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Abstract

For first-order quasi-linear systems of partial differential equations, we formulate an assumption of a 
transition from initial hyperbolicity to ellipticity. This assumption bears on the principal symbol of the 
first-order operator. Under such an assumption, we prove a strong Hadamard instability for the associated 
Cauchy problem, namely an instantaneous defect of Hölder continuity of the flow from Gσ to L2, with 
0 < σ < σ0, the limiting Gevrey index σ0 depending on the nature of the transition. We restrict here to 
scalar transitions, and non-scalar transitions in which the boundary of the hyperbolic zone satisfies a flatness 
condition. As in our previous work for initially elliptic Cauchy problems [B. Morisse, On hyperbolicity 
and Gevrey well-posedness. Part one: the elliptic case, arXiv:1611.07225], the instability follows from a 
long-time Cauchy–Kovalevskaya construction for highly oscillating solutions. This extends recent work of 
N. Lerner, T. Nguyen, and B. Texier [The onset of instability in first-order systems, to appear in J. Eur. Math. 
Soc.].
Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

We consider the following Cauchy problem, for first-order quasi-linear systems of partial 
differential equations:

∂tu =
d∑

j=1

Aj(t, x,u)∂xj
u + f (t, x,u) , u(0, x) = h(x). (1.1)

The system is of size N , that is u(t, x) and f (t, x, u) are in RN and the Aj(t, x, u) ∈ RN×N . 
The time t is nonnegative, and x is in Rd . We assume throughout the paper that the Aj and f are 
analytic in a neighborhood of some point (0, x0, u0) ∈ Rt ×Rd

x ×RN
u .

Under assumptions of weak defects of hyperbolicity for the first-order operator, we prove 
ill-posedness of (1.1) in Gevrey spaces. Weak defect of hyperbolicity is here understood as a 
transition from hyperbolicity of the principal symbol at initial time, to ellipticity of the principal 
symbol for later times. Our results extend Métivier’s ill-posedness theorem in Sobolev spaces for 
initially elliptic operators [10], our own ill-posedness result in Gevrey spaces for initially elliptic 
operators [11], Lerner, Nguyen and Texier’s theorem on systems transitioning from hyperbolicity 
to ellipticity [6], and echo Lu’s construction of WKB profiles [8] which are destabilized by terms 
not present in the initial data.
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Our proofs use Métivier’s method developed in [10] based on majoring series, hence the as-
sumption of analyticity for the Aj and f . Our assumptions of weak defects of hyperbolicity mean 
that the operator in (1.1) experiences a transition in time from hyperbolicity to non hyperbolicity. 
The transition is possibly not uniform in space. Our assumptions bearing on the principal sym-
bol, and the associated normal forms, are presented in Section 2. Our results are Theorems 2.11
and 2.12, stated in Section 2.4. The proofs comprise Sections 3 to 5.

In the companion paper [12], we consider the case of genuinely non-scalar transitions.

1.1. Background

1.1.1. A long-time Cauchy–Kovalevskaya result for elliptic Cauchy problems
Our article [11] contains a long-time Cauchy–Kovalevskaya theorem, based on the paper [10]

by Métivier, which proves an Hadamard instability result for initially elliptic quasi-linear systems 
in Gevrey spaces. Precisely, the result of [11] asserts that the flow associated to the Cauchy 
problem (1.1) fails to be Hölder from a highly regular σ -Gevrey space to the very lowly regular 
L2 space, locally in the x variable and for σ less than a critical exponent σ0 depending on initial 
spectrum, under the assumption of initial ellipticity for the first-order differential operator.

Here initial ellipticity is understood as an initial defect of hyperbolicity. That is for some 
(x0, �u0, ξ0) ∈ Rd

x ×RN
u ×Rd

ξ , the principal symbol at (0, x0, �u0, ξ0):

A0 :=
d∑

j=1

Aj(0, x0, �u0)ξ0,j

has at least one couple of non-real eigenvalues, with imaginary part ±iγ0 associated to eigenvec-
tors �e±.

In [11] we posit in (3.2) the ansatz uε(t, x) = εu(t/ε, x, (x − x0) · ξ0/ε), where u(s, x, θ) is 
periodic in the θ variable. We transform then the Cauchy problem (1.1) into the equation

∂su − A(εs, x)∂θ u = G(u) (1.2)

for some non-linear remainder term G(u). The leading term A(t, x) is here the principal symbol

A(t, x) =
∑
j

Aj (t, x, �u0)ξ0,j . (1.3)

The ellipticity condition is an open condition bearing on the principal symbol A. In particular, 
ellipticity at (0, x0) implies ellipticity around (0, x0). The proof of [11] introduces the propagator 
U defined by

∂sU(s′, s, x, θ) − A(εs, x)∂θU(s′, s, x, θ) = 0 , U(s′, s′, x, θ) = Id. (1.4)

By ellipticity, the propagator U has an exponential growth. We introduce an appropriate Banach 
space of functions of (s, x, θ) which are analytical in the x variable and whose Fourier coeffi-
cients in θ have an exponential growth which reflects the growth of the propagator. A fixed point 
argument shows existence and uniqueness, and exponential growth in this space, which implies 
the Hadamard instability.



5224 B. Morisse / J. Differential Equations 264 (2018) 5221–5262
The main issue in [11], compared to the previous analysis of Metivier [10], is that in Gevrey 
spaces, the Hadamard instability is recorded at much longer times than in Sobolev spaces. The 
instability is observed thanks to highly oscillating, well-polarized initial data, which generate 
solutions growing exponentially both in time and frequency. Observing an instability means that 
at some time, the L2 norm of the solution is far greater (with respect to the frequency) than the 
Sobolev or Gevrey norm of the initial datum. Considering the fundamental oscillation eix·ξ with 
frequency ξ , a simple computation leads to the Sobolev norm ||eix·ξ ||Hm � |ξ |m, whether the 
Gevrey norm is ||eix·ξ ||σ,c,K � e(σcσ )−1|ξ |σ (see (2.25) below and Lemma 3.3 in [11]). Hence the 
observation of the instability is recorded as a much longer time in Gevrey spaces than in Sobolev 
spaces.

1.1.2. Lerner, Morimoto and Xu’s result on transition to ellipticity for scalar equations
In [5], Lerner, Morimoto and Xu introduce the notion of transition to ellipticity for initially 

hyperbolic systems. A prototypical example is the Burgers equation with a complex forcing: 
∂tu + u∂xu = i. In the case of real data, the principal symbol is initially hyperbolic. Due to the 
complex forcing, the principal symbol is elliptic for ulterior times. For general equations (1.1)
(with N = 1: scalar equations), under bracket conditions generalizing the situation for Burgers 
with complex forcing, and describing a transition from hyperbolicity to ellipticity, the authors in 
[5] prove a strong form of instability, namely that if local C2 solutions exist, then the complement 
of the analytic wave-front set of the datum is not empty. In particular, if the bracket conditions 
are formulated at (x0, u0) ∈ Rd × R, it is shown in [5] that for any analytical datum h such 
that h(x0) = u0, there exists smooth initial data h close to h which do not generate local C2

solutions, a result analogous to Lebeau’s theorem for Kelvin–Helmholtz [4]. The proof of [5]
relies strongly on a representation of solutions based on the method of characteristics, specific to 
scalar equations, which was developed earlier in [9].

1.1.3. Lerner, Nguyen and Texier’s result on transition to ellipticity for general systems
In [6], Lerner, Nguyen and Texier extend the analysis of [5] to systems (1.1). The result of [6]

shows an instantaneous lack of Hölder well-posedness of the flow, with an arbitrarily large loss 
of derivatives, under appropriate assumptions of transition to ellipticity. The analysis of [6] is 
based on the method of approximation of pseudo-differential flows introduced in [14]. One key 
observation in [6] is that for systems, many types of transitions may occur. The focus in [6] is 
on genuinely non-scalar transitions (more about this specific point in Remark 1.1). For these, the 
propagator generically grows in time like the Airy function.

1.1.4. Defect of hyperbolicity in Maxwell systems
There is a strong analogy between the progression from [10] to our present results and recent 

results [7], [8] in geometric optics. In [7], Lu and Texier study large-amplitude solutions to 
Maxwell-based systems in the small wavelength limit. They show that in appropriate coordinates, 
resonances in frequency correspond to points of weak hyperbolicity. Thus at the resonances, the 
subprincipal symbol plays a role in the stability analysis. Under a Levi condition, hyperbolicity 
is violated around the resonances, and WKB solutions do not approximate exact solutions issued 
from appropriate nearby initial data, no matter how precise the order of the WKB approximation. 
This result is somehow analogous to Métivier’s initial ellipticity result. Following [7], Lu studied 
in [8] a situation in which WKB solutions are destabilized by terms which are not present in the 
initial data. That is, the Levi condition of [7] is satisfied initially, but higher-order harmonics of 
the WKB solutions, which are generated by the nonlinearities in the course of the propagation, 
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are associated with higher-order resonances. For these resonances, the Levi conditions may not 
be satisfied, leading to instability. This framework is somehow similar to ours, with an instability 
which develops in time, starting from an initially hyperbolic situation.

1.1.5. Ill-posedness results for hydrostatic Euler and related equations
In [2], Han-Kwan and Nguyen study the hydrostatic Euler and some singular Vlasov equations 

through the point of view of an abstract PDE ∂tU −LU =Q(u, u), where L and Q are (bi)linear 
non-local operators. For each of those equations, the corresponding operator L exhibits an un-
bounded unstable spectrum, similar to the notion of ellipticity used in the present paper. Inspired 
notably by the work [10] of Métivier, Han-Kwan and Nguyen develop an analytical framework 
in order to prove an Hadamard instability result in all Sobolev spaces. One main ingredient is, 
as in [10] and the present work, to prove the existence of a family of analytical solutions for the 
abstract PDE which carry the expected exponential growth in time (called loss of analyticity for 
the semi-group in [2]).

1.2. Overview of the paper

Our assumptions are based on the framework set out in [6], the results of which we extend 
in two distinct ways: we prove existence of solutions up to the observation time at which the 
Hadamard instability is recorded, and we measure the deviation in Gevrey spaces.

We assume that for a specific frequency ξ0 ∈ Rd the linear part of the principal symbol at 
u = �u0 ∈ RN defined by (1.3) has a real spectrum at time t = 0 while non real eigenvalues 
appear for t > 0. In this sense the operator experiences a transition from initial hyperbolicity 
(t = 0, real eigenvalues) to eventual ellipticity (t > 0, non-real eigenvalues).

A sharp difference with the initially elliptic case lies in the normal forms of the operators. 
Indeed, the elliptic case is reducible to the case where A is a triangular matrix with non real and 
conjugated diagonal entries.

By contrast, transitions in time appear in many ways. There is not one single normal form. 
Section 2 will be devoted to the descriptions of such transitions in time and the associated normal 
forms for systems of size N = 2. In particular, this paper focuses on two particular normal forms, 
described in the next paragraphs.

1.2.1. The smoothly diagonalizable case
Under Assumptions 2.2, 2.4 and 2.5 (see Proposition 2.6 below), there holds

A(t, x) ≈ AS(t) :=
(

0 t

−γ 2
0 t 0

)
with γ0 > 0. Here ≈ means equality up to higher order terms in the Taylor expansion in time 
and space, and up to a change of basis. The matrix AS(t) is smoothly diagonalizable in C, with 
smooth eigenvalues ±iγ0t . This case is mostly scalar; it is analogous to a degenerate Cauchy–
Riemann problem.

Our analysis shows that our method in [11] is robust enough to allow for such a weak defect 
of hyperbolicity. We replace ansatz (3.2) therein by uε(t, x) = u(t/ε1/2, x, (x − x0) · ξ0/ε). For 
such AS(t), the growth for the associated propagator solving

∂sU
S(s′, s, θ) − AS(s)∂θU

S(s′, s, θ) = 0
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is like

|US
n (s′, s)| � exp

⎛⎝ s∫
s′

γ
�
S (τ )dτ

⎞⎠ , ∀0 ≤ s′ ≤ s , ∀n ∈ Zd (1.5)

for the Fourier coefficients of US(s′, s, θ), with γ �
S (τ ) = γ0τ .

1.2.2. The degenerate Airy case
Under Assumptions 2.2 and 2.7 (see Proposition 2.8 below), there holds

A(t, x) ≈ AAi(t, x) :=
(

0 1
−γ 2

0 (t − t
(x)) 0

)
where ≈ means equality up to higher order terms in the Taylor expansion in time and space and 
t
(x) ≥ 0 in a whole neighborhood of x = x0.2

The time transition function t
(x) defines the boundary between the elliptic and hyperbolic 
zones. Indeed, for t < t
(x), the eigenvalues are ±√

t
(x) − t while for t > t
(x) the eigenvalues 
are ±i

√
t − t
(x).

The transition between hyperbolicity and ellipticity is thus not uniform in space, and depends 
on the space-dependent transition time t
(x). In order to use and develop the method of [11], we 
have to treat the transition time as a remainder term and verify its smallness in the framework. 
From that view, the non degenerate case t
(x) = O((x − x0)

2) is out of reach of the method 
presented in this paper, and requires special attention – we devoted two companion papers [13]
and [12] to the subject – more about this specific point in Remark 1.1 below. We will focus here 
on the degenerate case

t
(x) = O((x − x0)
4).

Note that the cases of odd power of x are in contradiction with the assumption of non-negativity 
of t
 around x = x0.

We emphasize also the fact that the eigenvalues of AAi are C0 in time but not C1, hence the 
stiffness of this case.

In this framework, we replace ansatz (3.2) of [11] by uε(t, x) = u(t/ε2/3, x, (x − x0) · ξ0/ε). 
As such a transition is not semi-simple, the previous ansatz induces the following equation for 
the propagator

∂sU
Ai(s′, s, θ) − ε−1/3AAi(s, x0)∂θU

S(s′, s, θ) = 0

which as then a growth like

|UAi
n (s′, s)| � ε−1/3 exp

⎛⎝ s∫
s′

γ
�
Ai(τ )dτ

⎞⎠ , ∀0 ≤ s′ ≤ s , ∀n ∈ Zd (1.6)

2 If there were x1 such that t
(x1) < 0, we would be in the case of initial ellipticity and Métivier’s result would apply.
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for the Fourier coefficients of UAi(s′, s, θ) with γ �
Ai(τ ) = γ0τ

1/2 which is typical of the Airy 
growth.

Remark 1.1. In [6], the authors allow for generic non-scalar transitions, for which t
(x) =
O((x − x0)

2). In particular, the space–time domain {(t, x) : (x − x0)
2 ≤ t} is included in the 

domain of hyperbolicity. As we will see precisely in the course of the proof of Proposition 5.4, in 
our context this space–time domain is too large for the standard Cauchy–Kovalevskaya theorem 
to apply. Thus, in the case t
(x) = O((x −x0)

2), we need a specific Gevrey well-posedness result 
in that space–time domain before observing the instability develop in the elliptic domain. This 
Gevrey well-posedness result is the object of the article [13], and the completion of the instability 
proof in the case t
(x) = O((x − x0)

2) is the object of the article [12].

1.2.3. Example: compressible Euler with Van der Waals pressure law
Transitions of the principal symbol from hyperbolicity to ellipticity, as described in the above 

paragraphs, are observed in physical equations describing phase transitions. One such system 
(mentioned in both [10] and [6]) is the compressible Euler equations in one spatial dimension, 
with a Van der Waals pressure law:{

∂tu1 + ∂xu2 = 0

∂tu2 + ∂x(p(u1)) = 0
(1.7)

where p follows a Van der Waals equation of state, for which there holds p′(u1) ≤ 0, for some 
u1 ∈ R. The system is hyperbolic (resp. elliptic) for p′(u1) > 0 (resp. for p′(u1) < 0). For solu-
tions which leave the hyperbolic zone, a phase transition occurs. This corresponds for us to the 
catastrophic growth recorded in the elliptic zone. If for instance the elliptic zone is defined by 
{|u1| ≤ δ}, for some δ > 0, then solutions may enter the elliptic zone only to leave it immediately, 
due to the exponential growth.

2. Main assumptions and results

2.1. Branching eigenvalues and defect of hyperbolicity

We look at the possible cases of a defect of hyperbolicity, that is transitions from initial hy-
perbolicity to ellipticity at time t > 0, following the work of Lerner, Nguyen and Texier of [6].

We introduce first

A(t, x,u) =
∑
j

Aj (t, x,u)ξ0,j . (2.1)

We assume there are (x0, �u0, ξ0) ∈ Rd × RN × Rd and r0 > 0 such that the principal symbol 
defined by

A(t, x) = A(t, x, �u0) (2.2)

satisfies

Sp
(
A(0, x)

)⊆R , ∀x ∈ Br (x0) (2.3)
0
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which stands for initial and local hyperbolicity around x0 ∈ Rd . Note that, as soon as there is 
some x1 ∈ Rd such that A(0, x1) has non real spectrum, we are in the case of initial ellipticity 
treated in [11].

We assume also that, for small times t > 0, there are some x close to x0 such that

Sp
(
A(t, x)

)
�R , ∀ t > 0. (2.4)

Condition (2.3) stands for initial and local hyperbolicity around x0; condition (2.4) expresses the 
ellipticity of A at time t > 0. Up to translations in x and u, which do not affect our forthcoming 
assumptions, and by homogeneity in ξ , we may assume

x0 = 0 , �u0 = 0 , |ξ0| = 1. (2.5)

Since the Aj have real coefficients, non-real eigenvalues of A(t, x) appear in conjugate pairs. 
For such a pair λ±(t, x), by reality of the eigenvalues at t = 0 we have a double eigenvalue 
λ−(0, x) = λ+(0, x) ∈ R of A(0, x). To avoid higher order transitions (which would involve 
eigenvalues of multiplicity 3 or greater), we assume the eigenvalues of A(0, 0) to be distinct and 
simple, except for one double eigenvalue:

Assumption 2.1. We assume the eigenvalues of A(0, 0) to be distinct and simple, except for one 
double eigenvalue.

We block diagonalize the principal symbol into A(t, x)(0) and A(t, x)(1). The block A(t, x)(0)

is a 2 ×2 matrix corresponding to the double eigenvalue, and the (N −2) ×(N −2) block A(1) has 
simple real eigenvalues at t = 0 in a whole neighborhood of x = 0. Thanks to Assumption 2.1
the block diagonalization is smooth. Therefore we focus our discussion on A(0), and we may 
assume N = 2, that is A ≡ A(0).

The question is now to describe the possible matrices A(t, x) satisfying conditions (2.3) and 
(2.4). Following [6], we reformulate the conditions (2.3) and (2.4) in terms of the characteristic 
polynomial of A defined as

P(λ, t, x) = det
(
λ − A(t, x)

)
(2.6)

which is simply in the case N = 2

P(λ, t, x) =
(

λ − 1

2
TrA(t, x)

)2

+ (t, x) (2.7)

where we define

(t, x) = detA(t, x) −
(

1

2
TrA(t, x)

)2

. (2.8)

Thus the real or complex nature of the spectrum depends on the sign of . So condition (2.3) is 
equivalent in terms of  to

(0, x) ≤ 0 , ∀x ∈ Br (0). (2.9)
0
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As a double eigenvalue λ−(0, x) = λ+(0, x) ∈ R of A(0, x) corresponds to a double root of 
P(λ, 0, x), we formulate the following Assumption:

Assumption 2.2 (Branching eigenvalues). In addition to (2.9), we assume that there exists some 
λ0 ∈ R such that

P(λ0,0,0) = 0 , ∂λP (λ0,0,0) = 0. (2.10)

Remark 2.3. Note that condition (2.10) is equivalent to

λ0 = 1

2
TrA(0,0) , (0,0) = 0.

For condition (2.4) to be satisfied, that is for a conjugate pair of eigenvalues to appear as 
t > 0, (t, x) has to be positive for t > 0. The eigenvalues of A, which are the zeroes of P , are 
then expressed by the square roots of . Even though the regularity of , being an algebraic 
combination of the coefficients of A, is analytic, the regularity of the square roots of  can be 
of course much weaker. How much rougher than  may 

√
 be has been studied in particular 

by Glaeser [1]. The question of the regularity of the eigenvalues and of the eigenvectors is here 
of importance as we work in the analytic framework: we may not use non-smooth (in time and 
space) changes of basis, since the methods we use, following [10], strongly rely on analyticity. 
In particular, we may not diagonalize the principal symbol if the eigenvectors are not smooth.

2.2. The case of a smooth transition

For the square roots of  to be as smooth as , the discriminant  has to be the square of a 
smooth function δ(t, x):

(t, x) = δ(t, x)2.

In this case, note that (0, x) = δ(0, x)2 ≥ 0. Since we assume also that (0, x) ≤ 0 by (2.9), 
we get

δ(0, x) = 0 , ∀x ∈ Br0(0).

This is equivalent to the existence of some analytic function δ̃(t, x) such that

δ(t, x) = t δ̃(t, x).

We sum up all this in the following

Assumption 2.4 (Smooth transition). There is a function δ(t, x) analytic in the t and x variables 
such that

(t, x) = (tδ(t, x))2 (2.11)

with
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δ(0,0) = γ0 > 0. (2.12)

Under Assumption 2.4, since (0, x) ≡ 0 the eigenvalues of A(0, x) are the double eigenvalue 
1
2 TrA(0, x). There are two cases,3 as A(0, x) could be semi-simple or not. In what follows we 
add the assumption

Assumption 2.5 (Semi-simplicity). The unique eigenvalue of A(0, 0) is semi-simple, for all x
near x = 0.

This assumption is Hypothesis 1.5 in [6]. We can now prove the following normal form result

Proposition 2.6 (Normal form for the smooth transition). Under Assumptions 2.2, 2.4 and 2.5, 
there is an analytical change of basis Q0(t, x) ∈ R2×2 such that

Q−1
0 (t, x)

(
A(t, x) − 1

2
TrA(t, x) Id

)
Q0(t, x) =

(
0 t

−tδ2 0

)
. (2.13)

Proof. We denote (
a11 a12
a21 −a11

)
= A(t, x) − 1

2
TrA(t, x)Id.

By definition (2.8) there holds  = −a2
11 − a12a21 and then, by (2.11) in Assumption 2.4

−a2
11 − a12a21 = t2δ(t, x)2. (2.14)

By Assumption 2.5 the matrix (aij )i,j satisfies

a11(0, x) = a12(0, x) = a21(0, x) = 0

so that there are smooth functions ãij (t, x) such that aij (t, x) = t ãij (t, x). Hence by (2.14) we 
get

δ(t, x)2 = −ã11
2 − ã12ã21.

As δ(0, 0)2 > 0 by Assumption 2.4 (2), the term ã12ã21(0, 0) is non zero. Hence either one of 
ã12(0, 0) or ã21(0, 0) is non zero. In the first case, the matrix

Q0(t, x) =
(

ã11 1

ã21 0

)
is such that (2.13) holds. The second case is treated in the same way, which suffices to end the 
proof. �

3 As opposed to the case of a stiff transition, described in Section 2.3, where A(0, 0) is not semi-simple.
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2.3. The case of a stiff transition

If  is not the square of a function, its square roots are typically not as smooth as . In fact, 
for any k ∈ N it is possible to find  such that it is analytic, but its square roots are Ck and not 
Ck+1. The first non degenerate case of this kind is when

∂t(0,0) > 0 (2.15)

which implies that (t, 0)1/2 ∼ t1/2 which is C0 but not C1 at t = 0. With (0, 0) = 0 by 
Assumption 2.2, condition (2.15) and the implicit function theorem give the existence of an 
analytic function t
(x) such that

(t, x) = 0 ⇐⇒ t = t
(x) locally around (t, x) = (0,0). (2.16)

Introducing

e(t, x) =
1∫

0

∂t((1 − τ)t
(x) + τ t, x)dτ

there holds

(t, x) = (t − t
(x)) e(t, x). (2.17)

As  is analytic, e is also analytic, and satisfies

e(0,0) = ∂t(0,0) > 0

so that e is positive around (0, 0). Then the sign of (t, x), hence the real or complex nature 
of the spectrum of A(t, x), is given by the sign of t − t
(x), a situation comparable to the one 
described in Section 1.2.3 of [6]:

• For (t, x) under the transition curve {(t
(x), x)} the eigenvalues of A(t, x) are real.
• For (t, x) above the transition curve, the eigenvalues of A(t, x) have a non-zero imaginary 

part like ±i(t − t
(x))1/2.

The question is then to describe t
. First, as (0, 0) = 0,

t
(0) = 0. (2.18)

As (0, x) ≤ 0 for x ∈ Br0(0), we have

t
(x) ≥ 0 , ∀x ∈ Br0(0)

which implies

∂xt
(0) = 0 (2.19)
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so that the Taylor expansion of t
(·) around x = 0 is as

t
(x) = 1

2

∑
j,k

∂xj
∂xk

t
(0) xj xk + O(x3)

and the Hessian 
(
∂xj

∂xk
t
(0)

)
j,k

is a nonnegative matrix. But as we will see in the course of the 

proof of Proposition 5.4, the non degenerate case 
(
∂xj

∂xk
t
(0)

)
j,k

�= 0 cannot be dealt with our 
method. We then assume

∂xj
∂xk

t
(0) = 0 , ∀ j, k = 1, . . . , d. (2.20)

Just as before, inequality (2.9) implies that third order derivatives of t
(·) are null at x = 0, and 
there holds

t
(x) = O(x4).

In order to sum up those assumptions in a more intrinsic way, we express derivatives of t

by derivatives of . By definition (2.16) of t
, there holds (t
(x), x) = 0 hence, differentiating 
with respect to x and taking x = 0:

∂xt
(0) ∂t(0,0) + ∂x(0,0) = 0.

As ∂t(0, 0) > 0, equality (2.19) is then equivalent to

∂x(0,0) = 0.

By Faà di Bruno formula on iterate derivatives applied to the equality (t
(x), x) = 0, we may 
prove by induction that t
(x) = O(x4) is equivalent to the following

Assumption 2.7 (Degenerate stiff transition). We assume

∂α
x (0,0) = 0 , ∀α ∈ Nd with |α| ≤ 3.

We prove now a normal form expression for A(t, x):

Proposition 2.8 (Normal form for the stiff transition). Under Assumptions 2.2 and 2.7, there are 
an analytical change of basis Q0(t, x) and real analytical functions t
(x) and e(t, x) such that

Q−1
0

(
A(t, x) − 1

2
TrA(t, x) Id

)
Q0 =

(
0 1

−(t − t
)e 0

)
. (2.21)

Proof. By definition of  and denoting

A − 1
TrA Id =

(
a11 a12
a −a

)

2 21 11
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we get  = −a2
11 − a12a21. As  ∼ t both a12 and a21 cannot both be zero at (0, 0). Assuming 

that a21(0, 0) �= 0, the matrix

Q0(t, x) =
(

a11 1
a21 0

)
is an analytical change of basis such that (2.21) holds. �
Remark 2.9. Note that, on the contrary of the normal form of the smooth transition given in 
Proposition 2.6, the normal form of the stiff transition is not semi-simple. This is of importance, 
as non-semisimplicity introduces an additional factor ε−1/3 in the upper bound (3.26) of the Airy 
propagator, to be compared with the upper bound (3.18) in the smooth case.

We add the following assumption:

Assumption 2.10 (Genuinely nonlinear zeroth-order perturbation). We assume that f (t, x, u) is 
quadratic in u locally around u = �u0, that is

∂uf (t, x,u)
∣∣
u=�u0

≡ 0

in a neighborhood of (t, x) = (0, 0).

2.4. Statement of the results

We recall first the definition of conical domain of Rt × Rd
x centered at (t, x) = (0, 0), as in 

Definition 2.2 in [11]. We denote

�R,ρ =
⋃
t≥0

{t} × �R,ρ,t =
{
(t, x) ∈ R×Rd

∣∣∣ 0 ≤ t < ρ−1, R|x|1 + ρt < 1
}

. (2.22)

Theorem 2.11 (Gevrey ill-posedness of the smooth case). Under Assumptions 2.1, 2.2, 2.4, 2.5
and 2.10, the Cauchy problem (1.1) is not Hölder well-posed in Gevrey spaces Gσ for all σ ∈
(0, σ0) with

σ0 = 1/3.

That is for all c > 0, K compact of Rd and α ∈ (0, 1], there are sequences R−1
ε → 0 and 

ρ−1
ε → 0, a family of initial conditions hε ∈ Gσ and corresponding solutions uε of the Cauchy 

problem on domains �Rε,ρε such that

lim
ε→0

||uε||L2(�Rε,ρε )/||hε||ασ,c,K = +∞. (2.23)

The time of existence of the solutions uε is at least of size ε1/2−σ/2.
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Theorem 2.12 (Gevrey ill-posedness of the Airy case). Under Assumptions 2.1, 2.2, 2.7 and 2.10, 
the result of Theorem 2.11 holds for any Gevrey index σ ∈ (0, σ0), with

σ0 = 2/13.

Recall that a function f defined on an open set B of Rd is said to belong to the Gevrey space 
Gσ (B) if for all compact K ⊂ B , there are constants CK > 0 and cK > 0 that satisfy

|∂αf |L∞(K) ≤ CKc
|α|
K |α|!1/σ , ∀α ∈ Nd . (2.24)

We then define a family of semi-norms on Gσ(B), for all compact K ⊂ B and c > 0 by

||f ||σ,c,K = sup
α

|∂αf |L∞(K)c
−|α||α|!−1/σ . (2.25)

Remark 2.13. The limiting Gevrey index σ0 is in both cases due in part to technical limitations. 
In the proof, in each case remainder terms are proved to be small in the spaces described later. 
The limiting index σ0 is directly influenced by this smallness of the remainders. In the smooth 
case, a null remainder would imply σ0 = 1/2, which is the expected limiting Gevrey index in this 
case. In the Airy case, a smaller remainder would imply a greater index σ0, but it is not clear if 
the limit 1/2 could be attained.

Also, as pointed out in Remark 2.9, one main difference between both cases is the extra weight 
for the Airy propagator in the ansatz of highly oscillating solutions, as shown in Lemma 3.5. This 
implies a stronger constraint on the smallness of the remainder terms appearing in the Airy case, 
as explained in the proof of Proposition 5.4.

The proofs are given in Sections 3 to 5, with an appendix devoted to the Airy equation in Sec-
tion 6. We introduce a functional framework that is flexible enough to simultaneously cover the 
smooth, semi-simple case (Theorem 2.11) and the stiff, non-semi-simple case (Theorem 2.12). 
We develop in Section 3 the ansatz of highly oscillating solutions which reduces the Cauchy 
problem (1.1) to a fixed point equation. In Section 4 we recall properties of the spaces developed 
in [11], and use them to prove contraction estimates and existence of solutions. Finally, in Sec-
tion 5.3 we prove that the constructed solutions satisfy a lower bound that leads to the Hadamard 
instability for Gevrey regularity σ ∈ (0, σ0).

3. Highly oscillating solutions and reduction to a fixed point equation

3.1. Highly oscillating solutions

As in Section 3.1 of [11], we first reduce (1.1) to the new Cauchy problem

∂tu =
∑
j

Aj (t, x,u)∂xj
u + F(t, x,u)u with u(0, x) = h(x) (3.1)

where F is analytic in a neighborhood of (0, 0, 0) ∈ Rt × Rd
x × RN

u (see (2.5)), and h small 
analytic functions satisfying h|x=0 = 0, as perturbations of the trivial datum h ≡ 0.
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Next, we adapt the ansatz of highly oscillating solutions of [10] and [11] in order to take into 
account the different time scaling of the exponential growth. In this view we posit

uε(t, x) = ε2/(1+η)u
(
ε−1/(1+η) t, x, x · ξ0/ε

)
(3.2)

where

• The small parameter ε > 0 corresponds to high frequencies.
• The function u(s, x, θ) is 2π -periodic in θ .
• The scaling term ε2/(1+η) insures the smallness of the nonlinear terms.

We introduce for any analytical function H(t, x, u) the compact notation

H(s, x,u) = H
(
ε1/(1+η)s, x, ε2/(1+η)u

)
. (3.3)

For uε(t, x) to be solution of (3.1) it is then sufficient that u(s, x, θ) solves the following equation

∂su = ε−η/(1+η)A ∂θ u + ε1/(1+η)

⎛⎝∑
j

Aj ∂xj
u + F u

⎞⎠ (3.4)

where we use the notation (3.3) for A and F, and A is defined by (2.1).

3.2. Remainder terms

We focus here on the term ε−η/(1+η)A ∂θ u of the previous equation. To prove the expected 
growth of solutions of the initial problem, we decompose the symbol A(t, x, u) in several pieces 
to highlight the leading term denoted by AS(t) for the smooth case, AAi(t) for the Airy case, 
which will lead to the exponential growth.

First, by analyticity of the Aj and Taylor expansion formula, there is a family of analytical 
matrices (Auj

)j=1,...,N such that locally around (0, 0, 0) ∈Rt ×Rd
x ×RN

u there holds

A(t, x,u) = A(t, x) +
∑
j

Auj
uj . (3.5)

In both smooth and Airy cases, we perform an analytical Taylor expansion on A(t, x) in order to 
highlight the principal term that lead to the exponential growth. This is made precise in the two 
following lemmas.

Lemma 3.1 (Expansion formula: smooth case). Following Proposition 2.6, we introduce the 
leading term AS(t), defined up to a change of basis and a trace term as

Q−1
0 (t, x)

(
AS(t) − 1

2
TrA(t, x)

)
Q0(t, x) =

(
0 t

−γ 2
0 t 0

)
(3.6)

and the analytical error term
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Q−1
0 RS Q0 =

(
0 0

−t (δ2 − δ(0,0)2) 0

)
. (3.7)

Then there holds

A(t, x) = AS(t) + RS(t, x) (3.8)

and there are analytical matrices RS
t (t, x) and RS

x(t, x) such that

RS(t, x) = t2RS
t (t, x) + tx · RS

x(t, x) (3.9)

locally around (0, 0) ∈Rt ×Rd
x .

Proof. First the equality (2.13) of Lemma 2.6 implies that

Q−1
0 (t, x)

(
AS − 1

2
TrA(t, x)

)
Q0(t, x) =

(
0 t

−tδ2 0

)
hence (3.8). Second, by analyticity of δ and Taylor expansion formula, there are analytical func-
tions rS

t and rS
xj

such that

δ2(t, x) − δ(0,0)2 = t rS
t (t, x) + x · rS

x(t, x).

We finally introduce the matrices

Q−1
0 RS

t Q0 =
(

0 0
−rS

t 0

)
and Q−1

0 RS
x Q0 =

(
0 0

−rS
x 0

)
which leads to (3.9) and ends the proof. �
Lemma 3.2 (Expansion formula: Airy case). Following Proposition 2.8, we introduce the leading 
term AS(t), defined up to a change of basis and a trace term as

Q−1
0 (t, x)

(
AAi(t) − 1

2
TrA(t, x)

)
Q0(t, x) =

(
0 1

−γ 2
0 t 0

)
(3.10)

and the analytical error term

Q−1
0 (t, x)

(
RAi − 1

2
TrA(t, x)

)
Q0(t, x) =

(
0 0

−t (e − e(0,0)) + t
e 0

)
. (3.11)

Then there holds

A(t, x) = AAi(t) + RAi(t, x), (3.12)

and there are analytical matrices RAi
t , RAi

x and RAi
e such that

RAi(t, x) = t2RAi(t, x) + tx · RAi(t, x) + t
RAi(t, x, ξ) (3.13)
t x e
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locally around (0, 0).

Proof. First equality (2.21) of Lemma 2.8 implies

Q−1
0 (t, x)

(
AAi − 1

2
TrA(t, x)

)
Q0(t, x) =

(
0 1

−(t − t
(x))e(t, x) 0

)

hence (3.12). Second, by analyticity of e and Taylor expansion formula, there are analytical 
functions et and exj

such that

e(t, x) − e(0,0) = tet + x · ex

locally around (0, 0). Introducing the matrices

Q−1
0 RAi

t Q0 =
(

0 0
−et 0

)
, Q−1

0 RAi
x Q0 =

(
0 0

−ex 0

)
and Q−1

0 RAi
e Q0 =

(
0 0
e 0

)

leads to (3.13) and ends the proof. �
In both Airy and smooth cases, we have then an expansion formula of the form

A(t, x,u) = Aη(t) + Rη(t, x) + Au · u

where η corresponds to the parameter introduced in the ansatz (3.2), adapted to each specific 
case. This parameter will be precised in Lemma 3.4 in the smooth case, and in Lemma 3.5 in the 
Airy case. The remainder term Rη is RS defined by (3.7) in the smooth case, and is RAi defined 
by (3.11) in the Airy case.

We rewrite now equation (3.4) as

∂su − ε−η/(1+η)Aη(ε1/(1+η)s)∂θ u = Gη(s, x,u) (3.14)

where we define the source term

Gη(s, x,u) = ε−η/(1+η)
(

Rη + ε2/(1+η)Au · u
)

∂θ u (3.15)

+ε1/(1+η) (A(s, x,u) · ∂xu + F(s, x,u)u)

using notation (3.3).

Remark 3.3. Note that in [11] there are no remainder terms Rη, as we consider the full varying-
coefficient operator A(εs, x)∂θ in equation (3.14).
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3.3. Upper bounds for the propagators

To solve the Cauchy problem of equation (3.14) with initial datum hε specified in Section 3.4, 
we first study the case Gη ≡ 0, that is

∂su − ε−η/(1+η)Aη(ε1/(1+η)s)∂θ u = 0. (3.16)

Note that this equation is linear, non autonomous and non scalar. For a general Aη(t) we define 
the matrix propagator Uη(s′, s, θ) as the solution of

∂sU
η(s′, s, θ) − ε−η/(1+η)Aη(ε1/(1+η)s)∂θU

η(s′, s, θ) = 0 , Uη(s′, s′, θ) ≡ Id

and Uη(s′, s, θ) is periodic in θ , following the ansatz (3.2). The choice of the time scaling s =
ε−1/(1+η)t , that is the choice of η, is such that solutions of (3.16) have a typical exponential 
growth independent of ε. Both following Lemmas make the growth of the propagators explicit 
in both cases.

Lemma 3.4 (Growth of the propagator: the smooth case). Under Assumptions 2.2, 2.4 and 2.5, 
we put η = 1. The matrix propagator US(s′, s, θ) defined by

∂sU
S(s′, s, θ) − AS(s)∂θU

S(s′, s, θ) = 0 , US(s′, s′, θ) = Id (3.17)

satisfies the following growth of its Fourier modes in the θ variable:

|US
n (s′, s)| � exp

⎛⎝ s∫
s′

γ
�
S (τ )dτ |n|

⎞⎠ , ∀0 ≤ s′ ≤ s ,∀n ∈ Z (3.18)

with

γ
�
S (τ ) = γ0τ. (3.19)

Proof. First, as AS is given by (3.6) up to a change of basis Q0(t, x) and a trace term 1
2 TrA, we 

introduce

Vn(s
′, s, x) = exp

⎛⎝in

s∫
s′

1

2
TrA(ε1/(1+η)τ, x)dτ

⎞⎠Q−1
0

(
ε1/(1+η)s, x

)
Un(s

′, s) (3.20)

which solves

∂sVn(s
′, s) − in

(
0 ε(1−η)/(1+η)s

−γ 2
0 ε(1−η)/(1+η)s 0

)
Vn(s

′, s) = −ε1/(1+η)Q−1
0 ∂tQ0 Vn(s

′, s)

(3.21)

with initial condition Vn(s
′, s′, x) = Q−1

0

(
ε1/(1+η)s′, x

)
. We focus then on the autonomous dif-

ferential system
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∂sṼn(s
′, s) − in

(
0 ε(1−η)/(1+η)s

−γ 2
0 ε(1−η)/(1+η)s 0

)
Ṽn(s

′, s) = 0 (3.22)

which becomes, with the choice η = 1, the ε-free matrix equation

∂sṼn(s
′, s) − in s

(
0 1

−γ 2
0 0

)
Ṽn(s

′, s) = 0.

The complex constant change of basis

Q =
(

1 1
−iγ0 iγ0

)
leads us to the exact solution

Ṽn(s
′, s) = Q

(
exp(nγ0(s

2 − s′ 2)/2) 0
0 exp(−nγ0(s

2 − s′ 2)/2)

)
Q−1

which satisfies the upper bound

∣∣Ṽn(s
′, s)

∣∣� exp

⎛⎝ s∫
s′

γ
�
S (τ )dτ |n|

⎞⎠ (3.23)

with γ �
S defined in (3.19). Getting back to (3.21), we use Duhamel formula to write

Vn(s
′, s) = Ṽn(s

′, s)Q−1
0 (ε1/2s′) −

s∫
s′

ε1/2Ṽn(τ, s)
(
Q−1

0 ∂tQ0

)
(ε1/2τ)Vn(s

′, τ )dτ. (3.24)

Note that Vn(s
′, s) depends also on x through Q0 = Q0(t, x). Factorizing by the exponential 

growth exp(
∫ s

s′ γ
�
S (τ )dτ |n|), we get

exp

⎛⎝−
s∫

s′
γ

�
S |n|

⎞⎠∣∣Vn(s
′, s)

∣∣
� exp

⎛⎝−
s∫

s′
γ

�
S |n|

⎞⎠∣∣Ṽ (s′, s)
∣∣

+
s∫

s′
ε1/2 exp

⎛⎝−
s∫

τ

γ
�
S |n|

⎞⎠∣∣Ṽn(τ, s)
∣∣ ∣∣∣Q−1

0 ∂tQ0

∣∣∣
× (ε1/2τ) exp

⎛⎝−
τ∫

s′
γ

�
S |n|

⎞⎠ |Vn(s
′, τ )|dτ
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and the bound holds uniformly in x. We introduce then

yε(s
′, s) = max

x∈Kε

exp

⎛⎝−
s∫

s′
γ

�
S |n|

⎞⎠∣∣Vn(s
′, s, x)

∣∣ with Kε = BR−1(0).

Thanks to the upper bound (3.23) there holds

yε(s
′, s) � 1 +

s∫
s′

ε1/2
∣∣∣Q−1

0 ∂tQ0

∣∣∣ (ε1/2τ) yε(s
′, τ )dτ

and we make use of the Gronwall inequality to get

yε(s
′, s) � exp

(
ε1/2c (s − s′)

)
with c = max

x∈Kε

∣∣∣Q−1
0 ∂tQ0

∣∣∣
As ε1/2s is small in our setting, we get the announced upper bound (3.18). �
Lemma 3.5 (Growth of the propagator: the Airy case). Under Assumptions 2.2 and 2.7 we put 
η = 1/2. The matrix propagator UAi(s′, s, θ) defined by

∂sU
Ai(s′, s, θ) − ε−1/3AAi(ε2/3s)∂θU

Ai(s′, s, θ) = 0 , UAi(s′, s′, θ) ≡ Id (3.25)

satisfies the following growth of its Fourier modes in the θ variable:

|UAi
n (s′, s)| � ε−1/3 exp

⎛⎝ s∫
s′

γ
�
Ai(τ )dτ |n|)

⎞⎠ , ∀0 ≤ s′ ≤ s < ε−2/3 , ∀n ∈ Z (3.26)

with

γ
�
Ai(τ ) = γ0τ

1/2. (3.27)

Proof. We proceed as in the previous proof of Lemma 3.4, by defining

Vn(s
′, s, x) = exp

⎛⎝in

s∫
s′

1

2
TrA(ε1/(1+η)τ, x)dτ

⎞⎠Q−1
0 (ε1/(1+η)s, x)UAi

n (s′, s, x)

and looking at the matrix equation

∂sṼn(s
′, s) − in

(
0 ε−η/(1+η)

−γ 2
0 ε(1−η)/(1+η)s 0

)
Ṽn(s

′, s) = 0. (3.28)

As the eigenvalues of
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(
0 ε−η/(1+η)

−γ 2
0 ε(1−η)/(1+η)s 0

)
are ±iγ0ε

(1−2η)/(1+η)
√

s, the choice η = 1/2 is natural in this case.
As in the proof of Lemma 3.4, to prove the upper bound (3.26) it suffices to prove the same 

bound for Ṽn(s
′, s). This is postponed to Section 6.2 of the Appendix. It uses classical bounds 

on the Airy function. �
3.4. Free solutions

As in Section 3.5 in [11], we seek for high-oscillating, small and well-polarized initial data of 
the form

hη
ε (x) = ε2/(1+η)e−M(ε)Re

(
eix·ξ0/ε�e η

+ + e−ix·ξ0/ε�e η
−
)

(3.29)

which correspond in the ansatz (3.2) of high-oscillating solutions to

hη
ε (θ) = e−M(ε)Re

(
eiθ �e η

+ + e−iθ �e η
−
)

. (3.30)

Here �e η
+ and �e η

− are vectors chosen in each case such that Uη(0, s)hη
ε satisfies the maximal growth 

of Uη, in either smooth or Airy case. The parameter M(ε) is chosen such that both the Gevrey 
norm and the size of hη

ε is small. Following Lemma 3.3 of [11], we posit

M(ε) = ε−δ, δ ∈ (σ,1). (3.31)

Remark 3.4 in [11] explains in particular the link between the long time of existence of solutions 
and the Gevrey weight e−M(ε), hence the constraint σ < δ.

We introduce also

fη(s, θ) = Uη(0, s)hη
ε (θ) (3.32)

which we call the free solution of equation (3.14), as it solves the equation with Gη ≡ 0. In both 
smooth and Airy cases, we prove that for well-chosen �e η

+ and �e η
−, Lemma 3.2 of [11] still holds 

with

γ �
η (τ ) = γ0τ

η (3.33)

for η = 1 (corresponding to the smooth case) and η = 1/2 (corresponding to the Airy case).

Lemma 3.6 (Growth of the free solution: the smooth case). We define

�e S+ = Q0(0, x)

(
1

−iγ0

)
and �e S− = Q0(0, x)

(
1

iγ0

)
. (3.34)

Then the free solution fS of the smooth case satisfies
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|fS(s)| ≈ e−M(ε)e
∫ s

0 γ
�
S (τ )dτ , ∀s ≥ 0 (3.35)

where ≈ means equality up to a constant and with

γ
�
S(τ ) = γ0τ. (3.36)

Proof. We follow step by step the proof of Lemma 3.4. First, it is explicit that there holds

Ṽ+1(0, s)

(
1

−iγ0

)
= eγ0s

2/2
(

1
−iγ0

)
(3.37)

and also

Ṽ−1(0, s)

(
1

iγ0

)
= eγ0s

2/2
(

1
iγ0

)
. (3.38)

Then, thanks to (3.24) there holds

V+1(0, s)�e S+ = Ṽ+1(0, s)

(
1

−iγ0

)
−

s∫
0

ε1/2Ṽ+1(τ, s)
(
Q−1

0 ∂tQ0

)
(ε1/2τ)Vn(0, τ )�e S+dτ.

Using the upper bounds of Ṽ and V proved in Lemma 3.4, we get the following estimate for the 
integral term ∣∣∣∣∣∣

s∫
0

ε1/2Ṽ+1(τ, s)
(
Q−1

0 ∂tQ0

)
(ε1/2τ)Vn(0, τ )�e S+dτ

∣∣∣∣∣∣
� ε1/2

s∫
0

exp(γ0(s
2 − τ 2)/2) exp(γ0τ

2/2)dτ

� ε1/2s exp(γ0s
2/2).

By (3.37) and as ε1/2s is small, we get∣∣∣V+1(0, s)�e S+
∣∣∣≈ eγ0s

2/2

and the same holds for V−1(0, s). We end the proof by using formula (3.20). �
In the Airy case, we make a careful analysis of the prefactor term coming from the crossing 

of eigenvalues.

Lemma 3.7 (Growth of the free solution: Airy case). We define

�e Ai+ = Q0(0, x)

(
Ai1(0)

−iε1/3jAi ′(0)

)
and �e Ai− = Q0(0, x)

(
Ai1(0)

iε1/3jAi ′(0)

)
(3.39)
1 1
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where Ai1 is the Airy function defined in Lemma 6.1 of the Appendix, and j = e2iπ/3. Then the 
free solution fAi of the Airy case satisfies

|fAi(s)| ≈ s−1/4e−M(ε)e
∫ s

0 γ
�
Ai(τ )dτ , ∀0 ≤ s < ε−2/3 (3.40)

with

γ
�
Ai(τ ) = γ0τ

1/2. (3.41)

We postpone the proof of this Lemma to Section 6.3 of the Appendix.

Remark 3.8. Note that, on the contrary of [11], in each case there holds γ �
η = γ

�
η . This is due to 

the fact that we do not consider here the full varying-coefficient operator A(ε1/(1+η)s, x)∂θ but 
the reduced operator Aη(s)∂θ , which is a first-order approximation of operator A(ε1/(1+η)s, x)∂θ .

3.5. Fixed point equation

Using the propagator Uη(s′, s, θ), the free solution (3.32) and the Duhamel formula, we can 
express now (3.14) as the fixed point equation

u(s, x, θ) = fη(s, θ) +
s∫

0

Uη(s′, s, θ)Gη(s′,u(s′x, θ))ds′ (3.42)

where Gη(u) is defined by (3.15). We denote the integral term

T η(s,u) =
s∫

0

Uη(s′, s)Gη(s′,u(s′))ds′ (3.43)

which we split into three parts thanks to definition (3.15) like

T η(s,u) (3.44)

=
s∫

0

Uη(s′, s)
[(

ε−η/(1+η)Rη + ε(2−η)/(1+η)Au · u
)

∂θ u + ε1/(1+η) (A · ∂xu + F)
]
ds′

= T [η,θ](s,u) + T [η,x](s,u) + T [η,u](s,u) (3.45)

where we define

T [η,θ](s, x,u) =
s∫

0

Uη(s′, s)
[
ε−η/(1+η)Rη + ε(2−η)/(1+η)Au · u

]
∂θ u(s′)ds′ (3.46)

T [η,x](s, x,u) =
s∫
Uη(s′, s)

[
ε1/(1+η)A(s′, x,u(s′))

]
· ∂xu(s′)ds′ (3.47)
0
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T [η,u](s, x,u) =
s∫

0

Uη(s′, s)
[
ε1/(1+η)F(s′, x,u(s′))

]
u(s′)ds′ (3.48)

We have now reduced the initial question of finding a family of initial data hε generating 
a family of appropriately growing analytic solutions uε to the fixed point equation (3.42) for 
operator T η. In order to prove Theorems 2.11 and 2.12 we refer to the proof of Gevrey instability 
in the case of initial ellipticity in [11]. A sketch of the proof can be found in Section 3.6 therein.

4. Contraction estimates

We make use of spaces E constructed in Section 4 in [11] and their properties developed in 
Section 5 therein. The method is robust enough to be used in our context of transitions from 
hyperbolicity to ellipticity.

4.1. Functional spaces: definitions

We refer to Section 4.1 of [11] for definition and properties of the majoring series relation 
denoted by ≺. We recall the definition of � as the reference series in one variable

�(z) =
∑
k≥0

c0

k2 + 1
zk

with c0 > 0 such that �2 ≺ �. We recall the notation

�k(ρt) = R|k| ∑
p∈N

c0

(|k| + p)2 + 1

(|k| + p

k,p

)
ρptp , ∀k ∈Nd (4.1)

of the positive coefficients of �(RX1 +· · ·+RXd +ρt), with R and ρ both positive parameters. 
From now on, we will denote for convenience and with an abuse of notation �(RX + ρt) =
�(RX1 + · · · + RXd + ρt).

Recall that, for any formal series φ(t, x) =∑
k∈Nd φk(t)x

k in the x variable, with t a param-
eter, the notation φ(t, x) ≺t �(RX + ρt) means

|φk(t)| ≤ �k(ρt) , ∀ k ∈ Nd , ∀t < ρ−1.

We consider trigonometric series in one variable θ with coefficients in the space of formal 
series in d variables x in the sense of Section 4.1 of [11], and we denote F2d+1 the space of all 
such trigonometric series:

F2d+1 =
⎧⎨⎩v(x, θ) =

∑
n∈Z

vn(x)einθ
∣∣∣ vn(x) =

∑
k∈Nd

vn,kx
k

⎫⎬⎭ .

We now define fixed time spaces Es as in [11], which we slightly modified as to take into 
account two differences:



B. Morisse / J. Differential Equations 264 (2018) 5221–5262 5245
• The renormalization in time is t = ε1/(1+η)s instead of t = εs in [11].
• The growth of the propagator as described in Lemmas 3.4 and 3.5 still depends on a nonneg-

ative function γ �
η (τ ), and spaces E are precisely developed on such functions. The difference 

lies in the final growth of time, as it will be more precise in (4.5).

Definition 4.1 (Fixed time spaces Es). Given η ≥ 0, M ′ > 0, R > 0, ρ > 0, β ∈ (0, 1) and 
s ∈ [0, 

(
ε1/(1+η)ρ

)−1
), we denote Es = Es(η, R, ρ, M ′, β) the space of trigonometric series v ∈

F2d+1 such that for some constant C > 0 there holds

vn(x) ≺ C
c1

n2 + 1
exp

⎛⎝−
⎛⎝M ′ −

s∫
0

γη(τ )dτ

⎞⎠ 〈n〉
⎞⎠�

(
RX + ε1/(1+η)ρs

)
, ∀n ∈ Z

(4.2)

where we denote

γη(τ ) = γ �
η (τ ) + β. (4.3)

We define a norm on Es by

‖v‖s = inf {C > 0 | (4.2) is satisfied } (4.4)

As in the discussion following the Definition 4.7 of [11], we introduce the growth time s1(η)

defined implicitly as

M ′ =
s1(η)∫
0

γη(τ )dτ (4.5)

and the final time as

s(η) = min

{
s1(η),

(
ε1/(1+η)ρ

)−1
}

(4.6)

where 
(
ε1/(1+η)ρ

)−1
is the regularity time. To simplify the notations, in all the following we will 

omit the parameters R, ρ, M ′ and β in Es(η, R, ρ, M ′, β).
We consider now trigonometric series

u(s, x, θ) =
∑
n∈Z

un(s, x)einθ

with coefficients un(s, x) being formal series in x whose coefficients depend smoothly on s ∈
[0, s(η)[. We denote F2d+2 the space of all such trigonometric series:

F2d+2 =
⎧⎨⎩u(s, x, θ) =

∑
n∈Z

un(s, x)einθ
∣∣∣ un(s, x) =

∑
k∈Nd

un,k(s)x
k with un,k(s)C∞ in s

⎫⎬⎭
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Definition 4.2 (Spaces E). We introduce

E = {
u ∈ F2d+2 | ∀0 ≤ s < s(η) , u(s) ∈ Es

}
(4.7)

and the corresponding norm

|||u||| = sup
0≤s<s(η)

‖u(s)‖s (4.8)

Note that u being in E is equivalent to

un(s, x) ≺s |||u||| c1

n2 + 1
exp

⎛⎝⎛⎝M ′ −
s∫

0

γη(τ )dτ

⎞⎠ 〈n〉
⎞⎠�

(
RX + ε1/(1+η)ρs

)
(4.9)

for all n ∈ Z and s ∈ [0, s).
For u valued in CN , u ∈ E means simply that each component of u is in E, and |||u||| is then 

the maximum of the norms of the components. We denote the ball of E of radius a, centered in 
u ∈ E by

BE(u, a) = {v ∈ E | |||v − u||| < a} (4.10)

4.2. Functional spaces: properties

4.2.1. Basic properties
We remind here basic properties of spaces E. The proofs are the same as in [11], as those 

properties depend only on the nonnegativity of γ �
η .

Proposition 4.3 (Properties of Es(η) and E(η)). For any η ∈ [0, 1] and s ∈ [0, s(η)), there holds

1. The space Es(η) is an algebra, and for any v and w in Es(η) there holds

||vw||s ≤ ||v||s ||w||s . (4.11)

2. The space Es(η) is a Banach space.

As an immediate corollary, there holds

1. The space E(η) is an algebra, and for any v and w in E(η) there holds

|||vw||| ≤ |||v||| |||w|||. (4.12)

2. The space E(η) is a Banach space.

The action of analytic function H(t, x, u) on the space E, described in the Lemma 4.13 in 
[11], still holds as it relies on properties of the majoring series relation and on the definition of 
� described in Section 4.1 of [11].
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Lemma 4.4. Let H(t, x, u) be an analytical function on a neighborhood of (0, 0, 0) ∈Rt ×Rd
x ×

RN
u . There are constants CH > 0, RH > 0 and ρH > 0 which depend only on H and c0, such 

that for all R ≥ RH and ρ ≥ ρH and for ε small enough,

∀u ∈ BE(η,R,ρ)(0,1) : |||H(·, ·,u)||| � 1 (4.13)

where H is defined by (3.3) and ||| · ||| is defined by (4.8).

In the operators T [θ], T [x] and T [u] defined by (3.46), (3.47) and (3.48), there appears A, Rη, 
Au and F , all of which are analytic functions in the variables (t, x, u) ∈ R × Rd × RN . In the 
expansion formulas of both RS and RAi there appear also analytical functions RS

t , RS
t , RAi

t , RAi
x

and RAi
e as in Lemmas 3.1 and 3.2. The previous Lemma applies:

Corollary 4.5. There are constants R0 and ρ0 such that for all η ≥ 0, R ≥ R0, ρ ≥ ρ0 and ε
small enough:

∀u ∈ BE(η,R,ρ)(0,1) : |||H(·, ·,u)||| � 1 (4.14)

with H either equals to A, A, RS
t , RS

x , RAi
t , RAi

x , RAi
t


, Au or F .

4.2.2. Action of propagators on E
To describe the action of both propagators US and UAi, we define here more general smooth 

matrix operators Uη(s′, s, θ) for η ≥ 0 that act diagonally on u ∈E as

(
Uη(s′, s, θ)u(s′)

)
n

= Uη
n (s′, s)un(s

′) , ∀n ∈ Z, 0 ≤ s′ ≤ s

and satisfied the upper bound for their Fourier modes

|Uη
n (s′, s)| � C(Uη) exp

⎛⎝ s∫
s′

γ �
η (τ )dτ

⎞⎠ , ∀n ∈ Z, 0 ≤ s′ ≤ s (4.15)

for some C(Uη) > 0 depending eventually on ε. In the smooth case, thanks to Lemma 3.4 we 
have η = 1 and

C(US) = 1, (4.16)

whereas for the Airy case, thanks to Lemma 3.5 we have η = 1/2 and

C(UAi) = ε−1/3 (4.17)

For such matrix operators Uη, the same result as Lemma 4.15 in [11] still holds:
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Lemma 4.6. Given η ≥ 0, β > 0 and u in E(η, β) then

Uη
n (s′, s)un(s

′, x) ≺s′,s C(Uη)Cη
n(s′, s) ||u(s′)||s′

c1

n2 + 1
e−(M ′−∫ s

0 γη(τ)dτ
)〈n〉

× �
(
RX + ε1/(1+η)ρs

)
(4.18)

where Cη
n(s′, s) is defined by

Cη
n(s′, s) = exp

(−β(s − s′) 〈n〉)≤ 1 (4.19)

In particular we have

‖Uη(s′, s)u(s′)‖s ≤ C(Uη)‖u(s′)‖s′ ∀0 ≤ s′ ≤ s < s (4.20)

The proof is exactly the same as in [11], as it relies only on the definition (4.3) of γη. The 
positive constant β acts as a perturbation of γ �

η and introduces an error term like e−β(s−s′)|n|
in the growth of the n-th Fourier mode of the propagator. This explains why the prefactor term 
C

η
n(s′, s) is exactly the same as in Lemma 4.15 of [11].

Remark 4.7. The estimate (4.20) is not precise enough to show that T is a contraction in E. The 
more precise estimate (4.18) is very important for the estimate (4.22) below.

4.2.3. Norm of the free solutions
In both smooth (η = 1) and Airy (η = 1/2) cases, we compute the norm in E of the free 

solution fη defined in Lemmas 3.6 and 3.7. The proof of this result is the same as Lemma 4.17 
of [11], using the precise estimates described in Lemmas 3.6 and 3.7.

Lemma 4.8 (Norm of the free solution). For η = 1 or η = 1/2 and β > 0, the free solution fη

satisfies

|||fη||| � eM ′−M(ε) (4.21)

Remark 4.9. Note that, on the contrary of estimate (4.33) in Lemma 4.17 of [11], the previous 
estimate is not |||fAi||| � ε−1/3eM ′−M(ε) in the Airy case, thanks to the more precise estimate
(3.40).

4.3. Estimates of remainder terms

As pointed out in Remark 3.3, our analysis differs from [11] with the presence of extra re-
mainder terms Rη. We compute carefully their norms.

Lemma 4.10 (Smooth case). In the framework of Lemma 3.1, the norm of the remainder term RS

satisfies

|||ε−1/2RS||| � ε1/2s2 + sR−1.
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Proof. By expansion formula (3.9) we have

RS(t, x) = t2RS
t (t, x) + tx · RS

x(t, x)

and then, as t = ε1/2s in the smooth case and by notation (3.3),

ε−1/2RS(s, x) = ε1/2s2RS
t (s, x) + sx · RS

x(s, x).

As the norm ||| · ||| is defined by a supremum in time, first there holds

|||ε1/2s2RS
t ||| � ε1/2s2|||RS

t |||.

To get a precise estimate of the term x ·RS
x(s, x), we first note that the coefficients �k(ρt) defined 

by (4.1) satisfy

1 ≤ R−1�k(ρt) , ∀k ∈ Nd with |k| = 1

so that for all j = 1, . . . , d there holds

Xj ≺ R−1�(RX + ε1/2ρs) , ∀0 ≤ s < s.

By inequality (4.12) in Proposition 4.3 we get then

|||x · RS
x(s, x)||| � R−1|||RS|||.

As C(US) = 1 by (4.16), this ends the proof. �
Lemma 4.11 (Airy case). In the framework of Lemma 3.2, the norm of the remainder term RAi

satisfies

|||ε−1/3RAi||| � εs2 + ε1/3sR−1 + ε−1/3t
(R
−1).

Proof. The proof is the same as the previous one, with the differences that η = 1/2 and 
C(UAi) = ε−1/3. �
4.4. Contraction estimates

4.4.1. Regularization results
A crucial observation is that derivation operators ∂θ and ∂xj

are not bounded operators in 
spaces E, as explained in Section 5.1 in [11]. The main results in our previous paper are the 
description of the regularization effect of integration in time of derivation operators. These results 
are precised in Sections 5.2 through 5.4 in [11].

Those results still hold in our setting. We omit the proof of the following Lemmas, but give 
some indications on how to adapt the proofs of [11] of the similar results.
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Proposition 4.12 (Regularization of ∂θ ). For operator T [η,θ] defined by (3.46), for any u ∈
BE(η,R,ρ)(0, 1) and for β > 0, there holds

|||T [η,θ](u)||| � C(Uη)β−1
(
ε−η/(1+η)|||Rη||| + ε(2−η)/(1+η)|||u|||

)
|||u||| (4.22)

The proof in the same as Proposition 5.4 in [11], as it is based on Lemma 4.6 and the expres-
sion of prefactor Cη

n defined in (4.19) which is the same as prefactor (4.31) in Lemma 4.15 in 
[11].

As remainder terms Rη have different norms in spaces E, given by Lemmas 4.10 and 4.11, 
we give more precisely the following two results:

Corollary 4.13 (Smooth case). In the smooth case, thanks to Lemma 4.10, there holds

|||T [S,θ](u)||| � β−1
(
ε1/2s2 + sR−1 + ε1/2|||u|||

)
|||u|||. (4.23)

Corollary 4.14 (Airy case). In the smooth case, thanks to Lemma 4.11, there holds

|||T [Ai,θ](u)||| � ε−1/3β−1
(
εs2 + ε1/3sR−1 + ε−1/3t
(R

−1) + ε|||u|||
)

|||u|||. (4.24)

About the regularization of derivation operators ∂xj
, the proof relies again on the sim-

ple computation given in Section 1.2.2 of [11]. The difference in the time renormalization in 
�(Rx + ε1/(1+η)ρs), instead of �(RX + ερs) in [11], is a minor one for the proof.

Proposition 4.15 (Regularization of ∂xj
). For operator T [η,x] defined by (3.47) and any u ∈

BE(η,R,ρ)(0, 1), there holds

|||T [η,x](u)||| � C(Uη)Rρ−1 |||u|||. (4.25)

As E is an algebra the operator T [η,u] is directly bounded, with no need of a regularization 
by time result, on the contrary of operators T [η,θ] and T [η,x]. The following proposition gives us 
precisely

Proposition 4.16 (Nonlinear term). For the operator T [η,u] defined by (3.48), for any u ∈
BE(0, 1) and β > 0 there holds

|||T [η,u](u)||| � C(Uη)β−1ε1/(1+η)|||u|||2. (4.26)

4.4.2. Contraction estimates
Thanks to the results of the previous Section, we prove estimates for operator T η defined in 

(3.43), as in Section 5.5 of [11]. We omit once again the proof of this result, as it is the same as 
Proposition 5.9 in [11].

Proposition 4.17 (Contraction estimates in E). There are R0, ρ0 > 0 such that for all β > 0, 
R ≥ R0, ρ > ρ0 and ε ∈ (0, 1), we get the following estimates for all u and v in BE(0, 1):
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|||T η(u)||| � C(Uη)
(
β−1

(
ε−η/(1+η)|||Rη||| + ε1/(1+η)|||u|||

)
+ Rρ−1

)
|||u|||, (4.27)

|||T η(u) − T η(v)||| � C(Uη)
(
β−1

(
ε−η/(1+η)|||Rη||| + ε1/(1+η)|||u|||

)
+ Rρ−1

)
|||u − v|||

(4.28)

For convenience we introduce

Kη(ε) = C(Uη)
(
β−1

(
ε−η/(1+η)|||Rη||| + ε1/(1+η)|||fη|||

)
+ Rρ−1

)
. (4.29)

5. Estimates from below and Hadamard instability

5.1. Existence of solutions

Thanks to the Proposition 4.17, we can now solve the fixed point equation (3.42) in the ball 
BE(η) (0, |||fη|||):

Corollary 5.1 (Contraction and fixed point in E). Let η > 0 be fixed. Let R(ε) > R0, ρ(ε) > ρ0, 
β(ε) > 0 and s(η) be such that

lim
ε→0

C(Uη)
(
β−1

(
ε−η/(1+η)|||Rη||| + ε1/(1+η)|||fη|||

)
+ Rρ−1

)
= 0 (5.1)

Let assume that the propagator Uη satisfy the growth (4.15). Then for ε small enough, 
the fixed point equation (3.42), with fη defined by (3.32), has a unique solution u in 
BE(η,R,ρ,β) (0,2|||fη|||). This solution satisfies

|||u − fη||| � Kη(ε)|||fη||| (5.2)

with Kη defined in (4.29).

The proof of the Corollary is straightforward using the estimates of Proposition 4.17, under 
the condition of smallness for Kη(ε) given by (5.1). This Corollary is in some sense an abstract 
result, as it deals with abstract propagator Uη with specific growth (4.15), described at the begin-
ning of Section 4.2.2. We emphasize that Uη, except for both smooth and Airy cases, have not 
be proved to exist. Corollary 5.1 gives a result on fixed point equations (3.42), independently of 
the initial Cauchy equation.

5.2. Bounds from below

From now on we focus on both smooth and Airy cases, for which we have proved the existence 
and the growth of the propagators (see Lemmas 3.4 and 3.5) and the actual growth of the special 
free solution (see Lemmas 3.6 and 3.7).

We follow here Section 6.2 of [11]. We aim to prove that, in the smooth case, the solutions 
have the same growth as fS given in Lemma 3.6, that is

|u(s, x, θ)| � e−M(ε) exp

⎛⎝ s∫
γ

�
S(τ )dτ

⎞⎠ , ∀ (s, x, θ) ∈ �R,ε1/(1+η)ρ ×T (5.3)
0
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with �R,ε1/(1+η)ρ defined by (2.22). In the Airy case, thanks to Lemma 3.7, we aim to prove

|u(s, x, θ)| � s−1/4e−M(ε) exp

⎛⎝ s∫
0

γ
�
Ai(τ )dτ

⎞⎠ , ∀ (s, x, θ) ∈ �R,ε2/3ρ ×T. (5.4)

As in [11], by some computations we prove the pointwise inequality

|(u − fη)(s, x, θ))| � Kη(ε)C(Uη)e−M(ε) exp

⎛⎝ s∫
0

γη(τ )dτ

⎞⎠ (5.5)

which is inequality (6.5) of [11], holding for all (s, x, θ) ∈ �R,ε1/(1+η)ρ × T. Next, by definition 
(4.3) of γη, inequality (5.5) becomes

|(u − fη)(s, x, θ))| � Kη(ε)C(Uη) exp

⎛⎝sβ +
s∫

0

(
γ �
η (τ ) − γ �

η (τ )
)

dτ

⎞⎠ e−M(ε)

× exp

⎛⎝ s∫
0

γ �
η (τ )dτ

⎞⎠ .

As γ �
η = γ

�
η (see Remark 3.8), we finally get

|(u − fη)(s, x, θ))| �K(ε)C(Uη) esβ e−M(ε) exp

⎛⎝ s∫
0

γ �
η (τ )dτ

⎞⎠ . (5.6)

Then in order to get (5.3) or (5.4) thanks to (5.6), limit (5.1) is not sufficient as the term esβ

could be large as ε tends to 0, as explained in Section 6.2 in [11]. In both cases, we have then a 
stronger constraint on parameters R, ρ, β and M ′:

• In the smooth case, thanks to Corollary 4.13 and (5.3), we need

lim
ε→0

(
β−1

(
ε1/2s2 + sR−1 + ε1/2eM ′−M

)
+ Rρ−1

)
esβ = 0. (5.7)

• In the Airy case, thanks to Corollary 4.14 and (5.4), we need

lim
ε→0

ε−1/3s1/4
(
β−1

(
εs2 + ε1/3sR−1 + ε−1/3t
(R

−1) + ε2/3eM ′−M
)

+ Rρ−1
)

esβ = 0.

(5.8)

The second constraint on the parameters comes from the competition between the character-
istic growth time s1(η) defined in (4.5) and the regularity time (ε1/(1+η)ρ)−1. To see the growth 
of the solution, hence the instability, we need it to exist on a sufficiently large time compared to 
the growth time, that is we need s to be s (η).
1
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As M ′ is large in the limit ε → 0, the implicit definition (4.5) of s1(η) and definition (3.19)

of γ �
S and definition (3.27) of γ �

Ai lead to the equivalent

s1(η) ≈ M ′ 1/(1+η) (5.9)

for η = 1 and η = 1/2. Hence the following constraints:

• In the smooth case,

lim
ε→0

M ′ 1/2ε1/2ρ = 0. (5.10)

• In the Airy case,

lim
ε→0

M ′ 2/3ε2/3ρ = 0. (5.11)

We focus now on both cases separately from now on, even if the way we find suitable R, ρ, β
and M ′ which would satisfy both constraints is very similar in both cases. We sum up all of this 
in the two following Propositions.

Proposition 5.2 (Estimate from below: smooth case). With the limitation of the Gevrey index

σ < δ < 1/3, (5.12)

both constraints (5.7) and (5.10) are satisfied. Then the fixed point equation (3.42) has a unique 
solution u in E and

|u(s, x, θ)| � e−M(ε)eγ0
1
2 s2

, ∀ (s, x, θ) ∈ �R,ε1/2ρ ×T. (5.13)

There holds also

s ≈ ε−δ/2. (5.14)

Proof. As in [11], we use notation � defined in (1.32) to rewrite all the constraints in a more 
useful way. Constraints (5.7) and (5.10) are equivalent to

β−1ε1/2ε−δ eβε−δ/2 � 1 (5.15)

β−1ε−δ/2R−1 eβε−δ/2 � 1 (5.16)

β−1ε1/2eM ′−M eβε−δ/2 � 1 (5.17)

Rρ−1 eβε−δ/2 � 1 (5.18)

ε−δ/2ε1/2ρ � 1. (5.19)

This implies first, as in [11], that β as to be of size εδ/2. We then posit

β = εδ/2.
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We have then

ε1/2ε−3δ/2 � 1 (5.20)

ε−δR−1 � 1 (5.21)

ε1/2−δ/2eM ′−M � 1 (5.22)

Rρ−1 � 1 (5.23)

ε1/2−δ/2ρ � 1. (5.24)

Asymptotic inequality (5.20) is equivalent to the limitation δ < 1/3 on the Gevrey index. Next, 
as δ < 1, asymptotic inequality (5.22) is satisfied as soon as M ′ = M − | ln(ε)|.

Finally, inequalities (5.21), (5.23) and (5.24) are equivalent to

ε1/2−δ/2 � ρ−1 � R−1 � εδ. (5.25)

This chain of asymptotic inequalities is satisfied as soon as ε1/2−δ/2 � εδ , which is equivalent 
again to the limitation δ < 1/3 of the Gevrey index. Then the choice R−1 = ε1/6+δ/2 and ρ−1 =
ε1/3 satisfies the constraints. �
Remark 5.3. Note that in the case where RS ≡ 0, both (5.20) and (5.21) disappear hence the 
limitation δ < 1 in place of δ < 1/3. This has to be put in parallel of Remark 2.11 in [11], which 
describes a way to improve the result of Theorem 3 therein.

Proposition 5.4 (Estimate from below: Airy case). With the limitation of the Gevrey index

σ < δ < 2/13 (5.26)

both constraints (5.8) and (5.11) are satisfied. Then the fixed point equation (3.42) has a unique 
solution u in E and

|u(s, x, θ)| � e−M(ε)eγ0
2
3 s3/2

, ∀ (s, x, θ) ∈ �R,ε2/3ρ ×T. (5.27)

There holds also

s ≈ ε−2δ/3. (5.28)

Proof. We follow here the same proof as the one of Proposition 5.2. Two differences appear: 
the extra weight ε−1/3 coming from the specificity of the Airy propagator in Lemma 3.5 and the 
extra t
(R−1) in the remainder term of Corollary 4.14.

Taking both those differences into account, the following constraints hold

β−1ε2/3ε−3δ/2 eβε−2δ/3 � 1 (5.29)

β−1ε−5δ/6R−1 eβε−2δ/3 � 1 (5.30)

β−1ε−δ/6ε−2/3t
(R
−1) eβε−2δ/3 � 1 (5.31)
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β−1ε−δ/6ε1/3eM ′−M eβε−2δ/3 � 1 (5.32)

ε−1/3ε−δ/6Rρ−1 eβε−2δ/3 � 1 (5.33)

ε−2δ/3ε2/3ρ � 1 (5.34)

where there holds s ≈ ε−2δ/3. Again, those asymptotic inequalities imply that β = ε2δ/3 and 
inequality (5.29) is replaced by

ε2/3−13δ/6 � 1

which gives the limitation δ < 4/13 on the Gevrey index.
To find now R and ρ, we first use (5.30) and (5.33) to get

ε2/3−2δ/3 � ρ−1 � ε1/3+δ/6R−1. (5.35)

For an asymptotic upper bound for R−1, we have in this case two possibilities, thanks to (5.30)
and (5.31). If we assume here that t
 is of order k ≥ 2 in x, these two inequalities are equivalent 
to

R−1 � ε3δ/2 (5.36)

and

R−1 � ε
1
k
(2/3+5δ/6). (5.37)

The question is which one of (5.36) or (5.37) is a stronger constraint on R and ρ. By simple 
computations, we prove

3δ/2 <
1

k
(2/3 + 5δ/6) ⇐⇒ δ <

1

9k/4 − 5/4
.

We are then reduced to study two cases:

• If δ < 1
9k/4−5/4 , then R−1 � ε

1
k
(2/3+5δ/6) � ε3δ/2. With (5.35), we get the constraint 

ε2/3−2δ/3 � ε1/3+ 1
k
(2/3+5δ/6), which is equivalent to δ <

1/2−1/k
1+1/k

. We note in particular that 
the non degenerate Airy case k = 2 is out of reach with our method. In the degenerate case 
k = 4, we have the limitation δ <

1/2−1/k
1+1/k

= 4/21, compatible with δ < 1
9k/4−5/4 = 4/31.

• If δ > 1
9k/4−5/4 , then R−1 � ε3δ/2 � ε

1
k
(2/3+5δ/6). With (5.35), we get the constraint 

ε2/3−2δ/3 � ε1/3+3δ/2, which is equivalent to δ < 2/13. It is incompatible with δ > 1
9k/4−5/4

when k = 2.

In each of the previous cases, the case k = 2 leads to a contradiction, hence proving that the 
non-degenerate Airy transition is out of reach of our method. In the degenerate case k = 4, the 
previous analysis shows that the limiting Gevrey index is 2/13. �
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Remark 5.5. On the contrary of the smooth case and Remark 5.3, the limitation δ < 2/13 still 
holds when RAi ≡ 0. This can be explained as t
 represents the transition time from hyperbolicity 
to ellipticity, and the domain of hyperbolicity is too large to be considered as an elliptic region.

5.3. Conclusion: Hadamard instability in Gevrey spaces

To close the proofs of Theorem 2.11 and Theorem 2.12 we have now to get an estimate of the 
ratio

||uε||L2(�R,ρ)

||hη
ε ||ασ,c,K

.

The previous Sections show the existence, in either the smooth or the Airy case, of a family of 
solutions u starting from fη of the fixed point equation (3.42). Thanks to the ansatz (3.2) which 
we recall here

uε(t, x) = ε2/(1+η)u(ε−1/(1+η) t, x, x · ξ0/ε)

we have then a family of solutions uε existing in domains �R,ρ , for some well-chosen parameters 
described in the proof of Propositions 5.2 or 5.4. In both cases we can verify that domains �R,ρ

contain the cube of size ε

Cε = {(t, x) | t − ε < t < t, |x| < ε}

where we denote simply t = ε1/(1+η)s. The conclusion of the proof of Theorems 2.11 and 2.12
is the same as in Section 7 in [11].

6. Appendix: on the Airy equation

The purpose of this Appendix is to bring some crucial elements on the Airy equation, and to 
complete the proofs of Lemma 3.5 and 3.7. We recall here equation (3.28), with η = 1/2, that 
appears on Lemma 3.5:

∂sṼn(s
′, s) − in

(
0 ε−1/3

−ε1/3γ 2
0 s 0

)
Ṽn(s

′, s) = 0 Ṽn(s
′, s′) = Id. (6.1)

The aim here is to get upper bounds for the matrix flow Ṽn(s
′, s) for all 0 ≤ s′ ≤ s and all n ∈ Z, 

and hence to complete the proof of Lemma 3.5. For simplicity we denote

Ṽn(s
′, s) =

(
Ṽn,1,1 Ṽn,1,2

Ṽn,2,1 Ṽn,2,2

)
Ṽn,p,q(s′, s′) = δ(p, q). (6.2)
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6.1. Reduction to the scalar Airy equation and resolution

The vector equation (6.1) becomes the system of scalar equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂sṼn,1,1 = inε−1/3 Ṽn,2,1 Ṽn,1,1(s

′, s′) = 1

∂sṼn,1,2 = inε−1/3 Ṽn,2,2 Ṽn,1,2(s
′, s′) = 0

∂sṼn,2,1 = − inε1/3γ 2
0 s Ṽn,1,1 Ṽn,2,1(s

′, s′) = 0

∂sṼn,2,2 = − inε1/3γ 2
0 s Ṽn,1,2 Ṽn,2,2(s

′, s′) = 1

(6.3)

Differentiating the first equation and using next the third one, the entry Ṽn,1,1 solves the second 
order scalar differential equation

∂2
s Ṽn,1,1(s

′, s) = (nγ0)
2 s Ṽn,1,1(s

′, s) (6.4)

with the initial condition for Ṽn,1,1:

Ṽn,1,1(s
′, s′) = 1. (6.5)

The initial condition for ∂sṼn,1,1 comes from the first equation of the system (6.3) and the initial 
condition for Ṽn,2,1, as we have

∂sṼn,1,1(s
′, s′) = inε−1/3 Ṽn,2,1(s

′, s′)

= 0. (6.6)

Note also that we can retrieve Ṽn,2,1 thanks to the first line of (6.3), as

Ṽn,2,1(s
′, s) = ε1/3

in
∂sṼn,1,1(s

′, s) (6.7)

Doing the same for the second and fourth equations, we obtain the same second order scalar 
differential equation for Ṽn,1,2

∂2
s Ṽn,1,2(s

′, s) = (nγ0)
2 s Ṽn,1,2(s

′, s) (6.8)

with initial conditions

Ṽn,1,2(s
′, s′) = 0 (6.9)

and

∂sṼn,1,2(s
′, s′) = inε−1/3. (6.10)

We have also the relation

Ṽn,2,2(s
′, s) = ε1/3

∂sṼn,1,2(s
′, s). (6.11)
in
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Equations (6.4) and (6.8) are exactly the ε-independent scalar Airy equation

y′′
n(s) = (|n|γ0)

2 s yn(s) (6.12)

which is a second-order scalar differential equation. The solutions of (6.12) are given by the 
following

Lemma 6.1 (Scalar Airy equation). For n ∈ Z∗, let Ain(z) be

Ain(z) = (2π)−1
∫

Im(ζ )=a

exp
(
(|n|γ0)(iζ

3/3 + iζ z)
)

dζ (6.13)

for a > 0. Then for all n ∈ Z, Ain is a holomorphic function in C independent of a, and the 
couple (Ain(·), Ain(j ·)) is a basis of solutions of (6.12), with j = e2iπ/3.

To prove this Lemma, it suffices to adapt the proof following Definition 7.6.8 in [3].
As (Ain(·), Ain(j ·)) is a basis of solutions of equation (6.12), and as both entries Ṽn,1,1(s

′, s)
and Ṽn,1,2(s

′, s) solve equations (6.4) and (6.8), there are (α1(s
′), β1(s

′)) ∈ R2 and
(α2(s

′), β2(s
′)) ∈ R2 such that

Ṽn,1,1(s
′, s) = α1(s

′)Ain(s) + β1(s
′)Ain(js) (6.14)

Ṽn,1,2(s
′, s) = α2(s

′)Ain(s) + β2(s
′)Ain(js) (6.15)

By the relations (6.7) and (6.11), there holds also

Ṽn,2,1(s
′, s) = ε1/3

in

(
α1(s

′)Ain
′(s) + jβ1(s

′)Ain
′(js)

)
(6.16)

Ṽn,2,2(s
′, s) = ε1/3

in

(
α2(s

′)Ain
′(s) + jβ2(s

′)Ain
′(js)

)
. (6.17)

This is equivalent to say that both vectors(
Ain(s)

−in−1ε1/3Ain′(s)

)
and

(
Ain(js)

−in−1ε1/3jAin′(js)

)
(6.18)

forms a basis of solutions of the system (6.3). The functions (αk(s
′), βk(s

′)) are determined by 
the initial conditions (6.5) and (6.6) for k = 1 and (6.9) and (6.10) for k = 2. We obtain the matrix 
representation of the (αk(s

′), βk(s
′)):

(
α1(s

′) α2(s
′)

β1(s
′) β2(s

′)

)
= 1

Dn(s
′)

⎛⎜⎝ ε1/3

in
jAin′(js′) −Ain(js′)

−ε1/3

in
Ain′(s′) Ain(s′)

⎞⎟⎠ (6.19)

where Dn(s
′) is the determinant of the basis (6.18), that is
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Dn(s
′) := ε1/3

in
Ain(s

′)jAin
′(js′) − ε1/3

in
Ain(js′)Ain

′(s′)

which is in fact independent of s′:

Dn(s
′) ≡ Dn(0) = ε1/3

in
(j − 1)Ain(0)Ain

′(0).

For simplicity we denote

C = (
(j − 1)Ain(0)Ain

′(0)
)−1

. (6.20)

Putting altogether equalities (6.14) to (6.19), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṽn,1,1(s
′, s) = C

(
jAin′(js′)Ain(s) − Ain′(s′)Ain(js)

)
Ṽn,2,1(s

′, s) = C ε1/3

in

(
jAin′(js′)Ain′(s) − jAin′(s′)Ain′(js)

)
Ṽn,1,2(s

′, s) = C in

ε1/3

(
− Ain(js′)Ain(s) + Ain(s′)Ain(js)

)
Ṽn,2,2(s

′, s) = −C
(

Ain(js′)Ain′(s) − jAin(s′)Ain′(js)
)
.

(6.21)

6.2. Upper bounds for the propagator: proof of Lemma 3.4

In order to prove Lemma 3.5, we derive asymptotic estimates of Ain(s) and Ain(js) when s
real and s → + ∞.

Lemma 6.2 (Asymptotic estimates for the Airy function). There holds for all n ∈ Z∗ and s ≥ 1, 
up to some complex constants:

Ain(s) ≈ s−1/4|n|−1/2 exp(−|n|γ0(2/3)s3/2) (6.22)

Ain(js) ≈ s−1/4|n|−1/2 exp(|n|γ0(2/3)s3/2) (6.23)

Ain
′(s) ≈ s1/4|n|1/2 exp(−|n|γ0(2/3)s3/2) (6.24)

Ain
′(js) ≈ s1/4|n|1/2 exp(|n|γ0(2/3)s3/2). (6.25)

In particular, the Airy function Ain and its derivative satisfy the upper bounds

e|n|γ0(2/3)s3/2 |Ain(s)|+e−|n|γ0(2/3)s3/2 |Ain(js)| � |n|−1/2(1+s)−1/4 ∀0 ≤ s, ∀n ∈ Z∗ (6.26)

and

e|n|γ0(2/3)s3/2 ∣∣Ain
′(s)

∣∣+ e−|n|γ0(2/3)s3/2 ∣∣Ain
′(js)

∣∣� |n|1/2s1/4 ∀0 ≤ s, ∀n ∈ Z∗ (6.27)
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Proof. For s ≥ 1, we put a = is1/2 into the definition (6.13) to obtain

Ain(s) = (2π)−1
∫

Imζ=is1/2

exp
(
(|n|γ0)(iζ

3/3 + iζ z)
)

dζ

= (2π)−1
∫
R

exp
(
(|n|γ0)(i(ξ + is1/2)3/3 + i(ξ + is1/2)s)

)
dξ

= (2π)−1 e−|n|γ0(2/3)s3/2
∫
R

exp
(
(|n|γ0)(iξ

3/3 − ξ2s1/2)
)

dξ.

By the change of variables ξ �→ (|n|γ0s
1/2)−1/2ξ in the integral, there holds

Ain(s) = |n|−1/2s−1/4

2πγ
1/2
0

e−|n|γ0(2/3)s3/2
∫
R

exp
(
i(|n|γ0)

−1/2s−3/4ξ3/3 − ξ2
)

dξ.

As the last integral satisfies the asymptotic development, for s → + ∞:∫
R

exp
(
i(|n|γ0)

−1/2s−3/4ξ3/3 − ξ2
)

dξ = √
2π + O

(
|n|−1/2s−3/4

)

we obtain (6.22). By an analog computation we have (6.23), (6.24) and (6.25).
From those asymptotic estimates, we deduce immediately uniform bounds for Ain and the 

time derivative Ain′. �
Thanks to the previous Lemma, we end the proof of Lemma 3.5 by getting the upper bound 

of the propagator Ṽn(s
′, s). Combining the expression of Ṽn in function of Ain given by (6.21)

with the estimates (6.26) and (6.27), we obtain the upper bounds for the coefficients of the matrix 
flow Ṽn(s

′, s), for 0 ≤ s′ ≤ s ≤ ε−2/3:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣Ṽn,1,1(s
′, s)

∣∣ ≈ s′ 1/4(1 + s)−1/4 exp
(|n|γ0

2
3 (s3/2 − s′ 3/2)

)∣∣Ṽn,2,1(s
′, s)

∣∣ ≈ ε1/3s′ 1/4s1/4 exp
(|n|γ0

2
3 (s3/2 − s′ 3/2)

)∣∣Ṽn,1,2(s
′, s)

∣∣ ≈ ε−1/3(1 + s′)−1/4(1 + s)−1/4 exp
(|n|γ0

2
3 (s3/2 − s′ 3/2)

)∣∣Ṽn,2,2(s
′, s)

∣∣ ≈ (1 + s′)−1/4s1/4 exp
(|n|γ0

2
3 (s3/2 − s′ 3/2)

)
(6.28)

As

ε−1/3(1 + s)−1/4 > s1/4 ∀0 ≤ s < ε−2/3

we obtain the upper bound for the propagator

|Ṽn(s
′, s)| � ε−1/3(1 + s′)−1/4(1 + s)−1/4 exp(|n|γ0(2/3)(s3/2 − s′ 3/2)) ∀0 ≤ s′ ≤ s < ε−2/3

which implies (3.26) and ends the proof of Lemma 3.5.
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6.3. Growth of the free solution: proof of Lemma 3.6

We prove here Lemma 3.7, following the proof of Lemma 3.6. We showed in it that it suffices 
to prove the lower bound for Ṽn. Thanks to the equalities (6.21), a simple computation gives us

Ṽ+1(0, s)

(
Ai1(0)

−iε1/3jAi1′(0)

)
=
(

Ai1(js)

−iε1/3jAi1′(js)

)
and also

Ṽ−1(0, s)

(
Ai1(0)

iε1/3jAi1′(0)

)
=
(

Ai1(js)

iε1/3jAi1′(js)

)
.

We denote

f̃(s, θ) = Re

(
Ṽ+1(0, s)

(
Ai1(0)

−iε1/3jAi1′(0)

)
eiθ + Ṽ−1(0, s)

(
Ai1(0)

iε1/3jAi1′(0)

)
e−iθ

)
. (6.29)

and we compute

f̃(s, θ) = 2Re

(
Ai1(js) cos(θ)

−ε1/3jAi1′(js) sin(θ)

)
. (6.30)

Next we denote ̃f1(s) and ̃f2(s) the two components of the vector ̃f defined by (6.29). Thanks to 
Lemma 6.2, we have

|̃f1(s)| ≈ Ai1(js) ≈ s−1/4 exp(γ02/3s3/2)

and

|̃f2(s)| ≈ ε1/3Ai1
′(js) ≈ ε1/3s1/4 exp(γ02/3s3/2)

for 1 ≤ s < ε−2/3. As ε1/3s1/4 < s−1/4 for s < ε−2/3, the L∞ norm of the vector ̃f(s, θ) satisfies

|̃f(s, θ)|∞ = |̃f1(s, θ)| ≈ s−1/4 exp(γ02/3s3/2)

for all 1 ≤ s < ε−2/3. Using the same steps as in the proof of Lemma 3.6, this suffices to end the 
proof of Lemma 3.7.
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