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Abstract

The full set of resonant states in double and triple quantum well /barrier structures is investigated.
This includes bound, anti-bound and normal resonant states which are all eigensolutions of
Schrédinger’s equation with generalized outgoing wave boundary conditions. The transformation of
resonant states and their transitions between different subgroups as well as the role of each subgroup
in observables, such as the quantum transmission, is analyzed. The quantum well potentials are
modeled by Dirac delta functions; therefore, as part of this study, the well known problem of bound
states in delta-like potentials is also revisited.

(OMOM

1. Introduction

Resonant states (RSs) have been known in quantum mechanics for almost a century, since the pioneering works
of Gamow [1] and Siegert [2]. The RSs describe, in a mathematically rigorous way, natural resonances which
quantum systems exhibit. People are dealing with resonances in different fields of physics, ranging from classical
mechanics and electrodynamics to quantum physics and gravity. Resonant phenomena have attracted
significant interest in recent years, in particular, in quantum mechanics due to a rapid progress in the field of
semiconductor nanostructures, where different electronic states are formed in various types of quantum
potentials. In spite of this growing interest in resonances, many fundamental aspects of RSs in quantum systems
are still to be investigated [3].

Perhaps, a more traditional way of dealing with resonances is to study the singularities of the scattering
matrix [4] as also described in many textbooks (see, e.g. [5]). Finding these singularities is actually equivalent to
solving the Schrodinger equation with outgoing wave boundary conditions outside the system. However, these
boundary conditions strictly define RSs. In general, RSs have complex energy eigenvalues, showing that the
states decay exponentially in time, leaking out of the system (such as a quantum well). Early studies of RSs [6, 7]
revealed that they can form a complete set of functions inside the quantum system, and therefore can be used as a
basis for expansion, in order to find RSs of a modified system. This idea, first suggested in nuclear physics [8] has
been recently developed in electromagnetics into a powerful method called resonant-state expansion (RSE)

[9, 10]. The RSE uses as a basis the RSs of a simple system, usually analytically solvable. The advantage of applying
the RSE to various systems becomes obvious in case of perturbations which cannot be treated analytically. Very
recently, the RSE has been applied also to quantum-mechanical systems [11].

The aim of this paper is to study the RSs of simple one-dimensional (1D) quantum-mechanical systems,
such as double and triple quantum wells, for better understanding of their properties, as well as for generating an
analytic basis of RSs for its further use in the RSE treating more complicated potentials. In this work, we take a
well-known simplification of a multiple-quantum well /barrier potential, approximating it with a sequence of
Dirac delta functions, a model which is widely used in physics [12]. Bound states in such potentials are known in
the literature [13], as well as periodic solutions of the famous Kronig-Penney potential [ 14] modeling the
electronic band structure of a 1D crystal lattice. However, the spectral properties of quantum systems are not
limited to bound states. Rather, phenomena, such as quantum tunneling through barriers and quantum
scattering and transmission of particles across the potential, are mainly determined by the internal resonances of
the system, which are described by the RSs. These, however, have not been sufficiently investigated even in such
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simple systems as 1D double and triple Dirac quantum wells or barriers. The present work is a thorough study of
RSs in such potentials.

In this work, we investigate the full spectrum of eigensolutions of the 1D Schrédinger equation for double
and triple quantum well/barrier systems. The full spectrum of RSs includes bound, anti-bound and normal RSs,
all together forming a complete set of functions and determining the spectral properties of a quantum system,
such as the local density of states and transmission [15]. We first revisit the bound state problem in double and
triple quantum well systems, working out exact solutions and some important asymptotics allowing explicit
analytic expressions. Then we demonstrate how bound states appear or disappear in the spectrum transforming
into anti-bound states as the parameters of the potential change. Then we extend our consideration to the full
spectrum of RSs and discuss the physical meaning of the normal RSs, also paying attention to the their evolution
and transformation into/from bound and anti-bound states [4, 1 6—18]. Finally, we investigate the role of the RSs
in the quantum transmission.

2. Resonant states of one-dimensional quantum systems

In general, RSs of a quantum-mechanical system are the eigen solutions of the Schrodinger equation

H(@)Yu(r) = E,hy(r), (1

satisfying the outgoing wave boundary conditions (BCs). Here H (r) is the Hamiltonian of a single particle, 1/,,(r)
and E, are, respectively, its eigen wave function and eigen energy, and r is a three-dimensional coordinate.
Having in mind application to e.g. planar semiconductor heterostructures, we reduce our consideration in this
work to non-relativistic 1D Schrodinger’s problem. For brevity of notations, we make use of the units 7 = 1 and
m = 1/2, where m is the particle mass (e.g. the electron effective mass in a semiconductor). It is also convenient
to introduce the eigen wave number k,, of the particle associated with a given RS and use it instead of the energy
E, which is linked to it via the non-relativistic parabolic dispersion relation

E,= k.. (2
A 1D time-independent Schrodinger equation then takes the form:
a2
[—E;+wmpmm=uwux 3)

where V(x) is the potential of the particle, which is chosen in such a way that it vanishes outside the system.
In 1D, the outgoing wave BCs for RSs reduce to

Pn(x) o e for x| — oo, (C))

which are also known as Siegert BCs [2]. Solving equation (3) with the BCs equation (4) inevitably leads to the
fact that the energies E,, are generally complex,

E,=(p, + is0)* = (p) — 27) + 2ip, 5¢u, (5)

where p,, and 4, are, respectively, the real and the imaginary part of the eigen wave number: k,, = p,, + is5,. For
bound states p, = 0and 3¢, > 0, so that the energy is real negative E, = — »2 < 0, and the general equation (4)
reduces to the standard BC of the wave function vanishing away from the system: 9/, (x) o< e~ **l — 0 at

|x] — oo.Foranti-bound states [17], if they exist in the spectrum, p,, = 0and 5, < 0, corresponding to a purely
growing wave outside the system, even though their energies are real and negative. All other RSs have p. = 0

and sz, < 0 which results in complex eigen energies and wave functions which oscillate and grow exponentially
in the exterior: 1, (x) oc e~ *1*l — o0, according to equation (4).

As a consequence of this exponential growth, the wave functions of the RSs are not orthogonal and not
normalizable in the usual way. RSs instead require a proper general orthonormality condition which would
include the standard one as a special case, valid for bound states. For a one-dimensional system, this general
orthonormality of RSs is given [2, 6, 9] by

wn (xL) wm (xL) + wn (xR) ¢m (xR)

b= [ Y )dx — . : ©

where 0,,,,, is the Kronecker delta, and x; and xp are two arbitrary points outside the system, one to the left of it
(xr) and one to the right (xg). For bound states, it can be easily seen, by taking the limits xz ;| — 00 and noting
that the second term vanishes due to the vanishing wave function, that equation (6) leads to the standard
orthonormality: 6,,,, = f D:o ¥, (%) 1, (x) dx. For exponentially growing wave functions the divergence of the
integral at |xg ;| — oo is exactly compensated by the second term. Furthermore, as the normalization does not
depend on x; and xg, it is usually convenient to take these points exactly at the boundaries of the system.

2



IOP Publishing J. Phys. Commun. 2 (2018) 115008 A Tanimu and E A Muljarov

Figure 1. A sketch of the potential of a symmetric double well structure (red line) approximated by two delta-functions (grey arrows).

3. Double well

We model a symmetric double quantum well structure by a superposition of two Dirac delta functions,
V(x) = —10(x — a) = 16(x + a), )

where 24 is the distance between the wells and +y is the strength of the potential which has the meaning of the
depth of each quantum well multiplied by its width. Figure 1 sketches this potential along with a realistic coupled
quantum well structure it models. While potentials modeled by delta functions sometimes fail to catch
interesting physical phenomena, such as the band crossing [19], an obvious advantage of this model is its
simplicity and explicit analytical solvability. The solution for the potential (7), in terms of bound states, has been
covered in depth in many texbooks, see e.g. [13]. The first few resonant states in double barrier structures

(v < 0)were found in [3]. We revisit this problem again, in order to study the full spectrum of RSs and their
properties, which has not been done in the literature. This is also of practical importance, as the full set of RSs can
be further used as a basis for the RSE [11]. We also clarify on the origin of RSs, showing how pairs of RSs
transform into bound and anti-bound states as the parameters of the quantum system change.

3.1. Exact solution
A general solution of equation (3) with the potential (7) has the form (for brevity of notations, we drop in this
and the following section index # labeling RSs):

Ae™ 4 Bemk x> g,
P(x) =3 Ce®™ + Cre ™ |x| < a, (8)
De* + Fe=**  x < —a,
with constant coefficients standing at the exponentials. Applying the outgoing wave BCsleadsto B = D = 0.

Furthermore, using the mirror symmetry of the potential, V(—x) = V(x), splits all the solutions into two groups:
even and odd states, having the property

P(=x) = (). )
From this we obtain F = +A and C; = £C, = C. Then the wave function takes the form
Aekx x> a,
P(x) =1 Cle™™ £+ e ) |x| < a, (10)
+Aekx x < —a.

The wave function 1)(x) must be continuous at any point but its derivative ¢’ (x) is discontinuous at x = +a. The
break in the derivative can be evaluated by integrating equation (3) across the delta-function potential wells. This
yields four boundary conditions determining the relation between the coefficients A and C, as well as the
eigenvalues k. However, as the symmetry of the potential has been already taken into account leading to

equation (10), only one pair of BCs (e.g. at x = a) provides a unique information:

YP'a+0y) —P'(a— 0 =—y(a), (11)
Y(a+04) — Pa—04) =0, (12)

where 0, isa positive infinitesimal. The other pair of BCs (at x = —a) is then fulfilled automatically. Substituting
the wave function equation (10) into the BCs equations (11) and (12), obtain

3
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Figure 2. Exact (black solid lines) and approximate (blue and red dashed and dotted lines) effective wave numbers
q = —2ik/~y = 25¢/~y of the two bound states in a double quantum well system modeled by a double delta function potential, as
functions of the effective width of the system @ = ~a.

ikAe® — ikC(e** e~y = —yAee, (13)
Aetke — C ek £ ¢~kay = 0, (14)
Expressing the ratio A/C from equations (11) and (12) and combining the results obtain
A ik(ela  g-ikay  ika | p-ika

_ k¢ ) _xe (15)
C (lk + ’}/)elka ezka
After rearrangement this yields a transcendental secular equation
1+ 2k _ Fe2ika (16)
2

determining all the RS eigenvalues k,,. Note that the upper (lower) sign corresponds to even (odd) RSs.

3.2.Bound and anti-bound states
To find bound and anti-bound states of the system, we make a substitution k = is¢ in equation (16) and solve the
latter for real values of >z Then the eigen energy E = — 5 takes real negative values. For bound states, ¢ should
be positive, as required by the evanescent form of the wave function outside the system. For anti-bound states
instead the wave function has a pure exponential growth to the exterior which is provided by s < 0.

While the secular equation (16) apparently depends on two parameters, vy and g, this parametric space
reduces to a single parameter

a="va 17)

which can be treated as the effective system size or the effective strengths of the potential. Concentrating on the
dependence of the eigen states on the system size (e.g. keeping the strength + fixed), it is convenient to introduce
adimensionless wave number g = 2 ¢/~. Then equation (16) takes the form

q. = 1% e 99 (18)

where index + (—) labels even (odd) parity states. The full solution of equation (18) found numerically with the
help of the Newton-Raphson method implemented in MATLAB is shown in figure 2 for positive values of « and
g. It demonstrates the dependence of the imaginary wave vector for two bound (even and odd) states in the
system as function of the effective width a.

Atlarge distances between the wells (o >> 1) the two states are quasi-degenerate,

g.~1+e" (19)

illustrating the fact that each isolated delta-like quantum well accommodates only one bound state withg = 1.
As clear from figure 2, equation (19) is a good approximation of the full solution equation (18) for v > 3. As
increases, the splitting between the levels becomes exponentially small, reflecting the vanishing tunnel coupling
between the wells.

In the opposite limit of small width a or small wave number s(i.e. small binding energy), one can obtain a
simple analytic approximation, based on the Taylor expansion of the exponential in equation (18),
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Figure 3. Effective wave number s = —2ika as function of the effective potential strength o« = ~ya plotted for even and odd eigen
states using the explicit functional dependence (22). The plot demonstrates transitions from bound to anti-bound states and then to
normal RSs. Regions for potential wells (o« > 0) and barriers (o < 0) are indicated, as well as for bound (s > 0) and anti-bound
(s < 0) states. Blue and green lines show the real and imaginary parts of the wave numbers s for the pair of the lowest-energy normal
RSs formed at @ =~ —0.27 from a pair of degenerate anti-bound states.

e 1~ 1 — ga + q*a?/2, (20)

valid for |qor| = |sm| < 1. For the even parity state, it is sufficient to use the expansion (20) up to 1st order,
while the same level of approximation for the odd parity state requires also the 2nd order to be taken into
account. Then approximate solutions of equation (18) take the form:

! (odd). (21)

2 o —
~ even), =2
L+ a+1( ) 1 a?

They are shown in figure 2 by dashed lines matching the exact solution (solid lines) at small « (for the even state)
or at small g (for the odd state).

The analytic approximation equation (21) also allows us to find a condition for bound states to exist in the
system, which requires thatq > 0.Indeed, when a bound state disappears from the spectrum, its binding energy
vanishes, meaning thatg — 0. This makes the approximation (21) valid, so that it precisely determines the
critical values of the system parameters when the bound state disappears. While the ground state exists for any
o > 0(q, is always positive), the excited (odd) bound state exists only for « > 1 and disappears at = 1 (when
q- vanishes), as the width of the system becomes insufficient to accommodate it, given the tunnel coupling
between the wells. However, a quantum state itself cannot disappear from the system completely. Instead, it
transforms into an anti-bound state which can be observed for o < 1.

To see it more clearly and also to investigate the dependence on the potential strength (e.g. keeping the width
2a fixed), we introduce another dimensionless imaginary wave number s = 23, so that equation (16) takes the form

s
o0=—-—.
l1+e™”

The function s(c) can be easily plotted without solving the transcendental equation, due to the explicit functional
dependence a(s) given by equation (22). Its plot is presented in figure 3. Since a > 0, the region of positive s
corresponds to bound states. We see two bound states for « > 1and only one for0 < o < 1.The odd state
transforms at & = 1 from bound to anti-bound, as negative s corresponds to growing exponentials outside the
systems, see equation (10) for k = is/2a and s < 0. Another anti-bound state forms from the even bound state
at @ = 0when the wells switch into barriers. At the same time, as « changes its sign from positive to negative, the
odd anti-bound state goes away to infinity (s — —o0) and then comes back at small negative values of aas an
even anti-bound state, coexisting with the other even anti-bound state up to o &~ —0.27. At that point the two
anti-bound states merge, now transforming into a pair of normal RSs, which then evolve as « decreases further.
Both RSs have the same imaginary part and the opposite real part of k, shown in figure 3 by blue and greens lines,
respectively.

(22)

3.3. Resonant states
We now consider all possible solutions of equation (16) in the complex k-plane, generating bound, anti-bound
and normal RSs, as shown in figure 4 for the case of a double well and a double barrier structure. For the wells
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Figure 4. Complex eigen wave numbers k,, of the RSs in a double delta-potential structure, with two wells (ya = 3, shiny balls) and
two barrier (ya = —3, open diamonds). Even and odd parity states are shown, respectively, in black and red.

(ya = 3), one can see two bound states and an infinite countable number of normal RSs with nonzero real and
imaginary parts of k. Furthermore, these normal RSs all have complex wave functions which cannot be made real
by redefining the normalization constant, unlike bound or anti-bound states. These RSs appear in pairs: Each RS
with the eigen wave number k and the wave function ) has a counterpart with the eigen wave number —k* and
the wave function 1)*, so that the spectra of RSs shown in figure 4 possess a mirror symmetry about the
imaginary axis, which is a general property of an open system, not related to its spatial symmetry. For the barriers
(ya = —3), there are only normal RSs present in the spectrum, as this potential strength is too big for anti-
bound states to exist, see figure 3. In both spectra, normal RSs of even and odd parity appear in alternating order
and are almost equally spaced for large k dominated by the real part. The reason for that is that these states have
the same nature as Fabry-Pérot modes in an optical system, with a half integer multiple of their De-Broglie
wavelength A = 27/k approximately matching the system size 2a. Indeed, the spacing between the wave
numbers plotted in figure 4 is 6k ~ m/(2a). These RSs are formed from a constructive interference of waves
created by multiple reflection from the potential inhomogeneities (wells or barriers) at x = 4-a. The absolute
value of the imaginary part of k grows monotonously with the real part of k (and consequently with the
resonance energy), showing an increasing probability of a particle to leave the system as its energy increases.

Interestingly, at large k the even RS wave numbers of the double well structure approach asymptotically the
odd RS wave numbers of the double barrier structure, and vice versa, provided that the absolute values of | ya| are
the same for the barriers and wells. This can be understood, looking again at equation (16) and noticing that if
the first term was neglected, equation (16) would become invariant with respect to a simultaneous flip of the sign
of y (switching between barriers and wells) and the sign standing at the exponential (switching between even and
odd solutions), thus making the above two cases equivalent. Indeed, this equivalence is asymptotically achieved
atlarge k, when the first term in equation (16) is getting small compared to the other two and can thus be
neglected.

Applying the normalization condition equation (6) to the wave function equation (10) and excluding
exponentials with the help of the secular equation equation (16), we find the normalization constants in
equation (10):

-1
A:C(1+l,) , C= ! . (23)
2ik 2+[a — (v + 2ihY

The normalized wave functions of a double well or a double barrier system are now ready to use in the RSE which
can be applied for various perturbations. This has been done in our recent paper [11].

4. Triple well

We now add a third well (barrier) positioned at x = b, somewhere between the two equal wells (barriers):
—a < b < a.Itis modeled in the same way at the other two, so that the potential is given by
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Figure 5. As figure 1 but for a triple well potential.

v

V(x) = —v(x —a) — v0(x + a) — B6(x — b), (24)

where the strength (3 1is generally different from v, with 5 > 0 (8 < 0) corresponding to an additional well
(barrier). A sketch of this potential and its relation to a more realistic semiconductor heterostructure is provided
in figure 5.

We use the same approach as in section 3 to solve the Schrédinger equation (3) with the potential
equation (24), taking the wave function of a RS in the following general form:

Aetkx x> a,
Ce*™ 4+ Cre™ p<x<a,
Die*™ 4+ Dye ™ _g < x < b,
Be—tkx x < —a.

Y(x) = (25)

4.1. Exact solution for a symmetric structure
We first consider the case of a symmetric potential, having b = 0 and (arbitrary. Then using equation (9), we
find B = £A for the solution outside the system and

Cleikx + Cze_ikx = Dle_ik" + l)zeiloc (26)

for the region inside it. Equating coefficients at the same exponentials in equation (26), obtain D, = +C; = +£C
and C, = £D; = £D, where we have introduced constants Cand D for brevity of notations. Then the wave
function takes a simplified form:

Aekx x> a,

Ce** + De=** 0 < x < a,
Detk + Ce & —g < x < 0,
+Aeikx x < —a.

Px) = (27)

The existence of the third delta function in the potential (24) leads to a new break in the derivative of the wave
function at x = 0, and to two more BCs:

Y'(0,) — P'(=0,) = —B(0), (28)
7/)(0+) - w(fojL) =0, (29)

in addition to the pair of BCs given by equations (11) and (12). Using equation (29) for an odd parity state (the
lower sign in equation (27)) results in a condition C = D meaning that ¢)(0) = 0, as should be for any anti-
symmetric state. This makes however the odd state insensitive to the potential well or barrier if the latter is placed
exactly in the center of the system, thus keeping 1/ (x) continuous at x = 0. The odd parity solution of the
Schrodinger equation with the potential (24) and b = 0 is thus the same as for the double delta potential (7) and
is described in detail in section 3. We therefore concentrate below on even parity states.

7
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Figure 6. As figure 2 but for a triple quantum well system modeled by a triple-delta potential with b = 0ande = 1/2.

For even parity states, equation (29) is automatically fulfilled due to equation (9), but equation (28) brings in
an information about the middle well /barrier: 2ik(C — D) = —3(C + D),or

D 1+2ik/5

;=D _ /B (30)
C 1 — 2ik/(
At the same time, equations (11) and (12) now give
ikAe*a — ik(Ce** — De=kay = —yAgika, (31)
Ae'k — (Ce*ka 4 De~k) = 0, (32)
which result, after having combined them with equation (30), in two different expressions for the ratio A/C,
é _ ik(e'ika _ Ue'—ika) _ eika _;'_'O.E—ika , (33)
C (lk + ,y)ezku elka
determining the secular transcendental equation for even-parity states:
L Sk 74N (34)
v 1 + 2ik/3
In thelimit 3 — 0, equation (34) reduces back to the secular equation (16) for the even-parity state of the double

quantum well.

4.2. Bound and anti-bound states

Repeating the procedure used in section 3.2, we first introduce a purely imaginary wave number k = iz
expressed in terms of a real valued >z and then use an effective dimensionless wave number g = 237/, in order
to study the dependence of the bound state on the system size. In addition to the effective width/strength v
defined by equation (17), we introduce a relative strength of the middle well /barrier:

e 5, (35)
Y
equation (34) then takes the form
g=1+ 917 (36)
q—¢

(compare with equation (18) for 4). The exact numerical solution of equation (36) fore = 0.5 is shown in
figure 6 by black solid lines displaying two even parity bound states, as well as an odd parity state which is the
same as in figure 2. While the ground state having the highest value of g exists for any size of the system (i.e. for all
a > 0), the 2nd excited (even) state disappears in this caseat « = 5.

To understand this behavior, we again use the Taylor expansion (20) up to 2nd order, obtaining from
equation (36) an approximation for even states:

8
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q~ ( ) . (37)
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Obviously, for e = 0, equation (37) is equivalent to the approximation (21) for the even parity values g, . The
approximation (37) is shown for e = 0.5 in figure 6 by dashed blue lines, demonstrating a good agreement with
the full solution for « — 0 (ground state) and for ¢ — 0 (2nd excited states). The last limit allows us to obtain

the following inequality for € and

2
a>1+—, (38)
9

showing under which conditions an even bound state exists. When both v > 0and 8 > 0, this inequality refers
to the 2nd excited state in a triple well. In particular, for the example in figure 6, the even excited state disappears
ata=1+2/e =5.

If, however, there is a barrier in the middle of two wells, i.e. v > 0but § < 0, there is a maximum of two
bound states in the spectrum, one even (the ground state) and one odd (the excited state), and the same
equation (38) now becomes a condition for the ground state to exist. Indeed, if the barrier is high enough,
namelyif § < —2-, the ground state also disappears from the spectrum at the system size smaller than that
determined by equation (38). This case presents an interesting situation when a one-dimensional symmetric
potential well structure cannot accommodate any bound states. An illustration for e = —4 is provided in
figure 7 showing that the ground state disappears at « = 1/2, in agreement with equation (38) and figure 9
below.

To analyze the behavior at large system sizes, we take the limit & — o0, which makes the exponential term in
equation (36) small. This results in a quadratic equation for g:

P —qgl+e+e1)+e(l—e1)=0 (39)
giving solutions
1
qg~1+ +€e‘” (40)
1 —c¢
for the ground and
q,~ e+ e @ (41)
1—¢

for the 2nd excited state. These approximate values are also plotted in figures 6 and 7 showing an agreement with

the exact solution.
To study the dependence on the quantum well strength  (i.e. o for a fixed a), we introduce, as in section 3.2,
the effective wave number s = 2. Then equation (34) becomes
s s/a+ € o @2)

=14+
o s/a— ¢
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Figure 9. As figure 8 but for the relative potential strength dependence given by equation (44), for different values of o as labeled.

which has an explicit solution for c(s):

o z , (43)

l+e+e’+ \/(1 — &) +2(1 +3e)e* + e

(compare with equation (22) for 4). Again, the advantage of representing the solution in the form of
equation (43) is that it can be displayed without solving the secular equation. The plots of it are presented in
figure 8, showing the evolution of bound and anti-bound states with the effective potential strength «v. We see
that as o decreases the bound states transform into anti-bound states and then to normal RSs (not shown in
figure 8), as in the case of a double barrier, see figure 3.

Finally, by fixing « (i.e. the product of the potential strength yand the width a) the dependence g(¢) or s(¢)
on the relative potential strength ¢, given by equation (35), can be extracted. Expressing € from equation (36)
obtain

1 —g+ e sl—s/a+e

E = = . (44)
ql—q—e‘q” al—-—s/a—e*

Taking the inverse of this function, we find the dependence s(¢) [or q(€)] which is displayed in figure 9, showing
the evolution of states with the the potential ratio € continuously changing between positive and negative values,
thus covering also an important case of mixed potentials (with a barrier in the middle). Interestingly, the two
even states displayed show a sort of avoided crossing which is getting sharper with increased potential strength/
width o, owing to a smaller tunnel coupling between the wells.

10
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4.3. Solutions for an asymmetric case

Let us now consider a more general case of an arbitrary position of the middle well /barrier atx = b, with

—a < b < a.To find the secular equation for RSs and relations between 6 amplitudes in the wave function (25),
one needs to satisfy 3 pairs of BCs, describing the continuity of the wave function and discontinuity of its first

derivative atx = —a, b and a. We skip details of this derivation, which can be made in a similar way to
sections 3.1 and 4.1. We present a resulting secular equation for k, which can be written compactly as
(1 —mn) — 2¢cos(2kb) +1 +n =0, (45)
after introducing
2ika ;
5:6% and n:%. (46)
1 + 2ik/~ 16

We again first study the dependence of the full solution of equation (45) for bound states on the potential
strength , for fixed a, b and . Introducing & = yaand s = —2ika, as before, and solving the quadratic
equation (45) for &, obtain two branches of the solution:

s

ax(s) = —————, (47)
1 —e/&,(s)
where
cE P+ -1
§.(5) = , (48)
1 —n
c(s) = cosh(sb/a) and n(s) = —ﬂi. (49)
a
Itis instructive to see that for b = 0, the two branches become
€ =1 and ¢, =11 (50)
I —n

corresponding to the odd and even parity states and coinciding with the solution for a symmetric triple well
structure given by equation (16) with the lower sign used and by equation (34), respectively. Taking further the
limit 7 — oo (corresponding to 3 — 0), obtain solutions for a double well structure: £ = +1which, after
substitution into equation (48), give exactly equation (22).

Finally, expressing 7 from equation (45), we find an explicit dependence of the wave numbers k on the
middle well /barrier strength 3:

1- ¢

T e

(51)
where £ = ¢~°/(1 — s/«), in accordance with equation (46). The function k() can be obtained by simply
inverting the function (k) given by equation (51). For the symmetric quantum well structure (b = 0), using

¢ = linequation (51)leads to

Ba=s , (52)
which is exactly the same as equation (44).

4.4.Resonant states

RSs for both symmetric and asymmetric triple well structures are shown in figure 10. The spectrum of RSs for the
symmetric structure is quite similar to that of the double well which is also shown for comparison (the same as
demonstrated in figure 4). Note that odd RSs remain the same for both systems. For the triple well, we now see
two bound states, in accordance with our analysis in section 4.2. Indeed, for « = 3 and ¢ = 2 the inequality (38)
is fulfilled allowing the second excited state to exist.

The spectrum of RSs for an asymmetric triple well structure with b = 3a/5, v = 3/aand 8 = 6/ais quite
different. First of all, being shifted from the center of the structure, the middle quantum well mixes even and odd
RSs. As aresult, stronger deviations from the double well spectrum of RSs is seen. Choosing the ratio
2a/(a — b)equaltoan integer, as in the present case, the third well in the middle splits the structure into two
resonators having commensurable widths a; and ag. In our case, a; = 8a/5 and ag = 2a/5, thus splitting the
full width of the system in 4:1 proportion. Therefore resonances accommodated in the right (narrower)
subsystem can be enhanced, owing to an additional constructive interference of wave, by the left (wider)
subsystem and the full-width structure. As a result, one can see a quasi-periodic modulation in the spectrum

11
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with the period of about 7/ ag, which is five times larger than the separation between the RS wave numbers,
approximately equal to 7 /(2a), see section 3.3.

5.Role of the resonant states in the transmission

In this section, we study the role of RSs in observables, such as the local density of states or the scattering matrix.
Below we consider, as an example, the transmission of a particle through a quantum system consisting of two
Dirac delta wells. A particle traveling in free space is described by a wave function in the form of a plane wave
with the wave number k. We first calculate analytically its transmission amplitude £,(k) as a function of the real
wave number k of the particle. This transmission can be found by choosing appropriate BCs outside the system,
namely by allowing the system to be excited with an incoming wave. To do so, we keep in equation (8) the term
with an incoming wave which now has a non-vanishing amplitude D = 0, while requiring that B = 0. The BCs
atx = +a, given by equations (11) and (12), are the same as for the RSs. Applying them and solving a set of
algebraic equations, we find the transmission amplitude

A 4k?

k)= —= —.
ta (k) D 4k(k — iy) — y*(1 — e*ka)

(53)

Now taking the analytic continuation of this function into the complex k plane, it is easy to see that #,(k) has
simple polesat k = k,,, where k,, are the wave numbers of all possible RSs (including bound, anti-bound and
normal RSs), which satisfy the secular equation (16).

For an arbitrary one-dimensional potential with compact support, i.e. vanishing (or constant) outside the
systemarea |x| < a, the transmission amplitude is given by

t(k) = 2ike 2%Gy(a, —a), (54)

see e.g. [20]. Here, Gi(x, x') is the Green’s function of the Schrédinger equation (3) for a given fixed wave
number k. For the coordinates x and x’ within the system, the Green’s function is vanishing on an infinitely large
circle in the complex k plane, and therefore, one can apply to it the Mittag-Leffler (ML) theorem which yields
[6,9,15]

Pu () P (x')

> 55
an(k - kn) ( )

Gr(x, x) =

n

where 1,,(x) are the RS wave functions normalized according to equation (6).

For illustration, we apply the general result given by equations (54) and (55) to the particular case of the
double delta-function potential equation (7). Using the explicit form of the wave functions (10), their
normalization (23), and the secular equation (16), one can write the transmission, with the help of equations (54)
and (55), in the form of an infinite series over its poles:
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Ry

—_—, 56
P (56)

t(k) — ke—zika Z

n
where
—_— 1kn.a2 . (57)
Iy + 2ik,)a — 1]
This result can be compared with the analytic transmission ¢,(k), given by equation (53), which is done in
figure 11.

Using the ML expansion, equations (56) and (57), we also study in figure 11 the role of different RSs in the
transmission. We first note that in this representation, bound states play a small but non-negligible role,
producing some background contribution. The maxima of the transmission reaching the value of 1 for this
symmetric quantum structure can be described by only taking into account in the summation (56) the
corresponding normal RSs. Adding the very first pair of normal RSs already describes quite well the first peak in
the transmission. The agreement is further improved by adding more RSs. With three pairs of RSs, the first peak
of the transmission is fully reproduced, but the other two are described only qualitatively. To correct this and to
describe other peaks, more RSs in equation (56) are needed. Taking all of them into account, the correct
transmission is fully reproduced.

6. Conclusion

We have studied the full set of resonant states of a one-dimensional Schrodinger problem with double and triple
quantum wells or barriers approximated by Dirac delta functions. This full set includes bound, anti-bound and
normal resonant states. We have revisited the problem of finding bound states in delta-well potentials and have
worked out simple analytic expressions for important limiting cases and compared them with the full numerical
solution. The latter is in turn presented here as universal dependencies containing the minimal number of
parameters. Furthermore, we have studied the transition between different types of resonant states, which takes
place when the parameters of the system change. We have demonstrated in particular how bound states
disappear from the spectrum continuously transforming into anti-bound states, which are in turn transform
further into normal resonant states. We have shown that these normal resonant states determine the main
spectral features in observables, such as the quantum transmission, and that taking the full set of resonant states,
including the bound and anti-bound states, allows one to precisely determine the transmission via its Mittag-
Leffler expansion. Finally, we have analyzed the RSs of double and triple quantum wells in terms of the
constructive interference of quantum waves supported by these structures.

Acknowledgments

AT acknowledges Umaru Musa Yaradua University, Katsina state, Nigeria, for the full funding of his research
studentship.

13



10P Publishing

J. Phys. Commun. 2 (2018) 115008 A Tanimu and E A Muljarov

ORCIDiDs

E A Muljarov @ https://orcid.org/0000-0002-2878-4148

References

[1] Gamow G 1928 Z. Phys. 51 204
[2] Siegert AJF 1939 Phys. Rev. 56 750
[3] Hatano N, Sasada K, Nakamura H and Petrosky T 2008 Prog. Theor. Phys. 119 187
[4] Nussenzveig H 1959 Nucl. Phys. 11 499
[5] Mandle F 1992 Quantum Mechanics 1st edn (Manchester: Wiley)
[6] More RM 1971 Phys. Rev. A4 1782
[7] More R M and Gerjuoy E 1973 Phys. Rev. A7 1288
[8] Bang], Gareev F, Gizzatkulov M and Goncharov S 1978 Nucl. Phys. A309 381
[9] Muljarov E A, Langbein W and Zimmermann R 2010 Europhys. Lett. 92 50010
[10] Doost M B, Langbein W and Muljarov E A 2014 Phys. Rev. A90 013834
[11] Tanimu A and Muljarov E A 2018 Phys. Rev. A98 022127
[12] Belloni M and Robinett R W 2014 Phys. Rep. 540 25
[13] Griffiths D 2005 Introduction to Quantum Mechanics (Pearson International Edition) (Prentice Hall, NJ: Pearson)
[14] KronigR, de L and Penney W G 1931 Proc. Royal Soc. London A: Math., Phys. Eng. Sci. 130 499
[15] Armitage L], Doost M B, Langbein W and Muljarov E A 2014 Phys. Rev. A 89 053832
[16] SprungD W L, WuH and Martorell ] 1996 Am. J. Phys. 64 136
[17] Zavin R and Moiseyev N 2004 J. Phys. A: Math. Gen. 37 4619
[18] Belchev B, Neale S G and Walton M A 2011 Can. J. Phys. 89 1127
[19] Allen G 1953 Phys. Rev. 91 531
[20] Doost M B, Langbein W and Muljarov E A 2012 Phys. Rev. A 85 023835

14


https://orcid.org/0000-0002-2878-4148
https://orcid.org/0000-0002-2878-4148
https://orcid.org/0000-0002-2878-4148
https://orcid.org/0000-0002-2878-4148
https://doi.org/10.1007/BF01343196
https://doi.org/10.1103/PhysRev.56.750
https://doi.org/10.1143/PTP.119.187
https://doi.org/10.1016/0029-5582(59)90293-7
https://doi.org/10.1103/PhysRevA.4.1782
https://doi.org/10.1103/PhysRevA.7.1288
https://doi.org/10.1016/0375-9474(78)90488-8
https://doi.org/10.1209/0295-5075/92/50010
https://doi.org/10.1103/PhysRevA.90.013834
https://doi.org/10.1103/PhysRevA.98.022127
https://doi.org/10.1016/j.physrep.2014.02.005
https://doi.org/10.1098/rspa.1931.0019
https://doi.org/10.1103/PhysRevA.89.053832
https://doi.org/10.1119/1.18131
https://doi.org/10.1088/0305-4470/37/16/011
https://doi.org/10.1139/p11-107
https://doi.org/10.1103/PhysRev.91.531
https://doi.org/10.1103/PhysRevA.85.023835

	1. Introduction
	2. Resonant states of one-dimensional quantum systems
	3. Double well
	3.1. Exact solution
	3.2. Bound and anti-bound states
	3.3. Resonant states

	4. Triple well
	4.1. Exact solution for a symmetric structure
	4.2. Bound and anti-bound states
	4.3. Solutions for an asymmetric case
	4.4. Resonant states

	5. Role of the resonant states in the transmission
	6. Conclusion
	Acknowledgments
	References



