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Cross-validation in high-dimensional spaces: a lifeline

for least-squares models and multi-class LDA

Matthias S. Treder

Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University,
United Kingdom

Abstract

Least-squares models such as linear regression and Linear Discriminant Anal-
ysis (LDA) are amongst the most popular statistical learning techniques.
However, since their computation time increases cubically with the number
of features, they are inefficient in high-dimensional neuroimaging datasets.
Fortunately, for k-fold cross-validation, an analytical approach has been de-
veloped that yields the exact cross-validated predictions in least-squares mod-
els without explicitly training the model. Its computation time grows with
the number of test samples. Here, this approach is systematically investi-
gated in the context of cross-validation and permutation testing. LDA is
used exemplarily but results hold for all other least-squares methods. Fur-
thermore, a non-trivial extension to multi-class LDA is formally derived.
The analytical approach is evaluated using complexity calculations, simu-
lations, and permutation testing of an EEG/MEG dataset. Depending on
the ratio between features and samples, the analytical approach is up to
10,000x faster than the standard approach (retraining the model on each
training set). This allows for a fast cross-validation of least-squares models
and multi-class LDA in high-dimensional data, with obvious applications in
multi-dimensional datasets, Representational Similarity Analysis, and per-
mutation testing.

Keywords: MVPA, classification, cross-validation, permutation testing,
LDA, high-dimensional spaces, RSA
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1. Introduction

Multivariate pattern analysis (MVPA) is a statistical technique in which
a target variable such as a brain state or reaction time is predicted based
on multivariate patterns of brain activity [1]. The spadework in MVPA is
performed by regression models if the dependent variables is continuous (e.g.
reaction time), or by classifiers if the dependent variable is categorical (e.g.
stimulus type) [2]. Due to their simplicity, relatively low computational de-
mands, and high interpretability, least-squares models have been popular for
both regression problems (linear regression, ridge regression) and for classi-
fication problems (Linear Discriminant Analysis [3]).

The increase in storage capabilities, working memory, and computational
power, and the increasing availability of high-performance compute clusters
paved the way for large-scale analyses of neuroimaging data. Analyses can
deal with larger throughput than ever before, such as higher field strengths
in fMRI and larger number of electrodes in EEG, or simply a larger amount
of derived features such as time-frequency and connectivity metrics. It is
worth stressing that most neuroimaging datasets have a P � N shape, that
is the number of features P is much larger than the number of samples N. An
extreme example of this is gene expression data comprising tens of thousands
of genes (features) but not more than a few hundred patients (samples) [4, 5].
In cognitive neuroscience, the number of samples for an analysis is naturally
capped by limits of experiment time and group size. For level 1 analyses,
the number of trials is limited by the amount of time the subject can spend
in the scanner. Even in fast-paced EEG/MEG experiments, it is very rare
that more than 10,000 trials are collected. For level 2 analyses, sample size is
equal to the number of subjects, which is typically less than a few hundred.
Summarising, the principal challenge in large neuroimaging datasets is to
efficiently cope with high-dimensional data.

Unfortunately, this is exactly the Achilles heel of least-squares methods
(LSM) such as linear regression, ridge regression, and Linear Discriminant
Analysis (LDA). The computationally most expensive part in LSM is the
inversion of the features × features scatter matrix. Computation time in-
creases cubically with the number of features. It can therefore be intractable
for even a few thousand features if a large number of training-testing it-
erations is needed, such as in permutation testing or in Representational
Similarity Analysis [6] with many experimental conditions. This is one of
the reasons that some researchers explore kernel methods such as Support
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Vector Machines [7] whose complexity grows with the number of samples
rather than number of features.

Does this mean that, for all practical purposes, high-dimensional datasets
are beyond reach for LSM? Fortunately, for cross-validation [8], an alternative
has been developed that addresses this issue. The analytical approach for
LSM has the following [8]useful property: instead of requiring the inversion
of a feature× features scatter matrix on each training set, it instead relies on
the inversion of a matrix that grows with the number of test samples. It is
therefore only mildly affected by the number of features. For leave-one-out
cross-validation, the analytical approach is well-known in the linear regression
literature [9, 10, 11], and it has been generalised to k-fold cross-validation
[12, 13].

The aim of this study is to show that LSM can successfully meet the chal-
lenges of high-dimensional data when using the analytical approach. Because
of the formal equivalence between linear regression and LDA (resp. ridge re-
gression and regularised LDA), it suffices to focus on LDA alone. All results
automatically generalise to linear regression and ridge regression. Equipped
with regularisation techniques such as ridge regularisation [14] or shrinkage
regularisation [15], LDA is robust to overfitting in high-dimensional data. It
often performs similarly to more sophisticated linear classifiers such as linear
support vector machines (SVM) while being significantly faster to train [16].

The novel contributions in this manuscript are a detailed empirical eval-
uation of the analytical approach for cross-validation using simulations and
complexity calculations. Furthermore, to the best of my knowledge, this is
the first application in permutation testing which is a popular approach in
statistical testing of classifier performance [17, 18, 19, 20, 21]. It is also the
first time that the approach is formally extended to multi-class LDA using
an optimal scoring approach [22].

The manuscript is structured as follows. Firstly, cross-validation, binary
LDA and a regression formulation of LDA are introduced. Then the ana-
lytical approach is developed for cross-validation and permutation testing,
and both ridge regularisation and shrinkage regularisation are considered.
Finally, it is formally extended to multi-class LDA [23, 22]. The computa-
tion time of the approach is then compared to the computation time of the
standard approach (retraining the model for every fold) using complexity
calculations, simulations, and a permutation analysis of a publicly available
EEG/MEG dataset [24].
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2. Method

Matrices will denoted by bold upper case letters, for instance X. Vectors
are denoted as bold lower case letters, x, and are assumed to be column
vectors. For scalars, normal font type is used. Upper case scalars are used
for specifying the dimensionality of the matrices or vectors. N is the number
of samples, P the number of features or predictors, K is the number of cross-
validation folds, C is the number of classes, and T is the total number of
training-testing iterations in during permutation testing.

2.1. Cross-validation

Cross-validation allows to estimate predictive performance while at the
same time controlling for overfitting and making efficient use of the available
samples [8, 21, 2]. In k-fold cross-validation, the dataset is randomly parti-
tioned into K equally sized folds. The classifier is trained on all but one of
the folds, and then tested on the held out fold. This procedure is repeated
until every fold served as test set once. Classification performance is then
averaged across the test folds. To reduce the variance stemming from the
random partitioning of data into folds, the cross-validation can be repeated
several times, finally averaging across the repeats.

2.2. Linear Discriminant Analysis (LDA)

For two classes, LDA is equivalent to Fisher Discriminant Analysis (FDA)
[3, 15, 25, 26]. The multi-class case is considered further below. Geo-
metrically speaking, LDA seeks a projection w from feature space to a 1-
dimensional subspace such that the projected class means are maximally
separated while at the same time the projected variance within classes is
minimised [3, 15, 25, 26]. Using the LDA derivation in Duda & Hart [26] this
can be formalised as:

J(w) =
w>Sb w

w>Sw w

where Sb ∈ RP×P is the between-classes scatter matrix measuring the
distance between the classes and Sw ∈ RP×P is the within-class scatter matrix
measuring the spread within each class. These quantities are defined as
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Sb =
∑

l∈{1,2}

Nl (ml −m)(ml −m)> (between-classes scatter)

Sw =
∑

l∈{1,2}

∑
i∈Cl

(xi −ml)(xi −ml)
> (within-class scatter)

where Cl is an index set representing the samples in class l, Nl is the
number of samples in class l, and the means are given by

ml =
1

Nl

∑
i∈Cl

xi (class mean)

m =
1

N

∑
i∈{1,2,...,N}

xi (sample mean)
(1)

Obviously, the sample mean and the two class means are related by
N m = N1m1 +N2m2. In the two-classes case, Sb further simplifies to

Sb =
N1N2

N
(m1 −m2) (m1 −m2)

> (between-classes scatter) (2)

Setting λ = J(w) one arrives at the generalised eigenvalue problem
Sb w = λSw w. For a binary classification problem and a positive defi-
nite within-class scatter matrix, the eigenvector corresponding to the largest
eigenvalue is proportional to

w = S−1w (m1 −m2) (weight vector) (3)

This is proved in Lemma 1 in Appendix C. It is expedient to define the
bias as the center between the projected class means because this prevents
the classifier from being biased towards one of the classes if the number of
training samples per class is not equal:

bLDA = −w>(m1 −m2)/2 (bias term) (4)

The classifier output ŷ for a new sample x is calculated as ŷ := w>x + b.
This quantity is the signed distance to the hyperplane, more generally known
as decision value. It is these decision values that are subject to the analytical
approach developed below. The class labels can be derived from the sign of
the decision value, with class ”+1” for ŷ ≥ 0 and class ”−1” for ŷ < 0 [25].
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Figure 1: Two equivalent perspectives on binary LDA. Left : Classical view of LDA as a
classification problem. Class distributions are modelled as multivariate Gaussian densities
(indicated by the ellipses and shaded areas) and w is the normal to the optimal separating
hyperplane. Right : LDA can be framed as a regression problem by coding each class by
a number (e.g. +1 and -1) and then performing linear regression using the features as
predictors and class labels as response variable. Both approaches yield the same w (up to
scaling).

2.3. Binary LDA as a least-squares problem

There are several equivalent formulations of LDA. For two classes, LDA
is formally equivalent to LCMV beamforming [27, 28, 29]. Furthermore, as
illustrated in Figure 1, binary LDA can be cast as a least-squares regression
problem [25, 26, 30, 31]. Let X ∈ RN×P be the data matrix containing sam-

ples as rows and features as columns. Then X̃ ∈ RN×(P+1) is the augmented
data matrix obtained by adding a column of 1’s (for the bias term) and β is
the regression weights vector absorbing both w and b

X̃ = [X, 1N ] ∈ RN×(P+1), β =

(
w
bLR

)
∈ RP+1

where 1N is a vector of N ones. The bias term is denoted as bLR since
it is generally different from the LDA bias term bLDA. The class labels are
collected in a response vector y ∈ RN that uses numerical codes (e.g. +1
and −1) for the class labels. The standard regression problem using the full
dataset can then be formulated as
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Figure 2: Visual depiction of important variables used in the derivation. Decision values
are abbreviated as ’dvals’.

β̂ = arg min
β

||X̃β − y||22 (5)

with the solution given by β̂ = (X̃>X̃)−1 X̃> y. Following the derivation
in Appendix A, and assuming that the class labels are coded as +1 and −1,
it can be shown that β̂ consists of the two components

w ∝ S−1w (m1 −m2)

bLR =
N1 −N2

N
−m>w

(6)

In other words, the solution for w using linear regression is proportional to
the LDA solution given in Eq. (3). Since scaling does not affect classification
performance, one can say that the solutions are identical. Unless the classes
have equal proportions of samples (N1 = N2), the bias term bLR differs from
the common choice presented in Eq. (4). However, class proportions and the
exact numerical coding of the classes in y do not affect the direction of w.
This is shown in Appendix A.

2.4. An analytical approach to cross-validation for least-squares methods

In this section, the analytical approach to cross-validation is introduced
for binary LDA. For linear regression and ridge regression, the approach is
identical, with y simply being continuous a response variable instead of a

7



vector of class labels. The approach has been introduced before for leave-
one-out cross-validation [9, 10, 11] and k-fold cross-validation [12, 13] but
without the detailed derivation provided here.

Let Tr ⊂ {1, 2, . . . , N} be the indices of the training samples, and Te
⊂ {1, 2, . . . , N} be the indices of the test samples. Let y ∈ {−1,+1}N be the
vector of class labels. In the regression framework, these class labels serve
as target decision values. The decision values obtained from the classifier
trained on the full dataset are denoted as ŷ. The cross-validated decision
values obtained from a classifier trained on only the training set and then
tested on the independent test set are denoted as ẏ. XTr resp. XTe, and yTr

resp. yTe refer to the submatrix or subvector corresponding the training resp.
test samples. To ease reading of the formulas, some important quantities used
in the derivations are depicted in Figure 2.

2.4.1. Basic idea

In the regression framework, training the classifier is equivalent to calcu-
lating the vector of regression weights β̇ from the training data

β̇ = (X̃>Tr X̃Tr)
−1 X̃>Tr yTr (model based on training data) (7)

In k-fold cross-validation, this process is repeated for each of the K train-
ing folds. However, as will be shown next, it suffices to train only one model
using all available data

β̂ = (X̃> X̃)−1 X̃> y (model based on all data)

and then obtain the cross-validated decision values directly via an ana-
lytical approach.

2.4.2. Hat matrix

The hat matrix H ∈ RN×N is defined as

H = X̃ (X̃>X̃)−1 X̃> (hat matrix) (8)

It is a quantity well-known in linear regression [32]. Its name stems from
the fact that it ”puts the hat” onto the response vector y by mapping the
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true responses onto the predicted responses ŷ = Hy. The submatrix HTe is
obtained from H by selecting only the rows and columns that correspond to
test samples. HTr,Te is obtained from H by selecting the rows corresponding
to training samples and the columns corresponding to test samples. As will
be seen below, the hat matrix arises naturally during updating.

2.4.3. Updating X̃>Tr yTr

A formula that will prove useful later on is the product X̃>Tr yTr which
can be obtained as follows

X̃>Tr yTr = X̃>y − X̃>Te yTe. (9)

2.4.4. Updating the inverse scatter matrix

Similarly, the scatter matrix on the training data can be obtained from
the full scatter matrix by removing the scatter corresponding to the test
samples,

X̃>Tr X̃Tr = X̃> X̃− X̃>Te X̃Te. (10)

Suppose that X̃> X̃ and its inverse, denoted as S := (X̃> X̃)−1 have
already been calculated and let I be the identity matrix. The matrix inversion
lemma (a.k.a. Sherman-Morrison-Woodbury formula) can be used to update
the inverse scatter matrix on the training data as

(X̃>Tr X̃Tr)
−1 = (X̃> X̃− X̃>Te X̃Te)

−1

= S + S X̃>Te (I− X̃Te S X̃>Te)
−1X̃Te S

= S + S X̃>Te (I−HTe)
−1X̃Te S

(11)

This solution circumvents the explicit inversion of the scatter matrix, but
it still involves a number of matrix multiplications. It therefore only serves
as an intermediate result.

2.4.5. Updating the weights

To calculate the weights on the training data, Eq. (9) and Eq. (11) can
be plugged into Eq. (7). This yields
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β̇ =
(
S + S X̃>Te (I−HTe)

−1X̃Te S
)

(X̃>y − X̃>Te yTe)

= β̂ −
(
S X̃>Te (I−HTe)

−1
) (

[I−HTe] yTe − X̃Te β̂ + HTe yTe

)
= β̂ −

(
S X̃>Te (I−HTe)

−1
) (

yTe − X̃Te β̂
)

= β̂ −
(
S X̃>Te (I−HTe)

−1
)

( yTe − ŷTe)

(12)

where êTe := yTe−ŷTe is the estimation error on the test samples between
the correct and the predicted decision values using a model trained on the
full dataset. As will be seen next, β̇ does not need to be calculated explicitly.

2.4.6. Updating the decision values

The goal is to derive the cross-validated decision values for the test sam-
ples denoted as ẏTe. As an intermediate step, the corresponding estimation
error is calculated first.

ėTe = yTe − ẏTe (cross-validated estimation error) (13)

Inserting Eq. (12) then leads to the desired analytical approach

ėTe = yTe − X̃Te β̇

= yTe − ŷTe︸ ︷︷ ︸
=êTe

+HTe(I−HTe)
−1 êTe

= (I−HTe + HTe) (I−HTe)
−1 êTe

= (I−HTe)
−1 êTe (analytical approach)

(14)

It is now easy to obtain the cross-validated decision values on the test
set by simply solving Eq. (13) for ẏTe. Finally, these decision values can be
used to calculate classification accuracy, AUC, or any other desired metric
of classification performance.

2.5. Adjusting the bias term

The bias term resulting from the regression approach does not generally
coincide with the bias term used in LDA. However, the bias terms to coincide
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if N1 = N2. Hence, for unbalanced data, undersampling of the majority class
or oversampling of the minority class is a remedy. Alternatively, if area under
the ROC curve (AUC) is used as classifier performance metric, the bias term
is irrelevant.

If it is not possible to use one of these approaches, the bias term needs
to be adjusted. To this end, the class means and the sample mean on the
training need to be calculated and projected onto w (see definition of bLDA

and bLR). Fortunately, it is not required to explicitly calculate w. Instead,
one can determine the decision values of the cross-validated model on the
training set, ẏTr, and then calculate bLR and bLDA directly. This is achieved
by applying Eq. (14) to the training data:

ėTr = êTr + HTr,Te (I−HTe)
−1 êTe

ẏTr = yTr − ėTr

(15)

Finally, the operation ẏTe ← ẏTe − bLR + bLDA adjusts the bias.

2.5.1. Summary: analytical approach

It has been shown that in k-fold cross-validation, it suffices to train just
one regression model on the whole dataset. By evaluating Eq. (14) the
decision values for each of the folds are obtained directly without explicitly
calculating any of the K models.

2.6. Regularisation

Since neuroimaging data is often low-dimensional, or the number of sam-
ples is smaller than the number of features, the within-class scatter matrix
tends to be ill-conditioned. Two similar regularisation approaches have been
explored in the literature. They are equivalent in that they define the same
family of classifiers (up to scaling of w).

2.6.1. Ridge regularisation

A multiple of the identity matrix is added to the within-class scatter
matrix [14, 33, 34]. The regularised within-class scatter matrix is Sw + λI,
where λ ∈ [0,∞] is the regularisation term and I is the identity matrix. λ = 0
yields the ordinary, unregularised solution. The ridge solution for w is then
given by

w = (Sw + λI)−1 (m1 −m2) (16)
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In Appendix B it is proven that, in the regression framework, the corre-
sponding solution is given by

β̂ = (X̃>X̃ + λI0)
−1 X̃> y (17)

where I0 ∈ R(P+1)×(P+1) is a diagonal matrix that is identical to the
identity matrix except for the last element which is 0 instead of 1. This
construction assures that the bias term corresponding to the last entry is not
subjected to regularisation.

Analogous to Eq. (10), the regularised scatter matrix for the training
data can be obtained as an update on the full model:

X̃>Tr X̃Tr + λI0 = X̃> X̃ + λI0︸ ︷︷ ︸
full scatter

− X̃>Te X̃Te︸ ︷︷ ︸
update

After redefining S := (X̃> X̃ + λI0)
−1 and correspondingly including the

regularisation term in the hat matrix H = X̃ (X̃>X̃ + λI0)
−1 X̃>, the ana-

lytical approach is identical to Eq. (14).

2.6.2. Shrinkage regularisation

The within-class scatter matrix is replaced by a convex combination of
the empirical covariance matrix and a scaled identity matrix, (1−λ) Sw+λνI,
where ν = trace(Sw)/P is a scaling parameter that equalises the traces of
Sw and νI, and λ ∈ [0, 1] [15]. Unfortunately, shrinkage regularisation does
not allow for simple low-rank updates as before. This can be seen when one
inspects an update of the regularised scatter matrix

(1− λ)X̃>TrX̃Tr + λνTrI0 = (1− λ)X̃>X̃ + λνI0︸ ︷︷ ︸
full scatter

−
(

(1− λ)X̃>TeX̃Te + λ(ν − νTr)I0
)

︸ ︷︷ ︸
update

where ν is the scaling calculated on the full dataset and νTr is the scaling
calculated on the training data. The problem is that it is necessary to update
the regularisation term as well. This is caused by the scaling factor νTr, which
changes for each training set, thereby changing the amount of regularisation.
This turns a low-rank update into a full rank update, precluding significant
performance gains by updating.
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For this reason, it is recommended to resort to ridge regularisation. If a
researcher is used to work with shrinkage, the following simple relation can
be used to transform a given shrinkage parameter λshrink into a corresponding
ridge parameter λridge. Given a fixed value for λshrink, the goal is to find a
λridge such that the regularised scatter matrices are proportional:

(1− λshrink) X̃> X̃ + λshrink ν I0
!∝ X̃> X̃ + λridge I0

Obviously, this relation holds when the ridge parameter is defined as

λridge =
λshrink

1− λshrink
ν (18)

2.7. Using the analytical approach for permutation testing

The hat matrix H is invariant under class label permutations because it
depends on the features alone. Consequently, it does not need to be recalcu-
lated when the class labels are permuted. Let the permuted class labels be
denoted as yσ. If y and ŷ are adjusted accordingly

y← yσ

ŷ← H yσ

the formulas in the previous section directly apply. They are compiled in
Algorithm 1.

2.8. Multi-class LDA

Multi-class LDA is the generalisation of binary LDA to more than two
classes. Like binary LDA, it involves a projection step and a thresholding
step. In the projection step, the data is mapped onto a (C − 1)-dimensional
subspace, where C is the number of classes. In the second step, a new sample
is assigned to the class with the closest class centroid. LDA thus acts as a
prototype classifier. The scatter matrices are calculated as before, but now
information is pooled across all classes.

Sb =
∑

j ∈{1,2,...,C}

nj (mj −m)(mj −m)> (between-classes scatter)

Sw =
∑

j ∈{1,2,...,C}

∑
i∈Cj

(xi −mj)(xi −mj)
> (within-class scatter)

13



Algorithm 1 Fast cross-validation and permutations for binary LDA

H← X̃ (X̃>X̃ + λI0)
−1 X̃>

for all permutations σ do
y← yσ

ŷ← H yσ

for all test sets Te do
ėTe ← (I−HTe)

−1 êTe

ẏTe ← yTe − ėTe

Calculate classification performance on current test set
end for
Average classification performances across test sets

end for
Output: classification performance for each permutation

Assuming that there are more features than classes, the between-classes
scatter matrix Sb has rank C−1. Consequently, there are multiple non-trivial
solutions that again can be obtained via the generalised eigenvalue problem

Sb W = Sw WΛ (19)

where Λ is a diagonal matrix of eigenvalues. A set of discriminant coor-
dinates is obtained corresponding to non-zero eigenvalues of the eigenvalue
problem. They are collected in a matrix W ∈ RP×(C−1) and scaled such that
W>SwW = I [25]. As for binary LDA, ridge regularisation can be applied
to the within-class scatter matrix by replacing Sw by Sw + λI [14].

2.9. Multi-class LDA in a regression framework

Unfortunately, multi-class LDA is not equivalent to multivariate linear
regression using a class indicator matrix as response matrix [2]. Nevertheless,
there is a close relationship between both approaches [22, 2, 35, 36]. A useful
characterisation is given in Hastie et al. [22]. They show that multi-class
LDA is equivalent to optimal scoring (OS) wherein regression is performed
using a response vector with optimal numerical scores for each class. Finding
the optimal scores is an optimisation problem that is solved jointly with the
regression problem. Let Y ∈ RN×C be the class indicator matrix whose
(i,j)-th element is defined as
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Yij =

{
1 if sample i belongs to class j

0 otherwise

Let θ ∈ RC be the vector containing the optimal scores. Then the re-
sponse vector of optimal scores can be written as Yθ, and the optimal scoring
problem is given by

arg min
β,θ

||X̃β −Yθ||22 (optimal scoring)

where β and θ are jointly optimised. The additional constraintN−1||Yθ||2 =
1 avoids trivial solutions. Hastie et al. [22] show that this optimisation prob-
lem can be broken up into two successive steps.

Step 1 : A multivariate regression is performed on the class indicator ma-
trix B̃ = arg min ||X̃ B̃ − Y||2F , where || · ||F is the Frobenius norm. The

result is a matrix of regression weights B̃ ∈ R(P+1)×C , where each column of
regression weights corresponds to the respective column of Y. This yields
the matrix of regression fits Ŷ = HY.

Step 2 : The optimal score vector is found via an eigendecomposition of
Ŷ>Y. Let Θ ∈ RC×(C−1) be the eigenvectors of this decomposition, also
called optimal scores, where the column corresponding to the trivial eigen-
value 0 (if X̃ is centered) or 1 (if X̃ is not centered) has been removed. Let
α2
1, α

2
2, ..., α

2
C−1 be the corresponding eigenvalues. Let B be the submatrix of

B̃ with the last row (bias term) omitted. Then the columns of BΘ point in
the same directions as the discriminant coordinates obtained in multi-class
LDA but their scaling differs. To scale the discriminant coordinates, they
are right-multiplied with the diagonal matrix

D =
√
N
−1


√
α2
1(1− α2

1) 0 . . . 0

0
√
α2
2(1− α2

2) . . . 0
...

...
. . . 0

0 0 . . .
√
α2
C−1(1− α2

C−1)


−1
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Note that the normalisation
√
N
−1

does not appear in the original defi-
nition of the scaling matrix ([22], p. 83) but is necessary here because the
multi-class LDA has been calculated using the within-class scatter matrix.
In contrast, Hastie et al. use the covariance matrix which differs by a scaling
factor of N . As main result of their derivation, the relationship between the
discriminant coordinates W in Eq. (19) and the optimal scoring results is
given by

W = BΘD (20)

2.10. The analytical approach for multi-class LDA

How can these findings be used to develop an analytical approach for
multi-class LDA? Starting from Eq. (20), a dot is used to indicate that the
matrices have been estimated using the training data. Left-multiplication
with the test data then yields

XTe Ẇ = XTe ḂΘ̇Ḋ

⇔ Y̆Te = ẎTe Θ̇Ḋ

where Y̆Te is used to denote the desired discriminant scores for the test
data (obtained in step 2). This notation is necessary to differentiate them
from the cross-validated regression fits Ẏ (obtained in step 1). After calcu-
lating Ŷ = HY, ẎTr and ẎTe can be obtained by applying Eq. (14) and Eq.
(15) using the matrix of estimation errors Ê = Y − Ŷ. Θ̇ and Ḋ are then
obtained via the eigenanalysis eig(Ẏ>Tr YTr/NTr) on the training data. Note

that in practice, the augmented data matrix X̃ and the regression weights B̃
can be used. The classification results are equivalent since the distance of a
sample to the class centroids is unaffected by the constant shift incurred by
the bias term.

Concluding, an analytical approach for step 1 of OS has been developed.
There is no straightforward way to update the eigenvalue decomposition in
step 2. However, the eigenanalysed matrix is of dimensions C × C, so for
most practical applications the computational costs are negligible. Algorithm
2 compiles these results.

16



Algorithm 2 Fast cross-validation and permutations for multi-class LDA

H← X̃ (X̃>X̃ + λI0)
−1 X̃>

for all permutations σ do
Y ← Yσ

Ŷ ← H Yσ

for all test sets Te do
(step 1)
ẎTr ← YTr − ĖTr

ẎTe ← YTe − ĖTe

(step 2)
(Θ̇, (α2

1, α
2
2, ...))← eig(Ẏ>Tr YTr/NTr)

Y̆Te ← ẎTe Θ̇Ḋ
Calculate classification performance on current test set

end for
Average classification performances across test sets

end for
Output: classification performance for each permutation

Method Classes Complexity

Standard Binary O(KNP 2 +KP 3)
analytical approach Binary O(KN3)
Standard Multi-class O(KNP 2 +KCP 2 + TP 3)
analytical approach Multi-class O(KN3C)

Table 1: Computational complexity of training LDA classifiers in a permutation testing
regime. The standard approach is compared with the analytical approach presented in
this paper. K: #folds; N : #samples; P : #features; C: #classes
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2.11. Computational complexity of the analytical approach

The asymptotic computational complexity for classifier validation using
cross-validation is quantified in terms of floating point operations. The an-
alytical approach developed in this paper is compared to the standard ap-
proach wherein a classifier is trained from scratch on every training set.
Regularisation is not considered separately since the addition of the regu-
larisation term inflicts negligible costs and is the same in both algorithms.
For simplicity, the complexity is given in terms of the standard textbook
algorithms. Speed-ups can of course be achieved using more sophisticated
algorithms. The complexity calculations are summarised in Table 1.

2.11.1. Binary LDA

For training a single binary LDA classifier, two class means need to be
calculated which involves adding up training samples and features and di-
viding two times, leading to a complexity of O(NP ), where P is the number
of features. Calculating the within-class scatter matrix requires N(P + P 2)
steps, where the P is for subtracting the class mean and the P 2 is for calcu-
lating the outer vector product (O(NP 2)). Instead of then calculating the
inverse of the within-class scatter matrix, one can solve the system of linear
equations Sw w = m1 −m2 (O(P 3)). Calculation of the bias bLDA requires
O(P ). Taken together, the complexity for training a single classifier amounts
to O(NP 2 + P 3). This process is repeated K times, K being the number
of folds. This yields an overall complexity of O(KNP 2 +KP 3) since the
lower-order terms can be ignored for asymptotic complexity.

For the analytical approach based on the regression approach, the hat ma-
trix needs to be calculated initially at a complexity of O(N2P +NP 2 + P 3).
Then Eq. (14) needs to be evaluated for each training iteration (O(KN3)).
If the bias term needs to be corrected, operations at O(KN2) are required.
This yields an asymptotic complexity ofO(KN3) for the analytical approach.

2.11.2. Multi-class LDA

The asymptotic complexity for training a single multi-class LDA classi-
fier is provided first. Calculating means for each of the C classes, involves
adding up training samples and features and dividing C times (O(NP ) +
O(CP )). Calculating the within-class scatter matrix is equal to the binary
case (O(NP 2)). Calculating the between-classes scatter matrix involves cal-
culating C outer vector products O(CP 2). The generalised eigenvalue de-
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composition has an overall complexity of O(P 3). Repeating this process K
times yields an overall complexity of O(KNP 2 +KCP 2 +KP 3).

For the analytical approach based on the optimal scoring approach, the
hat matrix needs to be calculated initially at a complexity ofO(N2P +NP 2 + P 3).
Obtaining the cross-validated regression fits ẎTr and ẎTe involves a complex-
ity of O(KN3C) each. This is followed by the calculation and eigendecompo-
sition of Ẏ>Tr YTr (O(KC2N +KN3C)). Finally the discriminant scores are
calculated (O(KC2N)). This yields an asymptotic complexity of O(KN3C).

2.12. Simulations

To vet the analytical approach its efficacy is compared to the standard
approach using simulated data. The data is created as follows: Each class
centroid is randomly placed on the surface of a unit hypersphere in feature
space. A common covariance matrix is randomly sampled from a Wishart
distribution. Samples are then created by randomly sampling from a multi-
variate normal distribution parameterised by the corresponding class centroid
and the common covariance matrix.

The number of features was varied from 10 to 1000 in 40 logarithmic steps.
For binary LDA, cross-validation was performed using 5 folds, 10 folds, 20
folds, and leave-one-out. Simulations were run separately for 100 and 1000
samples. Simulations were run with 10-fold cross-validation and 100, 1000,
or 10,000 permutations. The number of samples and the number of features
were set to either 100 or 1000. For every combination of parameters, the
simulation was repeated 20 times.

For multi-class LDA, 10-fold cross-validation was used with data being
split into 5 classes or 10 classes with equal class proportions. For cross-
validation, the number of samples was either 100 or 1000. For permutations,
the number of features was fixed to 100 or 1000. The number of permutations
was limited to 10 or 100 to keep overall computation time tractable. For
every combination of parameters, the simulation was repeated 20 times for
cross-validation. For permutations, it was repeated 10 times.

Both binary and multi-class LDA update rules were compared to the
vanilla approach wherein the classifier is trained on each training set and then
applied to the test set. Different datasets and different folds were randomly
created for each choice of parameters. However, for each of the two methods
(analytical approach vs classical approach) the random seed was reset to
assure equal data and equal folds. All analyses were performed in MATLAB
(Natick, USA). The tic and toc functions were used to measure the total
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computation time for cross-validation and permutation testing iterations. As
target measure, relative effiency was computed, defined as

Relative efficiency = log10
time(standard approach)

time(analytical approach)

This quantity has a simple interpretation in terms of orders of magnitude
of improvement in computation time of the analytical approach over the
standard method. For instance, a value of 0 means that both methods are
at parity. A value of 1 means that the analytical approach is 10 times faster
than the standard method, a value of 2 means that the analytical approach
is 102 = 100 times faster, and so on. Simulations were run on a Thinkpad X1
Carbon with 16 GB of RAM and an Intel Core i7-6600U CPU @ 2.60GHz ×
4 processor.

2.13. EEG data

The analytical approach was applied to a publicly available multi-modal
dataset of participants watching greyscale images of faces and scrambled faces
[24]. The 16 EEG/MEG datasets with a total of 380 EEG/MEG channels
were read into MATLAB using FieldTrip [37]. Epochs were created from
-0.5 s to 1 s relative to image onset, and the pre-stimulus interval was used
for baseline correction. Finally, data were downsampled to 200 Hz. The
type of stimulus (face vs scrambled) was used as class label for binary LDA.
For multi-class LDA, the face stimuli were further split in order to create 3
classes. The total number of trials varied across subjects, with 787 trials on
average.

For both binary and multi-class LDA, two different analyses were con-
ducted. In the first case, classification was performed separately for every
time point across time interval ranging from -0.5 s to 1 s. At each time point,
100 permutations were conducted with shuffled class labels and a 10-fold
cross-validation in each permutation. The amplitudes in each channel and
were used as features (380 features). In the second case, the post-stimulus in-
terval was divided into successive, non-overlapping windows. The amplitudes
in each channel were averaged within these windows and then all averaged
amplitudes were concatenated to a single feature vector. For binary LDA,
100 ms windows were used (10 ∗ 380 = 3800 features). For multi-class LDA,
200 ms windows were used (5 ∗ 380 = 1900 features).

Analyses were run on the high-performance cluster at the Cardiff Univer-
sity Brain Research Imaging Centre (CUBRIC). Each compute node consists

20



10 16 29 52 94 17
0

30
7

55
4

10
00

Features

0.5

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
ef

fic
ie

nc
y

N = 100

Folds

5-fold

10-fold

20-fold

Leave-one-out

10 16 29 52 94 17
0

30
7

55
4

10
00

Features

0.5

0.0

0.5

1.0

1.5

2.0

2.5

N = 1000
Cross-validation

(binary LDA)

10 16 29 52 94 170 307 554 1000

Features

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
el

at
iv

e 
ef

fic
ie

nc
y

N = 100

Classes

5

10

10 16 29 52 94 170 307 554 1000

Features

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N = 1000
Cross-validation
(multiclass LDA)

10 100

Permutations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
el

at
iv

e 
ef

fic
ie

nc
y

N = 100

Features

100

1000

10 100

Permutations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N = 1000
Permutations

(multiclass LDA)

100 1000 10000

Permutations

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
ef

fic
ie

nc
y

N = 100

Features

100

1000

100 1000 10000

Permutations

0.0

0.5

1.0

1.5

2.0

N = 1000
Permutations
(binary LDA)(a)

(b)

Figure 3: Results of the simulations denoted in terms of relative efficiency. A relative
efficiency of 1 means that the analytical approach is 10x faster than the standard approach,
2 means 100x faster, and 3 means 1000x faster. (a) Binary LDA. (b) Multi-class LDA.

of 12 cores with 192 GB RAM and an Intel(R) Xeon(R) X5660 CPU running
at 2.80GHz.

2.14. Software

MATLAB implementations of the analytical approach and the scripts re-
producing the results are publicly available on GitHub (github.com/treder/Fast-Least-Squares).
Note that parts of the code require the MVPA-Light toolbox (github.com/treder/MVPA-Light)
to run.

3. Results

3.1. Simulations

Binary LDA. A three-way analysis of variance (ANOVA) was run on the
cross-validation analysis (Figure 3, top left). A continuous variable (features)
and two categorical variables, samples N (100 or 1000) and folds (5, 10, 20,
leave-one-out), were used as predictors, and relative efficiency was used as
dependent variable. There were significant main effects of features (F =
32051.69; p < .001), N (F = 1316.19; p < .001), and folds (F = 3119.03; p <
.001). Furthermore, the effect of features increased with folds (features ×
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N, F = 806.49; p < .001), and there was an N × folds interaction (F =
812.7; p < .001). Furthermore, there was a three-way interaction N × folds
× features (F = 37.16; p < .001).

A separate three-way ANOVA was performed on the permutations data
(Figure 3, top right) using N, permutations, and features as predictors. There
were significant main effects for N (F = 6899.92; p < .001), permutations
(F = 4.35; p = .014), and features (F = 111506.59; p < .001). Significant
interactions were N × permutations (F = 26.52; p < .001) and N × features
(F = 273.66; p < .001), illustrating that the effects of permutations and fea-
tures were larger for N=1000 than for N=100. Other interactions were not
significant (permutations × features, p = .58; N × permutations × features,
p = .08).

Multi-class LDA. A three-way analysis of variance (ANOVA) was run on
the cross-validation analysis (Figure 3, bottom left). A continuous variable
(features) and two categorical variables, samples N (100 or 1000) and classes
(5, 10), were used as predictors, and relative efficiency was used as dependent
variable. There were significant main effects for N (F = 1023.97; p < .001),
features (F = 38270.22; p < .001) but not for classes (p = .15). There
was a significant features × N interaction (F = 125.74; p < .001) signifying
a smaller effect of features for larger N. The other interactions were not
significant (features × classes, p = .1; N × classes, p = .86, features × N ×
classes, p = .462).

A separate three-way ANOVA was performed on the permutations data
(Figure 3, bottom right) using N, permutations, and features as predictors.
There were significant main effects of N (F = 366.2; p < .001), permutations
(F = 27.4; p < .001), and features (F = 16970.31; p < .001). Again, there
was a significant N × features interaction (F = 24.93; p < .001) signifying
a smaller effect of features for larger N. The other interactions were not
significant (N × permutations, p = .13; permutations × features, p = .35, N
× permutations × features, p = .06).

3.2. EEG/MEG data

Results are depicted in Figure 4. The data for binary LDA and multi-class
LDA were combined into a single two-way ANOVA model. Features (small
= 380, large = 3800/1900) and type of classifier (binary LDA, multi-class
LDA) were used as predictors. There were significant main effects of features
(F = 826.04; p < .001) and classifier (F = 388.2; p < .001). Moreover,
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Figure 4: Results of the permutation analysis of the EEG/MEG dataset using 100 permu-
tations. Relative efficiency is plotted for each subject (x-axis), and two different numbers
of features, with different panels for binary LDA and multi-class LDA.

there was a significant features × classifier interaction (F = 6.01; p = .017)
signifying a larger effect of features for multi-class LDA than for binary LDA.

4. Discussion

Due to its robustness and competitive speed, regularised LDA is an ex-
cellent candidate for classification problems involving many training-testing
iterations. The analytical approach explored in this paper boosts the per-
formance of least-squares models and multi-class LDA, particularly for high-
dimensional data.

The simulations revealed a persistent speed gain using the analytical ap-
proach to cross-validation as opposed to the standard approach wherein the
classifier is retrained on every training fold. Relative efficiency increases
notably with the number of features. Furthermore, it increases with the
number of cross-validation folds, and it decreases when the number of sam-
ples increases. Cross-validation was significantly faster, by up to 3 orders of
magnitude (1000x faster) for binary LDA, and close to 4 orders of magnitude
(10,000x faster) for multi-class LDA.

In line with this, the analytical approach consistently outperformed the
standard approach in the EEG/MEG analysis. This was particularly preva-
lent in multi-class LDA, where for 1900 features, the analytical approach was
between 1000x and 10,000x faster than the standard approach.

Why is relative efficiency higher for multi-class LDA than for binary LDA?
A possible explanation is that multi-class LDA is more involved computa-
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tionally since a generalised eigenvalue problem needs to be solved, whereas
binary LDA requires only matrix inversion. Crucially, the analytical ap-
proach requires only a single matrix inversion in both the binary and the
multi-class case. This warrants a larger computational benefit for multi-class
LDA.

4.1. Is it just a trade-off between samples and features?

It is worth noting that the analytical approach does not simply trade in
the number of samples (N) for the number of features (P). If both quanti-
ties are equal, e.g. N = P = 1000, binary LDA is about 10x faster than
the standard approach for 10-fold cross-validation and about 100x faster for
leave-one-out. For multi-class LDA and 10-fold cross-validation, relative ef-
ficiency is close to 3 (almost 1000x faster).

The complexity calculations of the analytical approach grows cubically
with the number of test samples whereas the standard method grows cubi-
cally with the number of features. Consequently, the standard method and
the analytical approach are at parity when the number of test samples is
roughly equal to the number of features, i.e. N/K ≈ P . One can deduce
the rule of thumb that it is beneficial to use the analytical approach in cross-
validation as soon as P > N/K. The approach becomes more efficient as K
increases with the upper limit being leave-one-out (K = N).

4.2. What is the practical use of the analytical approach?

The analytical approach yields a significant increase in speed, but is this
practically relevant for typical neuroimaging analyses? There are a number
of scenarios in modern neuroimaging analyses wherein a large number of
training-testing iterations is performed and hence the approach developed
here can be useful:

• Multi-dimensional data. Sometimes, statistical analysis is repeatedly
performed along multiple data dimensions. For instance, in time-
frequency data, a classifier may be validated for every combination of
time point and frequency. In time generalisation, a classifier is trained
and tested at every combination of time points in a trial. In searchlight
analysis [38], a classifier is validated on a local neighbourhood centered
on a voxel, and this operation is repeated for all voxels.
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• Condition-rich designs. Some experimental designs, often used in the
context of Representational Similarity Analysis (RSA) [6], feature a
large number of stimulus conditions. To build the Representational
Dissimilarity Matrix, distances between each pair of conditions are re-
quired. Hence with C conditions, C(C − 1)/2 cross-validations are
required for every subject. Initially RSA was based on simple Pearson
correlation between samples, but more recent work has increasingly fo-
cused on classifier-based approaches, including LDA classification accu-
racy and LDA-related measures such as Linear Discriminant Contrast
(LDC) [39, 40].

• Permutation testing. For permutation testing, a classification regime
needs to be repeated thousands of times. For instance, Stelzer et al.
[18] developed a cluster test for fMRI data that involved repeated 100
classification analyses with permuted class labels for each searchlight
position and every subject. The results were passed on to the second
level to perform group inference. Similarly, in Allefeld et al. [17], per-
mutations at the subject level are computed for deriving a minimum-
statistic used in group inference.

4.3. LDA vs. other least-squares approaches

Although the analyses presented in this paper focus on LDA, all results
readily extend to other least-squares methods such as linear regression and
ridge regression. If the vector of class labels is replaced by a vector of contin-
uous responses, then all equations and results apply equally. Furthermore,
since multi-class LDA is closely related to Canonical Correlation Analysis
(CCA) [22], speed-ups for CCA might be possible using a similar approach.

4.4. Analytical approach vs. kernel methods

Kernel-based methods such as Support Vector Machines [7] are based on
a samples × samples kernel matrix K that can be thought of as representing
pair-wise similarities between samples according to some non-linear similarity
measure. The calculation of the kernel matrix is affected by the number of
features, but once the matrix it is available, optimisation algorithms such
as Dual Coordinate Descent for SVM [41] directly operate on the samples
dimension rather than the feature dimension. For linear SVM, the kernel
matrix comprises standard dot products, Kij = x>i xj. There is a close
relationship between the linear kernel and the hat matrix which consists of
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the entries Hij = x>i (X>X + λI)−1 xj. For λ > 0, this quantity is positive-
definite and hence a valid dot product. In other words, the hat matrix is
simply a linear kernel whereby the samples have been pre-whitened with
respect to the regularised scatter matrix. If the covariance of the samples is
normalised and spherical, we have H = K.

However, kernel methods such as SVM require iterative optimisation al-
gorithms as well as optimisation of hyperparameters. The analytical formula
for least-squares methods and multi-class LDA hence yields a computational
advantage in many cases.

4.5. What about big data?

Due to increasing levels of data sharing and large-scale studies, cognitive
neuroscience is on the verge of becoming a big data science [42, 43, 44, 45]. In
a big data setting, both the number of samples and the number of features is
extremely large. This poses a challenge to all statistical learning approaches.
For least-squares models, this challenge is admittedly not resolved with the
present contribution. However, the following measures can be used to cope
with either too many samples or too many features.

• Too many samples. The principal problem is that for a very large num-
ber of samples (e.g. > 100, 000) it might be impossible to store the hat
matrix in memory. Since a kernel matrix has the same size as the
hat matrix, a similar problem occurs in the optimisation of SVMs. In
SVM, on-the-fly calculation of the required kernel matrix entries has
been proposed as a solution [41]. If the number of features is small
enough, the matrix X>X can be stored in memory and submatrices of
the hat matrix can be calculated on the fly. Furthermore, the subma-
trices I−HTe that need to be inverted are roughly of size N/K. Hence,
one can always find a K large enough such that these matrices are small
enough to be invertible efficiently.

• Too many features. If the number of features is too large, it is impossi-
ble to store the scatter matrix X>X in memory. Random projections
can offer a solution to this problem. There is evidence that if X ∈ RN×P

is multiplied by a sparse matrix A ∈ RP×Q with Q � P , the covari-
ance structure of the original data is approximately preserved in the
smaller, sparsified matrix XA ∈ RN×Q [46]. This matrix can then be
used instead of the scatter matrix.

26



An alternative approach that deals with both issues simultaneously is
ensemble learning [2], wherein a large number of statistical models called
weak learners is trained in parallel. Each model uses a subset of features and
a subset of samples. If these subsets are small enough, even large datasets can
be digested by the ensemble. Furthermore, since each weak learner is trained
independently of the others, ensemble learning can be efficiencly parallelised
on compute clusters.

4.6. Conclusion

For least-squares methods and multi-class LDA, an analytical approach
to cross-validation allows for an increase of computation speed up to several
orders of magnitude. The analytical approach enables least-squares methods
and multi-class LDA to be used in high-dimensional feature spaces, particu-
larly in the P � N setting (many features, few samples) often encountered
in neuroimaging data. Target applications in modern neuroimaging stud-
ies include multi-dimensional datasets, Representational Similarity Analysis,
and permutation testing.

Appendix A. Relationship between linear regression and binary
LDA

The regression problem Eq. (5) leads to the normal equations

X̃>X̃β = X̃y (A.1)

Recall that X̃ is the augmented data matrix consisting of the original data
X and a column of 1’s. Without loss of generality, one can assume that the
samples in the data matrix X have been arranged as X = [X1; X2] such that
samples corresponding to class 1 come first and samples corresponding to
class 2 come last. The response vector y ∈ RN contains the numerical codes
for the class labels. Class 1 is represented by z1 ∈ R, class 1 is represented
by z2 ∈ R, class 2 is represented by z1 6= z2. Accordingly, y consists of N1

times z1 followed by N2 times z2. Plugging this into Eq. (A.1) yields

[
X>1 X>2
1
>
N1

1
>
N2

] [
X1 1N1

X2 1N2

] [
w
b

]
=

[
X>1 X>2
1
>
N1

1
>
N2

] [
z11N1

z21N2

]
(A.2)
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Multiplying the matrices and using X>X = Sw + N1m1m
>
1 + N2m2m

>
2

one obtains

[
Sw +N1m1m

>
1 +N2m2m

>
2 N m

N m> N

] [
w
b

]
=

[
N1z1m1 +N2z2m2

N1z1 +N2z2

]
(A.3)

with m1,m2, and m as defined in Eq. (1). Solving the last row of the
equation for b yields b = N1z1/N +N2z2/N −m>w. Plugging this into the
first equation in Eq. (A.3) yields

(Sw +N1m
2
1 +N2m

2
2 −N m2) w = N1m1 −N2m2 − (N1z1 +N2z2) m

where m2 is short for mm>. Using Nm = N1m1+N2m2 and the relation
N1 −N2

1/N = (N1N2)/N one obtains

(Sw +
N1N2

N
(m1 −m2)(m1 −m2)

>︸ ︷︷ ︸
Sb

) w =
2N1N2 (z1 − z2)

N
(m1 −m2)

(A.4)

The vector Sb w is a multiple of (m1 −m2), hence there exists α ∈ R
such that

Sb w = (
2N1N2 (z1 − z2)

N
− α) (m1 −m2) (A.5)

Inserting Eq. (A.5) in Eq. (A.4) and assuming that Sw is regular yields

Sww = α (m1 −m2)⇔ w = α S−1w (m1 −m2)

This proves that w in the linear regression approach is (up to scaling)
identical to the LDA solution. Furthermore, the exact numerical codes z1
and z2 for the classes determine b and the scaling of w, but they do not affect
the direction of w.
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Appendix B. Ridge regularisation for binary LDA

In this section, the correspondence between the regularised LDA in Eq.
(16) and ridge regression solution in Eq. (17) is established. To simplify the
math, it is assumed that in y, class 1 is coded as +1 and class 2 is coded
as −1. The assertion is that regularised LDA can be cast in a least-squares
framework using the normal equations

(X̃>X̃ + λI0)β = X̃y (B.1)

where I0 is defined like in Eq. (17). Following the derivation in the
previous section, one arrives at

([
X>1 X>2
1
>
N1

1
>
N2

] [
X1 1N1

X2 1N2

]
+ λI0

)[
w
b

]
=

[
X>1 X>2
1
>
N1

1
>
N2

] [
1N1

−1N2

]
(B.2)

and finally

[
(Sw + λI) +N1m1m

>
1 +N2m2m

>
2 N m

N m> N

] [
w
b

]
=

[
N1m1 −N2m2

N1 −N2

]
(B.3)

The rest of the proof follows the approach in the previous section, with Sw
being replaced by Sw + λI. This proves the normal equations in Eq. (B.1)
correspond to regularised LDA.

Appendix C. Proof of lemma

Lemma 1. Let Sb w = λSw w be the generalised eigenvalue problem asso-
ciated with a binary classification problem with unequal class means (m1 6=
m2) and let Sw be positive definite. Then there is one non-zero eigenvalue
λ = N1N2/N (m1 −m2)

>S−1w (m1 −m2) > 0. The associated eigenvector is
proportional to S−1w (m1 −m2).

Proof. Define ∆ := m1−m2 and w := S−1w ∆. Since Sw is regular, the gener-
alised eigenvalue problem can be written as an ordinary eigenvalue problem
S−1w Sb w = λw. Then using Eq. (2) for Sb one obtains
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S−1w Sbw = S−1w (
N1N2

N
∆∆>)w = S−1w ∆(

N1N2

N
∆>S−1w ∆︸ ︷︷ ︸
:=λ

) = λw,

hence w is an eigenvector of S−1w Sb with eigenvalue λ. Since S−1w is positive
definite, λ > 0. Since S−1w Sb is of rank 1, all other eigenvalues are zero.
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