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Abstract 

Objective: Research using cognitive or perceptual tasks in autism spectrum disorder (ASD) often 

relies on mean RT and accuracy derived from alternative-forced choice paradigms. However, these 

measures can confound differences in task-related processing efficiency with caution (i.e. preference 

for speed or accuracy). We examined whether computational models of decision-making allow these 

components to be isolated. 

Method: Using data from two face-processing tasks (face recognition and egocentric eye-gaze 

discrimination), we explored whether adolescents with ASD and wide ranging intellectual ability 

differed from an age and IQ matched comparison group on model parameters that are thought to 

represent processing efficiency, caution, and perceptual encoding/motor output speed.  

Results:  We found evidence that autistic adolescents had lower processing efficiency and caution, 

but did not differ from non-autistic adolescents in the time devoted to perceptual encoding/motor 

output.  These results were more consistent across tasks when we only analysed participants with IQ 

above 85. Cross-task correlations suggested that processing efficiency and caution parameters were 

relatively stable across individuals and tasks. Furthermore, logistic classification with model 

parameters improved discrimination between individuals with and without ASD relative to 

classification using mean RT and accuracy. Finally, previous research has found that ADHD symptoms 

are associated with lower processing efficiency, and we observed a similar relationship in our 

sample, but only for autistic adolescents.   

Conclusions: Together, these results suggest that models of decision-making could provide both 

better discriminability between autistic and non-autistic individuals on cognitive tasks and also a 

more specific understanding of the underlying mechanisms driving these differences.  

Keywords 

Autism spectrum disorders, ADHD, decision-making, drift-diffusion model, face processing 

Public significance statement 

Researchers are often interested in how individuals with autism spectrum disorders (ASD) differ 

from those without on cognitive and perceptual tasks. We examined a different way to analyse 

results from these tasks, using computational models, and found that they better described 

differences between adolescents with and without ASD than standard measures.  One potential 

application of these findings is the development of more targeted training paradigms in the future. 
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Introduction 

Autism spectrum disorder (ASD) is characterised by social communication difficulties and the 

presence of restrictive and repetitive behaviours (American Psychiatric Association, 2013). In 

addition to these core symptoms, there has been enduring interest in the cognitive and perceptual 

phenotype in ASD and associated neurocognitive theories of ASD (e.g. Happe & Ronald, 2008; 

Pellicano & Burr, 2012 ). These theories tend to suggest that different cognitive processing styles can 

impact the development of social and communication deficits characteristic of ASD. The search for 

cognitive and perceptual differences in ASD has been comprehensive and spans a wide array of 

tasks. However, in many areas there is still no clear consensus on which tasks best differentiate 

autistic individuals from those without, and different studies often report conflicting findings (e.g. 

Charman et al., 2011; Kuiper, Verhoeven, & Geurts, 2016; Leekam, 2016; Simmons et al., 2009).  

 Most cognitive and perceptual tasks ask participants to make decisions – often in the form 

of alternative-forced-choice paradigms. For example, ‘Are the dots moving to the left or the right?’ 

or ‘Is this face old or new?’. The outcome measures are usually whether the participant made the 

correct choice (accuracy) and how long it took them to make it (response time, RT).  However, 

analysing RT and accuracy separately can confound differences in caution (i.e. speed/accuracy 

preference) with task-related ‘processing efficiency’ (i.e. directly related to task proficiency).   An 

individual who is very cautious, or has a preference for accuracy over speed, will tend to make few 

errors but will have long RTs. While an individual who is very proficient at a task, and processes 

information efficiently, will tend to be both faster and more accurate. Thus, differences in RT and 

accuracy between groups with and without ASD could potentially arise due to differences in caution, 

task-related processing efficiency, or some mixture of the two. Computational models of decision 

making allow these two components to be disentangled (for reviews see Bogacz, Brown, Moehlis, 

Holmes, & Cohen, 2006; Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff, Smith, Brown, & 

McKoon, 2016; Teodorescu & Usher, 2013), and may therefore be both more sensitive to task 

differences between individuals with and without ASD, and more diagnostic as to what these 

differences represent in terms of underlying mechanisms.  Using data from two face processing 

tasks, we investigated whether parameters derived from computational models of decision-making 

are better able to differentiate between individuals with and without ASD than traditional 

behavioural measures of accuracy and RT. We were also interested in whether any group differences 

in model parameters representing caution and processing efficiency are consistent across tasks or 

whether they are task-specific.  

Traditional behavioural measures versus models of decision making 
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 Reporting RT and accuracy separately can result in in scenarios where, hypothetically, a 

group of autistic individuals could respond more quickly on a task than those without ASD but are 

not as accurate.  What could a researcher conclude about the relative performance on this task? 

Such a result could occur because accuracy and response time confound efficiency of information 

processing (i.e. directly related to task proficiency) with caution (i.e. preference for speed or 

accuracy). Accumulator models such as the drift diffusion model (DDM, Ratcliff, 1978; Ratcliff & 

Rouder, 1998; Ratcliff et al., 2016) combine data from accuracy and RT, and allow these components 

to be isolated. In the example above, the DDM might reveal that autistic individuals are less cautious 

than individuals without, resulting in faster but less accurate responses, but task-related efficiency of 

information processing is similar between the groups. 

  The DDM assumes that when presented with a choice between two alternatives, 

information accumulates stochastically until one of two response boundaries is reached (Figure 1). 

The time it takes to reach a boundary corresponds to the RT and which boundary is reached 

corresponds to the choice (e.g. correct/incorrect).  The rate of accumulation, or ‘drift-rate’, is 

thought to represent the quality of information extracted from the stimulus over time or the 

‘processing efficiency’. Therefore, higher drift-rates result in faster and more accurate responses –

overall more ‘proficient’ performance on the task. Difficult tasks or conditions result in lower drift-

rates. Within tasks, individuals can differ in their drift rates, and indeed, this may be closely related 

to stable traits such as IQ (Ratcliff, Thapar, & McKoon, 2011; van Ravenzwaaij, Brown, & 

Wagenmakers, 2011).  Within the DDM, caution, or preference for speed/accuracy, is represented 

by the degree of boundary separation. Very cautious individuals will have widely separated 

boundaries and so require more information to accumulate before making a decision. This means 

that the decisions they make will tend to be more accurate but relatively slow. Whereas, less 

cautious individuals have boundaries closer together, resulting in faster responses that tend to be 

less accurate. The DDM also assumes that a component of the overall response time is devoted to 

perceptual encoding of the stimulus and motor output. This is represented by a parameter called 

‘non-decision time’, which is added to the result of the accumulation process to yield the overall RT.  

 Besides a means to interpret RT and accuracy together, models like the DDM aim to fit the 

shape of the whole RT distribution and so may capture additional elements of the data that are 

missed by relying on only average RT. Recently, this has been successfully demonstrated in the 

literature on attention deficit hyperactivity disorder (ADHD), a condition characterised by 

impulsivity, inattention and hyperactivity (American Psychiatric Association, 2013).   Several papers 

have reported that individuals with ADHD show greater intra-participant variability in RT 

distributions (Castellanos et al., 2005; Johnson et al., 2007; Klein, Wendling, Huettner, Ruder, & 
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Peper, 2006; Kofler et al., 2013; Kuntsi, Oosterlaan, & Stevenson, 2001; Mullins, Bellgrove, Gill, & 

Robertson, 2005; Russell et al., 2006). In particular, individuals with ADHD have RT distributions with 

elongated tails, which when fitted with an ex-Gaussian function, is revealed in larger values of the 

exponential component ‘tau’ (Epstein et al., 2011; Geurts et al., 2008; Karalunas, Huang‐Pollock, & 

Nigg, 2013; Kofler et al., 2013; Leth-Steensen, Elbaz, & Douglas, 2000).  Analysis of data with the 

DDM has revealed lower drift-rates in individuals with ADHD, which could explain this increase in 

intra-participant variability (Karalunas, Huang-Pollock, & Nigg, 2012; Karalunas et al., 2013; Metin et 

al., 2013; Salum et al., 2014). This suggests that individuals with ADHD may not process information 

as efficiently as neuro-typical controls.  Although one might predict that individuals with ADHD 

would be more impulsive (i.e. less cautious) than individuals without ADHD, analysis with the DDM 

found caution to be similar between groups. Distinguishing these processes is crucial for developing 

effective cognitive training therapies that target key areas of difficulty (Abikoff, 1991). The DDM has 

been used to successfully model, and reveal differences in, decision making processes in a number of 

other subpopulations, such as older adults (Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, 

Thapar, & McKoon, 2004) and individuals with Parkinson’s disease (Zhang et al., 2016) and 

schizophrenia (Moustafa et al., 2015).  

Drift-diffusion model and ASD 

There is evidence that autistic individuals, like those with ADHD, show increased intra-participant 

variability and more elongated RT distributions than neuro-typical controls on a range of cognitive 

tasks (e.g. Geurts et al., 2008; for a meta-analysis see Karalunas, Geurts, Konrad, Bender, & Nigg, 

2014).  This could indicate a global impairment in processing efficiency that is not modality or task 

specific.  This might in turn explain the prevalence of conflicting findings in the cognitive and 

perceptual literature on ASD, because intra-participant variability could reduce test-retest reliability 

(Milne, 2011).  

On the assumption that intra-participant variability is explained in ADHD by lower drift-rates, 

we could predict that the elevated intra-participant variability in ASD would also be associated with 

lower drift-rates. Only two studies have used the DDM to explore differences in ASD.  The first found 

that autistic adults  did not differ in drift-rate from non-autistic adults when tested on an orientation 

discrimination task (Pirrone, Dickinson, Gomez, Stafford, & Milne, 2016).  Rather, this study 

suggested that autistic individuals have wider boundary separation (i.e. are more cautious) and 

longer non-decision times than non-autistic individuals.  The second study examined autistic children 

and also found wider boundary separations, this time using the go trials from the Stop Signal task 

(Karalunas et al., 2018). However, this study did find slower drift-rates in autistic participants.  Given 
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the large overlap between ASD and ADHD in both genotype and phenotype (e.g. Gargaro, Rinehart, 

Bradshaw, Tonge, & Sheppard, 2011; Keen & Ward, 2004; Leyfer et al., 2006; Mayes, Calhoun, 

Mayes, & Molitoris, 2012; Rommelse, Franke, Geurts, Hartman, & Buitelaar, 2010; Simonoff et al., 

2008), slower drift-rates in the ASD group could be attributable to the inclusion of individuals with 

increased ADHD traits or comorbidity (Karalunas et al., 2014). However, Karalunas et al; (2018) 

found that differences in drift-rate remained when ADHD symptoms were controlled for.  

 

Present study 

In the present study, our aim was to investigate whether autistic adolescents differed from those 

without ASD on DDM parameters of drift-rate (processing efficiency), boundary separation (caution) 

and non-decision time (perceptual encoding/motor output). We used the DDM to analyse data from 

wave two of the Special Needs and Autism Project (SNAP, Baird et al., 2006), which explored the 

cognitive phenotype of autistic adolescents (see Charman et al., 2011).  The participant sample in 

SNAP comprises individuals with ASD and a matched comparison group, and deliberately covers a 

broad range of intellectual ability (IQ range: 52-133).  Our main analysis contained the whole sample 

of participants, but we also repeated all analyses only on individuals with full-scale IQ scores above 

85. This was to ensure that any results we reported were not being driven by individuals with low IQ, 

additional neurodevelopmental conditions and special educational needs.  

Two tasks, face recognition and egocentric eye-gaze discrimination, were suitable for 

modelling with the DDM because they required participants to make alternative forced-choice 

decisions that were not presented using a staircase procedure. In order to maximise trial numbers 

for model fitting, and because our main area of interest was in global differences in behavioural 

measures and parameters, we collapsed across conditions within task.  Autistic individuals are 

known to show deficits in face recognition, which has been attributed to a tendency to focus on the 

mouth relative to the eyes and a reduction in holistic processing (Joseph & Tanaka, 2003; Langdell, 

1978). There is also evidence that autistic individuals show deficits in eye-gaze discrimination, 

although findings are somewhat mixed and may be depend on factors such as the direction of the 

head, the age and gender of participants, and whether the task involves spontaneous monitoring of 

gaze (Ashwin, Ricciardelli, & Baron-Cohen, 2009; Forgeot d’Arc et al., 2017; Leekam, Baron‐Cohen, 

Perrett, Milders, & Brown, 1997; Webster & Potter, 2008).  Autistic individuals might show deficits in 

face processing tasks because they find such stimuli more aversive than non-autistic individuals (e.g. 

Tottenham et al., 2013).   
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Taken together, autistic participants would be expected to perform less well on both face 

recognition and egocentric eye-gaze discrimination than the comparison participants without ASD. 

For the traditional behaviour measures, this could affect both accuracy and RT, although as 

discussed above, the exact pattern of results is conflated with participants’ unique preference for 

speed or accuracy. In terms of model parameters, a deficit in task performance would be reflected in 

reduced drift-rate (efficiency of information processing). Since drift rate is explicitly separated from 

caution (boundary separation) by the model, it ought to be a purer measure of task processing 

deficit than RT or accuracy rates. Therefore, a key question for this study is whether drift rate differs 

between groups in either or both tasks. The corresponding question is whether boundary separation 

instead accounts for any behavioural differences between groups. Non-decision time is not expected 

to differ across groups, but could potentially do so due to low level perceptual differences.   

Drift-rate might also be reduced in the ASD group because of increased intra-participant 

variability, which is often captured in the DDM as a reduction in drift-rate. As discussed above, the 

relationship between intra-trial variability, drift-rate and ASD might be moderated by comorbid 

ADHD, and so we also explored the relationship between model parameters and ADHD symptoms 

using a parent-report questionnaire.   

If model parameters do represent stable character traits, we would predict that group 

differences in these parameters are stable across tasks and the parameters themselves would 

correlate across tasks.  

Lastly, we predicted that DDM parameters would be better able to distinguish autistic and 

non-autistic individuals than standard behavioural measures (mean RT/accuracy), because they are 

able to separate variance due to caution (i.e. speed-accuracy trade-off) from task or individual 

specific effects.  In order to investigate this, we trained a logistic classifier on each measure and 

compared discriminability performance (inspired by Zhang et al., 2016).  The purpose of this was not 

to identify a measure that is diagnostically relevant for ASD, but rather to test whether the DDM 

parameters offer better discriminability than traditional measures when searching for task or trait 

specific differences between groups. 
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Methods 

Participants 

The full sample of participants consisted of 75 autistic adolescents (mean age = 15.5 years, SD = 0.54, 

67 male) and 46 non-autistic adolescents (mean age = 15.5 years, SD = 1.3, 45 male).  The 

participants were drawn from a cohort of 100 autistic adolescents and 57 non-autistic adolescents 

who were part of wave two of the Special Needs and Autism project (Charman et al., 2011). 

Adolescents were excluded if data were not available on both tasks. We also excluded participants 

who scored below chance on either tasks or whose average RT exceeded 3 x median absolute 

deviation on either task.  Thirty-three of the participants excluded had ASD, 25 were male, the 

average full scale IQ was 71.7 (SD = 19.5), the average age was 15.4 years (SD = 0.4) and the average 

ADHD symptom score was 6.3 (SD = 2.3).  Consensus clinical ICD-10 diagnosis of ASD was confirmed 

using the Autism Diagnostic Interview - Revised (Lord, Rutter, & Le Couteur, 1994) and Autism 

Diagnostic Observation Schedule – Generic  (Lord et al., 2000), alongside measures of IQ, language 

and adaptive behaviour (see Baird et al., 2006).  

Participants in the comparison group comprised 18 children from wave one without ASD but 

with a range of primary ICD-10 diagnoses (8 with mild mental retardation, 3 moderate mental 

retardation, 2 ADHD, 2 specific reading and spelling disorder, 1 expressive/receptive language 

disorder, 1 no primary diagnosis), and 28 typically developing adolescents recruited from 

mainstream schools specifically for wave two. By parent report, none of the typically developing 

adolescents had a psychiatric or developmental diagnosis, a statement of special educational needs, 

or were receiving medication. Parents completed the Social Communication Questionnaire (Rutter, 

Bailey, & Lord, 2003) for 23 of the typically developing participants and none scored 15 or above, the 

cut-off for ASD (mean score = 3.39, SD = 3.63). IQ was measured using the Wechsler Abbreviated 

Scale of Intelligence (Wechsler, 1999). Bayesian independent t-tests using default priors suggested 

moderate evidence that there was no difference between the groups on age (BF01 = 5.0) or IQ (BF01 

= 3.9).   

All analyses were repeated for the subgroup of participants with full scale IQ scores above 

85, which consisted of 45 autistic adolescents and 30 non-autistic adolescents.  We selected a cut-off 

of 85 because it is one standard deviation below mean IQ, and it excluded all of the comparison 

group participants who had ICD-10 diagnoses relevant to the task, while critically allowing the 

groups to remain largely IQ matched. Two individuals in the comparison group had an ICD-10 

diagnosis of Specific Reading Impairment, but the tasks did not involve reading.  Results with these 

two participants removed are shown in Supplementary Materials (Figure 3-5). The same exclusion 
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criteria detailed above were also applied to this subgroup.  Bayesian independent t-tests suggested 

moderate evidence in favour of no age difference between the groups (BF01 = 4.1), and no evidence 

either way for a difference in full Scale IQ between the groups (BF01 = 0.47).    See Table 1 for 

participant demographics and psychological measurements. Approval for the study was granted by 

the South East Research Ethics Committee (05/MRE01/67) and informed consent was obtained from 

all participants 

 

Tasks 

Most participants were tested in a quiet testing space within the researcher’s institution, but a 

minority were tested at school or home in a 1:1 quiet environment.  The tasks were part of a larger 

battery of 58 tasks that were administered over two separate testing sessions, lasting 3 to 3.5 hours 

each excluding breaks. The tasks most appropriate for modelling with the DDM were a face identity 

recognition task and an egocentric eye-gaze discrimination task.  Both tasks were programmed in 

Matlab v6.5 (Mathworks Inc., Sherbon, MA) using Cogent 2000 (Wellcome Department of Imaging 

Neuroscience, UCL Institute of Neurology, London, UK; http://www.vislab.ucl.ac.uk/cogent.php) and 

presented on a Hewlett-Packard laptop with a 15” LCD display screen. In order to maximise the 

number of trials for fitting, we collapsed RT and accuracy data across conditions.  This was justified 

because our main area of interest was whether the DDM parameters added anything to general 

differences in RT and accuracy that might be consistent across tasks, rather than condition-specific 

differences between groups.  

Face recognition 

This task was based on Joseph and Tanaka’s (2003) assessment of holistic and part based face 

recognition in autistic children.  In the task, recognition of faces and parts of faces (mouth or eyes) 

was measured. Additionally, whether participants were prompted or unprompted to look at the 

mouth or eyes during the study (encoding) phase was manipulated.  

Testing began with a practice phase where participants were told they would be playing a game in 

which they would see a picture in the middle of the screen.  After presentation of the picture they 

were then presented with the initial picture alongside a foil. They were told to, ‘Choose the one that 

is the same’.  The first trial used photographs of cars and the second used photographs of faces. 

Images were presented in PowerPoint. Participants needed to pass both trials to progress to the 

testing phase. 

http://www.vislab.ucl.ac.uk/cogent.php
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Faces used in the testing phase were created by Joseph and Tanaka (2003). They were greyscale 

digital images of 12 children’s faces (6 boys, 6 girls) with a neutral expression. Their size was 

approximately 10 x 14 cm and they were set against a grey background. Each image was a digitally 

manipulated composite created from original digital photographs of different children (see Joseph 

and Tanaka for details). Within each condition (prompted or unprompted) each target face was 

presented twice. One was a ‘whole’ presentation in which the whole target face was followed by 

paired presentation of the whole target face and a whole foil face. The other was a ‘part’ 

presentation, in which the whole target face was followed by paired presentation of part of the 

target face and part of a foil face. The part was either the eyes or mouth. Foils were the target faces 

with either the eyes or mouth replaced with those from unused photographs. In total there were 48 

pairs of images (12 targets x 2 foil types (mouth or eyes altered) x 2 image types (whole face or part 

face), which were divided into two sets of 24 (prompted and unprompted conditions). Stimuli 

presentation was in one of six pseudo-random orders.  

In the first part of the trial, the target image was presented in the centre of the screen for 3.5s 

(study phase). Immediately following this, the target and foil pair were presented. Participants were 

asked to decide which image was the same as the one they had just seen, using a keypress.  

Whether the target face was presented on the left or right was counterbalanced across trials.  After 

the participant had made a response, or following 7 s if they failed to respond, the next trial was 

initiated. For the unprompted trials, the inter-trial interval was 1s, and consisted of the presentation 

of a white rectangle (500 ms) followed by a blank screen (500 ms). For the prompted trials, the inter-

trial interval was also 1s but contained the instruction to ‘look at the eyes’ or ‘look at the mouth’, 

presented in white font (Arial, 70) on a black background. Before the prompted condition the 

participants were told, “You will either be told to look at the eyes or look at the mouth; this is a clue 

to help you”.  The order of the trials was pseudo-randomised, with 6 different orders used. Viewing 

distance for the task was approximately 75 cm, in line with Joseph and Tanaka (2003). Accuracy and 

RT were recorded for each trial. 

Egocentric eye-gaze discrimination 

This task was based on Elgar, Campbell and Skuse (2002)  and measured discrimination of eye-gaze 

direction (straight ahead vs averted) for different head angles (straight ahead vs averted).  

Participants first completed three practice trials to ensure that the task was understood. The first 

trial had a face that looked straight ahead and the second and third had faces that were angled to 

the left or right. Participants had to complete all three trials successfully to take part in the 

experiment. Practice trials were presented in PowerPoint.  
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Stimuli used in this experiment were provided by Elgar et al. (2002) and were colour photographs of 

a single adult female, sized approximately 10 cm x 15 cm. The female was captured with her head 

facing straight ahead (12 trials), or turned at a 10° angle to the left (12 trials) or right (12 trials). For 

each of these head positions, for 4 trials the eye gaze was straight ahead, for 4 trials the eye gaze 

was to the right, and for 4 trials the eye gaze was to the left.  The position of the left and right eye 

gaze was at a 10° angle from the centre (head angled conditions) or at a 5° or 10° angle from the 

centre (head straight ahead condition).  Trials were presented in one of six pseudo random orders. 

For each trial, the stimulus was presented in the centre of the screen for up to 7 s. If the participant 

did not respond within 7 s then the trial was terminated. A black background was used throughout 

the experiment. Each trial was preceded by a white fixation asterisk (1s) followed by a blank screen 

(500 ms). The participants were told that they had to decide if the person was looking straight at 

them, or to their left or right and indicate this with a key press. Participants were also instructed to 

respond as quickly and as accurately as they could. Participants sat approximately 50 cm from the 

screen, following Elgar et al., (2002). Accuracy and RT were recorded for each trial.  

 

Parent-reported ADHD symptoms 

ADHD symptoms were measured using the parent version of the Strengths and Difficulties 

Questionnaire (SDQ, Goodman, 1997). The SDQ is a commonly used screening measure for child 

psychiatric problems. It contains 25 items each scored 0 to 2 that map onto five subscales 

(hyperactivity-inattention, emotional problems, conduct problems, peer relationship problems and 

prosocial behaviour) and a total difficulties score.  For the present study we only used scores from 

the hyperactivity-inattention subscale.  This subscale includes two items about inattention, two 

about hyperactivity and one about impulsiveness, which together reflect the core symptoms of 

ADHD (American Psychiatric Association, 2013).   

 

Hierarchical drift-diffusion model  

Parameters were estimated using the hierarchical drift diffusion model toolbox (HDDM, Wiecki, 

Sofer, & Frank, 2013) and RT and accuracy data from both tasks. The HDDM uses Bayesian inference 

procedures to simultaneously estimate parameters at a group level (ASD vs non ASD) and at an 

individual level.  Bayesian fitting methods are particularly advantageous in situations where there 

are relatively few trials per participant (Ratcliff & Childers, 2015), as was the case in the present 
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study. This is because trials across participants contribute to the estimate of group-level parameters, 

which in turn constrain the distribution (likely values) of individuals' parameters.   

The HDDM uses the standard analytic solution to the DDM provided by Wald (1947) and Feller 

(1968): 𝑓(𝑥|𝑣, 𝑎, 𝑧) = 𝜋𝑎2exp(−𝑣𝑎𝑧 − 𝑣2𝑥2)  × ∑𝑘 = 1∞𝑘 exp(−𝑘2𝜋2𝑥2𝑎2)sin(𝑘𝜋𝑧)  
 

Where v = drift-rate, a = boundary, z = bias. It also models the extension to the DDM that includes 

inter-trial variability in drift-rate, non-decision time and starting point, which was suggested by 

Ratcliff and Rouder (1998). Extended details about the fitting process and assumed parameter 

distributions can be found in Wiecki et al. (2013), in the section titled ‘Hierarchical Bayesian 

estimation of the drift-diffusion model’.  

A graphical representation of the model is shown in figure 2. We allowed drift-rate boundary 

separation and non-decision time to vary across individual and group.  Starting point bias, and 

variability in non-decision time, drift-rate and bias were fitted to the overall dataset and were 

therefore consistent across group and individual. Attempts to vary these resulted in poor 

convergence due to the relatively small number of trials.   

We generated 20000 samples from the posterior distribution for all model parameters using 

a Markov Chain Monte-Carlo method. To prevent the initial starting values from biasing the final 

convergence, we discarded the first 2000 samples as burn-in. We only kept every fifth sample in 

order to minimise auto-correlations between consecutive draws from the posterior distribution 

(‘thinning’).  We also assumed a trial outlier rate of 5%.  See Wiecki et al., (2013) for more 

information.  Chain convergence was checked using the Gelman-Rubin R-hat statistic (Gelman & 

Rubin, 1992), which was less than 1.05 for all modals suggesting good convergence.  

Group classification  

We trained a logistic classifier to distinguish between the ASD and non-ASD groups using either 

model parameters (drift-rate and boundary) or traditional measures (RT and accuracy). We excluded 

non-decision time because we did not find evidence of a group difference and it allowed the 

classification space to contain the same number of features for both behavioural measures and 

model parameters.  A 10 fold cross validation procedure was used.  Data were split into 10 

subsamples, 9 of which were initially used for training and one for validation.  This routine was then 
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repeated until all the 10 sub-samples had been used for validation. Results were then averaged 

across the 10 folds. Our performance measure for classification was the receiver operating 

characteristics (ROC) area under the curve (AUC).  The classifier was implemented in WEKA 

(http://www.cs.waikato.ac.nz/ml/weka/). It is worth noting that leave-one-out cross validation 

procedures can yield higher predication accuracy values than methods using independent test and 

validation samples, however, our principal concern here was the comparison in discrimination ability 

between behavioural measures and model parameters.  

 

Results 

Results analysis 

Behavioural results were analysed using Bayesian Statistics (JASP-Team, 2016; Rouder, Morey, 

Speckman, & Province, 2012) and we report associated Bayes Factors which represent the degree to 

which the data favour the alternative hypothesis (H1) relative to the null hypotheses (H0). Where 

BF10 indicates evidence towards H1 against H0 and BF01 indicates evidence towards H0 against H1. 

We use common evaluation criteria, where Bayes Factors below 3 indicate inconclusive evidence, 

above 3 indicate moderate evidence, above 10 indicate strong evidence, and above 30 indicate very 

strong evidence (Jeffreys, 1961).  Default JASP priors were used throughout and are shown in Table 

2.  Modal parameters were compared across groups using posterior probability comparisons, which 

calculate the proportion of posteriors of each parameter that overlap across the two groups. Values 

here are reported as the proportion of posteriors of the comparison group that are smaller than that 

of the ASD group.  Smaller values therefore indicate more of a difference between the groups.  

 

Behavioural results 

Figure 3 shows average accuracy (A) and reaction time (B) for ASD and non-ASD groups for both the 

face recognition and egocentric eye-gaze discrimination tasks.  Two Bayes Factor ANOVAs were 

performed separately on accuracy and RT data. Both analyses revealed inconclusive evidence of 

differences between the groups on either task (main effect of group BFs all <3 and > 0.3, supporting 

neither null or alternative hypothesis) and evidence of no interaction between task and group (BF01 

all >3). When repeating these analyses for participants with IQs above 85, we found evidence that 

the non-ASD groups was more accurate than the ASD group (BF10 = 84), but evidence in favour of no 

http://www/
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difference between the group in RT (BF01 = 4.5). Average accuracy and reaction times are shown in 

Figure 4 (A-B).   Descriptive results are shown in Supplementary Tables 1 and 2.  

DDM parameters 

Posterior parameter estimates of drift-rate (processing efficiency), boundary separation (caution) 

and non-decision time (perceptual encoding/motor output) are shown in Figure 3C-E (whole sample) 

and Figure 4C-E (IQ above 85).  Posterior probability comparisons indicated that, for the face 

recognition task, the ASD group showed smaller boundary separation than the comparison group ( 

P( comparison a < ASD a) = 0.003). There was less evidence supporting a difference in drift-rate or 

non-decision time ( P( comparison v <  ASD v) = 0.3, P(comparison t < ASD t = 0.15) ).  For 

participants with IQ above 85, the ASD group again showed smaller boundary separation than the 

comparison group ( P ( comparison a < ASD a = 0.001). However, we now additionally found 

evidence of lower drift-rates in the ASD group (P (comparison v < ASD v = 0.021). Non-decision time 

remained comparable between groups (P( comparison t < ASD t = 0.53). 

 For the eye-gaze task, we found some evidence that the ASD group have lower drift-rate 

than the comparison group (P (comparison v < ASD v = 0.05) but no obvious difference in boundary 

or non-decision time ( P (comparison a < ASD a = 0.18), P(comparison t < ASD t = 0.83).  For 

participants with IQ above 85, the difference in drift-rate between the groups remained (P 

(comparison v < ASD v = 0.002) and there was still little difference in non-decision time ( P 

(comparison t < ASD t = 0.1). However, we now found some evidence that, like the face processing 

task, participants with ASD had smaller boundary separation (P (comparison a < ASD a = 0.05) ).  

 Taken together, these results suggest that for participants with IQ above 85, adolescents in 

the ASD group process information less efficiently and are less cautious than non-autistic 

adolescents, but show similar non-decision times.  When the whole sample of participants across IQ 

is analysed, differences in information processing and caution are less consistent and potentially 

more task specific.   

 

Model fits 

To ensure that the estimated model parameters were a good representation of the data, we 

performed posterior predictive checks by simulating 500 experimental data sets for each participant 

on each task based on their individual parameter estimates. Figure 5 and 6 shows comparisons 

between observed data and simulated data RT distributions and Table 3 and 4 shows mean square 
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errors (MSEs).  Overall, there is a fairly good correspondence for RTs for both correct and incorrect 

trials, suggesting that the estimated parameters captured the data well.   

  

Group classification 

Our next question was whether DDM parameters are better able to differentiate between 

individuals with and without ASD than traditional measures of RT and accuracy. To investigate, we 

trained a logistic classifier to distinguish between the groups using a 10-fold cross validation 

procedure (see Methods). We first used the mean RT and accuracy data from both tasks as the 

feature space for classification.  This model was able to classify the groups with an AUC value of 

0.63.  The associated ROC curve is shown in Figure 3F, grey line.  We then used the estimated model 

parameters (drift-rate and boundary separation) across both tasks as the classification feature space. 

This produced an AUC value of 0.72 (Fig. 3F, black line). Following the method described in Hanley 

and McNeil (1983), the difference between the AUC values was statistically significant (Z = 2.96, p < 

0.01). The classification procedure was repeated on participants with IQs above 85 and 

discrimination ability for the model parameters increased to an AUC of 0.89.  Classification using 

traditional measures also increased in this subset of participants, but to a lesser extent (AUC = 0.71). 

ROC curves are shown in Figure 4F.  The difference between these AUC values was also statistically 

significant (Z = 2.36, p < 0.05). Therefore, the DDM parameters were better able to differentiate 

between the groups than the traditional behavioural measures for these tasks.  

Relationship between drift-rate and hyperactivity-inattention 

Previous research has suggested that individuals with ADHD process information less efficiently, i.e. 

have lower drift-rates, than individuals without ADHD.  We were therefore interested in whether 

individual differences in drift-rates were related to ADHD symptoms in our sample, which were 

measured using the hyperactivity-inattention subscale from the SDQ.   Figure 7 shows scatterplots of 

these relationships, split by group and task.  A moderation analysis was carried out separately for 

each task, with drift-rate as the IV, group as the moderator and ADHD symptoms as the DV. For the 

face recognition task, we found evidence that drift-rate negatively predicted ADHD symptoms (BF10 

for inclusion of main effects model = 9.4). However, we also found evidence that this relationship 

was moderated by group (BF10 for inclusion of interaction model = 9.3), whereby drift-rate only 

predicted ADHD symptoms in the non-ASD group, not the ASD group. This pattern of results was 

replicated for the egocentric eye-gaze task (BF10 main effect of drift-rate = 4.6, BF10 for interaction 

= 17.8).  However, when IQ was also included in the regression, the data was inconclusive for a main 

effect of drift-rate or a group x drift-rate interaction on either task (face recognition, main effect of 
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drift-rate BF10 = 0.60, interaction BF10 = 1.3; egocentric eye-gaze, main effect of drift-rate BF10 = 

0.45, interaction BF10 = 1.5). This pattern of results was replicated for both verbal and performance 

IQ, when these were analysed separately.   

These results suggest that ADHD symptoms were not related to drift-rate (processing 

efficiency) in autistic participants. In contrast, in non-autistic participants, drift-rate was negatively 

associated with ADHD symptoms, but this relationship was strongly influenced by differences in IQ. 

This is consistent with previous research where drift-rate is often closely related to IQ scores (Ratcliff 

et al., 2011; van Ravenzwaaij et al., 2011) and indeed a moderation analysis revealed this 

relationship was present in our study, although only for non-autistic adolescents ( face recognition 

task, group x drift-rate interaction model BF10 = 29, egocentric eye-gaze task group x drift-rate 

interaction model BF10 = 31).  

In participants with an IQ above 85, we either found no, or inconclusive evidence, that drift-

rate predicted ADHD symptoms on either task (main effect model BF10 for inclusion, face 

recognition = 0.70, egocentric eye-gaze = 0.25), and no, or inconclusive, evidence for a moderation 

by group either (interaction model BF10 for inclusion = 1.26, egocentric eye-gaze = 0.42).  However, 

because most of these Bayes factors fall in the range where there is no evidence to support the null 

or the alternative hypothesis, we cannot know the extent to which the reduced sample size in this 

cohort contributed to the results.   

Cross-task correlations 

We were also interested in the extent to which the DDM parameters represent stable traits that are 

consistent across tasks. To explore this, we compared individual differences in parameters across 

tasks using Bayesian Pearson correlations (Figure 8).  We set a beta prior width of 1 and assumed no 

hypothesis for the correlation direction. Data from the ASD and non-ASD groups were pooled 

because Fisher r to z transformations suggested no evidence of a difference between the groups on 

these correlations.   There was a clear positive correlation between drift-rates for the two tasks (R = 

0.5, BF10 = 106). Likewise, we found strong evidence for a positive correlation between boundary 

separation on the two tasks (R = 0.32, BF10 = 55).  We found inconclusive evidence that non-decision 

time correlated across tasks (R = 0.14, BF10 = 0.36).  This pattern of correlations remained when only 

data from participants with IQs above 85 were analysed (drift-rate, R=0.39, BF10 = 92; boundary 

separation, R = 0.29, BF10 = 4.8; NDT, R= 0.22, BF10 = 0.93).  To summarise, individual differences in 

drift-rate (processing efficiency) and boundary separation (caution) were correlated across tasks, 

while non-decision times (perceptual encoding/motor output) were either more task specific or 

noisier.   
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Discussion  

Accumulator models, such as the drift-diffusion model, are gaining popularity in clinical research due 

to their potential to isolate mechanisms underlying the decision-making process. Our interest here 

was whether autistic individuals display global and stable differences in DDM parameters such as 

drift-rate (processing efficiency), boundary separation (caution) and non-decision time (perceptual 

encoding, motor output).  Using data from two face processing tasks, we measured differences in 

model parameters between autistic and non-autistic adolescents across a wide range of IQ and in a 

sub-group with IQ above 85.  In the group with IQ above 85, we found that autistic participants 

exhibited lower drift-rates and narrower boundary separation than IQ-matched non-autistic 

adolescents, on both tasks. This suggests that autistic individuals did not process information as 

efficiently, and were less cautious, than non-autistic individuals. We did not find any group 

differences in the time associated with perceptual encoding and motor output (non-decision time).  

When participants with low IQ were also included in the analysis, the results were not as consistent 

across tasks, and we found evidence of boundary difference in one task and drift-rates differences in 

the other. There were still no differences in non-decision time.  

Crucially, if we had only analysed the means of RT and accuracy our interpretation of the results 

would have been quite different. For participants with an IQ above 85, we found differences in 

accuracy but not in RT, which could be interpreted as similar processing speed between the groups 

but that the autistic participants made more errors. The DDM provided a different interpretation – 

that processing speed did differ between the groups, but so did caution, which could have masked 

task-related differences in raw RT. Furthermore, using a classification procedure we found that DDM 

parameters were better able to differentiate between the groups on the two face-processing tasks 

than standard behavioural measures.  The aim of the classification was not to provide a diagnostic 

measure of ASD, but merely to demonstrate that model parameters may offer greater 

discriminability relative to traditional behaviour measures, at least in the two tasks examined in this 

study.   

Limitations 

Before discussing the results further, it is important to note that the data were not collected with 

modelling in mind and therefore we were limited in our possible analyses. In particular, we had to 

pool trials across conditions so that the parameter recovery would be reliable. This was the main 

study limitation, which we discuss in detail below. This is likely to be a frequent problem for post-hoc 

data modelling in any domain, as it is rare to collect an ideal number of trials for modelling, 
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especially in clinical populations. As modelling grows in accessibility, we hope it might become more 

common to plan trial numbers with modelling in mind.    

Drift-rate: a measure of neural variability or task related performance?  

One of our main motivations for this study was the previous successful application of DDM to ADHD 

research. Recent studies have shown that increased intra-participant variability in ADHD can be 

explained by a reduction in drift-rate (Karalunas et al., 2012; Karalunas et al., 2013; Metin et al., 

2013; Salum et al., 2014).  Given reports than autistic individuals may also show increased intra-

participant variability (Geurts et al., 2008; Karalunas et al., 2014) and a recent study that found lower 

drift-rates in autistic children (Karalunas et al., 2018), we anticipated that drift-rates may also be 

reduced in our autistic participants. In line with this prediction, drift-rates were reduced for both 

tasks in our ASD group with IQ above 85, which was most comparable to the participant sample used 

in previous studies.  However, we also found that autistic participants had narrower boundary 

separation than the non-autistic group. This is contrary to the only other two studies that have 

applied the DDM to ASD data, where wider boundary separation was found in the ASD group 

(Karalunas et al., 2018; Pirrone et al., 2016).  It should be noted that both of these studies used a 

different autistic population (intellectually able adults and children) to ours (adolescents with a wide 

range of intellectual ability).  

 It is notable that Pirrone et al. used a low level perceptual discrimination task (orientation 

discrimination), which has previously been found to be enhanced in ASD (Dickinson, Bruyns-Haylett, 

Smith, Jones, & Milne, 2016).  In contrast, we used two socially-relevant tasks that centred on faces, 

and reflect substantial literatures finding impairment in both face recognition (Weigelt, Koldewyn, & 

Kanwisher, 2012) and processing eye gaze (Nation & Penny, 2008).  The reduction in drift-rate 

(information processing efficiency) that we observed in our autistic participants could be specific to 

face processing. Further, autistic participants may have been less cautious in responding in these 

particular tasks because they found the face stimuli more aversive (e.g. Tottenham et al., 2013).  

Indeed, this might explain why our results for boundary separation were different from those of 

Pirrone et al and Karalunas et al., both of whom used non-social stimuli. One of our main areas of 

interest is whether DDM parameters measured for a particular task or group would generalise to 

other tasks and other sub-populations of that group. Unfortunately, we did not have access to a 

non-face processing task that was also suitable for DDM fitting to act as a control. However, the 

disparities between the Pirrone et al. (2016) and Karalunas et al. (2018) studies and ours could 

suggest that parameters depend on task domain. Future research should explore this further with a 

wider variety of tasks.  It is worth nothing, however, that for the two face-processing tasks we 
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analysed, the boundary separation and drift-rate parameters were reasonably well correlated across 

individuals.  It is also the case that even if the results do not generalise to non-socially related tasks, 

the DDM findings still challenged the traditional interpretation that any differences in RT/Accuracy 

are solely due to task related processing.   

Increased intra-participant variability in ADHD has been found in a number of tasks and so 

may represent a global deficit in information processing that is related to lapses in attention 

(Karalunas et al., 2014). Differences in drift-rates in ASD have currently been explored on fewer 

tasks, although it is likely that increased variability in the RT distribution, in absence of increased 

accuracy, will often translate to lower drift-rate under the DDM.  It has previously been suggested 

that increased intra-participant variability in ASD may be driven by a sub-set of autistic participants 

who have elevated ADHD traits (Karalunas et al., 2014).  However, in our autistic sample drift-rate 

did not correlate with a parent reported measure of hyperactivity, inattention and impulsivity, 

suggesting that the differences we observed between the ASD and non ASD groups were not being 

driven by co-occurring ADHD traits. This finding is also supported by previous work by Karalunas et al 

(2018) who also found that differences in drift-rate in autistic participants were not explained by 

ADHD symptoms.  

Processing efficiency, which is reflected in differences in drift-rate, can be due to a number 

of factors.  For individuals with ADHD, it is generally thought to represent a global difficulty in 

information processing, in particular an increase in attentional lapses (Karalunas et al., 2014). At a 

neural level, this could correspond to increases in neural noise and differences in oscillatory brain 

rhythms (Castellanos et al., 2005; Di Martino et al., 2008; Tamm et al., 2012). However, in our study 

we used measures of face processing, an area often associated with difficulties in autistic 

populations. Thus, decreased drift-rates might be more likely to correspond to difficulties in task-

specific processing rather than global attentional problems.  This may also explain why for non-

autistic adolescents, IQ was strongly related to task performance (drift-rate), but this relationship 

was not present for autistic adolescents where task performance may have been influenced by 

factors beyond general intellectual ability.   As noted earlier, future research exploring a wider range 

of tasks will help to disentangle these two hypotheses.  It is worth considering for future research 

that a decrease in drift-rate can either be due to deficits in task performance or due to a global 

processing defects related to increased variability, which could potentially be seen as a limitation of 

the modelling approach. Of course, this limitation would also apply to traditional behavioural 

measures, because increased variability in RT distributions tend to result in average RTs that are 

longer.  
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Estimation of ADHD symptoms 

An important limitation of our study is that the ADHD symptom measure we used from the SDQ did 

not allow us to explore the separate effects of inattention and hyperactivity, the former of which is 

most commonly associated with cognitive performance deficits (Castellanos, Sonuga-Barke, Milham, 

& Tannock, 2006).  However, the SDQ is well validated and the items that load on the ADHD factor 

(inattention, hyperactivity, impulsivity) show good internal consistency across individuals (Goodman, 

2001).  Future research is needed to examine whether individual differences in hyperactivity, 

impulsivity and inattention show different interactions with DDM parameters in autistic individuals. 

It might be predicted that inattention is more strongly related to drift-rate, while impulsivity is 

related to caution. Unfortunately, such a fine-grained analysis was beyond the scope of the current 

study.  

Effects of IQ variability and participant heterogeneity 

Our study had a number of advantages, including a reasonably large sample size and a wide range of 

intellectual ability.  The majority of research looking at cognitive performance in ASD tends to focus 

on individuals with average to high IQ, which is not representative of the autistic population as a 

whole (Brugha et al., 2018). In our study we had wide range of ability in the ASD group and an IQ-

matched comparison group. However, many of the individuals with lower IQ had additional clinical 

diagnoses, as can often be the case with individuals with low IQ. Therefore, in order to ensure that 

our results were not being driven by individuals with additional educational needs or clinical 

diagnoses, we repeated all of the analyses for a restricted range of participants with IQ above 85.  

Mostly, the results remained consistent with those collected from the whole cohort, 

although differences in drift-rate and boundary were more evident in the group with IQ above 85, 

and we also found differences in raw accuracy. This suggests that group differences were generally 

larger in the subgroup with higher IQ. It is possible that because our comparison group was quite 

heterogeneous, this masked some of the differences between the groups.  The heterogeneity of our 

comparison group meant that we did not have the power to look at different subgroups within the 

lower IQ range, for example, those with different types of learning disability, but it is an interesting 

question for future research. It is also possible that the quality of the data was not as good for 

individuals with low IQ and this meant it was more difficult to detect group differences.  

Another interesting question for future research is whether there are any sex differences in 

the parameter differences found for the ASD group. Due to the small number of female participants 

we were not able to explore this question in the present study, but given increasing evidence that 
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the female phenotype in autism might differ from the male (e.g. Mandy et al., 2012), it is certainly an 

important factor to consider in the future.  

 Effects of collapsing over conditions on model parameters 

An important limitation of the current study was that there were relatively few trials per participant 

to use for model fitting. This meant that we had to collapse across experimental conditions in order 

to maximise data points, which was not ideal. Collapsing across conditions would not be expected to 

affect our treatment of the boundary separation and non-decision time parameters, as these are 

commonly fixed across conditions when trials are presented in an unpredictable order. It is 

traditionally assumed that the boundary is set before the trial begins and if the conditions are inter-

mixed (as ours mostly were) then the participant would not have an opportunity to adjust their 

boundary based on condition. There are alternative models that assume dynamic boundaries within 

a trial and across a block of trials, however, it is rare for these models to improve data fits and so it 

remains more common practice to assume a fixed boundary (Voskuilen, Ratcliff, & Smith, 2016).   

For drift rates, we would expect differences between easier and more difficult conditions. 

The differences in drift-rate we observed may well have been driven by a subset of conditions, which 

is an important limitation of the current study. Potentially, different drift rate fits for each condition 

could also have had consequences for how other parameters were fitted.  In addition to low trial 

numbers, our reasoning for collapsing across conditions was that we were particularly interested in 

any global and stable differences in processing. This would be predicted by certain neurocognitive 

theories of ASD, for example, the idea that autistic individuals have increased neural noise (Milne, 

2011; Simmons et al., 2007). Under these theories, a reduction in drift-rate should occur no matter 

what task or condition. In terms of the results of the current study, we can conclude that there were 

differences in drift-rate between the groups and that the model parameters were better at detecting 

these differences than the behavioural measures. Future research is required to explore whether 

drift-rate differences in ASD were observed are condition-specific or task-specific. This would be 

particularly informative if the manipulation of conditions was consistent across tasks (e.g. comparing 

social and non-social conditions in each task). 

Trial numbers for reliable estimation of cognitive measures 

One general limitation of fitting accumulator models is that the trial numbers required to obtain a 

reliable estimate of model parameters are not always feasible in clinical research.  Bayesian 

hierarchical fitting methods, like the HDDM, go some way in easing this problem (Wiecki et al., 

2013). It is important to note that low trial numbers are a general issue even if standard measures of 
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mean accuracy and RT are used. Research from our lab has shown that many more trial numbers are 

required to obtain reliable estimates of performance from classic forced-choice tasks than are often 

used in the literature (Hedge, Powell, & Sumner, 2018). For example, in the flanker task, which is a 

common measure of response inhibition, around 150 trials are required to obtain a stable flanker 

effect for each individual. However, even with 150 trials, the reliability of the flanker effect across 

sessions is low (intra-class correlation = 0.5). Thus, the conflicting findings in the ASD literature for 

forced-choice perceptual and cognitive tasks, which are commonly ascribed to the heterogeneity of 

the disorder and low sample sizes, could very well reflect unreliable measures and measurements. 

That is, if the same group of participants were tested a week later different results might be 

obtained and different conclusions drawn.  It remains to be seen whether DDM parameters could 

help to increase reliability when trial numbers are relatively low.  

Potential advantages of accumulator models for clinical research 

This is the first study apply the DDM to Autism research using social stimuli and we found that our 

interpretation of the results would have been quite different if we had only analysed the traditional 

behavioural measures.  We also found that model parameters were fairly consistent across 

individuals and tasks. Parameters derived from cognitive modelling may have an advantage over 

measures of RT and accuracy if they tap into more stable and reliable traits across individuals. 

Certainly in the ASD literature, where conflicting experimental findings are common, any measure 

with the potential to increase reliability and discriminability is worth pursuing.  Further, given that 

many task-related differences between autistic and non -autistic groups reduce with age (e.g. 

Happe, 1995), examining drift-rate could increase sensitivity to detect these differences later in 

development  It is important to note that these models cannot add ‘extra’ variance (or ‘signal’) that 

is not present in the original accuracy and RT data. What they can do is structure and organise this 

variance into more psychologically meaningful terms and provide a principled way to utilise data 

from across the whole RT distribution.   Isolating more psychologically meaningful factors from RT 

and accuracy data may help to identify key areas of difficulty across conditions and individuals. This 

in turn may lead to the development of more effective and individualised cognitive training 

paradigms, which at present mainly focus on measuring improvements in mean accuracy and RT 

(e.g. Powell, Wass, Erichsen, & Leekam, 2016).   
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Figure 1.  Schematic representation of the drift-diffusion model.  Information accumulates 

stochastically with drift-rate (v) until it reaches one of two response boundaries, at which point a 

response is triggered. The accuracy of the response is therefore determined by which bound was 

reached.  Boundary separation is represented by a. Bias in starting point towards either boundary is 

given by z.  Non-decision time (Ter), represents the time taken before and after the accumulation 

process to perceptually encode the stimulus and to generate a motor response. Reaction time is 

determined by the time taken to reach a bound plus non-decision time. Overall, higher drift-rates 

lead to fast and accurate responses, while lower drift rates result in slow and inaccurate responses. 

Large boundary separations lead to slow and accurate responses and small boundary separations 

result in fast but inaccurate responses.  
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Age 15.5 ± 0.54 15.5 ± 1.3 15.5 ± 6.1  

(15.1 – 16.9) 
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Table 1. Participant demographics and IQ; mean +/- standard deviation.  Statistics shown are means 

and standard deviations. WASI = Wechsler Abbreviated Scale of Intelligence.  

 

 
R scale fixed effects R scale random effects R scale covariates 

Bayesian ANOVA 0.5 1 0.354 

Bayesian Regression n/a n/a 0.354 

Bayesian Correlation n/a n/a 0.354 

Table 2. Default JASP priors used for analyses.  

 

 

Figure 2. Schematic representation of fitted model. The black node indicates the observed 

behavioural data (RT/Accuracy) for each group (g), participant (p) and trial (i). Above this are 

individual level nodes that represent parameter distributions for each participant (p).  We fitted 

three DDM parameters at this level:  drift-rate ‘v’, boundary separation ‘a’, and non-decision time 

(NDT) ‘T’. Above this are the group level nodes for the same parameters, represented by 
distributions for each group (ASD, not ASD) that are defined by a mean μ and standard deviation σ.   
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Figure 3. (A-B) Traditional behavioural measures. Proportion correct (accuracy) and RT for face 

recognition and gaze discrimination tasks for Autistic group (white bars) and not Autistic group 

(black bars), collapsed across conditions. No evidence for main effects or interactions were found 

(BFs all <3). (C-E) Estimated DDM parameters across the groups and tasks. Evidence for group 

differences were found for drift rate and boundary (see text) (F) Group classification. Receiver 

operating characteristics (ROC) curves for logistic classifier based on model parameters (black line) 

and traditional behavioural measures (grey lines), for autism classification. Blue line represents 

chance level performance. For A-E, error bars show standard error.  
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Figure 4.  (A-B) Traditional behavioural measures for participants with an IQ above 85. Proportion 

correct (accuracy) and RT for face recognition and gaze discrimination tasks for Autistic group (white 

bars) and not Autistic group (black bars), collapsed across conditions. No evidence for main effects 

or interactions were found (BFs all <3). (C-E) Estimated DDM parameters across the groups and 

tasks, for participants with an IQ above 85. Evidence for group differences were found for drift rate 

and boundary (see text) (F) Group classification for participants with an IQ above 85. Receiver 

operating characteristics (ROC) curves for logistic classifier based on model parameters (black line) 

and traditional behavioural measures (grey lines), for Autism classification. Blue line represents 

chance level performance. For A-E, error bars show standard error.  
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Figure 5. Model fits - posterior predicative distributions across tasks and groups. Positive values on 

the x-axis show correct RTs distributions, negative values show error RT distributions. Observed data 

from the tasks are shown in the black/white histograms, simulated data based on model fits are 

represented by blue lines.  
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Figure 6. Model fits for participants with IQ above 85. Posterior predictive distribution across tasks 

and groups. Positive values on the x-axis show correct RTs distributions, negative values show error 

RT distributions. Observed data from the tasks are shown in the black/white histograms, simulated 

data based on model fits are represented by blue lines. 
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Table 3.  Mean Square Errors (MSEs) between the observed data and the data simulated from the 

best fitting model parameters. Column 1 shows mean accuracy, columns 2-6 show correct RT 

quantiles, and column 7 shows median RT error.  

 

 
Accuracy RT 10 RT 30 RT 50 RT 70 RT 90 RT error 

Autistic face 

recognition 
0.002 0.011 0.011 0.016 0.027 0.196 0.568 

Not Autistic 

face 

recognition 
0.002 0.006 0.010 0.012 0.037 0.334 1.081 

Autistic eye 

gaze  
0.004 0.004 0.012 0.019 0.054 0.459 0.086 

Not Autistic 

eye gaze 

0.003 

 

0.006 

 

0.021 

 

0.015 

 

0.024 

 

0.392 

 

0.148 

 

 

Table 4.  Mean Square Errors (MSEs) between the observed data and the data simulated from the 

best fitting model parameters, for participants with IQ above 85. Column 1 shows mean accuracy, 

columns 2-6 show correct RT quantiles, and column 7 shows median RT error. 
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Figure 7. Relationship between hyperactivity-inattention (ADHD symptoms) and drift-rate and full-

scale IQ and drift-rate, split by task and group. There was no relationship between hyperactivity-

inattention and drift rate in autistic participants (A-B). Whereas, there was a strong negative 

relationship between hyperactivity-inattention and drift-rate in non-autistic participants (C-D). There 

was no relationship between drift-rate and IQ in autistic participants (E-F), but a strong relationship 

between drift-rate and IQ in non-autistic participants (G-H).  

Figure 8. Cross task correlations between estimated DDM parameters. Boundary separation (A) and 

drift-rate (B) correlated positively across tasks. There was no evidence that non-decision times (C) 

correlated across tasks. 
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