and astheno-
sphere is tracked using markers which are advected through time.
As instability sinking velocities (ẇ) typically increase through time
(Fig. 2), rates are measured to characterize their acceleration. The
exponential growth rate τ , defined in eq. (1), measures how rapidly
the sinking velocity initially (generally w < 1.43) increases. τ 2

(eq. 2) measures how rapid the super-exponential acceleration is.
The typical procedure of fitting τ and τ 2 to the displacement-time
curve is used (Houseman & Molnar 1997; Neil & Houseman 1999).
The marker which reaches the reference displacement first is used
to track these growth rates.

As the initial perturbation is the superposition of multiple wave-
lengths, this measure of τ ′ can be an underestimate. We also calcu-
late the growth of the individual invoked waveforms, w′(λ), using
the discrete cosine transform of the interface markers. When D′ > 0,
we include the wavelengths corresponding to the ten largest terms in

the cosine series for a step. Growth-rate measurements of individual
waveforms have been benchmarked against the analytic solution of
τ ′(λ) for D′ = 0 and η′

c = 1. We report the largest initial growth rate
measured for each instability, which is typically calculated from
w′(λ) for D′ = 0 and w′ for D′ > 0. Initial velocity is taken di-
rectly from the velocity solution of an instantaneous calculation
without time-stepping. This initial calculation begins with only one
wavelength, corresponding to the quickest velocity.

Two diagnostic measurements are used to characterize the models
as dripping, triggered dripping or delamination. The first is the dense
body shear-strain, which should strongly contrast for dripping and
delamination. Lagrangian markers are placed on the dense body
(Figs 1 and 3), which only record the shear component of the strain
tensor. These markers are able to rotate, as well as translate with
dense body flow. In the case of ideal bending, when all deformation
is accommodated by normal strain in the direction of the bending
axis of the dense body, the measured shear-strain should be zero.
The measured infinitesimal shear-strain is integrated over each time
step.

The second diagnostic measurement for delamination is Moho
displacement (Figs 1 and 4). It is measured as the displacement
of the initially flat upper surface of the dense body, corresponds
to seismic reflectors observed in nature (Levander et al. 2011). Its
vertical deflection, wm, is normalized to the perturbation displace-
ment, w′

m = wm/w and should be close to one for delamination. The
purpose of measuring wm is primarily to quantify whether or not
the top of the dense body is peeling away in the models. It should
only cautiously be compared to absolute Moho displacement on
the Earth, especially if the crust deviates from the extremely strong
rheology used in these models and is able to thicken.

Molnar et al. (2015) define isostatic and dynamic surface to-
pography as resulting purely from anomalous density and viscous
stress respectively. Following this definition, the density field is in-
tegrated over a column spanning the entire model height and assum-
ing w′ = 0, while any deviation from this reference density in other
columns results in isostatic variation. These columns are combined
to form a profile of isostatic topography. This ‘isostatic’ topography
is a variation of the Airy isostatic model, but applied only to den-
sity anomalies arising from changes in thickness of the dense lower
crust or mantle lithosphere, rather than buoyant crust. Thickening
of the upper crust is negligible, due to its strength, while the lower
crust has a neutral buoyancy. Therefore, this measurement predicts
subsidence where the lithosphere is thickening. This measurement
isolates the isostatic compensation required to accommodate den-
sity anomalies at depths below the crust, suitable for comparisons to
tomography. It should be treated cautiously for cases where crustal
thickness variation dominates the topographic signal instead. The
total topographic response, the sum of the dynamic and isostatic
components, is calculated by assuming any surface deflection bal-
ances the vertical normal stress at the top of the model domain, σ s.

The instability growth timescales are only predominately depen-
dent on η and ηc if the dense body and decollement dissipate much
more energy viscously than the asthenosphere. This is quantified
for the dense body by calculating the viscous dissipation, defined as
ηε̇2

I I . ε̇I I is the second strain-rate invariant and for the calculation of
other materials, η is replaced by the relevant material viscosity. This
is calculated at many random points within a material, averaged and
then compared as a ratio to the total viscous dissipation in the entire
model domain at a particular time.

In the temperature-dependent 3-D models, we distinguish be-
tween the drip and planar morphology by comparing the largest
amplitude from the cosine transform of the vertical velocity
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Figure 3. Shear-strain for examples of delamination (a), triggered dripping (b) and dripping (c), with parameters inset. Comparison is made at w′ = 1.43.
Sub-sampled vectors corresponding to the shear-strain measurement are shown, as well as the average shear-strain (εxy) and surface topographic profile for
each. Comparison of the isostatic compensation for density anomalies below the crust (red, dashed) and the total topography (black), shows where topography
is due to dense body thickness variation. The non-dimensional stress σ ′

s can be scaled to a dimensional elevation using a reference stress, σ ′
s�ρL/

(
ρc L ′),

where ρc is the upper crustal density. Taking �ρ = 30 kg m−3, ρc = 2500 kg m−3 and L = 50 km gives an elevation of 0.86 σ ′
s km. With these dimensions,

topography varies by <1 km from the reference elevation.

component in directions parallel and perpendicular to ŝ (Fig. 1).
The ratio between these should be one for a drip morphology. We
also quantify whether or not instability migration occurs in the
step direction, by finding the angle between the horizontal velocity
component and ŝ. If migration is dominated by the initial step per-
turbation, this should be 0◦, and larger if 3-D instabilities become
prominent. Both of these measures are calculated at the base of the
dense body and averaged, also compared at the reference depth.

2.3 Analytic solution and scaling

The analytic method of Neil & Houseman (1999) is used to solve
for a RTI which includes the decollement layer. There are two
interfaces across which the density contrasts, the asthenosphere-

dense body and dense body-decollement interfaces, the latter re-
quired to be consistent with the assumption that the decollement
material is of reference density. Though there is a density contrast
between the upper crust and decollement layers in the numerical
models, any perturbation of the interface between the two layers
is considered to be negligible, due to the high viscosity of the
upper crust. There are therefore two growth-rate solutions, one
growing and the other decaying, of which we only take the for-
mer. We also solve for the case where the dense body-decollement
interface has no initial perturbation, which then has one growing
solution.

In order to directly compare the delamination model of Bird
(1979) to the RTI, we adjust the delamination model (eq. 3) such that
the pressure anomaly at the decollement-asthenosphere interface
(�P) arises from the anomalous hydrostatic pressure of the dense
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Figure 4. Profiles of surface elevation, depth to the Moho and distribution of dense body directly below, for η′
c = 10−2 and D′ = 0 (a, dripping), 0.5 (b,

triggered dripping), 0.75 (c, triggered dripping) and 1 (d, delamination). Comparison is made at w′ = 1.43. The location of subsidence in relation to the dipping
Moho and the edge of the dense body subtly contrasts between triggered dripping and delamination, as emphasized by the shaded regions. Comparison of the
isostatic compensation for density anomalies below the crust (red, dashed) and the total topography (black), shows where topography is due to dense body
thickness variation.

body. This requires the assumption that the anomalous pressure can
be represented as a point load on the end of the dense body. We
then non-dimensionalize the decollement length scale and viscosity
using the dense body as a reference (Table 1). This results in a
velocity which is proportional to the buoyancy timescale, η/�ρgL,
encountered in the RTI (eq. 1). We use this to non-dimensionalize
the timescale of the delamination velocity. The non-dimensional
velocity then depends only on the ratios of decollement to dense
body thickness and viscosity, L ′

c and η′
c, rather than absolute values

(eq. 5). If the delamination velocity varies proportionally to the
amount of dense body which has delaminated, as proposed by Bird
& Baumgardner (1981), the growth will be exponential and self-
similar like the RTI. The exponential growth rate should also then
be non-dimensionalized and scaled in the same way as the initial

velocity (eq. 5). This formulation is a simple prediction of the
delamination growth rate depending on the decollement properties,
which we test numerically.

ẇ′
0 ∝ τ ′ ∝ L ′2

c

η
′ 2

3
c

(5)

3 R E S U LT S

Dripping, triggered dripping and delamination must initially be dis-
tinguished in the models, so that their growth rates can later be
compared. The two chosen delamination diagnostics, high Moho
displacement and low shear-strain, are reproduced only for a small
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Figure 5. Moho displacement (a) and shear-strain (b) for varied η′
c and D′.

Models with D′ = 0 are characterized as dripping, because of their initial
conditions and their excellent agreement with analytic RTI models (Figs 6a
and 7). Models are characterized as delamination if w′

m = 1 and shear-strain
is relatively low. Triggered dripping models, the points not characterized as
dripping or delamination, have Moho displacements and shear-strain bearing
greater similarity to dripping and delamination respectively.

range of D′ and η′
c. The Moho displacement diagnostic of delami-

nation, w′
m = 1, only occurs for D′ = 1 and η′

c ≤ 3 × 10−2 (Figs 4
and 5). There is a large decrease in Moho displacement for D′ < 1,
marking a change in mechanism from delamination to triggered
dripping. The Moho displacement of dripping and triggered drip-
ping can still be <60 per cent of the displacement of delamination,
when η′

c is small. With decreasing D′, the Moho becomes more cus-
pate and symmetrical (Fig. 4). Its displacement becomes negligible
once η′

c = 1, even for D′ = 1, though this would not be the case for
denser decollement and crust.

The shear-strain in the models with w′
m = 1 is <0.04 (Figs 3

and 5), which is relatively small. Therefore the deformation of mod-
els with D′ = 1 and η′

c ≤ 3 × 10−2 can be confidently characterized
as delamination. Though the delamination shear-strain is small,
it is non-zero, most likely because the pure bending assumption
(Section 1.2) is only an approximation, as the buoyancy forces do
not act on the dense body as a uniform rotation. However, it is still

clearly lower than for triggered dripping, which remains relatively
constant with decreasing η′

c and for dripping, which is significantly
larger.

Dripping shear-strain is relatively large, as expected. It reduces
significantly as η′

c decreases, because λmax consequently increases.
However, it is still substantially larger than for models with D′ > 0.
Triggered dripping can be distinguished from the end-member mod-
els using the Moho displacement and shear-strain (Fig. 5). These
measurements do not simply vary between the dripping and de-
lamination end-members in proportion to D′. Instead, the Moho
displacement of triggered dripping is similar to that of dripping, yet
it deforms with significantly less shear-strain than dripping does.
The lower shear-strain is most likely the result of the imposed large
wavelength perturbation, because shear-strain becomes negligible
for large wavelength flow (Canright & Morris 1993). The instabil-
ity is also localized to the step, which results in a lower volume of
displaced material and therefore potentially a lower average shear-
strain. However, there is clearly a greater proportion of low shear-
strain markers within the displaced body in the triggered dripping
example, compared to dripping (Fig. 3).

3.1 Initial velocity

The dripping, triggered dripping and delamination mechanisms,
characterized by their contrasting shear-strain and Moho displace-
ment, also produce contrasting dynamics, from the moment they
are triggered (Fig. 6a). The initial velocity (ẇ′

0) of dripping (D′ = 0)
varies with η′

c, as calculated analytically. The analytic solutions
without any initial decollement perturbation provide a better pre-
diction as they match the initial conditions of the numerical models,
which for ẇ′

0 are instantaneous. For triggered dripping (D′ > 0),
the velocity increases by up to an order of magnitude (Fig. 6a).
Using the time derivative of eq. (2), this should vary accord-
ing to ẇ′

0 ∝ (w′
0 + D′ + 1)2. The models with D′ < 1 agree with

this parabolic dependence, which is also predicted by Canright &
Morris’ (1993) equivalent small amplitude growth equation (eq. 4.1
therein).

When D′ = 1 and η′
c ≤ 10−2, ẇ′

0 significantly exceeds the pre-
diction for triggered dripping (Fig. 6a). These models were previ-
ously characterized as delamination and the scaling for delamina-
tion (eq. 5) accurately predicts the variation of ẇ′

0 with decreasing
η′

c, with a proportionality constant of 0.23. Additional models (not
shown) also held η′

c = 10−2 constant and varied L ′
c, to test the pro-

portionality between ẇ′
0 and L ′2

c . It holds for L ′
c < 0.5, above which

the ẇ′
0 ∝ L ′2

c scaling overestimates ẇ′
0. This is likely to be the point

at which it can no longer be assumed that the entire thickness of the
decollement layer follows the Poiseuille flow model. There is likely
to be a lower bound to the scaling, as the decollement becomes
too thin for delamination to occur, which was not explored. The
proportionality constant is approximately half of the analytically
calculated value (eq. 3), though the reason for the discrepancy is
unclear.

The initial velocity is indicative of the immediate dynamics fol-
lowing the moment the conditions for a particular mechanism are
triggered, for example the event in the eastern Sierra Nevada de-
scribed earlier, when strain localized 7Ma ago (Jones et al. 2004;
Molnar & Jones 2004). The agreement between the initial delam-
ination velocity and eq. (5) indicates that as soon as the condi-
tions for delamination are generated, the instability instantaneously
follows the delamination mechanism. The higher initial velocities
with larger D′ are also consistent with the models of Canright &
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Figure 6. Vertical velocity, measured at the deepest part of the lithosphere-
asthenosphere interface at a given time. (a) Initial velocity (ẇ0) for varying
D′ and η′

c , from instantaneous numerical calculations (points) with w′
0 =

0.085. The analytic RTI solutions are shown, with (solid red) and without
(dashed red) a growing perturbation of the decollement layer. The latter is
also scaled empirically from the D′ = 0 case (solid curves). The analytic
delamination scaling (eq. 5, solid black) predicts the correct variation of
timescale with η′

c , for the delamination models. (b) Velocity through time
for η′

c = 10−2 and varying D′. Self-similarity of the initial growth period
is apparent if the starting times (solid points) of the curves with D′ > 0
are shifted, to the time at which the dripping model (D′ = 0) reaches their
respective values of ẇ′

0. Delamination (D′ = 1) however no longer shares
the initial growth rate. At this low η′

c , the super-exponential growth rate τ ′
2

clearly increases with increasing D′.

Morris (1993) and Molnar & Jones (2004), where a larger initial
perturbation causes the instability to effectively begin closer to the
rapid descent phase (Fig. 2), evident from the self-similarity of the
curves in Fig. 6(b).

3.2 Growth rate comparison

The analytic small amplitude (D′ = 0) dripping solution predicts
a 3 × increase in the dripping growth rate, as η′

c decreases from
1 to 10−3 (Fig. 7). The growth rates of the numerical dripping
solutions, measured for the quickest of the growing waveforms
measured using Fourier decomposition (w′(λmax), Fig. 2), agree
with the analytical solution. The analytic solution which allows
the decollement to be perturbed, provides the best fit, indicating

Figure 7. (a) Small displacement exponential growth rate for varying D′
and η′

c . The analytic RTI solution with a decollemont perturbation is plot-
ted (red). Triggered dripping (1 > D′ > 0) models are not shown, as they
share the same τ as for dripping. The points for D′ = 1 and η′

c > 10−1 are
exceptions and show the transition from triggered dripping to delamination
models. The delamination models show good agreement with the delamina-
tion scaling (black), eq. (5). (b) Time taken to reach the reference depth for
models with varying D′ and η′

c . The delamination scaling from eq. (5) (solid
black) accurately predicts the variation in this time with η′

c . Dashed coloured
lines are used purely to mark the model sets for each D′. Time can be di-
mensionalized, for example by t/t′ = 10 Ma, assuming �ρ = 30 kg m−3,
L = 50 km and η = 5 × 1021 Pa s.

that thickening of the decollement layer significantly slows down
dripping growth rates at low η′

c. As in previous studies (Neil &
Houseman 1999), the numerical dripping models grow with the
hyperbolic time-dependence described by eq. (2).

Triggered dripping models (0 < D′ < 1) generally share the
initial growth rate of the dripping models (D′ = 0) at a particular
η′

c, which can be clearly observed in the identical initial slopes of
plots of log(ẇ′) over time (Fig. 6b). This self-similarity means that
the initial growth of the triggered dripping models begins as if it is
starting from a later point in the D′ = 0 velocity curve and therefore
takes less time to reach the rapid super-exponential growth phase
(Fig. 2). The self-similarity is still valid at high w′ for η′

c = 1, as
all instabilities follow similar timescales of hyperbolic growth, τ ′

2

(eq. 2). With decreasing decollement strength η′
c, instabilities with

larger D′ grow at a quicker super-exponential timescale (Fig. 6b).
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Figure 8. Delamination velocity over time, when η′
c = 10−2. The two

growth phases, τ ′ and τ ′
2 are shown (note the logarithmic scale) as well as

the time at which the reference depth w′ = 1.43 is reached. The dimension-
less time and velocity could be scaled for the example of �ρ = 30 kg m−3,
L = 50 km and η = 1021 Pa s as t = 2.15 t′ Ma and ẇ = 2.33 ẇ′ cm yr−1.
The energy dissipated in each material as a percentage of the total dissipa-
tion at a given time (grey) demonstrates the dominating dissipation in the
dense body and decollement system, especially during the initial growth.

This hyperbolic timescale varies significantly at η′
c = 10−2, where

τ ′
2 = 0.4, 0.6, 1.0 and 1.5, for D′ = 0, 0.5, 0.75 and 1. The transition

to super-exponential growth occurs at large w′ for the modelled
triggered dripping, so variation in τ ′

2 does not significantly affect
the initial instability growth, as described later with Fig. 7(b).

The velocity of a delaminating body increases exponentially
(eq. 1), immediately after triggering (Fig. 8), which confirms the
hypothesis of Bird & Baumgardner (1981) and agrees with ana-
logue modelling (Bajolet et al. 2012). The viscous bending stress
therefore appears to vary proportionally with w, during the initial
growth phase (τ ′ in Fig. 8). Delamination quickly progresses into
the secondary rapid growth phase (Figs 6b and 8), so comparisons
between dripping and delamination growth rates based purely on
τ ′ are an underestimate. It can be used for comparing delamination
models however, as τ ′ and τ ′

2 vary in the same way with changing
η′

c.
Unlike triggered dripping, delamination does not share the same

exponential growth rate τ ′ as the dripping model with an equivalent
η′

c (Fig. 7a). Instead τ ′ is always at least an order of magnitude faster.
Additionally, τ ′ is more sensitive to η′

c than for dripping, resulting
in more than two orders of magnitude difference between the two
mechanisms for η′

c = 10−3. The exponential (τ ′) for delamination

varies proportionally to η′
c
− 2

3 (Fig. 7a), as predicted by eq. (5).
The accuracy of this scaling in describing the variation of ẇ′

0 and
τ supports Bird’s (1979) hypothesis that the initial delamination
growth occurs by interaction between viscous bending of the dense
body and Poiseuille flow in the decollement.

Delamination has an intermittent slowing phase which does not
occur in dripping. This slowing phase also appears in triggered drip-
ping for D′ = 0.75 (Fig. 6b). It is brief though and occurs when the
instability has already attained a significant velocity. This slowing
phase could result from the increasing curvature of the dense body
through time. Previous modelling has shown that subducting sheets
peel away from a free-slip upper boundary condition, separated
from the slab by a thin low viscosity channel, with a velocity which
only increases for a limited period (Ribe 2010, fig. 3b therein). In
the case that the slab has a viscosity three orders of magnitude

higher than the asthenosphere, as in our models, the slowing occurs
at w′ ≈ 3, before returning to a similar rate of increase. This slowing
period occurs at approximately twice the displacement as for our
models (Fig. 8). However, the qualitative similarity in displacement
evolution indicates that the delamination slowing period is related
to deformation of the peeling dense body, rather than lower crustal
flow.

In order for the velocity of the delaminating dense body to in-
crease, the bending stress must also increase. In the case that the
zone of peeling can migrate at an increasing velocity, this can be
achieved without progressively increasing the dense body curvature.
However, the latter occurs in our models, as well as the equivalent
case of Ribe (2010), which may mean that the dense body reaches
a point in which further bending is difficult, leading to a maxi-
mum sinking velocity. The subsequent velocity increase then may
indicate the instability has switched to dripping.

The exponential growth rate τ ′ is not necessarily the clearest
way of comparing the modelled instabilities, as the initial velocities
(ẇ′) also vary, as well as the time taken to reach the rapid super-
exponential phase. Instead, the time taken to reach the reference
depth w′ = 1.43, from instability initiation, is a clearer comparison
(Fig. 7b). Because triggered dripping and dripping share the same τ ′

and reach the reference depth before significant super-exponential
growth occurs, the growth time varies with η′

c in the same way. In-
creasing D′ for triggered dripping increases ẇ′ irrespective of η′

c and
so the growth time is always reduced, in comparison to dripping,
by a constant amount for a specific D′. Delamination has passed
through its second growth phase by w′ = 1.43 (Fig. 8), though
because τ ′

2 varies proportionally to τ ′, so does the growth time.
As a result, the time for delamination to reach the reference depth

varies significantly, proportionally to η′
c
− 2

3 and can be an order of
magnitude shorter than dripping and triggered dripping. The most
significant outcome is the difference in growth time between trig-
gered dripping and delamination, even when the initial conditions
are similar, evident in the divergence of the curves for D′ = 0.75
and 1 with decreasing η′

c in Fig. 7(b).
To summarize, dense material can sink at an order of magnitude

quicker rate if it is able to delaminate, compared to if it drips. Though
delamination begins with a relatively higher velocity than for drip-
ping or triggered dripping, it is the significantly higher exponential
growth rate which is primarily responsible for this contrast. For ex-
ample, as soon as a dense body is perturbed by D′ = 1, its initial
sinking velocity is ẇ′

0 = 0.35, assuming that a decollement with
η′

c = 10−2 and L ′
c = 0.21 is present above. For �ρ = 30 kg m−3,

η = 1022 Pa s, L = 50 km, this is equivalent to the geologically in-
significant rate of ∼8 × 10−2 cm yr−1. However, due to the high
delamination growth rate, it would only take 14 Ma (t′ = 0.65,
Fig. 7b) for the lithosphere to double in thickness, compared to
183 Ma (t′ = 8.5) if there is no finite perturbation (D′ = 0), but the
decollement is just as weak.

The time taken to reach the reference depth (w′ = 1.43) differs
significantly between delamination and triggered dripping which
is relatively close to the conditions for delamination (D′ = 0.75).
For the example of a decollement with η′

c = 10−2 and L ′
c = 0.21,

this growth period takes almost five times longer if the finite strain
triggering the instability has thinned the dense body by 75 per cent,
compared to 100 per cent. The contrast grows to an entire order of
magnitude longer, if η′

c = 10−3. Therefore if geological activity fails
to thin the upper 12.5 km of an initially 50 km thick dense body, the
instability will take 43 Ma (for �ρ = 30 kg m−3 and η = 1022 Pa s)
to reach the reference depth and likely be slowed down by thermal
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diffusion, instead of growing within the more geologically relevant
4.3 Ma period.

3.3 Timescale comparisons with previous studies

The significant growth rate contrasts between dripping (including
triggered) and delamination calculated in Section 3.2 are compared
to previous studies. Where studies model the dense lower crust
and/or lithosphere with a temperature-dependent density and vis-
cosity, the reported initial geotherm is used to calculate average
representative �ρ and η using reported model parameters. In the
case of stress-dependent viscosity, η is compared to viscosity plots
or calculated based on reported strain-rates. Comparison using these
average values is approximate, but provides at least an order of mag-
nitude estimate of the non-dimensional timescale (eq. 1).

The delamination (‘DEL’) model of Göğüş & Pysklywec (2008)
reaches a depth similar to our reference depth delamination approxi-
mately 10 × more quickly than for dripping (‘DRIP-1’). Accounting
for the higher density anomaly in their delamination model, using
the timescale non-dimensionalization (Table 1), reduces this to a
difference of ∼5×. This is lower than the difference of 16× pre-
dicted between delamination at η′

c = 10−2 and triggered dripping
with η′

c = 1 and D′ = 0.75. This comparison is justified, as their
dripping model appears to begin with a large amplitude perturba-
tion. However, L ′

c is twice the thickness of our models, which is
predicted using eq. (5) to result in delamination which is 32× faster
instead of 5×.

The delamination and dripping models of Göğüş & Pysklywec
(2008) also involve the mobilization of different parts of the litho-
sphere, with contrasting average viscosities which should also affect
the relative instability timescales. The lower half of the lithosphere,
which is an overestimate of the volume which sinks in the dripping
model (‘DRIP-1’), has an average viscosity which is ∼102× weaker
than the whole lithosphere, which sinks in the delamination model
(‘DEL’). This contrast more than compensates for the smaller than
predicted timescale contrast between their end-member models.
This argument can also partly explain why the dripping (‘Drip-2’)
and delamination (‘Delamination-2’) models of Wang & Currie
(2015) grow at similar timescales. Additionally, L ′

c appears to be
approximately 75 per cent smaller than the value used by Göğüş
& Pysklywec (2008). According to eq. (5), this should slow down
delamination relatively by more than an order of magnitude, which
could account for the contrast in relative timescales between drip-
ping and delamination, between the two studies.

The rapid delamination timescale calculated (t′ ∼ 1 to reach
w′ ≈ 1.43) can be tested against previous studies, using the time
non-dimensionalization (Table 1) and delamination scaling (eq. 5).
Valera et al. (2014) modelled delamination using a Newtonian
rheology, as in this study, so a growth-rate timescale can be di-
rectly calculated. In their models, it takes 2 − 3 Ma for the de-
laminating mantle lithosphere to enter the rapid super-exponential
acceleration phase, as seen in their measurement of kinetic en-
ergy through time (fig. 5 therein). Based on the average dense
lithosphere viscosity, thickness and its density relative to the ad-
jacent ‘hydrated lithosphere’, this time is non-dimensionalized as
0.34 < t′ < 0.69. This is relatively fast compared to the scales
typical for dripping and supports our calculation of a rapid de-
lamination growth rate. Our calculated delamination timescale for
η′

c = 10−2, equivalent to their model, is within this range. However,
their decollement has L ′

c = 0.28, which is predicted to alter this
range effectively to 0.61 < t′ < 1.23 (eq. 5). Additionally, as it is

later shown that viscosity stratification is likely to double the growth
time, their delamination model would be approximately 2× slower
than in this study. However, their delaminating body is adjacent
to a zone of thinner lithosphere and strong lower crust, which is
likely to generate slower delamination than the ideal case modelled
here.

The models of Stern et al. (2013) also use a Newtonian rheology
and have already been non-dimensionalized. Because their lower
crustal viscosity is η′

c = 10−1, their models are not predicted to
reach the rapid descent as quickly as delamination, instead t′ > 1
(Fig. 7b). Accounting for our definition of L being the dense body
thickness, w′ = 1.43 is approximately reached by t′ ≈ 12. At
η′

c = 10−1, we have calculated t′ = 2.5 and 5, for D′ = 0.75 and 1
respectively, giving bounds for their initial condition of D′ = 0.85.
Their slower calculated growth time can be partly explained by
taking into account their assumption of L ′

c = 0.14, compared to
L ′

c = 0.21 used in this study. Using eq. (5), this slows our pre-
dicted range to 6 < t′ < 12. Additionally, it is later shown that
temperature-dependent viscosity stratification of the dense body
approximately doubles the instability timescale for delamination.
The slowing effect for triggered dripping would be slightly less,
as only the lower part of the lithosphere initially deforms. Taking
this into account, the timescale calculated in Stern et al. (2013)
for D′ = 0.85, is slightly faster than our calculation for triggered
dripping at D′ = 0.75, showing good agreement.

As the models of Bajolet et al. (2012) generally assume that
η′

c = 10−3, their observations can be used to test the extremely
rapid corresponding timescale predicted here (Fig. 7). Unlike our
study and all other studies used for comparison, analogue models
were used for their analysis. Therefore, comparisons to their results
also test for agreement between numerical and analogue approaches
for modelling instabilities. After non-dimensionalization using their
described parameters, their reference experiment ‘DEL10’ reaches
approximately our reference depth of w′ = 1.43 after t′ = 7.2 × 10−2.
Accounting for their slightly thicker decollement L ′

c = 0.26 using
eq. (5), slows this down to t′ = 0.11 at L ′

c = 0.21, which is the same
extremely rapid order of magnitude calculated here for η′

c = 10−3.
Bajolet et al. (2012) also varied �ρ (comparing ‘DEL10’

and ‘DEL19’), demonstrating (fig. 10 therein) that the instabil-
ity timescale is approximately proportional to it, which agrees
with our non-dimensionalization. They additionally showed that
doubling the thickness of the decollement (‘DEL14’ compared
to ‘DEL10’) decreases the time taken to reach w′ ≈ 1.43 by
40 per cent. This is less than our prediction of 75 per cent, how-
ever it is difficult to be confident of the exact discrepancy given the
slight differences in the initial perturbation size between these two
models.

The majority of existing models of delamination often use com-
plex rheologies, which make it difficult to estimate an effective vis-
cosity for non-dimensionalization. However, the effective viscosity
required for a non-dimensionalized model timescale to agree with
our modelled timescales (Fig. 7) can be approximately calculated
and checked for plausibility. In order for the delamination model
(‘DEL’) of Göğüş & Pysklywec (2008) to grow at the predicted
timescale for η′

c = 10−2, the dense body viscosity would need to
have been approximately μ ∼ 5 × 1021 Pa s. Considering that the
L ′

c used is approximately twice the thickness used in this study,
this becomes μ ∼ 1022 Pa s. Their rheological law reproduces this
effective viscosity for strain-rates in the order of ∼10−14 s−1, which
is at the higher end of their reported range. Therefore, the non-
linear rheology is important for reducing the effective viscosity and
allowing delamination to occur within 5 Ma.
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A similar comparison can be made to the delamination model of
Krystopowicz & Currie (2013), which takes approximately 2.5 Ma
for delamination to occur (comparing 32.5 and 35 Ma in ‘Model 2’
therein). This requires an effective viscosity in the order of 1021 Pa s
when comparing to our equivalent non-dimensionalized timescale
for η′

c = 10−2. This is an order of magnitude weaker than their cal-
culated rheology for the assumed initial shortening rate (Fig. 1b
therein), though the mantle lithosphere has clearly weakened to
this order of magnitude at its mid-thickness, during instability.
The contrast in effective viscosity between the models of Göğüş &
Pysklywec (2008) and Krystopowicz & Currie (2013) results from
the assumed higher �ρ, Lc and L in the former.

3.4 Energy dissipation

In scaling delamination by the viscosity of the dense body, rather
than that of the asthenosphere, we have followed the assumptions
of Bird (1979) that the delamination velocity is primarily limited
by flow of the decollement and dense body. The converse is that the
asthenosphere provides the only non-negligible resistance, so that
delamination would then be modelled by ‘Stokes creeping flow’
(Capitanio et al. 2007). The dependence of delamination timescales
on η′

c favours the former model, but we need to test whether the
latter is also occurring. A simple way to quantify which system,
the lithosphere or asthenosphere, the delamination velocity is most
sensitive to, is to compare the energy dissipated by viscous flow for
each material.

During the first exponential growth phase, the dense body and
decollement account for more than 95 per cent of the total energy
dissipation (Fig. 8). Dissipation by the asthenosphere increases to
∼20 per cent during the quicker second phase, but this is still only
a minor role. The dissipation in the first half of the instability’s
growth is consistent with the model that the increasing velocity
occurs due to quicker bending of the dense body and Poiseuille
flow in the decollement. In the second half, dissipation in the dense
body dominates over that of the decollement, until it is 60 per cent
of the total dissipation as it nears the 660 km transition. This also
corresponds to the brief slowing phase, which may mean that the
growth switches to a mode in which the sunken dense body is
deforming, potentially transitioning to dripping, more than it is
decoupling. This could be because the bending velocity is unable to
maintain its acceleration, or because deformation of the delaminated
portion becomes more efficient than further peeling. Delamination
is therefore controlled by lithospheric dynamics, rather than the
asthenosphere, even at high displacement. Scaling by η and η′

c

holds and the initial delamination growth, before it reaches the
lower mantle transition, should not be modelled as ‘Stokes creeping
flow’.

3.5 Surface and moho topography

Our results are consistent with previous analyses distinguishing
dripping and delamination based on surface topography (Göğüş &
Pysklywec 2008; Wang & Currie 2015). Dripping and delamination
produce surface topography of contrasting morphology and magni-
tude (Figs 3 and 4). Delamination generates subsidence and uplift
which are about 3 × and 1.5 × greater respectively than dripping,
which is similar to the observations of Göğüş & Pysklywec (2008)
and Wang & Currie (2015). As also observed in previous studies,
delamination generates an asymmetric step from subsidence to up-
lift, above the sinking end of the dense body, which contrasts the

symmetrical topography of dripping. The asymmetric step in to-
pography for delamination is superimposed onto large wavelength
zones of subsidence and uplift, corresponding to the initial asym-
metry in the dense body thickness. In reality, the large wavelength
zone of uplift by delamination would be limited to a finite region,
depending on how wide the initial zone of lithospheric thinning or
weakness is, as in Göğüş & Pysklywec (2008).

Triggered dripping would be characterized as delamination, if the
previous surface topography diagnostics of delamination (Göğüş &
Pysklywec 2008; Wang & Currie 2015) are used. Like delamination,
triggered dripping generates an asymmetric step from subsidence
to uplift, above the sinking dense body and rising asthenosphere
respectively. This similarity between triggered dripping and delam-
ination results from the similar asymmetric step imposed in the ini-
tial conditions. Significant horizontal migration of this asymmetric
topographic step in topography also occurs for triggered dripping,
generally over a distance of 3L by w′ = 1.43. This migration, quali-
tatively characteristic of delamination, is actually 50 per cent higher
than for delamination. This difference is likely to occur due to
delamination’s increase of dense body curvature, which has been
hypothesized to limit further peeling (Section 3.2).

The similarity in the magnitude of uplift and subsidence, between
triggered dripping and delamination, is surprising given their con-
trast in growth rate, τ . It takes ∼7× longer for the lithosphere to
double in thickness by triggered dripping with D′ = 0.5, compared to
delamination. The component of topography resulting from viscous
stresses would therefore be expected to be significantly higher for
delamination. The similarity in their topographic magnitude may be
the result of a difference in growth mechanisms: because the dense
body thickens significantly for triggered dripping, isostatic compen-
sation results in a similar magnitude of subsidence as the quicker
delamination, which instead has negligible dense body thickening
(Figs 3 and 4). The similarity in topographic magnitude may also be
due to a difference in the way viscous stress is distributed through
the dense body.

There are subtle differences in surface topographic morphol-
ogy between triggered dripping and delamination. Subsidence due
to triggered dripping occurs above the region with the highest
dense body displacement (w) and thickening. This is expected,
given that the thickened dense body requires isostatic compensa-
tion. Subsidence does not occur above the region of highest w,
instead above the region where the dense body is actively peeling
away from the decollement (Fig. 4, at the profile distance 10L),
where the highest dense body bending stresses are. The strain-rate
in the dense body (not shown) is the highest directly below the
zone of localized subsidence and rapidly decays away from this
zone.

This contrast could possibly distinguish triggered dripping and
delamination in nature, by locating the region of highest w and wm

and checking whether the surface above is subsiding or uplifting
(shaded, Fig. 4). This zone will be subsiding for triggered dripping
and the crust may potentially thicken, whereas it will be uplifting
for delamination, with asthenosphere flowing in towards the lower
crust. This diagnostic for triggered dripping becomes complicated
if the crust is weak enough to thicken above the thickening dense
body, as this can generate uplift instead (Neil & Houseman 1999). In
this case, the inference of symmetrically dipping Moho reflectors,
the ‘V-shaped’ Moho, could be used to identify triggered dripping,
as suggested by Zandt et al. (2004). Though the V-shaped Moho
occurs for D′ = 0.5, it becomes asymmetrical for D′ = 0.75 and
the dipping Moho closest to the dense body edge would not be
detectable due to its high angle (Fig. 4).
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Figure 9. Percentage of material which has sunk past the depth correspond-
ing to the initial base of the dense body, for varying boundary layer Rayleigh
numbers. Models were 2-D and used η′

c = 10−2, D′ = 1 and temperature-
dependent density and viscosity. Delamination switches to dripping for
Raδ ≤ 10 (eq. 4), as shown inset for a particular time-step from Raδ = 10.
In this example, the wedge zone above the displaced dense body (the latter
shaded) has cooled and further peeling is prevented. Temperature contours
are labelled as fractions of the potential mantle temperature.

3.6 2-D temperature-dependent models

The effects of thermal diffusion are explored using a secondary set
of temperature-dependent models, described in Section 2.1. Ther-
mal diffusion can potentially halt delamination and force it to switch
to dripping or it can cause a morphology switch from planar to drip.
In the 2-D temperature-dependent models, the former occurs if as-
thenosphere flowing into the lower crust above the peeling dense
body cools quickly enough to raise the viscosity of the decolle-
ment zone. If this happens, the dense body has peeled away by a
small amount and stalled, the in-flowing asthenosphere above it has
a cooling geotherm and the base of the dense body transitions to
dripping (Fig. 9). As this dripping only recycles part of the dense
body, the persistence of delamination is measured by the volume
of material sinking through time. From this measurement, only the
models with Raδ ≥ 102 (eq. 4) developed by persisting delami-
nation. The cooling asthenosphere is able to cool to the range of
10−1η to η at the Moho, so the decollement region will no longer sat-
isfy the 10−2η viscosity requirement for delamination. The stalling
of delamination in this way then depends on whether or not de-
lamination is sufficiently quicker than thermal diffusion, which is
quantified by the Raδ threshold. When the delaminating body has
reached the base of the model, which takes about twice as long as
for the temperature-independent models (comparing Figs 8 and 9),
the high rate of recycling slows down for �t′ ∼ 1. By this time,
delamination has recycled at least four times more material than the
models which have transitioned to dripping.

If delamination can only persist when Raδ ≥ 102 (eq. 4), there
should be a minimum required growth rate for a delaminating insta-
bility. This time is dimensionalized as t = t′L2/(Raδκ). As it takes
t′ = 2.1 for a delaminating body to reach the base of the model
domain in the temperature-dependent models (Fig. 9) and assum-
ing that L = 50 km and κ = 10−6 m2 s−1, a delaminating body is
required to be recycled within 1.7 Ma or less. For �ρ = 30 kg m−3,
the dense body viscosity must be 3.7 × 1020Pa s or weaker. This
timescale and viscosity could both be slightly larger, as the mini-
mum Raδ is only known to an order of magnitude. As discussed in

Section 3.2, once the conditions for delamination initiation are met
in previous models, it has been modelled as taking only ∼2 Ma for
the dense body to peel away and break off (Göğüş & Pysklywec
2008; Krystopowicz & Currie 2013).

κ and L can vary between previous studies, so the more precise
measurement for comparison is Raδ (eq. 4). Raδ ≈ 680, 320 and
80 for ‘DEL’ by Göğüş & Pysklywec (2008), ‘Delamination-2’ by
Wang & Currie (2015) and ‘Model 2’ by Krystopowicz & Currie
(2013) respectively. The estimates for ‘DEL’ and ‘Model 2’ are cal-
culated using average dense body parameters, as in Section 3.3. A
representative effective viscosity is not reported for ‘Delamination-
2’, so Raδ is calculated as Raδ = t1.43L2/κ , where t1.43 is an approxi-
mate estimate for the time taken for their model to reach w′ ≈ 1.43.
In this case it is assumed that the equivalent non-dimensional time
is ∼1 for delamination.

The delamination models of Göğüş & Pysklywec (2008), Wang
& Currie (2015) and Krystopowicz & Currie (2013) each show neg-
ligible cooling of the lower crust immediately after the mantle litho-
sphere has peeled away, which is the behaviour predicted for Raδ

above the critical threshold, which is somewhere 10 < Raδ < 102.
The first two studies certainly meet this criteria, while the third
is closer to the threshold, but could plausibly satisfy it. Raδ ≈ 25
for the delamination models of Valera et al. (2014), calculated from
eq. 4 using their reported model parameters (as in Section 3.3). This
is much closer to the critical Raδ threshold and plausibly below it,
indicating that thermal diffusion may be prominent. In their delam-
ination models, the region directly above the peeling lithosphere
is significantly colder than the asthenosphere, in a similar way to
Fig. 9 (inset), indicating that thermal diffusion is occurring more
quickly than delamination.

The delamination in Valera et al. (2014) initially involves rapid
peeling of the upper mantle lithosphere during the initial 6 Ma,
before the lithosphere stops peeling and the instability flow is dom-
inated by dripping of the lower lithosphere (fig. 3 therein). After
12 Ma, the displaced Moho is frozen and the lithosphere below
has thickened, in a similar way to our equivalent instability with
Raδ = 10 (eq. 4 and Fig. 9, inset). Therefore, our critical boundary
layer Rayleigh number can successfully describe why delamination
persists in some models (e.g. Göğüş & Pysklywec 2008) and not
others (Valera et al. 2014).

3.7 3-D temperature-dependent models

The transition from planar to drip morphology (Fig. 1, inset) is
quantified using 3-D models of triggered dripping with varying D′,
where D′ is now the dimensionless amplitude of an initial planar
perturbation. Small amplitude (w′ < 0.1) 3-D drip perturbations
are included and typically dominate over the initial planar pertur-
bation only if D′ is relatively small, as in Fig. 11(a) (D′ = 0). The
focus is on the persistence of the planar morphology of a triggered
dripping instability. Delamination was not studied in 3-D, though if
a planar morphology can persist for the initial growth of triggered
dripping, this will also be the case for delamination. The initial step
perturbation of size D′ has a planar morphology, so the transition
to a drip morphology during the initial growth becomes less likely
with increasing D′ (Figs 10 and 11a). This persistence of the planar
morphology, compared for varying D′ and η′

c = 10−2, is observed
as both migration in the step direction (ŝ) and vertical flow with
a dominantly planar morphology. The D′ threshold for persisting
planar morphology is approximately D′ = 0.3. Therefore if a dense
body is decoupled from the upper crust (low η′

c), it requires a planar
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Figure 10. Measures of how ‘3-D’ the instability morphology and migration are, for varying D′, η′
c and Raδ (eq. 4). The models with varying Raδ and η′

c (b)
have a constant D′ = 0.3, which is the lowest D′ preventing significant morphology transition (a). A significant switch to the drip morphology occurs near
Raδ = 10 (b), if η′

c = 1. This switch is clearly dependent on η′
c , so a change in rheology, marked with an arrow, may potentially produce the transition from a

planar to drip morphology. The corresponding η for a range of Raδ are shown in Pa s, assuming �ρ = 30 kg m−3, L = 50 km and κ = 10−6 m2 s−1.

perturbation which is at least a third of its thickness, in order to
grow with a planar morphology. The dependence of these mea-
surements on Raδ (eq. 4) is secondary to D′ for this decoupled
case.

When the dense body is decoupled (η′
c = 10−2), a decrease in

Raδ (eq. 4) and therefore an increase in the influence of thermal dif-
fusion, actually results in increased persistence of planar structures
(Fig. 10). This is due to the thermal erasure of small wavelength
perturbations compared to the invoked large wavelength 3-D per-
turbation. Thermal diffusion however also acts to slow the growth
of the 2-D step, when Raδ ≤ 3, resulting in the superposition of
drips over the large wavelength planar step. This Raδ results in sig-
nificant formation of a dense thermal boundary layer beneath the
dense body, though the sinking velocity at the dense body edge has

generally overtaken the rate of diffusion by the time of measurement
at w′ = 1.

Coupling of the dense body to the crust, η′
c = 1, reduces the

persistence of planar structures (Fig. 10). This effect is significant
for Raδ = 15 (eq. 4 and Fig. 11b), which appears to be a specific
point at which the coupled instability is slowed enough for dripping
to dominate, but not enough for the dripping wavelengths to be
erased. The transition from planar to drip morphology in this case
occurs immediately, so that migration is negligible.

4 D I S C U S S I O N

The sinking velocity of dense lower crust and/or mantle litho-
sphere which is delaminating, grows exponentially at a rate which
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Figure 11. Perturbation displacement (w′) of representative 3-D models, for varying η′
c , D′ and Raδ (eq. 4). Comparisons are made when w′ = 1 is first

reached. For these temperature-dependent 3-D models, w′ is measured as displacement of the �T isotherm from the reference depth L, which is the initial base
of the unperturbed dense body. (a) Morphology dependence on D′, all with η′

c = 10−2 and Raδ = 228. An example of the initial geometry is shown (left) for
D′ = 0.5. For these η′

c and Raδ , an initial step size of D′ = 0.3 is sufficient for the instability to sustain a planar morphology until w′ = 1 (as in Fig. 10a). (b)
For the case Raδ = 15 and η′

c = 10−2, the dense body switches from an initially planar morphology (right, shaded pink polygon), to a drip morphology during
the time it takes to reach w′ = 1. In comparison to the D′ = 0.3 case above (a), the combination of a stronger decollement and lower Raδ is responsible for the
contrast in morphology at w′ = 1 (as in Fig. 10b). The interface displacement is also plotted as an equivalent 3-D surface (right). The 3-D surface colours have
been shaded to emphasize the drip morphology and so differ slightly to the 2-D representations and corresponding colour bar. The ŝ vector shows the model
orientation, as defined in Fig. 1.

is typically an order of magnitude quicker than for dripping or trig-
gered dripping. This means that material which would typically take
100 Ma to reach a significant velocity by dripping, could delaminate
on the 10 Ma scale. Therefore strong materials, such as pyroxene-
dominated restites (Bystricky & Mackwell 2001) or the cold upper
part of the mantle lithosphere following an Arrhenius rheology, can
be recycled without requiring extreme degrees of weakening, if the
appropriate initial conditions are triggered.

Molnar & Jones (2004) showed that the plausibly high strength
of the dense lower crust beneath the Sierra Nevada (western USA)
is difficult to reconcile with its rapid recycling timescale, unless
the body was thinned by at least 50 per cent prior to instability.
Though the equivalent initial condition of D′ = 0.5 in our models
(triggered dripping) also results in a shorter time frame for recycling,
this acceleration is much more significant if delamination occurs.
The modelled instabilities grow by triggered dripping, rather than
delamination, when there is even a thin layer of mantle lithosphere
separating the asthenosphere from the thickening decollement layer
above the end of the sinking dense body (Fig. 4b). The ability to
recycle strong material is therefore highly sensitive to whether or not

the dense lower crust and/or mantle lithosphere has been completely
thinned (D′ = 1) prior to instability initiation.

The timescale at which a delaminating body first reaches a sig-
nificant displacement is highly variable, but appears to depend
simply on groups of key parameters. These can be used to
predict a variety of delamination behaviour and potentially ex-
plain differences between previous studies. As with dripping, the
delamination timescale is likely to scale with the characteristic
buoyancy flow-rate scale �ρgL/η. η has the greatest natural vari-
ability, particularly as a result of its exponential temperature depen-
dence. Though it is the quickest instability mechanism modelled
here, the timescale of delamination can still therefore be limited
by the effective viscosity of the delaminating material. Compar-
ison of previous studies (Section 3.3) indicates that the effective
viscosity controlling the instability timescales of the rapid delami-
nation models of Göğüş & Pysklywec (2008) and Krystopowicz &
Currie (2013) corresponds to their reported rheology parameters
when weakening by stress-dependence or plasticity is significant.
Without such weakening, the viscosity contrast between the upper
and lower mantle lithosphere could possibly offset the higher growth
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rate of delamination, compared to dripping. In this case, dripping
of the weaker lower lithosphere may be the dominant instability, as
is typical for an Arrhenius rheology if only dripping is considered
(Conrad & Molnar 1999). However, these two mechanisms are not
mutually exclusive, as modelled delamination is often triggered by
such dripping (Krystopowicz & Currie 2013; Wang & Currie 2015),
which occurs initially and weakens or perturbs the lithosphere. Ad-
ditionally, Krystopowicz & Currie (2013) showed that weakening
can lead to the delaminating mantle lithosphere breaking off, result-
ing in an episodic cycle of dripping, weakening, delamination and
then break-off.

If the dense body’s viscosity has a negligible influence on the
delamination growth rate, as previously proposed (Le Pourhiet et al.
2006), then the instability timescale once delamination has been
initiated would reflect the asthenospheric rheology, rather than that
of the crust and mantle lithosphere. Because our models viscously
dissipate a much higher percentage of the gravitational energy than
the asthenosphere, any inferred instability timescale could be used
to infer the dominating lithospheric viscosity, as has been done for
dripping and triggered dripping (Molnar & Jones 2004; Stern et al.
2013). Ribe (2010) showed that the velocity of a freely subducting
slab only depends on the slab viscosity when it is significantly higher
than that of the asthenosphere. The argument that asthenospheric
viscous dissipation dominates (Le Pourhiet et al. 2006) may then
only hold when the lithosphere has weakened to within two orders
of magnitude of the asthenospheric viscosity, which is sufficiently
weak in Capitanio et al. (2007).

In addition to the existence of a lower crustal strength criteria
for delamination to be initiated, the strength and thickness of the
lower crust results in delamination at a range of timescales, ap-

pearing to scale with L ′
c

2
/η′

c

2
3 . This has been used, for example,

to argue that the relatively rapid non-dimensional timescales of
Bajolet et al. (2012) are the result of a small η′

c (Section 3.3). A
significant contrast in the choice of L ′

c may also explain why delam-
ination is faster than dripping in the models of Göğüş & Pysklywec
(2008), but not in Wang & Currie (2015). These parameters are
often not explicitly set (Morency & Doin 2004; Le Pourhiet et al.
2006), instead effectively depending on dynamic conditions, such as
strain-localization. In these cases, there is an effective lower-crustal
cohesion or stress exponent which is responsible for the modelled
delamination timescale.

Depending on whether the boundary layer Rayleigh number Raδ

(eq. 4) exceeds a critical value, delamination may begin, but quickly
stall and switch to dripping. This is not a common occurrence in
delamination models, primarily because the choice of model param-
eters typically result in Raδ ∼ 100 or above (Göğüş & Pysklywec
2008; Krystopowicz & Currie 2013; Wang & Currie 2015), which is
clearly sufficient for delamination to persist. The models of Valera
et al. (2014), however are set up with a Raδ which is close to
Raδ = 10, which results in stalling of our modelled delamination.
The subsequent prediction, that thermal diffusion is prominent and
leads to stalling, is supported by their model evolution, which begins
with delamination, before the mantle lithosphere stops peeling and
its lower part drips instead. This transition, shared by our equiva-
lent stalling model (Fig. 9, inset), results in a displaced, asymmetric
Moho which is diagnostic of delamination, but also a high degree
of internal shear-strain, diagnostic of dripping. This bears similarity
to the seismological study of the dense body hanging beneath the
Colorado Plateau (Levander et al. 2011), which may therefore have
undergone such stalling. Though the relative viscous and thermal
timescales are appropriate for stalling in the models of Valera et al.
(2014), the decollement has a finite extent in their models, which

may also be responsible for the stalling. This alternative hypothesis
could be tested further using models with a varying decollement ex-
tent. Additionally, the slowing effect associated with stalling could
possibly be compensated in nature, if lithospheric weakening occurs
at high displacement (Krystopowicz & Currie 2013). Regardless,
stalling is another manifestation of the significant contrast between
the dripping and delamination growth rates. Without this contrast,
an instability switching from delamination to dripping would con-
tinue to be recycled at a relatively high velocity, due to its high
displacement.

4.1 Triggered dripping versus delamination

We have identified a mechanism which is a mixture of the drip-
ping and delamination end-members, called triggered dripping. It
is similar to dripping in its growth rate, but resembles delamination
in appearance. This has implications for linking observations to
instability dynamics. Each of the diagnostics which distinguish de-
lamination from dripping, are also common to triggered dripping.
The similarity is due to the similar initial conditions and subse-
quent deformation. There is a fundamental difference however in
what causes each instability to accelerate: as with dripping, trig-
gered dripping thickens the dense body in order to increase the nor-
mal stress responsible for instability growth. Delamination involves
negligible thickening, instead accelerating because the increasing
load of dense body which has peeled away from the upper crust is
balanced by quicker bending of the dense body which is actively
peeling. Dense body which has peeled away from the crust but
shows evidence that it is thickening, has switched to triggered drip-
ping, based upon our definition of delamination. The implication
from our mechanism characterization is that this switch would result
in a significant decrease in the instability growth rate. Aside from
this change in timescale, the surface topography and dense body
geometry would still resemble delamination, making mechanism
diagnosis difficult.

Viscosity calculated assuming that dripping or triggered drip-
ping is the responsible mechanism, for example in Molnar & Jones
(2004), could be overestimated by an order of magnitude if the dom-
inating instability mechanism is actually delamination. Given the
difficulty in distinguishing triggered dripping from delamination,
this introduces a significant uncertainty into rheological inference.
The initial conditions required for triggered dripping or delamina-
tion can also be indistinguishable, so this uncertainty in instability
dynamics may simply be unavoidable.

There are subtle contrasts between triggered dripping and de-
lamination which are worth pursuing, but are difficult to apply in
practice. Any observation of uplift directly above a sinking body
can be explained by delamination or by dripping which involves
thickening of buoyant crust (Neil & Houseman 1999). If the dense
body beneath the Colorado Plateau has peeled away from the crust,
which has thinned rather than thickened, asthenosphere should have
flowed up above into the region where dipping Moho reflectors
are observed, generating a region of uplift in the central western
Plateau during the last ∼6 Ma (Levander et al. 2011). This broad
region, extending from the Grand Canyon region and up towards
the San Rafael Swell, has experienced 2−4 km of uplift during
the last 30 Ma (Pederson et al. 2002b). Though most of the Grand
Canyon uplift has been considered to have occurred in the last
6 Ma (Karlstrom et al. 2008; Crow et al. 2014), there has been
recent debate, with arguments that Grand Canyon incision is in-
stead related to subsidence at the eastern Plateau margin (Pederson
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et al. 2002a) or uplift which initiated ∼50 Ma ago, about 200 km
north-east of the Grand Canyon (Flowers et al. 2008).

As previously discussed, delamination beneath the Colorado
Plateau may have stalled, in which case the lower crust could now
have a cold steady-state geotherm, rather than the hot geotherm gen-
erated by active delamination, based on both our models (Fig. 9) and
Valera et al. (2014). Our results predict that the surface above the
instability switched to a state of subsidence when stalling occurred.
This transition to subsidence does not occur in Valera et al. (2014),
potentially as a result of buoyant granitic crust above the instabil-
ity. Further modelling of the topographic evolution specific to the
Colorado Plateau is therefore required to test the stalling hypothesis
and to compare against the recent uplift evolution as it becomes
clearer.

4.2 Sierra Nevada, California

The migration of restite from beneath the Sierra Nevada batholith,
California, almost 100 km westward to its current location beneath
the Great Valley (Saleeby et al. 2003), could be modelled by either
triggered dripping or delamination. This ambiguity has implica-
tions for the recent focus on inferring rheological properties in
this region from the observed timescales (Molnar & Jones 2004;
Le Pourhiet et al. 2006). While the mechanism responsible for the
initial instability growth is indistinguishable, any estimate of restite
or decollement viscosity has at least an order of magnitude uncer-
tainty. There are then two alternative interpretations of timescale
data: either triggered dripping occurred with a high degree of rhe-
ological weakening, or delamination with a lesser degree of weak-
ening.

The current morphology and stress-state of the instability and
crust above is not necessarily indicative of how the instability initi-
ated. For example, the temperature-dependent 2-D models demon-
strate how easily an instability can begin by delamination and pro-
duce the corresponding observations, before switching to a dripping
mode. For significant migration to occur, an initially planar step
perturbation is most likely required. The extent of newly infiltrated
asthenosphere below the Sierra Nevada, likely to correspond to the
initial extent of the restite, is elongated parallel to the batholith and
perpendicular to the direction of migration (Frassetto et al. 2011).
This observation supports the hypothesis of an initially planar mor-
phology, in which case the morphology has transitioned into a drip
morphology.

The 3-D calculations demonstrate that a transition from a pla-
nar to drip morphology is not a natural progression of instabilities
which are capable of migrating. Therefore if such a transition oc-
curred beneath the Sierra Nevada, an additional process is required
to trigger this switch. This may be a change in decollement con-
ditions or interference with a competing dynamic process. For the
former, the models predict that if the instability migrated into a re-
gion with a higher decollement viscosity, a step perturbation could
transition into smaller wavelength instabilities with drip morpholo-
gies. Whether this transition occurs is dependent on the relative
instability timescale compared to thermal diffusion. Models with a
heterogeneous decollement are required for more detailed predic-
tions. Alternatively, the finite length of the restite may have allowed
3-D curvature effects to interfere, a process which we have not
modelled. Regardless of whether the instability began by triggered
dripping or delamination, it is plausible that the instability has un-
dergone some transition, which could provide further rheological
inference if modelled in detail.

Inferring the type of initial mechanism from observed instability
migration becomes ambiguous when considering the additional in-
fluence of background mantle flow. Our analysis assumes that the
entire instability evolution is completely controlled by the mechan-
ical properties and initial geometry of the lithosphere. However, the
asthenosphere below the Sierra Nevada was inferred to be flowing at
about 4 cm yr−1 in the same direction as migration of the instability
(Zandt 2003) and the two may be coupled. If it is assumed that an
instability has taken 10 Ma to double the lithosphere’s thickness, its
sinking velocity will still be at the cm yr−1 scale at this displace-
ment and therefore could interact with mantle flow for its entire
initial growth period. An instability would need to reach this dis-
placement within ∼1 Ma in order for its initial growth to be isolated
from surrounding flow. Though any instability will likely reach the
10 cm yr−1 scale during the rapid descent phase, the highest mi-
gration occurs during the initial phase in our models. It is therefore
plausible that the migration of the Sierra Nevada drip is due to either
asthenosphere flow, asymmetry in the initial instability conditions,
or a combination of the two.

5 C O N C LU S I O N S

The mechanism by which dense lower continental crust and/or
mantle lithosphere is recycled into the asthenosphere has a strong
influence on the initial growth dynamics. Dripping, even if it is
‘triggered’, grows at an order of magnitude slower timescale than
delamination. This is significant for lithosphere dynamics, consid-
ering that mass and energy flux, as well as the migration of surface
expressions, follow this initial timescale. The triggering of delam-
ination requires highly specific conditions: a weak decollement,
intrusion of the asthenosphere into the lower crust and a timescale
which can outpace thermal diffusion. Additionally, the instanta-
neous non-dimensional velocity of delamination when it is triggered
is highly dependent on its coupling with the upper crust and this

dependence can be accurately scaled by L ′2
c /η

′ 2
3

c . The acceleration
which follows also scales accurately with the same dependence on
η′

c and likely with L ′
c, though the latter was not explicitly modelled.

Local tectonic processes and rheology control which mechanism
occurs and therefore have a large impact on the dynamics of dense
body recycling. This contrast in instability dynamics introduces
uncertainty when inferring the viscosity and density of a sinking
body if the instability mechanism is unclear. While dripping can be
distinguished from delamination, triggered dripping produces sim-
ilar characteristics to delamination and these would be difficult to
discern in nature.

Using the simplistic model setup, the fundamental style of de-
lamination growth has been characterized. It begins at a relatively
high velocity which grows exponentially with time in two phases.
The timescale of its initial growth depends on the viscosity of the
sinking body. Delamination is likely to grow at a similar timescale
to the thermal diffusion at the Moho. Sustained delamination may
subsequently require an additional process to ensure that the weak-
ness of both the decollement zone and in-flowing asthenosphere are
maintained. A transition from planar to drip morphology, during
the initial instability growth, is also likely to require an additional
process. A switch to increased coupling between the crust and dense
body, due to lateral rheological contrast, could trigger this transition.

Due to the variety in initial mechanism dynamics and later mech-
anism transitions, the dense lower crust and mantle lithosphere
has the potential to be recycled in a number of contrasting ways.
Rather than adding further ambiguity to the current debate of how
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material is dominantly recycled beneath the continents, character-
ization of these mechanisms provides new constraints and models
which observations of instability growth and morphology can be
tested against, without assuming that one end-member mechanism
always dominates over the other.
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