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Abstract
The full set of resonant states in double and triple quantumwell/barrier structures is investigated.
This includes bound, anti-bound andnormal resonant states which are all eigensolutions of
Schrödinger’s equationwith generalized outgoingwave boundary conditions. The transformation of
resonant states and their transitions between different subgroups as well as the role of each subgroup
in observables, such as the quantum transmission, is analyzed. The quantumwell potentials are
modeled byDirac delta functions; therefore, as part of this study, thewell known problemof bound
states in delta-like potentials is also revisited.

1. Introduction

Resonant states (RSs) have been known in quantummechanics for almost a century, since the pioneering works
ofGamow [1] and Siegert [2]. The RSs describe, in amathematically rigorous way, natural resonances which
quantum systems exhibit. People are dealingwith resonances in differentfields of physics, ranging from classical
mechanics and electrodynamics to quantumphysics and gravity. Resonant phenomena have attracted
significant interest in recent years, in particular, in quantummechanics due to a rapid progress in the field of
semiconductor nanostructures, where different electronic states are formed in various types of quantum
potentials. In spite of this growing interest in resonances,many fundamental aspects of RSs in quantum systems
are still to be investigated [3].

Perhaps, amore traditional way of dealingwith resonances is to study the singularities of the scattering
matrix [4] as also described inmany textbooks (see, e.g. [5]). Finding these singularities is actually equivalent to
solving the Schrödinger equationwith outgoingwave boundary conditions outside the system.However, these
boundary conditions strictly define RSs. In general, RSs have complex energy eigenvalues, showing that the
states decay exponentially in time, leaking out of the system (such as a quantumwell). Early studies of RSs [6, 7]
revealed that they can form a complete set of functions inside the quantum system, and therefore can be used as a
basis for expansion, in order tofindRSs of amodified system. This idea, first suggested in nuclear physics [8] has
been recently developed in electromagnetics into a powerfulmethod called resonant-state expansion (RSE)
[9, 10]. The RSE uses as a basis the RSs of a simple system, usually analytically solvable. The advantage of applying
the RSE to various systems becomes obvious in case of perturbations which cannot be treated analytically. Very
recently, the RSE has been applied also to quantum-mechanical systems [11].

The aimof this paper is to study the RSs of simple one-dimensional (1D) quantum-mechanical systems,
such as double and triple quantumwells, for better understanding of their properties, as well as for generating an
analytic basis of RSs for its further use in the RSE treatingmore complicated potentials. In this work, we take a
well-known simplification of amultiple-quantumwell/barrier potential, approximating it with a sequence of
Dirac delta functions, amodel which is widely used in physics [12]. Bound states in such potentials are known in
the literature [13], as well as periodic solutions of the famousKronig-Penney potential [14]modeling the
electronic band structure of a 1D crystal lattice. However, the spectral properties of quantum systems are not
limited to bound states. Rather, phenomena, such as quantum tunneling through barriers and quantum
scattering and transmission of particles across the potential, aremainly determined by the internal resonances of
the system,which are described by theRSs. These, however, have not been sufficiently investigated even in such
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simple systems as 1Ddouble and triple Dirac quantumwells or barriers. The present work is a thorough study of
RSs in such potentials.

In this work, we investigate the full spectrumof eigensolutions of the 1D Schrödinger equation for double
and triple quantumwell/barrier systems. The full spectrumof RSs includes bound, anti-bound and normal RSs,
all together forming a complete set of functions and determining the spectral properties of a quantum system,
such as the local density of states and transmission [15].We first revisit the bound state problem in double and
triple quantumwell systems, working out exact solutions and some important asymptotics allowing explicit
analytic expressions. Thenwe demonstrate how bound states appear or disappear in the spectrum transforming
into anti-bound states as the parameters of the potential change. Thenwe extend our consideration to the full
spectrumof RSs and discuss the physicalmeaning of the normal RSs, also paying attention to the their evolution
and transformation into/frombound and anti-bound states [4, 16–18]. Finally, we investigate the role of the RSs
in the quantum transmission.

2. Resonant states of one-dimensional quantum systems

In general, RSs of a quantum-mechanical system are the eigen solutions of the Schrödinger equation

H Er r r , 1n n ny y=ˆ ( ) ( ) ( ) ( )

satisfying the outgoingwave boundary conditions (BCs). Here H rˆ ( ) is theHamiltonian of a single particle,ψn(r)
andEn are, respectively, its eigenwave function and eigen energy, and r is a three-dimensional coordinate.
Having inmind application to e.g. planar semiconductor heterostructures, we reduce our consideration in this
work to non-relativistic 1D Schrödinger’s problem. For brevity of notations, wemake use of the units ÿ=1 and
m=1/2, wherem is the particlemass (e.g. the electron effectivemass in a semiconductor). It is also convenient
to introduce the eigenwave number kn of the particle associatedwith a given RS and use it instead of the energy
Enwhich is linked to it via the non-relativistic parabolic dispersion relation

E k . 2n n
2= ( )

A1D time-independent Schrödinger equation then takes the form:

d

dx
V x x k x , 3n n n

2

2
2y y- + =

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

whereV(x) is the potential of the particle, which is chosen in such away that it vanishes outside the system.
In 1D, the outgoingwave BCs for RSs reduce to

x e xfor , 4n
ik xny µ  ¥( ) ∣ ∣ ( )∣ ∣

which are also known as Siegert BCs [2]. Solving equation (3)with the BCs equation (4) inevitably leads to the
fact that the energies En are generally complex,

E p i p ip2 , 5n n n n n n n
2 2 2  = + = - +( ) ( ) ( )

where pn andùn are, respectively, the real and the imaginary part of the eigenwave number: kn=pn+iùn. For
bound states pn=0 and 0n > , so that the energy is real negative E 0n n

2= - < , and the general equation (4)
reduces to the standard BCof thewave function vanishing away from the system: x e 0n

xny µ -( ) ∣ ∣ at
x  ¥∣ ∣ . For anti-bound states [17], if they exist in the spectrum, pn=0 andùn<0, corresponding to a purely
growingwave outside the system, even though their energies are real and negative. All other RSs have p 0n ¹
and 0n < which results in complex eigen energies andwave functionswhich oscillate and grow exponentially
in the exterior: x en

ip xn ny µ  ¥-( ) ( ) ∣ ∣ , according to equation (4).
As a consequence of this exponential growth, thewave functions of the RSs are not orthogonal and not

normalizable in the usual way. RSs instead require a proper general orthonormality conditionwhichwould
include the standard one as a special case, valid for bound states. For a one-dimensional system, this general
orthonormality of RSs is given [2, 6, 9] by

x x dx
x x x x

i k k
, 6nm

x

x

n m
n L m L n R m R

n mL

R

òd y y
y y y y

= -
+
+

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

where δnm is the Kronecker delta, and xL and xR are two arbitrary points outside the system, one to the left of it
(xL) and one to the right (xR). For bound states, it can be easily seen, by taking the limits xR L,  ¥ and noting
that the second term vanishes due to the vanishingwave function, that equation (6) leads to the standard
orthonormality: x x dxnm n mòd y y=

-¥

¥
( ) ( ) . For exponentially growingwave functions the divergence of the

integral at xR L,  ¥∣ ∣ is exactly compensated by the second term. Furthermore, as the normalization does not
depend on xL and xR, it is usually convenient to take these points exactly at the boundaries of the system.
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3.Doublewell

Wemodel a symmetric double quantumwell structure by a superposition of twoDirac delta functions,

V x x a x a , 7gd gd= - - - +( ) ( ) ( ) ( )

where a2 is the distance between thewells and γ is the strength of the potential which has themeaning of the
depth of each quantumwellmultiplied by its width. Figure 1 sketches this potential alongwith a realistic coupled
quantumwell structure itmodels.While potentialsmodeled by delta functions sometimes fail to catch
interesting physical phenomena, such as the band crossing [19], an obvious advantage of thismodel is its
simplicity and explicit analytical solvability. The solution for the potential (7), in terms of bound states, has been
covered in depth inmany texbooks, see e.g. [13]. Thefirst few resonant states in double barrier structures
(γ<0)were found in [3].We revisit this problem again, in order to study the full spectrumof RSs and their
properties, which has not been done in the literature. This is also of practical importance, as the full set of RSs can
be further used as a basis for the RSE [11].We also clarify on the origin of RSs, showing howpairs of RSs
transform into bound and anti-bound states as the parameters of the quantum system change.

3.1. Exact solution
Ageneral solution of equation (3)with the potential (7) has the form (for brevity of notations, we drop in this
and the following section index n labeling RSs):

x

Ae Be x a

C e C e x a

De Fe x a

,

,

,

8

ikx ikx

ikx ikx

ikx ikx

1 2 y =
+ >
+
+ < -

-

-

-

⎧
⎨⎪
⎩⎪

( ) ∣ ∣ ( )

with constant coefficients standing at the exponentials. Applying the outgoingwave BCs leads toB=D=0.
Furthermore, using themirror symmetry of the potential,V(−x)=V(x), splits all the solutions into two groups:
even and odd states, having the property

x x . 9y y- = ( ) ( ) ( )

From this we obtain F=±A andC1=±C2=C. Then thewave function takes the form

x
Ae x a

C e e x a

Ae x a

,

,

.

10

ikx

ikx ikx

ikx

y =
>


 < -

-

-

⎧
⎨⎪
⎩⎪

( ) ( ) ∣ ∣ ( )

Thewave functionψ(x)must be continuous at any point but its derivative xy¢( ) is discontinuous at x=±a. The
break in the derivative can be evaluated by integrating equation (3) across the delta-function potential wells. This
yields four boundary conditions determining the relation between the coefficientsA andC, as well as the
eigenvalues k. However, as the symmetry of the potential has been already taken into account leading to
equation (10), only one pair of BCs (e.g. at x= a) provides a unique information:

a a a0 0 , 11y y gy¢ + - ¢ - = -+ +( ) ( ) ( ) ( )

a a0 0 0, 12y y+ - - =+ +( ) ( ) ( )
where 0+ is a positive infinitesimal. The other pair of BCs (at x=−a) is then fulfilled automatically. Substituting
thewave function equation (10) into the BCs equations (11) and (12), obtain

Figure 1.A sketch of the potential of a symmetric double well structure (red line) approximated by two delta-functions (grey arrows).
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ikAe ikC e e Ae , 13ika ika ika ikag- = --( ) ( )

Ae C e e 0. 14ika ika ika-  =-( ) ( )

Expressing the ratioA/C from equations (11) and (12) and combining the results obtain

A

C

ik e e

ik e

e e

e
. 15

ika ika

ika

ika ika

ikag
=

+
=

- -( )
( )

( )

After rearrangement this yields a transcendental secular equation

ik
e1

2
16ika2

g
+ =  ( )

determining all the RS eigenvalues kn. Note that the upper (lower) sign corresponds to even (odd)RSs.

3.2. Bound and anti-bound states
Tofind bound and anti-bound states of the system,wemake a substitution k=iùin equation (16) and solve the
latter for real values ofù. Then the eigen energy E 2= - takes real negative values. For bound states,ù should
be positive, as required by the evanescent formof thewave function outside the system. For anti-bound states
instead thewave function has a pure exponential growth to the exterior which is provided byù<0.

While the secular equation (16) apparently depends on two parameters, γ and a, this parametric space
reduces to a single parameter

a 17a g= ( )

which can be treated as the effective system size or the effective strengths of the potential. Concentrating on the
dependence of the eigen states on the system size (e.g. keeping the strength γfixed), it is convenient to introduce
a dimensionless wave number q=2ù/γ. Then equation (16) takes the form

q e1 , 18q=  a


-  ( )

where index+ (−) labels even (odd) parity states. The full solution of equation (18) found numerically with the
help of theNewton-Raphsonmethod implemented inMATLAB is shown infigure 2 for positive values ofα and
q. It demonstrates the dependence of the imaginarywave vector for two bound (even and odd) states in the
system as function of the effective widthα.

At large distances between thewells (α?1) the two states are quasi-degenerate,

q e1 , 19»  a


- ( )

illustrating the fact that each isolated delta-like quantumwell accommodates only one bound state with q=1.
As clear from figure 2, equation (19) is a good approximation of the full solution equation (18) forα>3. Asα
increases, the splitting between the levels becomes exponentially small, reflecting the vanishing tunnel coupling
between thewells.

In the opposite limit of small width a or small wave numberù (i.e. small binding energy), one can obtain a
simple analytic approximation, based on the Taylor expansion of the exponential in equation (18),

Figure 2.Exact (black solid lines) and approximate (blue and red dashed and dotted lines) effective wave numbers
q ik2 2g g= - = of the two bound states in a double quantumwell systemmodeled by a double delta function potential, as
functions of the effectivewidth of the systemα=γa.
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e q q1 2, 20q 2 2a a» - +a- ( )

valid for q a 1a = ∣ ∣ ∣ ∣ . For the even parity state, it is sufficient to use the expansion (20) up to 1st order,
while the same level of approximation for the odd parity state requires also the 2nd order to be taken into
account. Then approximate solutions of equation (18) take the form:

q q
2

1
even , 2

1
odd . 21

2a
a
a

»
+

»
-

+ -( ) ( ) ( )

They are shown infigure 2 by dashed linesmatching the exact solution (solid lines) at smallα (for the even state)
or at small q (for the odd state).

The analytic approximation equation (21) also allows us tofind a condition for bound states to exist in the
system,which requires that q>0. Indeed, when a bound state disappears from the spectrum, its binding energy
vanishes,meaning that q→0. Thismakes the approximation (21) valid, so that it precisely determines the
critical values of the systemparameters when the bound state disappears.While the ground state exists for any
α>0 (q+ is always positive), the excited (odd) bound state exists only forα>1 and disappears atα=1 (when
q− vanishes), as thewidth of the systembecomes insufficient to accommodate it, given the tunnel coupling
between thewells. However, a quantum state itself cannot disappear from the system completely. Instead, it
transforms into an anti-bound state which can be observed forα<1.

To see itmore clearly and also to investigate thedependenceon thepotential strength (e.g. keeping thewidth
a2 fixed), we introduce another dimensionless imaginarywavenumber s=2ùa, so that equation (16) takes the form

s

e1
. 22

s
a =

 -
( )

The function s(α) can be easily plottedwithout solving the transcendental equation, due to the explicit functional
dependenceα(s) given by equation (22). Its plot is presented infigure 3. Since a>0, the region of positive s
corresponds to bound states.We see two bound states forα>1 and only one for 0<α<1. The odd state
transforms atα=1 frombound to anti-bound, as negative s corresponds to growing exponentials outside the
systems, see equation (10) for k is a2= and s 0< . Another anti-bound state forms from the even bound state
atα=0when thewells switch into barriers. At the same time, asα changes its sign frompositive to negative, the
odd anti-bound state goes away to infinity (s  -¥) and then comes back at small negative values ofα as an
even anti-bound state, coexistingwith the other even anti-bound state up toα≈−0.27. At that point the two
anti-bound statesmerge, now transforming into a pair of normal RSs, which then evolve asα decreases further.
BothRSs have the same imaginary part and the opposite real part of k, shown infigure 3 by blue and greens lines,
respectively.

3.3. Resonant states
Wenow consider all possible solutions of equation (16) in the complex k-plane, generating bound, anti-bound
and normal RSs, as shown infigure 4 for the case of a double well and a double barrier structure. For thewells

Figure 3.Effective wave number s ika2= - as function of the effective potential strengthα=γa plotted for even and odd eigen
states using the explicit functional dependence (22). The plot demonstrates transitions frombound to anti-bound states and then to
normal RSs. Regions for potential wells (α>0) and barriers (α<0) are indicated, as well as for bound (s>0) and anti-bound
(s<0) states. Blue and green lines show the real and imaginary parts of the wave numbers s for the pair of the lowest-energy normal
RSs formed atα≈−0.27 from a pair of degenerate anti-bound states.
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(γa=3), one can see two bound states and an infinite countable number of normal RSswith nonzero real and
imaginary parts of k. Furthermore, these normal RSs all have complexwave functionswhich cannot bemade real
by redefining the normalization constant, unlike bound or anti-bound states. These RSs appear in pairs: EachRS
with the eigenwave number k and thewave functionψhas a counterpart with the eigenwave number k*- and
thewave function *y , so that the spectra of RSs shown infigure 4 possess amirror symmetry about the
imaginary axis, which is a general property of an open system, not related to its spatial symmetry. For the barriers
(γa=−3), there are only normal RSs present in the spectrum, as this potential strength is too big for anti-
bound states to exist, see figure 3. In both spectra, normal RSs of even and odd parity appear in alternating order
and are almost equally spaced for large k dominated by the real part. The reason for that is that these states have
the same nature as Fabry-Pérotmodes in an optical system, with a half integermultiple of theirDe-Broglie
wavelengthλ=2π/k approximatelymatching the system size a2 . Indeed, the spacing between thewave
numbers plotted infigure 4 is k a2d p» ( ). These RSs are formed from a constructive interference of waves
created bymultiple reflection from the potential inhomogeneities (wells or barriers) at x=±a. The absolute
value of the imaginary part of k growsmonotonously with the real part of k (and consequently with the
resonance energy), showing an increasing probability of a particle to leave the system as its energy increases.

Interestingly, at large k the evenRSwave numbers of the double well structure approach asymptotically the
oddRSwave numbers of the double barrier structure, and vice versa, provided that the absolute values of ag∣ ∣are
the same for the barriers andwells. This can be understood, looking again at equation (16) and noticing that if
thefirst termwas neglected, equation (16)would become invariant with respect to a simultaneous flip of the sign
of γ (switching between barriers andwells) and the sign standing at the exponential (switching between even and
odd solutions), thusmaking the above two cases equivalent. Indeed, this equivalence is asymptotically achieved
at large k, when the first term in equation (16) is getting small compared to the other two and can thus be
neglected.

Applying the normalization condition equation (6) to thewave function equation (10) and excluding
exponentials with the help of the secular equation equation (16), wefind the normalization constants in
equation (10):

A C
ik

C
a ik

1
2

,
1

2 2
. 23

1

1

g

g
= + =

 - +

-

-
⎜ ⎟⎛
⎝

⎞
⎠ [ ( ) ]

( )

The normalizedwave functions of a doublewell or a double barrier system are now ready to use in theRSEwhich
can be applied for various perturbations. This has been done in our recent paper [11].

4. Triple well

Wenow add a thirdwell (barrier) positioned at x=b, somewhere between the two equal wells (barriers):
−a<b<a. It ismodeled in the sameway at the other two, so that the potential is given by

Figure 4.Complex eigenwave numbers kn of the RSs in a double delta-potential structure, with twowells (γa=3, shiny balls) and
two barrier (γa=−3, open diamonds). Even and odd parity states are shown, respectively, in black and red.
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V x x a x a x b , 24gd gd bd= - - - + - -( ) ( ) ( ) ( ) ( )

where the strength β is generally different from γ, withβ>0 (β<0) corresponding to an additional well
(barrier). A sketch of this potential and its relation to amore realistic semiconductor heterostructure is provided
infigure 5.

We use the same approach as in section 3 to solve the Schrödinger equation (3)with the potential
equation (24), taking thewave function of a RS in the following general form:

x

Ae x a

C e C e b x a

D e D e a x b

Be x a

,

,

,

.

25

ikx

ikx ikx

ikx ikx

ikx

1 2

1 2

 


y =

>
+
+ - <

< -

-

-

-

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ( )

4.1. Exact solution for a symmetric structure
Wefirst consider the case of a symmetric potential, having b=0 andβ arbitrary. Then using equation (9), we
findB=±A for the solution outside the system and

C e C e D e D e 26ikx ikx ikx ikx
1 2 1 2+ = +- - ( )

for the region inside it. Equating coefficients at the same exponentials in equation (26), obtainD2=±C1=±C
andC2=±D1=±D, wherewe have introduced constantsC andD for brevity of notations. Then thewave
function takes a simplified form:

x

Ae x a

Ce De x a

De Ce a x

Ae x a

,

0 ,

0,

.

27

ikx

ikx ikx

ikx ikx

ikx

 


y =

>

 - <

 < -

-

-

-

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ( )

The existence of the third delta function in the potential (24) leads to a new break in the derivative of thewave
function at x=0, and to twomore BCs:

0 0 0 , 28y y by¢ - ¢ - = -+ +( ) ( ) ( ) ( )

0 0 0, 29y y- - =+ +( ) ( ) ( )

in addition to the pair of BCs given by equations (11) and (12). Using equation (29) for an odd parity state (the
lower sign in equation (27)) results in a conditionC=Dmeaning that 0 0y =( ) , as should be for any anti-
symmetric state. Thismakes however the odd state insensitive to the potential well or barrier if the latter is placed
exactly in the center of the system, thus keeping xy¢( ) continuous at x=0. The odd parity solution of the
Schrödinger equationwith the potential (24) and b=0 is thus the same as for the double delta potential (7) and
is described in detail in section 3.We therefore concentrate below on even parity states.

Figure 5.As figure 1 but for a triple well potential.
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For even parity states, equation (29) is automatically fulfilled due to equation (9), but equation (28) brings in
an information about themiddle well/barrier: ik C D C D2 b- = - +( ) ( ), or

D

C

ik

ik

1 2

1 2
. 30s

b
b

= = -
+
-

( )

At the same time, equations (11) and (12)now give

ikAe ik Ce De Ae , 31ika ika ika ikag- - = --( ) ( )

Ae Ce De 0, 32ika ika ika- + =-( ) ( )

which result, after having combined themwith equation (30), in two different expressions for the ratioA/C,

A

C

ik e e

ik e

e e

e
, 33

ika ika

ika

ika ika

ika

s
g

s
=

-
+

=
+- -( )

( )
( )

determining the secular transcendental equation for even-parity states:

ik ik

ik
e1

2 1 2

1 2
. 34ika2

g
b
b

+ =
-
+

( )

In the limitβ→0, equation (34) reduces back to the secular equation (16) for the even-parity state of the double
quantumwell.

4.2. Bound and anti-bound states
Repeating the procedure used in section 3.2, wefirst introduce a purely imaginarywave number k=iù,
expressed in terms of a real valuedùandthen use an effective dimensionless wave number q=2ù/γ, in order
to study the dependence of the bound state on the system size. In addition to the effective width/strengthα
defined by equation (17), we introduce a relative strength of themiddle well/barrier:

. 35e
b
g

= ( )

equation (34) then takes the form

q
q

q
e1 36qe

e
= +

+
-

a- ( )

(compare with equation (18) for+). The exact numerical solution of equation (36) for ε=0.5 is shown in
figure 6 by black solid lines displaying two even parity bound states, as well as an odd parity state which is the
same as infigure 2.While the ground state having the highest value of q exists for any size of the system (i.e. for all
α>0), the 2nd excited (even) state disappears in this case atα=5.

To understand this behavior, we again use the Taylor expansion (20)up to 2nd order, obtaining from
equation (36) an approximation for even states:

Figure 6.As figure 2 but for a triple quantumwell systemmodeled by a triple-delta potential with b=0 and ε=1/2.

8

J. Phys. Commun. 2 (2018) 115008 ATanimu and EAMuljarov



q
2 1

1 1 2
. 37

e a
a ae

»
- -

+ -
( )

( )
( )

Obviously, for ε=0, equation (37) is equivalent to the approximation (21) for the even parity values q+. The
approximation (37) is shown for ε=0.5 infigure 6 by dashed blue lines, demonstrating a good agreement with
the full solution forα→0 (ground state) and for q→0 (2nd excited states). The last limit allows us to obtain
the following inequality for ε andα:

1
2

, 38a
e

> + ( )

showing underwhich conditions an even bound state exists.When both γ>0 andβ>0, this inequality refers
to the 2nd excited state in a triple well. In particular, for the example infigure 6, the even excited state disappears
atα=1+2/ε=5.

If, however, there is a barrier in themiddle of twowells, i.e. γ>0 butβ<0, there is amaximumof two
bound states in the spectrum, one even (the ground state) and one odd (the excited state), and the same
equation (38)nowbecomes a condition for the ground state to exist. Indeed, if the barrier is high enough,
namely ifβ<−2γ, the ground state also disappears from the spectrum at the system size smaller than that
determined by equation (38). This case presents an interesting situationwhen a one-dimensional symmetric
potential well structure cannot accommodate any bound states. An illustration for ε=−4 is provided in
figure 7 showing that the ground state disappears atα=1/2, in agreement with equation (38) andfigure 9
below.

To analyze the behavior at large system sizes, we take the limit a  ¥, whichmakes the exponential term in
equation (36) small. This results in a quadratic equation for q:

q q e e1 1 0 39q q2 e e- + + + - =a a- -( ) ( ) ( )

giving solutions

q e1
1

1
400

e
e

» +
+
-

a- ( )

for the ground and

q e
1

412 e
e
e

» +
-

ea- ( )

for the 2nd excited state. These approximate values are also plotted infigures 6 and 7 showing an agreementwith
the exact solution.

To study the dependence on the quantumwell strength γ (i.e.α for afixed a), we introduce, as in section 3.2,
the effective wave number s=2ùa. Then equation (34) becomes

s s

s
e1 42s

a
a e
a e

= +
+
-

- ( )

Figure 7.As figure 6 but for ε=−4.
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which has an explicit solution forα(s):

s

e e e

2

1 1 2 1 3
, 43

s s s2 2
a

e e e
=

+ +  - + + +- - -( ) ( )
( )

(compare with equation (22) for+). Again, the advantage of representing the solution in the formof
equation (43) is that it can be displayedwithout solving the secular equation. The plots of it are presented in
figure 8, showing the evolution of bound and anti-bound states with the effective potential strengthα.We see
that asα decreases the bound states transform into anti-bound states and then to normal RSs (not shown in
figure 8), as in the case of a double barrier, seefigure 3.

Finally, by fixingα (i.e. the product of the potential strength γ and thewidth a) the dependence q(ε) or s(ε)
on the relative potential strength ε, given by equation (35), can be extracted. Expressing ε from equation (36)
obtain

q
q e

q e

s s e

s e

1

1

1

1
. 44

q

q

s

s
e

a
a
a

=
- +
- -

=
- +
- -

a

a

-

-

-

-
( )

Taking the inverse of this function, wefind the dependence s(ε) [or q(ε)]which is displayed infigure 9, showing
the evolution of states with the the potential ratio ε continuously changing between positive and negative values,
thus covering also an important case ofmixed potentials (with a barrier in themiddle). Interestingly, the two
even states displayed show a sort of avoided crossing which is getting sharper with increased potential strength/
widthα, owing to a smaller tunnel coupling between thewells.

Figure 8.Asfigure 3 but for a triple-delta potential with b=0 and different ε as labeled. All curves are obtained by plotting the inverse
of the function (43). Note that only even parity solutions are displayed,with an excited state branch shownby a dashed curve for each ε.

Figure 9.As figure 8 but for the relative potential strength dependence given by equation (44), for different values ofα as labeled.
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4.3. Solutions for an asymmetric case
Let us now consider amore general case of an arbitrary position of themiddlewell/barrier at x=b, with
−a<b<a. Tofind the secular equation for RSs and relations between 6 amplitudes in thewave function (25),
one needs to satisfy 3 pairs of BCs, describing the continuity of thewave function and discontinuity of itsfirst
derivative at x=−a, b and a.We skip details of this derivation, which can bemade in a similar way to
sections 3.1 and 4.1.We present a resulting secular equation for k, which can bewritten compactly as

kb1 2 cos 2 1 0, 452x h x h- - + + =( ) ( ) ( )

after introducing

e

ik

ik

1 2
and

2
. 46

ika2

x
g

h
b

=
+

= ( )

Weagain first study the dependence of the full solution of equation (45) for bound states on the potential
strength γ, forfixed a b, andβ. Introducingα=γa and s ika2= - , as before, and solving the quadratic
equation (45) for ξ, obtain two branches of the solution:

s
s

e s1
, 47

s
a

x
=

-
 -



( )
( )

( )

where

s
c c 1

1
, 48

2 2

x
h
h

=
 + -

-( ) ( )

c s sb a s
s

a
cosh and . 49h

b
= = -( ) ( ) ( ) ( )

It is instructive to see that for b=0, the two branches become

1 and
1

1
50x x

h
h

= =
+
-- + ( )

corresponding to the odd and even parity states and coincidingwith the solution for a symmetric triple well
structure given by equation (16)with the lower sign used and by equation (34), respectively. Taking further the
limit h  ¥ (corresponding to 0b  ), obtain solutions for a double well structure: 1x =  which, after
substitution into equation (48), give exactly equation (22).

Finally, expressing η from equation (45), wefind an explicit dependence of thewave numbers k on the
middlewell/barrier strengthβ:

a s
c

1

1 2
, 51

2

2
b

x
x x

=
-

- +
( )

where e s1sx a= -- ( ), in accordance with equation (46). The function k(β) can be obtained by simply
inverting the functionβ(k) given by equation (51). For the symmetric quantumwell structure (b= 0), using
c=1 in equation (51) leads to

a s
1

1
, 52b

x
x

=
+
-

( )

which is exactly the same as equation (44).

4.4. Resonant states
RSs for both symmetric and asymmetric triple well structures are shown infigure 10. The spectrumof RSs for the
symmetric structure is quite similar to that of the doublewell which is also shown for comparison (the same as
demonstrated infigure 4). Note that oddRSs remain the same for both systems. For the triple well, we now see
two bound states, in accordance with our analysis in section 4.2. Indeed, forα=3 and ε=2 the inequality (38)
is fulfilled allowing the second excited state to exist.

The spectrumof RSs for an asymmetric triple well structurewith b a a3 5, 3g= = andβ=6/a is quite
different. First of all, being shifted from the center of the structure, themiddle quantumwellmixes even and odd
RSs. As a result, stronger deviations from the double well spectrumof RSs is seen. Choosing the ratio
a a b2 -( ) equal to an integer, as in the present case, the thirdwell in themiddle splits the structure into two
resonators having commensurable widths aL and aR. In our case, a a8 5L = and a a2 5R = , thus splitting the
full width of the system in 4:1 proportion. Therefore resonances accommodated in the right (narrower)
subsystem can be enhanced, owing to an additional constructive interference of wave, by the left (wider)
subsystem and the full-width structure. As a result, one can see a quasi-periodicmodulation in the spectrum
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with the period of aboutπ/aR, which isfive times larger than the separation between the RSwave numbers,
approximately equal to a2p ( ), see section 3.3.

5. Role of the resonant states in the transmission

In this section, we study the role of RSs in observables, such as the local density of states or the scatteringmatrix.
Belowwe consider, as an example, the transmission of a particle through a quantum system consisting of two
Dirac delta wells. A particle traveling in free space is described by awave function in the formof a planewave
with thewave number k.Wefirst calculate analytically its transmission amplitude ta(k) as a function of the real
wave number k of the particle. This transmission can be found by choosing appropriate BCs outside the system,
namely by allowing the system to be excitedwith an incomingwave. To do so, we keep in equation (8) the term
with an incomingwavewhich nowhas a non-vanishing amplitude D 0¹ , while requiring thatB=0. The BCs
at x=±a, given by equations (11) and (12), are the same as for the RSs. Applying them and solving a set of
algebraic equations, wefind the transmission amplitude

t k
A

D

k

k k i e

4

4 1
. 53a ika

2

2 4g g
= =

- - -
( )

( ) ( )
( )

Now taking the analytic continuation of this function into the complex k plane, it is easy to see that ta(k) has
simple poles at k=kn, where kn are thewave numbers of all possible RSs (including bound, anti-bound and
normal RSs), which satisfy the secular equation (16).

For an arbitrary one-dimensional potential with compact support, i.e. vanishing (or constant) outside the
system area x a∣ ∣ , the transmission amplitude is given by

t k ike G a a2 , , 54ika
k

2= --( ) ( ) ( )

see e.g. [20]. Here, G x x,k ¢( ) is theGreen’s function of the Schrödinger equation (3) for a givenfixedwave
number k. For the coordinates x and x¢within the system, theGreen’s function is vanishing on an infinitely large
circle in the complex k plane, and therefore, one can apply to it theMittag-Leffler (ML) theoremwhich yields
[6, 9, 15]

G x x
x x

k k k
,

2
, 55k

n

n n

n n
å y y

¢ =
¢

-
( ) ( ) ( )

( )
( )

whereψn(x) are the RSwave functions normalized according to equation (6).
For illustration, we apply the general result given by equations (54) and (55) to the particular case of the

double delta-function potential equation (7). Using the explicit formof thewave functions (10), their
normalization (23), and the secular equation (16), one canwrite the transmission, with the help of equations (54)
and (55), in the formof an infinite series over its poles:

Figure 10.As figure 4, for double (γ=3/a), triple symmetric (b=0, γ=3/a,β=6/a) and triple asymmetric (b=3a/5, γ=3/a,
β=6/a) quantumwell structures.
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2 å=
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where

R
ik a

ik a2 1
. 57n

n

n

2

g g
= 

+ -[( ) ]
( )

This result can be comparedwith the analytic transmission ta(k), given by equation (53), which is done in
figure 11.

Using theML expansion, equations (56) and (57), we also study infigure 11 the role of different RSs in the
transmission.Wefirst note that in this representation, bound states play a small but non-negligible role,
producing some background contribution. Themaxima of the transmission reaching the value of 1 for this
symmetric quantum structure can be described by only taking into account in the summation (56) the
corresponding normal RSs. Adding the very first pair of normal RSs already describes quite well the first peak in
the transmission. The agreement is further improved by addingmore RSs.With three pairs of RSs, the first peak
of the transmission is fully reproduced, but the other two are described only qualitatively. To correct this and to
describe other peaks,more RSs in equation (56) are needed. Taking all of them into account, the correct
transmission is fully reproduced.

6. Conclusion

Wehave studied the full set of resonant states of a one-dimensional Schrödinger problemwith double and triple
quantumwells or barriers approximated byDirac delta functions. This full set includes bound, anti-bound and
normal resonant states.We have revisited the problemoffinding bound states in delta-well potentials and have
worked out simple analytic expressions for important limiting cases and compared themwith the full numerical
solution. The latter is in turn presented here as universal dependencies containing theminimal number of
parameters. Furthermore, we have studied the transition between different types of resonant states, which takes
placewhen the parameters of the system change.We have demonstrated in particular howbound states
disappear from the spectrum continuously transforming into anti-bound states, which are in turn transform
further into normal resonant states.We have shown that these normal resonant states determine themain
spectral features in observables, such as the quantum transmission, and that taking the full set of resonant states,
including the bound and anti-bound states, allows one to precisely determine the transmission via itsMittag-
Leffler expansion. Finally, we have analyzed theRSs of double and triple quantumwells in terms of the
constructive interference of quantumwaves supported by these structures.
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Figure 11.The probability of transmission trough a doubleDirac delta well structure with γ=3/a, evaluated using the analytic
transmission ta(k) (thick red curve) and its spectral representation t(k) calculated for different number of RSs taken into account in the
Mittag-Leffler expansion: bound states only (magenta), bound states and 1 pair of RSs (dark blue), bound states and 3 pairs of RSs
(dark green), and 100RSs in total, including the bound states (black dashed curve).
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