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ABSTRACT Everyday objects are becoming smart enough to directly connect to other nearby and remote
objects and systems. These objects increasingly interact with machine learning applications that perform
feature extraction and model inference in the cloud. However, this approach poses several challenges
due to latency, privacy, and dependency on network connectivity between data producers and consumers.
To alleviate these limitations, computation should be moved as much as possible towards the IoT edge, that
is on gateways, if not directly on data producers. In this paper, we propose a design framework for smart audio
sensors able to record and pre-process raw audio streams, before wirelessly transmitting the computed audio
features to a modular IoT gateway. In this paper, an anomaly detection algorithm executed as a micro-service
is capable of analyzing the received features, hence detecting audio anomalies in real-time. First, to assess
the effectiveness of the proposed solution, we deployed a real smart environment showcase. More in detail,
we adopted two different anomaly detection algorithms, namely Elliptic Envelope and Isolation Forest,
that were purposely trained and deployed on an affordable IoT gateway to detect anomalous sound events
happening in an office environment. Then, we numerically compared both the deployments, in terms of
end-to-end latency and gateway CPU load, also deriving some ideal capacity bounds.

INDEX TERMS Anomaly detection, digital signal processing, edge computing, embedded devices, Internet
of Things, IoT gateway, machine learning, novelty detection, open-source platforms, outlier detection.

I. INTRODUCTION
The term ‘‘Internet of Things’’ (IoT), originally coined
in 1999 by Ashton [1], is still attracting the critical atten-
tion of a multitude of researchers and industrial players.
As we write, practically all industry sectors are going to
be supported by smaller devices (i.e., the ‘‘things’’) able
to collect data and to push them to the Internet. However,
around 20 years after the IoT coinage, it would be reductive
to translate such vision into the routine process of physically
connecting everyday objects to the Internet. Indeed, the orig-
inal promise of the IoT was about connecting such everyday
objects not for the sake of having them connected, rather
with the goal of making them autonomous or, in other words,
smart. Loosely speaking, such smartening process relies on
the need of ‘‘closing the loop’’, which consists of sens-
ing, communicating, reasoning, taking decisions, and actu-
ating back into the physical side [2]. As already noticed by

Poncela et al. [3], this can be seen as the specification of the
more general Monitor-Analyze-Plan-Execute plus Knowl-
edge (MAPE-K) reference model for Autonomic Computing,
as initially proposed by P. Horn in 2001, and later formalized
in [4].

So far, several research and development efforts on IoT
have been conducted on the design and implementation of
software solutions able to manage devices, resources and
data, abstracting from their intrinsic heterogeneity, at hard-
ware and software levels. The result of this race was the
plethora of IoT software platforms released in the last few
years, either as open source solutions or as commercial
products [5]. All of them (at different levels of maturity) are
able to support the exploding number of connected devices
and associated data, by exposing common services, such as
device virtualization, provisioning, and control, data produc-
tion/consumption/storage, etc. [6].
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Less has been done to truly realize what is usually referred
to as ‘‘embedded intelligence’’ [7], that is one of the pillars
of the Smart World vision. More in detail, the latter can be
seen as the composition of various elements (i.e., the ‘‘smart
things’’) at different scales, layers, and granularity, rang-
ing from smart sensors, smart devices, and objects to smart
homes, smart infrastructures, smart factories, smart cities,
etc. As observed Ma et al. [8], ubiquitous sensors, actua-
tors, and embedded devices are currently paving the way
towards the realization of such a paradigm (which is still
in its infancy, from a research perspective) where compu-
tational intelligence is distributed throughout the physical
environment (i.e., the reason why it is called ‘‘embedded’’) to
offer more reliable, more efficient, more relevant, and safer
services to people. Indeed, nowadays, only quite expensive
devices (most likely complex systems already composed of
multiple sensors and actuators, ranging from mobile phones
to connected vehicles) are really able to intelligently interact
with humans and other digital systems, while affordable, yet
reliable, smart things are quite less common.
In this paper, we make a step forward in this direction,

by introducing a cost-effective, smart IoT device able to
autonomously perform anomaly detection on-site. Generally
speaking, anomaly detection is a branch of artificial intelli-
gence (AI) that deals with the identification of patterns in
a set or in a stream of digital data that do not conform to a
pre-defined notion of normal behavior [9]. Usually, in order
to detect anomalies, first, a model describing the patterns of a
normal behavior is defined. Then, anomalous patterns (i.e.,
patterns which are sufficiently distant from the ‘‘normal’’
model) may be detected. In IoT contexts, detecting anomalies
may represent a very critical task. For this reason, often, cur-
rent end-to-end solutions limit the role the IoT nodes (physi-
cally located near the phenomenon under observation, hence
on the one end the technology stack) to simple data producers,
while offloading the whole intelligence of the application
to centralized, cloud-based elements (physically located on
the other end of the technology stack), hence acting as the
unique data consumer, in a classical publish/subscribe design
pattern [10]. However, recently, new architectural paradigms
are being introduced, which are usually referred to as the
Fog and Edge Computing paradigms [11]–[13]. These two
paradigms, though being quite different from each other,
share several architectural choices. Briefly, the key-concept
they share is the attempt to distribute computation, commu-
nication, control and storage closer to the end users, along
the so-called cloud-to-thing continuum [14]. At least on paper
and if correctly implemented, such a concept should finally
overcome some of the major challenges that are currently
hindering the IoT global dissemination and adoption. Some of
these challenges are stringent latency requirements, network
bandwidth constraints, resource-constrained devices, secu-
rity and privacy requirements, uninterrupted services despite
intermittent connectivity with the cloud endpoint [15], [16].

The main contributions of this paper, whose main goal is
to prove the effectiveness of distributing the intelligence of

a real IoT application along a continuum comprising several
technological entities (e.g., sensors, embedded devices, gate-
ways, software platforms, etc.), may be summarized as:
• Design Framework for Smart Audio Sensors: in this
paper, we analyze the bandwidth constraints imposed
by a Bluetooth-UART interface. Since one of the main
features of a Smart Audio Sensor (SAS) device is the
wireless connectivity, we introduce a theoretical frame-
work to tune its parameters, taking into consideration
both latency and bandwidth constraints. Thus, based on
the specific requirements of the application scenario at
hand, the SAS can be dynamically re-configured to meet
these requirements, without breaking the technology
constraints.

• Exploitation of the Edge Computing paradigm: SASs
autonomously sample the surrounding audio environ-
ment using cheap onboard microphones. Then, instead
of transferring the digitized version of the acquired sig-
nal as is (as a ‘‘dumb’’ data producer would do), they
first pre-process the signal in real-time by transforming
it into the frequency domain and by computing some
state-of-the-art features in this domain. The processing
output is a more compact, though unrecoverable, rep-
resentation of the original signal in the feature domain.
This approach has several advantages with respect to
the approach of sending the raw audio stream over the
network: first of all, our feature-domain representation
of the signal is compressed to a factor of 8 with respect
to the original time-domain representation. Among the
other advantages, at network level this means reduced
network traffic, reduced radio utilization, less complex
access policies to the wireless channel, reduced number
of re-transmissions, etc. [17]. At application level, since
the signal transformation is partially irreversible (e.g.,
once transformed into the feature domain, the original
signal cannot be completely reconstructed), reasonable
levels of privacy are guaranteed by design.

• Full integration with the AGILE ecosystem: the SAS and
the whole design framework have been fully integrated
with the AGILE IoT gateway ecosystem, in order to
validate their applicability. In particular, we propose a
proof-of-concept scenario that describes how SASs can
interact with the AGILE gateway and which modules
we developed. Such modules allow developers and users
to simply connect, configure and use the SASs, without
much integration effort.

• Modular, maintainable and scalable software architec-
ture: obeying the AGILE’s software design and archi-
tectural principles, the developed modules follow the
micro-service philosophy, thus they were independently
implemented. Given that every module is independent
of each other, the system allows simple updates. Then,
if a module fails or crashes for some reason, the system
is resilient and remains up, eventually with a limited
set of capabilities. Moreover, the system is scalable: if
several devices have to be managed, then the system can
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dynamically instantiate resources and modules, in order
to cope with the increased load, and vice-versa. Last,
but not least, we are distributing the computational load
among different devices. In fact, the SASs perform fea-
ture extraction, while the IoT gateway only runs the
trained model.

• Detection of audio anomalies in an office environment:
as a proof of concept, we validate our approach in a
real use case, where we deployed a SAS in an office
environment, in order to detect anomalies using a cheap
microphone. The SAS is connected via Bluetooth to an
AGILE gateway that infers, using anAnomalyDetection
algorithm, over the features stream. Detection models
have been trained using a pre-recorded audio stream
coming from the same SAS. We evaluated two differ-
ent aspects: firstly, the detection delay from the first
recorded sample to the algorithm output, and then the
CPU load of our module with respect to the AGILE CPU
load.

The remaining of this paper is organized as following:
Section II reviews the most recent works related to our sci-
entific methodology, while Section III thoroughly describes
the main technologies we adopted to develop our solution,
by focusing on two important architectural elements support-
ing our technological framework, namely the Teensy-based
device and the AGILE IoT gateway. Then, Section IV
describes the design and the implementation of the core
component of our solution, namely the Smart Audio Sensor
(SAS), which is then comprehensively tested in a concrete
anomaly detection use case, detailed in Section V. Finally,
Section VI concludes this paper, also highlighting the most
promising future research directions in this context.

II. RELATED WORKS
The goal of an anomaly detection process is to dis-
cover unusual events in a specific framework. It has been
successfully applied in several domains, such as network
intrusion detection [18], acoustic surveillance [19], natural
disaster prediction [20], remote health-care [21], etc. Several
surveys have been proposed in the specialized literature,
in which the huge amount of different anomaly detection
methodologies have been discussed. The most effective mod-
els for anomaly detection are mainly based on statistical
analysis, information and graph theory, machine learning and
data mining [9], [22], [23].

A. ANOMALY DETECTION ALGORITHMS
In general, models for anomaly detection can be derived
using unsupervised, semi-supervised and supervised train-
ing algorithms [24]. When dealing with unsupervised train-
ing algorithms, no labeled training datasets are adopted for
building the models. Usually, only patterns describing nor-
mal behavior are available, while additional information
regarding anomalies are not available. In these situations,
algorithms based on clustering, data density and proximity,
and one-class detection models may be adopted [24]–[26].

Among these algorithms, the one-class support vector
machine (1-SVM) algorithm still continues being one of the
most adopted for unsupervised anomaly detection [27], [28]:
a kernel model, namely a decision function, is derived by
using normal data patterns, while new patterns projecting too
far from the model are marked as anomalies. Moreover, also
frequent pattern and association rule mining algorithms have
been adopted for unsupervised anomaly detection: normal
data vectors can be considered as transactions and frequent
patterns and association rules can be mined. New transac-
tions (i.e., new measured data) that cannot be projected into
the frequent patterns or into the mined rules are marked as
anomalies [29], [30].

When a sufficient number of labeled training patterns is
available, including both normal and anomalous situations,
supervised learning algorithms can be employed. In partic-
ular, multi-class classification models can be trained using
a fully labeled training set. Classification models, such
as decision tree [31], multi-class SVM [19] and Bayesian
classifier [32], have been successfully employed for different
kinds of anomaly detection. A recent survey comparing a
number of classification algorithms for a specific anomaly
detection framework, namely intrusion detection in networks,
is available in [33].

Finally, there exist specific situations in which only
a low number of anomalous labeled patterns are avail-
able. In such cases, a semi-supervised training algorithm
can be employed for learning the models for detect-
ing anomalies. These kinds of algorithms usually are
based on the hybridization of unsupervised and supervised
algorithms [34]. As recently discussed by the authors of [35],
a classification model (specifically, a neural network) is
trained using the labeled patterns. Then, the unlabeled pat-
terns, appropriately pre-elaborated using a fuzziness func-
tion, are classified and exploited for reinforcing the structure
of the models. The work in [36] discusses the use of the
so-called deep auto-encoder (DAE), a kind of deep belief
network followed by an ensemble of K-NN classifiers. In par-
ticular, unlabeled data are used for training the DAE in order
to reduce the dimensionality of the data [37]. The subset
of labeled data, transformed by using the DAE, is used for
training the ensemble of K-NN classifiers. New patterns are
filtered by the DAE and then classified by means of the
ensemble.

B. ANOMALY DETECTION IN IoT-BASED ARCHITECTURES
In the following, we summarize some recent contribu-
tions in the framework of anomaly detection carried out
considering an IoT-based architecture. Islam et al. [20]
discuss the application of a novel association rule-based
approach for handling uncertain, vague and noisy data in
anomaly detection. In particular, authors envision that data
from sensors feed a web-based expert system able to pre-
dict flooding using rainfall and temperature measurements.
In particular, the expert system employs a database of belief
association rules that allows to identify anomalies in the
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level of rainfall and temperature and to predict a flooding
event.

Trilles et al. [38] present a classical cloud-based method-
ology for handing, in a real-time fashion, heterogeneous
sources of data streams. As a proof-of-concept, they dis-
cuss the application of their methodology for environmental
anomaly detection using meteorological data. The proposed
methodology consider a logical architecture which comprises
three layers, namely content, services and application layers.
The content layer is composed of different sets of hetero-
geneous sensors which are deployed in a specific scenario
and send streams of information to the service layer. The
services layer includes i) connectors for handling the streams
coming from different data sources, ii) a brokering system
for allowing the access to data coming from sources that use
different communication protocols and message encodings,
and iii) algorithms that elaborate data. The application layer
includes all users’ applications. The different layers commu-
nicate by means of real-time massage services. In the dis-
cussed proof-of-concept, simple CUSUM (cumulative sum)
statistical algorithm has been adopted, which is a nonpara-
metric and univariate method for anomaly detection.

Lyu et al. [39] discuss a fog computing architecture for
anomaly detection. Raw data are collected by the end nodes
and sent to the fog nodes which are in charge of building the
model for detecting the anomalies, performing both sensor
layer and fog layer clustering. The results of these clustering
steps are sent to the cloud in order to be merged. The cloud
layer sends the merged clusters to the fog layers which carry
out the anomaly detection steps. The identification of the
clusters is based on a hyper-ellipsoidal clustering algorithm
which adopts a scoring mechanism for distinguishing nor-
mal and anomalous events [40]. The proposed architecture
is compared with both a centralized architecture and a dis-
tributed architecture in the same fog computing framework.
Similar architectures have been previously introduced by
Rajasegarar et al. [40] considering a multi-level hierarchical
topology of Wireless Sensor Networks (WSNs). In the cen-
tralized architecture, sensor nodes just sent data to the cloud
server which carry out all the data elaboration. In the dis-
tributed architecture, end nodes conduct a clustering step at
the sensor layer, send the results of the clustering to the fog
and cloud layers, and receive the results of fog and cloud
layers clustering. Fog and cloud layers receive the clustering
results from the lower layers, merge the clusters and send
back to the end nodes the results of the merging. The fog
layers are also in charge of the anomaly detection task. As an
application scenario, the authors present a smart traffic light
system, where the traffic light acts as fog node and receives
signals from different devices such as sensors mounted on
cars and pedestrian, flashing lights of the ambulances. The
smart traffic light process all the data coming from the street
in order to maintain a smooth and safe traffic flow.

A fog computing architecture for anomaly detection in
smart cities has been recently presented in [24]. Pereira dos
Santos et al. [24] discuss the application of their approach for

monitoring the air quality in the city of Antwerp, Belgium,
considering Low Power Wide Area Network (LPWAN) tech-
nologies for the communications. Also in this case, end nodes
send raw data to the fog resources which perform the anomaly
detection in a distributed fashion. Fog layers may send alerts
to both end nodes and cloud servers, whenever anomalies
have been detected. The cloud layer combines the results
of the anomaly detection in order to update in real-time the
status of the entire network. Moreover, the cloud layer can
also perform global anomaly detection operations and show
the results to the central dashboard of a control room of the
smart city. The anomaly detection procedure has been car-
ried out using an unsupervised approach based on clustering
algorithms.

Rathore et al. [41] discuss a real-time geo-visualization
framework. The framework is fed by micro-climate data
sensed and transmitted by low-cost multi-sensors. These sen-
sors send raw data to the gateway using the Zig-Bee transmis-
sion protocol. Then, by means of a 3G/4G wireless modem,
data are transferred to a cloud server for the persistent
storage. The anomaly detection process and the interactive
geo-visualization have been implemented as a web appli-
cation. The application gets data by means of SQL queries
towards the data cloud server. Hyper-ellipsoidal clustering
algorithms have been adopted for the anomaly detection.

C. ACOUSTIC ANOMALY DETECTION IN IoT CONTEXTS
We also identified some recent contributions regarding acous-
tic anomaly detection (AAD) based on IoT architecture.
The very recent contribution in [19] introduces a perva-
sive IoT-based indoor acoustic surveillance architecture that
detects and localizes anomalous sounds associated with
abnormal events. The anomaly detection process is car-
ried out in a distributed fashion: the proposed architecture
includes both smart sensors, devoted to monitoring the envi-
ronment, and delegate sensors, which are in charge of assist-
ing the management of the sensors, the identification and the
localization of anomalous events. Smart sensors are equipped
also with resources capable to carry out local abnormality
detection. Both SVM and LDA models have been adopted
for the classification stage of the sound events.

An edge computing-based architecture for audio event
detection has been discussed in [21]. Wireless audio sensors
are deployed in indoor environments and raw data are sent to
data concentrator devices, which are equipped with graphics
processing units (GPUs). Such devices are in charge of data
pre-processing, including feature extraction and anomaly
detection tasks. The detection model is based on both cluster-
ing and classification algorithms. The data concentrators send
the results of their elaboration to a remote server that takes
care of the needs of people living in the considered scenario.

Some of the results achieve in the context of a EU project
called DYNAMAP [42], aimed at developing low-cost sensor
networks for real-time noise mapping, have been reviewed
in [43]. In particular, the authors show the results achieved
by their anomalous noise events detector algorithm for
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TABLE 1. Summary of the main features of the recent methods for anomaly detection in IoT architectures.

mapping the traffic noise, considering both urban and sub-
urban areas. The algorithm is based on a two-class anomaly
detection model which discriminates between normal road
traffic noise and anomalous noise events. A set of smart
and low-cost acoustic sensors have been deployed along the
roads to be monitored. These sensors perform simple signal
pre-processing and also the event classification exploiting
acoustic models based on machine learning algorithms. All
the classification labels are sent to a centralized server which
is in charge of updating the noise maps.

Finally, even though the work is not properly focused on
IoT architecture, it is worth discussing the issues regard-
ing AAD arisen in [44]. This work deals with important
challenges in AAD, namely intra-class variations, such
as the different duration for the same sound type, and
spectral-temporal properties across classes, which include
impulse-like sounds, tonal events, and noise-like events.
Among the latter types of sounds/events, we can found,
respectively, door slams, phone rings and printer sounds.
In particular, the authors propose the use of both contextual
information and prior knowledge of the event category and of
the event boundary. Random forests are employed as models
for anomaly detection.

D. GAP ANALYSIS
Table 1 summarizes the main features of the aforementioned
recent approaches to anomaly detection in the IoT context.
Observing this table, we notice that the majority of the recent
related literature sticks to classical technological approaches
(e.g., web/cloud-based frameworks [20], [38], [41], and dis-
tributed WSN deployments [19], [40], [43]). Indeed, only a
few works attempt to rely on the Fog/Edge Computing
paradigm to distribute the execution of the different tasks of
an environmental sensing IoT application along the cloud-to-
thing continuum [21], [24], [39].

However, it is worth noticing that the fog node used
in [39] is a full-fledged server PC equipped with an Intel
i7-4790 quad core processor and 16 GB of RAM while,
in [21], even though the authors propose a Mobile Edge
Computing (MEC) [45] approach, they rely on a high perfor-
mance General Purpose Graphics Processing Unit (GE-GPU)
directly installed on a Jetson TK1 development board [46],
that is yet a quite powerful (and expensive) edge gateway
device. On the other hand, as described in Section III-B,
the full gateway framework adopted in our experimentation

is deployed on a very cheap Raspberry PI 3 [47] single-board
computer.

Moreover, the sensor nodes of [39] simply collect environ-
mental data and wirelessly transmit the digitized values to
the fog node, which is responsible of the full processing and
analysis of all raw data flows coming from (possibly various)
sensor nodes. The same approach is also followed in [24]
to detect anomalies in slowly changing environmental phe-
nomena (e.g., 3 particle matter indicators enriched with GPS
locations). Conversely, as described in Section IV, in our
framework the sensor nodes are able to locally pre-process
high-definition raw audio streams in real time, hence only
transmitting the extracted features to the near gateway. In this
case, the intelligence of the application is truly diluted along
the technology chain (e.g., from tiny sensing terminals,
through cheap IoT gateways, until web/cloud endpoints),
as also the most constrained devices of the chain can bear
non negligible computational overheads.

III. TECHNOLOGICAL BACKGROUND
This section introduces and describes the main Edge
technologies adopted to develop and assess the proposed
framework.

A. THE TEENSY-BASED SMART AUDIO SENSOR
A Smart Audio Sensor (SAS) was originally defined in [48]
as an embedded device equipped with one or more micro-
phones that is able to record and perform some computations
directly on the audio stream, without losing real-time capa-
bilities. In this way, it is possible to have devices that are
able to monitor the surrounding environment, even in some
edge situations. For instance, a SAS deployed in a street may
detect gunfire events, even in absence of light or illumination.
Moreover, by using an array of microphones, it may be also
possible to identify the direction of the event source.

However, SASs should be developed adopting powerful
computing units able to execute operations directly on the
audio stream (e.g., ARM Cortex-M4). In the prototyping
landscape, one of the most promising boards for embed-
ded intensive computations is the Teensy board [49]. Teensy,
developed by PJRC, is a versatile and powerful development
platform for embedded projects compatible with the Arduino
Environment, thanks to the Teensyduino libraries.Most of the
Arduino sketches run on Teensy boards. Teensy is available in
six different flavors, based on the requirements of the project.
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The most powerful board is the Teensy v3.6, that is equipped
with a 32 bit ARM Cortex-M4F processor, with the DSP
instruction set, working at 180MHz with a floating point unit
(FPU), 256KB of RAM, 1MB of Flash memory, 58 Digital
I/O, 6 UART interfaces, 4 I2C buses, 3 SPI interfaces, 2 I2S
Digital Audio buses, 1 micro-SD card slot and the possibility
to connect one Ethernet shield at 100Mbps.

Teensy boards have been designed by following the
Arduino philosophy “Easy to mount, cheap to produce” in
order to extend the board capabilities. Shields can be easily
developed and plugged, thanks to the high availability of I/O
pins. Even Arduino shields can be plugged to a Teensy board
using the Teensy Arduino Shield Adapter.

A powerful extension shield for Teensy boards is the Audio
Shield. This board, created by PJRC, is able to add I/O
audio capabilities to Teensy. It is powered by the powerful
SGTL5000 Low Power Stereo Codec [50] and allows 16 bits
high-quality audio recording at 44.1 KHz (CD quality), using
either the on-board mono-channel microphone or the stereo
line-level input. Moreover, it supports stereo line-level output
and stereo headphones through the 3.5mm jack soldered on
the board. A Teensy board can be physically connected to an
Audio shield using the 14x2 extension header and the audio
stream is transferred from one device to the other one, using
the I2S Digital Audio bus, that is a special communication
bus designed for audio streams that supports up to 2 different
audio channels. The audio data transfer is managed by the
Teensy Audio library, a software library that is also able to
execute various operations on audio streams. Furthermore,
if the library is executed on Teensy 3.x boards, it can run
real-time, computationally-intensive operations, like FFTs,
using the DSP instruction set provided by the ARM Cortex-
M4 processor. In addition, another library, OpenAudio for
Teensy [51], has been developed on top of the Teensy Audio
library and provides additional features and operations for
real-time audio processing. This enables developers to create
sound-reactive projects with reduced costs.

B. THE AGILE-BASED IoT GATEWAY FRAMEWORK
In general, SASs represent a versatile kind of embedded
devices that can be adopted within almost every IoT scenario,
spanning from industrial plants to smart city contexts, simply
by connecting them to a gateway, either through a wired
or wireless radio communication technology. In particular,
gateways are able to bridge different networking stacks, e.g.,
IP and non-IP worlds, and execute computational intensive
operations closer to the deployed devices. In the context
of gateway devices suitable for the IoT, one opportunity is
offered by the Adaptive Gateway for dIverse muLtiple Envi-
ronments (AGILE) [52]. AGILE is an open source modular
software for IoT gateways which supports a wide range of
components. Hence, it enables developers, users and com-
panies to develop their own solutions and products on top
of its stack. The AGILE architecture has been designed by
following the micro-service paradigm, which was originally
proposed for distributed systems. Nowadays, this paradigm is

well-recognized and adopted in several different fields (e.g.,
cloud computing), as it enables strong modularity, maintain-
ability, scalability, reliability and resiliency against failures
of systems [53]. Indeed, if a service fails, the whole system
remains alive, with reduced capabilities in the the worst case.
The AGILE project consortium adopted these concepts and
ideas to design a robust framework for IoT gateways. This
framework consists of different modules, where each module
is implemented as an independent service within a Docker
container,1 which creates a sandbox where the component
executes. Within a container, it is possible to use very specific
technologies and programming languages, without suffer-
ing any compatibility issue with other modules. Interactions
among modules exploit a well-defined set of Application
Programming Interfaces (APIs) defined in the framework.
APIs are available in two different manners: using a com-
mon Inter-Process Communication (IPC) bus (e.g., DBus2)
or using RESTful interfaces.

The AGILE gateway framework runs on many different
hardware architectures, including x86 and ARM. In partic-
ular, AGILE has been successfully tested and deployed on
affordable Raspberry Pi 3 (RPi3) computers [47], which is
a single-board computer. Despite its reduced cost, a RPi
computer can rely on several analog and digital input/output
lines to extend its basic capabilities (e.g., connecting sensors
and actuators). For instance, the Libelium company (which
is partner of the AGILE consortium) has developed an exten-
sion shield for the RPi, called the Maker’s Shield [54], [55],
equippedwith sensors, buttons, LEDs, and twoXBee sockets.
This board can helpmakers and developers to create complete
IoT solutions in a easy and straightforward way, by just
plugging the shield on top of the RPi GPIO header. Moreover,
considering the presence of twoXBee-compliant sockets, it is
possible to extend the networking capabilities of the AGILE
gateway by adding new families of supported devices and
radio technologies.

Finally, the AGILE framework has been designed to be
suitable in many scenarios and applications. To this aim,
the consortium identified five different pilot tests: open field
and cattle monitoring, enhanced retail services, port area
monitoring for public safety, air quality and pollution mon-
itoring, and self tracking. All these pilots are implemented
by exploiting the modularity and the fine-granularity of the
whole framework. In Section V, we will introduce a new
showcase for the AGILE IoT gateway, that is the rare sound
event detector in an office environment, based on anomaly
detection algorithms.

IV. THE PROPOSED WIRELESS SMART AUDIO SENSOR
In this paper, we propose a tiny and affordable wireless
smart audio sensor (SAS) for indoor environments. Our wire-
less SAS has been developed using commercial boards and
components. As depicted in Figure 1, the device comprises

1https://www.docker.com/
2https://www.freedesktop.org/wiki/Software/dbus/
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FIGURE 1. Hardware schema of the proposed Wireless Smart Audio Sensor. A Teensy 3.6 (c) is connected,
through I2S bus, to a Teensy Audio Shield (b) that records the audio signal coming from a mono-channel
microphone (a). Then, the Teensy MCU (c) computes the FFT and Mel coefficients of a recorded audio frame.
Finally, the Teensy board (c) sends all the Mel coefficients to an UART endpoint using a UART interface provided
by a HC-05 Bluetooth 2.0+EDR module (d).

four different modules: a mono-channel electret microphone
capsule (Figure 1a), a Teensy Audio Shield (Figure 1b) for
audio recording at 44.1 KHz with 16-bit resolution, a Teensy
3.6 board (Figure 1c) for local audio processing, and a HC-05
Bluetooth module (Figure 1d) for serial data transfer.

During the initial phase of the design of our SAS
(Figure 2a), the device was conceived to record an audio
stream with sample-rate of 44.1 KHz and 16-bit resolution
and to transmit the signal over an UART interface using
the Bluetooth module. Another device, e.g. gateway, was in
charge to perform some addition computations on the sam-
pled signal. The radio module is able to establish a Bluetooth
2.0 + EDR connection (up to 3 Mbps) and supports UART
baud-rates up to 460800 baud (from specifications). We con-
ducted some tests and figured out that the module guarantees
good performances up to 230400 baud using the 8N1 mode.
Such baud-rate is not enough to transmit the audio stream
since it requires (in this case 1 bps = 1 baud)

Sample_Rate · Bit_Resolution = 44100 · 16

= 705600 bps, (1)

where each sample is represented with 16 bits. A possible
solution was to reduce the sample-rate to a value that was
small enough to realize a bit rate that fits in the available band-
width. Starting from the maximum baud-rate, the maximum
achievable sample rate is calculated by using (2).

Maximum_baudrate
Bit_Resolution

=
230400
16

= 14400 Hz. (2)

Since 14400 Hz is not a recommended sample-rate (is not
an integer division of 44100), the first smaller acceptable
rate is 11025 Hz. The Nyquist-Shannon sampling theorem
tells that the maximum available signal bandwidth is one

half (5512.5 Hz) of the sampling-rate, thus the computed
sample-rate is too small to create a Smart Audio Sensor
because high-frequency components are required in many
applications.

The above bandwidth bottleneck pushed a re-design of
the Teensy board behavior. At the beginning, the DSP
pre-processing was not performed on the SAS but on the
other side of the Bluetooth link, e.g., gateway. SASs are
commonly adopted in use-cases in which the raw audio
stream is transformed to other more meaningful quantities
such as Mel-Frequency Cepstral Coefficients (MFCC) or
Mel coefficients. The former are mainly used as features for
speech-based applications, the latter are frequently adopted
as features in non-speech scenarios. Both of them require
the preliminary computation of the frequency spectrum from
the raw audio stream. The Teensy’s libraries provide efficient
DSP operations exploiting the DSP capabilities offered by the
ARMM4FMCU. Using such libraries, we have implemented
the whole software flow to compute the Mel coefficients
within the Teensy firmware. Figure 2b shows the sequence of
operations required to calculate such coefficients. After the
sampling performed by the Audio Shield at fsr = 44100Hz,
the Teensy MCU applies the Hanning window to the audio
stream, in order to reduce discontinuities in the signal, and
calculates the Fast Fourier Transform (FFT) at NFFT points
using a temporal window large NFFT audio samples over-
lapped by δoverlap with the previous window. Overlapping
is used to maintain a high correlation between following
windows. The FFT implementation returns NFFT complex
samples made of two float32 numbers. Then, we compute
the square magnitude of the FFT output in order to have an
instantaneous estimation of the power distribution over fre-
quency. Consequently, we apply the Mel-Filtering using Nmel
bins. This filtering is performed using a filter-bank, composed
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FIGURE 2. Software flowcharts of the implemented SAS. (a) is the early design of the SAS with only recording
capabilities. (b) is the re-designed version of the SAS with embedded feature extraction. (a) Early design. (b)
After re-design.

of Nmel filters, that implements the mel-scale, the non-linear
perception scale of the human ear [56]. Every Mel-filter has
triangular shape, has response 1 at the central frequency and
it linearly decreases down to 0 when it reaches the central
frequencies of neighbor filters. The frequency response of the
i-th filter is described in (3).

Hmeli (k) =



0 k < f (i− 1)
k − f (i− 1)
f (i)− f (i− 1)

f (i− 1) ≤ k < f (i)

1 k = f (i)
f (i+ 1)− k
f (i+ 1)− f (i)

f (i) < k ≤ f (i+ 1)

0 k > f (i+ 1)

(3)

f (i) is the central frequency of the i-th filter. To calculate
these frequencies, two different techniques have been pro-
posed in literature: the Slaney’s formulation [57] and the
HTK’s formulation [58]. In this paper, we adopt the for-
mer formulation that splits the frequency domain in to two
different regions: a linear region for frequencies within the
range 0-1000 Hz and a log region for frequencies grater than
1000Hz. Equations (4) and (5) describe how to pass from
hertz to mel and vice-versa, respectively.

m=


f

200/3
f ≤ 1000Hz

1000
200/3

+
log(6.4)

27
· log

(
f

1000

)
f >1000Hz

(4)

f =


200
3
· m m ≤

1000
200/3

1000 · exp
(
log(6.4)

27
·

(
m−

1000
200/3

))
m >

1000
200/3

(5)

In order to compute the central frequencies, we have firstly
to calculate the mel representations of the lower and higher
frequencies of the audio bandwidth, e.g., 0 Hz and 22050 Hz,
using (4). Then, we compute Nmel linearly spaced values in
the range of the previously computed lower and higher mel
representations. Now, applying (5) to every value, we obtain
the central frequencies f (i) of our filters.

After the mel-filtering, the smart audio sensor transmits
theNmel coefficients, represented as float32, over a Bluetooth
channel using an 8N1 UART interface working at br baud.

A. DESIGN FRAMEWORK
In this section, we present and develop our design framework
for Smart Audio Sensors that perform the computations pre-
sented above. Before starting, we have to define four param-
eters that will be tuned in order to correctly implement the
SAS. Since the SAS operates on frequency representations of
the audio stream, the first two parameters that we present are
the length of the temporal window on which we compute the
FFT (NFFT ) and the overlapping fraction (δoverlap) between
two following audio windows. These parameters influence
themaximum length of the pre-processingwindow, the length
of the temporal window and the granularity of the audio
transformation. The third parameter is the number of Mel
coefficients (Nmel) computed over the frequency spectrum.
It affects the transmission delay and the granularity of filters
over the spectrum. The last parameter is the baud-rate (br) of
the Bluetooth module. It affects only the transmission delay.

A Smart Audio Sensor should be designed by minimizing
the latency introduced by recording (trec), pre-processing
(tpre) and data-transmission (ttx) phases. We assume that the
maximum latency for a real-time response is 150ms. This
particular value is the maximum Mouth-to-Ear latency for
VoIP systems, as defined in the G.114 ITURecommendation.
(6) defines the Real-Time condition.

trec + tpre + ttx < 0.15[s]. (6)

Moreover, during the design phase of a SAS, we have to
set the processing and the transmission parameters in order
to satisfy another condition that we call Buffering-Processing
condition (7).

tpre + ttx < tbuffering. (7)

Since the FFT has to buffer NFFT samples before it is able to
compute the frequency spectrogram and the window overlap
fraction is δoverlap, a full pre-processing buffer is available
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every

tbuffering =
(
1− δoverlap

) NFFT
fsr

[s], (8)

where fsr is the sampling rate. The SAS has to complete all the
pre-processing operations and the transmission phase within
the buffering window tbuffering in order to not overlap with
other adjacent ones.

On the left-hand side of (7), we have two terms: tpre and
ttx . The former can be rewritten as

tpre = tFFT + tmag + tmel, (9)

where tFFT , tmag and tmel are the temporal duration of FFT,
square magnitude and mel-coefficients extraction operations,
respectively. More in details, time required to compute an
FFT tFFT operation depends on the number of points NFFT
and it has shape

tFFT = 4.3 · 10−8 · NFFT · log2(NFFT ) [s], (10)

where the coefficient 4.3·10−8 has been empirically found by
interpolating time durations required to compute FFTs with
different value of NFFT .

The second term (tmag) of (9) describes the time required to
compute the square magnitude of the FFT spectrogram. Even
this term depends on the number of FFT coefficients NFFT
and we have empirically found that it has shape

tmag = 2.46 · 10−8 · NFFT + 2.5 · 10−6 [s] (11)

The last term (tmel) of (9) represents the time required by the
Teensy MCU to compute the mel-coefficients starting from
the squared magnitude of the FFT coefficients. Equation (12)
shows the experimental formula to compute tmel .

tmel = 5.1 · 10−7 · Nmel + 3 · 10−7 · NFFT − 1.9 · 10−5 [s]

(12)

All empirical coefficients have been found by running
5000 times each single operation in the pre-processing
loop with different values of parameters NFFT ∈

{256, 512, 1024, 2048, 4096} and Nmel ∈ {40, 64, 128}.
Moreover, we used the ARM functions available in the
Teensy arm_math.h library.
The left-hand side of the Buffering-Processing condition

(Equation (7)) contains a second term, ttx , that keeps track of
the time spent to transmit the Nmel mel coefficients through
an UART interface over the Bluetooth channel. This term
(Formula (13)) depends on three different parameters: the
number of coefficients Nmel , the effective bit-rate breff and
the number of bits (Nbits) used to represent each coefficient,
e.g., Nbits = 32 if we use float32.

ttx =
Nmel · Nbits

breff
[s]. (13)

It is important to note that the bit-rate breff used in (13)
is not equivalent the baud-rate br configured on the serial
connection, e.g., 230400 baud. We have to scale the config-
ured baud-rate by 0.8, so breff = br · 0.8. This scale factor

TABLE 2. Configured baud-rates Vs Effective bit-rates with 8N1 mode.

comes from the serial mode configured. Since we are using
the 8N1 mode, we transmit 1 start bit, 8 data bits, 0 parity
bits and 1 stop bit. Resuming, we are actually transmitting
10 bits every 8 information bits. Effective bit-rates are shown
in Table 2.

B. A POSSIBLE PARAMETERS TUNING
As described above, a SAS designer has to tune only four
parameters (δoverlap, NFFT , Nmel , br) that are free variables.
Typically, the overlap fraction δoverlap is set to 0.5 in order
to keep a good correlation between consequent windows.
A possible set of parameters is the following:

δoverlap = 0.5, NFFT = 4096

Nmel = 128, br = 230400.

Now, we prove that this set of parameters verifies both
the design conditions. First, using (8), we compute the
inter-arrival time between two consequent windows and we
get

tbuffering = 46.44 · 10−3 [s].

Hence, we compute the time required for pre-processing
operations using Formulas 9, 10, 11, 12, thus we obtain

tpre = (2.11+ 0.1+ 1.3) · 10−3 = 3.51 · 10−3 [s].

Then, using (13), we compute the time required to transmit
Nmel coefficients as float32 and we get

ttx = 22.2 · 10−3 [s].

Immediately, we can see that the Buffering-Processing con-
dition (Equation (7)) holds, since

tpre + ttx = (3.51+ 22.2) · 10−3

= 25.71 · 10−3

< 46.44 · 10−3 = tbuffering.

Now, we have to verify if the Real-Time condition
(Equation (6)) holds. The recording delay trec is simply the
time required to record NFFT samples at 44100 Hz and in this
case it has value

trec = 92.9 · 10−3 [s].

Using this result we can compute the overall delay introduced
by recording, pre-processing and transmission phases and we
obtain

trec + tpre + ttx = 118.61 · 10−3 < 150 · 10−3 [s].

The Real-Time condition holds and our set of parameters can
be used to build a SAS. Other possible parameter combina-
tions are shown in Table 3.
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TABLE 3. Other possible parameter combinations assuming
δoverlap = 0.5.

C. COTA: CONFIGURATION OVER THE AIR
In the previous section, we have presented a framework that
requires the tuning of four parameters to design a Smart
Audio Sensor. Since SASs may be deployed in dangerous
or unaccessible locations, device’s parameters should be
remotely set or changed from the other side of the Blue-
tooth link. These devices can be connected to an AGILE
gateway and the gateway framework offers this functionality
to remotely configure parameters. It is called Configura-
tion Over The Air (COTA) and is implemented as a small
micro-service that pushes parameters over the serial link used
to communicate with a SAS. Parameters are sent to the remote
device as a text string with the following format

#δoverlap;Nfft ;Nmel; br$.

An example of a possible string is

#0.5; 4096; 128; 230400$.

The SAS replies with an acknowledgement message, which
is OK, for a valid configuration or with ERROR if it
rejects the configuration. After the acknowledgement mes-
sage, the remote device reboots with the new configuration.

Moreover, the COTA module exposes an UI, accessible
through the AGILE web-base UI, that allows users to config-
ure parameters. The interface is really user-friendly and ready
to use. The title shows the device family and ID, the the body
contains four different fields to set the value of parameters.
The UI controller is able to verify if the proposed configu-
ration verifies our two design conditions. If one condition is
not met, the interface prompts an error. Figure 3 shows an
example of the COTA UI interface.

V. PROOF OF CONCEPT
In order to demonstrate the applicability of the Smart Audio
Sensors introduced in Section IV, we have designed and
deployed an IoT Smart Office environment that uses a SAS
and an AGILE gateway to detect audio anomalies. In this
context, anomalies may be screams, door slams or every event
that is not a normal keyboard typing, a call or a talking.
Figure 4 provides a block diagram depicting how the different
technological entities and comprising components interact
with each other.

The SAS implements the pre-processing technique previ-
ously described and it is configured as follow:

δoverlap = 0.5, NFFT = 4096

Nmel = 128, br = 230400.

FIGURE 3. COTA UI.

The device has been deployed in a top corner of a rectangular
room, which has a surface of 25 square-meters. The SAS
records the audio-stream from an electret microphone, then
pre-processes it by extracting mel coefficients and, finally,
sends computed features to an AGILE gateway using the
Bluetooth interface. On the other side of the radio link,
the gateway runs a python-based micro-service that col-
lects mel coefficients, through the serial interface, and feeds
an Anomaly Detection algorithm to detect if an anomaly
occurred or not in the current time frame. If yes, the micro-
service sends a notification to the user showing an error in the
logging console.

Our objective is twofold: we want to evaluate the impact
over the CPU of Anomaly Detection algorithms running on
the AGILE gateway and the delay from the anomalous event
to the event detection. In this way, we have considered two
different anomaly-detection algorithms among all the algo-
rithms offered by the Scikit-Learn3 toolbox: Elliptic Enve-
lope (EE) [59] and Isolation Forest (IF) [60], [61].

The EE algorithm assumes that the training set has a Gaus-
sian distribution, thus it models a robust covariance estimator
over data. Giving the estimation of the inlier location and
covariance, the algorithm uses the Mahalanobis distance to
measure outlyingness of unseen data points.

The Isolation Forest algorithm exploits random forests to
isolate outliers from inliers. IF randomly chooses a feature
and then splits in a point between the maximum and the min-
imum values of the selected feature. The number of splitting
operations that are required to isolate an instance is equal to
the path from the root node of a tree to the leaf node. This is
due to the recursive nature of splitting that can be modeled
by a tree structure. We obtain a detection rule and a measure
of normality by averaging path lengths over a forest of trees.
This is due to an intrinsic property of IF that generates short
paths for anomalies since they are isolated form inlier values.

3http://scikit-learn.org
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FIGURE 4. Block diagram of our technological framework, that is the deployed things-to-cloud continuum and the
corresponding interactions with the IoT edges.

A. TRAINING
Since Anomaly Detection techniques belong to the Unsu-
pervised Learning family of machine learning algorithms,
a labeled dataset is not required to train our models. However,
such algorithms require an unlabeled dataset that describes
the normality condition of the office environment. In order
to realize a reliable and real dataset, we conducted an
audio recording campaign using a Teensy Audio Shield and
a Teensy board that was programmed only as a recorder
and stream forwarder over a UART interface. As stated in
Section IV, the bandwidth available over a Bluetooth inter-
face is not sufficient to transmit the audio stream recorded
at 44.1 KHz with 16-bit resolution (Equation (1)), thus we
configured the UART interface over USB that is able to
reach higher baud-rate, up to 4.608 Mbaud. We recorded the
office audio stream for 4 hours saving a WAV file every
60 seconds. The obtained dataset was split in two differ-
ent subsets: 2 hours reserved for training set and 2 hours
assigned to the test set. In particular, the training phase
comprises two steps: feature extraction and the training of
a model. Feature extraction calculates the mel coefficients
starting from audio files using APIs offered by LibROSA
[62], a python package for audio analysis. The sequence of
operations is the same one explained in Figure 2. Anomaly
Detection algorithms were implemented in Python3 using
the Scikit-Learn framework, a powerful machine learning
python toolbox. As we stated above, we selected two differ-
ent algorithms among all the tens of available algorithms:
Elliptic Envelope (EE) and Isolation Forest (IF). These
algorithms require few hyper-parameters to configure the
training process. Since we want to study the CPU load of
the model inference, we used the default value of param-
eters for both of the algorithms: we used 0.1 as contam-
ination fraction and 100 as the number of adopted trees
in IF. Firstly, we have trained our algorithms on just the
first half of the set. Then, we retrained them on the entire
set.

B. EVALUATION
As we stated above, the evaluation of the proposed solution is
conducted by considering the CPU load due to an Anomaly
Detection algorithm running on an AGILE gateway and the

event-detection latency, the delay between the anomalous
event and the event detection.

Since, the AGILE gateway has been designed to run over
a Raspberry Pi 3 computer, we conducted the load evaluation
by running the AGILE gateway modules and the AD algo-
rithm on the same device in two different fashions: embedded
within a Docker container and executed as a native Python
script. We recorded the user CPU load, since the module
and AGILE run in the userspace, using the top4 utility.
Each experiment comprises three different phases: in the first
15 seconds, the system runs all the AGILE gateway modules
and AD module without inferencing the feature stream, since
it is not attached to the detection module. Then, we con-
nect the feature stream to the AD algorithm for 30 seconds.
Finally, we detach the data stream form the module and we
continue to record the CPU load for other 15 seconds.We pro-
filed the CPU load for both the AD algorithms. Moreover,
in order to provide a baseline, we also repeated the same
experiments over a x86 machine that run the AD algorithm
and the AGILE gateway framework.

Figure 5 shows the CPU load due to the execution of the
Isolation Forest algorithm. As we can see, the average CPU
load on a Raspberry Pi increases from 5.2% to 30.6% when
the module is embedded within a Docker container and from
6.8% to 30.4%when the module is natively executed. We can
see that when the algorithm is running the Docker overhead
is 0.2%. For IF, the Docker overhead on a x86 machine
is the same (0.2%) since the CPU load is 26.1% (docker-
ized) and 25.9% (native), respectively. Figure 6 depicts the
computing load due to the Elliptic Envelope algorithm. The
graph shows that the Raspberry Pi CPU load passes from
5.6% to 7.9% when the algorithm is embedded within a
container and from 5.6% to 7.3% when the script is natively
executed. The load over a x86 machine is 1.18% when the
module is containerized and 80.3% when the Python script is
run natively. This behavior might be due to how the Python
interpreter distributes the load over the CPU.

In general, except for the EE run as native script over a
x86 machine, the CPU load of IF is higher then the load
required to compute EE. This is due to the nature of the

4http://man7.org/linux/man-pages/man1/top.1.html

67604 VOLUME 6, 2018



M. Antonini et al.: Smart Audio Sensors in the IoT Edge for Anomaly Detection

FIGURE 5. CPU load of Isolation Forest.

FIGURE 6. CPU load of Elliptic Envelope.

running algorithm. EE has to check if the input sample is
inside or not the region defined by the learned decision
function. If the sample is outside, the algorithm notifies an
anomaly. The IF algorithm has to compute the output of all
the trees present in the ensemble (e.g.100) and then it takes a
decision. It is also possible to evince this behavior from the
delay introduced by the algorithm to compute the output.

Table 4 shows that the IF is much slower than EE since IF
has to compute the output of 100 trees.

Using the inference delays (ti), we can compute the average
overall latency (tdetection) from the event to the detection. (14),
which describes this latency, is the sum of 4 contributions:
trec, the time required to record an audio frame, tpre, the delay
introduced by Teensy to pre-process the audio frame, ttx ,

the transmission delay, and ti, the time required to infer the
data in the AD model.

tdetection = trec + tpre + ttx + ti. (14)

Applying (14), we get tdetection = 120.3[ms] when we infer
with an EE model and tdetection = 341.5[ms] when we adopt
IF as AD algorithm. Since EE is much faster and also lighter
than IF, we decide to adopt Elliptic Envelope as AD algorithm
on our gateway.

Moreover, we conducted an evaluation campaign in order
to profile the performance of the adopted algorithm in terms
of F1 score [63] and Error Rate (ER) [64]. F1 is defined as

F1 =
2 · P · R
P+ R
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TABLE 4. Inference delays ti .

where P is the precision (P = TP
TP+FP , TP= True Positive and

FP = False Positive) and R is the recall (R = TP
TP+FN , TP =

True Positive and FN = False Negative). Error Rate (ER) is
defined as

ER =
S + D+ I

N

where S is the number of substitution (correct time instant but
wrong class), D is the number of deletions (event not detected
but present in the ground truth), I is the number of insertions
(event detected but not present in the ground truth), and N is
the number of events in the ground truth. ER can have value
grater that 1.

We tested the adopted algorithm using a self-made dataset
generated using themixture generation engine [65] developed
for the DCASE2017 Challenge. We created a test dataset
made by 501 examples: 167 with a gunshot, 167 with a
glass-brake and 167 with a baby-cry. Each sample is 30 sec-
ond long and was obtained adding the rare event (e.g., a gun-
shot, a baby-cry or a glass-break) with probability one over
the recorded office audio stream. We applied this dataset to
our system and we computed the evaluation metrics using
the sed_eval toolbox [66] using a time-collar of 500 ms. The
EE algorithm trained with the 60 minutes dataset obtained a
F1-score of 50.55% and an ER of 0.71. The same algorithm
trained with the 120minutes dataset got a F1-score of 50.42%
and an ER of 0.71. We evaluated also the IF algorithm on the
same datasets and we obtained a F1-score of 56.07% and an
ER of 0.63 trainingwith the 60minutes dataset and a F1-score
of 53.49% and an ER of 0.65 using the 120 minutes training
dataset. Even if IF performs better than EE, we use EE since
it is faster and lighter.

C. DEPLOYMENT ON AGILE
In the previous section, we discovered that the Elliptic Enve-
lope is the best algorithm for our proof of concept, even if it
has lower performance than the Isolation Forest algorithm.
The Elliptic Envelope algorithm is 2 orders of magnitude
faster and much lighter than IF, thus the system may be able
to respond earlier and waste less computational resources.
We deployed the EE algorithm and the model trained
with 60 minutes of office audio recordings in the AGILE
Anomaly Detection micro-service. Moreover, we binded a
serial port to the module and we connected the Teensy
board programmed as a SAS with the parameters presented
before.

The system is able to receive the features computed by the
embedded board and it is able to detect Audio Anomalies
(e.g., hand claps). Once an anomaly happens, the micro-
service notified the user by logging detection messages in

the terminal output. However, it is important to remember the
nature of the incoming signal and the source of events. Since
we are working with a transformed audio stream, we have
many feature frames per second (21.5 frames per second)
and the algorithm can erroneously detect (False Positive) an
anomaly. In order to reduce isolated False Positives, pos-
sible solution was to apply a median filter, with window
length N (N has to be odd), to the algorithm output. This
filter considers the N − 1 past samples and the current
one, then it sorts all the predictions. If at position N+1

2
there is an anomaly, the filter declares that an anomaly
occurred. We have to choose a small value of N (e.g. 5,
7,...) such that it does not introduce delays or hide anoma-
lies. A good value of N is 5. Moreover, another aspect that
affects the accuracy of the deployed system is the quality
of the dataset. The training dataset should contain all the
audio events that define the condition of normality in the
considered environment. The anomaly model was trained
using a real audio stream recorded in a office environment
during the working time, thus the audio stream contained
normal office sounds, e.g., talking, phone ringing, typing and
clicking.

This kind of scenarios suffers weaknesses related to the
physical deployment of the SAS. Since the audio sen-
sor embeds an electret microphone, which has a sort of
directivity even if it is omni-directional, should be posi-
tioned in the direction of the audio source in order to have
a better transduction from the audio signal to the elec-
tric signal with reduced reverberation. Moreover, the raw
audio signal exiting from the microphone is really small
and it requires a pre-amplification before the elaboration.
The pre-amplification gain should be fine tuned in order
to guarantee a good quality of the signal with an high
Signal-to-Noise Ratio (SNR). Noise may be introduce by the
microphone cable (depends on the cable quality and length)
and by the amplifier itself. Another weakness is related to
the power consumption since the SAS is always active and
continuously streams mel features over the Bluetooth chan-
nel. It should be deployed closer to a power source like an
electric plug or connected to a high-capacity battery. Future
works will characterize the power consumption of this device.

In the considered PoC, we deployed just one SAS, which
streams the extracted features. The proposed system is able to
deal with multiple streams coming from different SASs. This
is possible since the Anomaly Detection module supports
more than one serial port binding. Using a multiplexing tech-
nique, it is possible to choose one of the stream and then infer
on it. Another possibility, is to deploy one AD micro-service
per device, but this approach is much more hungry of CPU
power.

67606 VOLUME 6, 2018



M. Antonini et al.: Smart Audio Sensors in the IoT Edge for Anomaly Detection

VI. CONCLUDING REMARKS
This section concludes our study: first, it summarizes the
rationale behind the whole approach and the most interesting
results obtained; then, it traces the most promising, future
research directions.

A. CONCLUSIONS
In this paper, we have presented a class of smart objects
called Smart Audio Sensors (SASs), that are audio devices
able to autonomously record audio streams, locally perform
computations on the recorded streams and send the results
of these computations over a wireless link. At the beginning,
we designed a device that was a simple audio recorder, with
Bluetooth connectivity to transmit the raw audio stream.
However, we had to deal with a Bluetooth link that does not
have enough bandwidth to carry an audio stream sampled
at 44.1KHz with 16-bit resolution. Therefore, we decided
to migrate most of the computations directly into the audio
device firmware. In particular, we implemented the entire
software flow (Figure 2) to extract the mel-coefficients from
the raw audio stream. We defined a mathematical framework
to design parameters of the mel extraction software flow.
Such framework is based on two conditions, namely the Real-
Time condition (Equation (6)) and the Buffering-Processing
condition (Equation (7)), that have to be satisfied by the flow
parameters.

After that, we have integrated the SAS into the AGILE
gateway ecosystem and we have developed an ad-hoc mod-
ule, called Configuration Over The Air (COTA), to remotely
configure and push the mel-flow parameters without direct
intervention on the device firmware. This module has an user
interface (UI) available within the AGILE UI, and it is also
able to detect if the inserted configuration is valid or not.

In order to quantitatively assess the effectiveness of the
proposed solution, we have deployed the proposed SAS in
a real smart office scenario. This device is responsible of
collecting and locally computing the mel-coefficients, while
transmitting the computed features to an AGILE gateway
instance. The latter simply receives the mel-coefficients from
its wireless radio interface and run a micro-service that
executes a purposely trained anomaly detection algorithm,
in charge of detecting anomalous events in the received
feature-transformed stream. With respect to the specific
anomaly detection algorithms, we compared two differ-
ent options, namely Elliptic Envelope and Isolation Forest,
in terms of average computing latency and user CPU load
at gateway level. We observed that, on the AGILE gateway
instance, the best model is Elliptic Envelope, being it two
orders of magnitude faster and one order of magnitude lighter
than the Isolation Forest counterpart.

B. FUTURE WORKS
The proposed framework can be easily accommodated in
different verticals, especially within the Industrial IoT (IIoT)
domain. In this case, the sensing devices may be directly

deployed on-machine, so as to locally perform their com-
putations before sending data to the gateway, which, in this
way, has only to execute the machine learning algorithm. This
enables new vertical use-cases focused on diagnostics, prog-
nostics and predictive maintenance, which reduce expenses
and optimize the machine life-time.

However, industrial scenarios often require a higher num-
ber of sensing devices in order to effectively monitor different
point of a plant. In these situations, our framework can easily
scale up, providing a gateway that is able to manage large
numbers of devices and related data streams. Since we keep
deploying an AGILE gateway instance on a cheap Raspberry
Pi 3 computer, we prefer not exceeding 80% of CPU load.
Given this constraint and extrapolating the CPU load of the
Elliptic Envelope container from Figure 6, we assert that
more than 30 parallel Elliptic Envelope containers can be
concurrently hosted on a single gateway. Then, given the
harsher conditions of a typical industrial environment in
terms of electromagnetic interferences, for our preliminary
campaign we have changed the radio interface from Blue-
tooth to Wi-Fi as the latter, besides offering higher resistance
against electromagnetic interferences, allows for higher data-
rates. We conducted a wide performance test over the Wi-Fi
channel using IPerf,5 obtaining stable data-rates of 4Mbps,
at UDP level. Considering that our gateway is able to support
up to 31 devices, this means that every device can stream data
up to a maximum data-rate of 129 Kbps.

Currently, we are applying this framework in a real indus-
trial plant available at the Micro-Nano Facility (MNF) of
Fondazione BrunoKessler (FBK, Trento, Italy).6 This facility
allows researchers to study, develop and build micro devices
by processing raw silica wafers in an extremely clean and
fine-controlled environment, also known asClean Room. The
Clean Room is composed of different modules that keep
the environment suitable for silica processing. One of the
most important modules is the air treatment system that
controls both the injection and expulsion of the air from
the room, while keeping constant the air pressure and the
relative humidity. These systems are extremely critical since
a malfunction could have disastrous effects, for processes
and equipments. Each system has two electric engines, while
each engine is connected with a belt to a shaft that rotates
a fan to push or extract the air from the Clean Room.
Since these engines do not have on-board sensors, we are
developing retrofitting kits to sense vibrations (using MEMS
accelerometers) and temperature sensors. These kits sample
the physical dimension, perform a time-frequency feature
extraction and then stream data using aWi-Fi radio chip to the
AGILE gateway. More in detail, the kit computes 32 features,
expressed as 32-bits float numbers, starting from a 4 seconds
time window sampled at frequency of 1 KHz. It follows that
each kit has to transmit 1024 bits every 4 seconds. Given that
the maximum data-rate for each kit is as large as 129 Kbps,

5https://iperf.fr/
6https://mnf.fbk.eu/
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then the effective bandwidth allocation for each kit is only
0.2%. Such bandwidth requirement allows for radio chips to
stay in a low power consumption mode (sleep mode) for more
than the 99% of the time, which increases the life-time of
battery-powered kits.

At the time of writing, we have installed 2 kits for each
machine (one on top of the engine chassis and one directly
on the shaft bearing) for a total of 4 machines (thus, 8 kits
in total). The gateway is able to manage all the data streams
coming from these kits and, contextually, it is able to infer
anomalies per stream. The inference output (i.e., 0 if the
anomaly is absent; 1 otherwise) is used to tag data streams
that are sent to a remote cloud data broker. The remote
system stores data and allows for historical analysis through
a Grafana-based dashboard.7 Last but not least, since the
gateway supports the Configuration Over The Air (COTA),
we are able to dynamically reconfigure devices based on the
actual needs: if an anomaly occurs, we can easily reconfig-
ure the device in order to have a finer analysis of the system.
A the same time, we are also developing and testing a novel
approach to automatically train and deploy anomaly detection
models on the gateway. In this way, we can updatemodels and
reduce misdetections.

Another interesting research direction consists in develop-
ing a complete Data-Science framework running directly an
the AGILE gateway. This would surely allow developers and
data-scientists to directly create their own IoT applications on
the edge, with a smoother learning curve.

ACKNOWLEDGMENT
The co-authors of this paper would like to thank Gabriele
Maurina for his valuable support during the preliminary phase
of this research.

REFERENCES
[1] K. Ashton, ‘‘That ‘Internet of Things’ thing,’’ RFID J., vol. 22, no. 7,

pp. 97–114, Jun. 2009.
[2] C. G. Cassandras, ‘‘Smart cities as cyber-physical social systems,’’ Engi-

neering, vol. 2, no. 2, pp. 218–219, Jun. 2016.
[3] J. Poncela et al., ‘‘Smart cities via data aggregation,’’ Wireless Pers.

Commun., vol. 76, no. 2, pp. 149–168, May 2014.
[4] J. O. Kephart and D. M. Chess, ‘‘The vision of autonomic computing,’’

Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.
[5] A. Botta, W. de Donato, V. Persico, and A. Pescapé, ‘‘Integration of cloud

computing and Internet of Things: A survey,’’ Future Generat. Comput.
Syst., vol. 56, pp. 684–700, Mar. 2016.

[6] A. Bröring et al., ‘‘Enabling IoT ecosystems through platform interoper-
ability,’’ IEEE Softw., vol. 34, no. 1, pp. 54–61, Jan./Feb. 2017.

[7] B. Guo, D. Zhang, Z. Yu, Y. Liang, Z. Wang, and X. Zhou, ‘‘From the
Internet of Things to embedded intelligence,’’ World Wide Web, vol. 16,
no. 4, pp. 399–420, 2013.

[8] J. Ma, C. Alippi, L. T. Yang, H. Ning, and K.-I. Wang, ‘‘Introduction to the
IEEE CIS TC on smart world (SWTC) [society briefs],’’ IEEE Comput.
Intell. Mag., vol. 13, no. 1, pp. 7–9, Feb. 2018.

[9] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection: A survey,’’
ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009.

[10] A. Marsico, A. Broglio, M. Vecchio, and F. M. Facca, ‘‘Learn by examples
how to link the Internet of Things and the cloud computing paradigms:
A fully working proof of concept,’’ in Proc. 3rd Int. Conf. Future Internet
Things Cloud, Aug. 2015, pp. 806–810.

7https://grafana.com/

[11] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018.

[12] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[13] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos,
‘‘Fog computing for sustainable smart cities: A survey,’’ ACM Comput.
Surv., vol. 50, no. 3, pp. 1–43, Oct. 2017.

[14] M. Chiang, S. Ha, C.-L. I, F. Risso, and T. Zhang, ‘‘Clarifying fog com-
puting and networking: 10 questions and answers,’’ IEEE Commun. Mag.,
vol. 55, no. 4, pp. 18–20, Apr. 2017.

[15] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research opportu-
nities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec. 2016.

[16] B. Alturki, S. Reiff-Marganiec, and C. Perera, ‘‘A hybrid approach for data
analytics for Internet of Things,’’ in Proc. 7th Int. Conf. Internet Things,
2017, pp. 1–8.

[17] M. Vecchio, R. Giaffreda, and F. Marcelloni, ‘‘Adaptive lossless entropy
compressors for tiny IoT devices,’’ IEEETrans.Wireless Commun., vol. 13,
no. 2, pp. 1088–1100, Feb. 2014.

[18] G. R. Kumar, M. Nimmala, N. Gugulothu, and S. R. Gali, ‘‘CLAPP: A self
constructing feature clustering approach for anomaly detection,’’ Future
Generat. Comput. Syst., vol. 74, pp. 417–429, Sep. 2017.

[19] A. R. Hilal, A. Sayedelahl, A. Tabibiazar, M. S. Kamel, and O. A. Basir,
‘‘A distributed sensor management for large-scale IoT indoor acoustic
surveillance,’’ Future Generat. Comput. Syst., vol. 86, pp. 1170–1184,
Sep. 2018.

[20] R. U. Islam,M. S. Hossain, and K. Andersson, ‘‘A novel anomaly detection
algorithm for sensor data under uncertainty,’’ Soft Comput., vol. 22, no. 5,
pp. 1623–1639, 2018.

[21] R. M. Alsina-Pagès, J. Navarro, F. Alías, and M. Hervás, ‘‘HomeSound:
Real-time audio event detection based on high performance computing for
behaviour and surveillance remote monitoring,’’ Sensors, vol. 17, no. 4,
p. 854, 2017.

[22] S. Agrawal and J. Agrawal, ‘‘Survey on anomaly detection using data
mining techniques,’’ Procedia Comput. Sci., vol. 60, pp. 708–713, 2015.

[23] L. Akoglu, H. Tong, and D. Koutra, ‘‘Graph based anomaly detection and
description: A survey,’’ Data Mining Knowl. Discovery, vol. 29, no. 3,
pp. 626–688, 2015.

[24] J. P. P. dos Santos, P. Leroux, T. Wauters, B. Volckaert, and
F. De Turck, ‘‘Anomaly detection for smart city applications over 5G low
power wide area networks,’’ in Proc. IEEE/IFIP Netw. Oper. Manage.
Symp., May 2018, pp. 1–9.

[25] D. Wang, D. S. Yeung, and E. C. C. Tsang, ‘‘Structured one-class clas-
sification,’’ IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 36, no. 6,
pp. 1283–1295, Dec. 2006.

[26] M. Goldstein and S. Uchida, ‘‘A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data,’’ PLoS ONE, vol. 11,
no. 4, p. e0152173, 2016.

[27] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, ‘‘High-
dimensional and large-scale anomaly detection using a linear one-class
SVM with deep learning,’’ Pattern Recognit., vol. 58, pp. 121–134,
Oct. 2016.

[28] X. Miao, Y. Liu, H. Zhao, and C. Li, ‘‘Distributed online one-class sup-
port vector machine for anomaly detection over networks,’’ IEEE Trans.
Cybern., to be published.

[29] Z. He, X. Xu, J. Z. Huang, and S. Deng, ‘‘A frequent pattern discovery
method for outlier detection,’’ in Proc. Int. Conf. Web-Age Inf. Manage.,
2004, pp. 726–732.

[30] M. D. Ruiz, M. J. Martin-Bautista, D. Sánchez, M.-A. Vila, and
M. Delgado, ‘‘Anomaly detection using fuzzy association rules,’’ Int. J.
Electron. Secur. Digit. Forensics, vol. 6, no. 1, pp. 25–37, 2014.

[31] J. Kevric, S. Jukic, and A. Subasi, ‘‘An effective combining classifier
approach using tree algorithms for network intrusion detection,’’ Neural
Comput. Appl., vol. 28, no. 1, pp. 1051–1058, 2017.

[32] L. Koc, T. A. Mazzuchi, and S. Sarkani, ‘‘A network intrusion detection
system based on a Hidden Naïve Bayes multiclass classifier,’’ Expert Syst.
Appl., vol. 39, no. 18, pp. 13492–13500, 2012.

[33] A. S. A. Aziz, S. E.-L. Hanafi, and A. E. Hassanien, ‘‘Comparison of
classification techniques applied for network intrusion detection and clas-
sification,’’ J. Appl. Logic, vol. 24, pp. 109–118, Nov. 2017.

[34] X. Zhu and A. B. Goldberg, ‘‘Introduction to semi-supervised learning,’’
Synth. Lect. Artif. Intell. Mach. Learn., vol. 3, no. 1, pp. 1–130, 2009.

67608 VOLUME 6, 2018



M. Antonini et al.: Smart Audio Sensors in the IoT Edge for Anomaly Detection

[35] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and Y.-L. He,
‘‘Fuzziness based semi-supervised learning approach for intrusion detec-
tion system,’’ Inf. Sci., vol. 378, pp. 484–497, Feb. 2017.

[36] H. Song, Z. Jiang, A. Men, and B. Yang, ‘‘A hybrid semi-supervised
anomaly detection model for high-dimensional data,’’Comput. Intell. Neu-
rosci., vol. 2017, Nov. 2017, Art. no. 8501683.

[37] G. E. Hinton and R. R. Salakhutdinov, ‘‘Reducing the dimensionality of
data with neural networks,’’ Science, vol. 313, no. 5786, pp. 504–507,
2006.

[38] S. Trilles, Ò. Belmonte, S. Schade, and J. Huerta, ‘‘A domain-independent
methodology to analyze IoT data streams in real-time. A proof of concept
implementation for anomaly detection from environmental data,’’ Int. J.
Digit. Earth, vol. 10, no. 1, pp. 103–120, 2017.

[39] L. Lyu, J. Jin, S. Rajasegarar, X. He, and M. Palaniswami, ‘‘Fog-
empowered anomaly detection in IoT using hyperellipsoidal clustering,’’
IEEE Internet Things J., vol. 4, no. 5, pp. 1174–1184, Oct. 2017.

[40] S. Rajasegarar et al., ‘‘Ellipsoidal neighbourhood outlier factor for dis-
tributed anomaly detection in resource constrained networks,’’ Pattern
Recognit., vol. 47, no. 9, pp. 2867–2879, 2014.

[41] P. Rathore, A. S. Rao, S. Rajasegarar, E. Vanz, J. Gubbi, and
M. Palaniswami, ‘‘Real-time urban microclimate analysis using Internet
of Things,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 500–511, Apr. 2018.

[42] The Dynamap Project Web Site. Accessed: Sep. 30, 2018. [Online]. Avail-
able: http://www.life-dynamap.eu/

[43] J. C. Socoró, F. Alías, and R. M. Alsina-Pagès, ‘‘An anomalous noise
events detector for dynamic road traffic noise mapping in real-life urban
and suburban environments,’’ Sensors, vol. 17, no. 10, p. 2323, 2017.

[44] X. Xia, R. Togneri, F. Sohel, and D. Huang, ‘‘Random forest classification
based acoustic event detection utilizing contextual-information and bottle-
neck features,’’ Pattern Recognit., vol. 81, pp. 1–13, Sep. 2018.

[45] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[46] The Official Wiki for Embedded Tegra & Jetson TK1 Board. Accessed:
Sep. 30, 2018. [Online]. Available: https://elinux.org/Jetson_TK1

[47] Raspberry Pi Web Site. Accessed: Sep. 30, 2018. [Online]. Available:
https://www.raspberrypi.org

[48] J. Ye, T. Kobayashi, and T. Higuchi, ‘‘Smart audio sensor on anomaly
respiration detection using FLAC features,’’ in Proc. IEEE Sensors Appl.
Symp., Feb. 2012, pp. 1–5.

[49] PJRC. TeensyUSBDevelopment Board. Accessed: Sep. 30, 2018. [Online].
Available: https://www.pjrc.com/teensy/

[50] NXP-Freescale. SGTL5000 Datasheet. Accessed: Sep. 30, 2018. [Online].
Available: https://www.nxp.com/docs/en/data-sheet/SGTL5000.pdf

[51] Openaudio Library for Teensy. Accessed: Sep. 30, 2018. [Online]. Avail-
able: https://github.com/chipaudette/OpenAudio_ArduinoLibrary

[52] The Agile Project Web Site. Accessed: Sep. 30, 2018. [Online]. Available:
http://agile-iot.eu/

[53] J. Thönes, ‘‘Microservices,’’ IEEE Softw., vol. 32, no. 1, p. 116,
Jan./Feb. 2015.

[54] Maker’s Shield—Hardware Definition. Accessed: Sep. 30, 2018. [Online].
Available: https://github.com/Agile-IoT/agile-makers-shield-hardware

[55] Maker’s Shield—Software Repository. Accessed: Sep. 30, 2018. [Online].
Available: https://github.com/Agile-IoT/agile-makers-shield-software

[56] S. S. Stevens, J. Volkmann, and E. B. Newman, ‘‘A Scale for the measure-
ment of the psychological magnitude pitch,’’ J. Acoust. Soc. Amer., vol. 8,
no. 3, pp. 185–190, Jan. 1937.

[57] M. Slaney, ‘‘Auditory toolbox: AMATLAB toolbox for auditorymodelling
work,’’ Interval Res. Corp., Palo Alto, CA, USA, Tech. Rep. 1998-10,
1998.

[58] S. Young et al., The HTK Book, 3rd ed. Cambridge, U.K.:
Cambridge Univ. Press, 2015.

[59] P. J. Rousseeuw and K. Van Driessen, ‘‘A fast algorithm for the mini-
mum covariance determinant estimator,’’ Technometrics, vol. 41, no. 3,
pp. 212–223, 1999.

[60] F. T. Liu, K.M. Ting, and Z.-H. Zhou, ‘‘Isolation forest,’’ in Proc. 8th IEEE
Int. Conf. Data Mining, Dec. 2008, pp. 413–422.

[61] F. T. Liu, K. M. Ting, and Z. Zhou, ‘‘Isolation-based anomaly detection,’’
ACM Trans. Knowl. Discovery Data, vol. 6, no. 1, pp. 1–39, Mar. 2012.

[62] Librosa. Accessed: Sep. 30, 2018. [Online]. Available:
https://librosa.github.io/librosa/

[63] N. Chinchor, ‘‘MUC-4 evaluation metrics,’’ in Proc. 4th Conf. Message
Understand. (MUC4). Stroudsburg, PA, USA: Association for Computa-
tional Linguistics, 1992, pp. 22–29.

[64] G. E. Poliner and D. P. W. Ellis, ‘‘A discriminative model for polyphonic
piano transcription,’’ EURASIP J. Adv. Signal Process., vol. 2007, no. 1,
2006, Art. no. 048317.

[65] A. Mesaros et al., ‘‘DCASE 2017 challenge setup: Tasks, datasets and
baseline system,’’ in Proc. Detect. Classification Acoust. Scenes Events
Workshop, 2017, pp. 85–92.

[66] A. Mesaros, T. Heittola, and T. Virtanen, ‘‘Metrics for polyphonic sound
event detection,’’ Appl. Sci., vol. 6, no. 6, p. 162, 2016.

MATTIA ANTONINI received the B.Sc. degree
(summa cum laude) in computer, electronics and
telecommunication engineering, and the M.Sc.
degree (summa cum laude) in communication
engineering from the University of Parma, Parma,
Italy, in 2014 and 2017, respectively. He is cur-
rently pursuing the Ph.D. degree in computer sci-
ence with the University of Trento, Trento, Italy.
He is a member of the OpenIoT Research Unit
(Open Platforms and Enabling Technologies for

the Internet of Things), FBK CREATE-NET, Trento.
His research interests include the design and development of open-source

platforms for the Internet of Things, with the focus on machine
learning-based applications in the fog and edge computing.

MASSIMO VECCHIO received the M.Sc. degree
in information engineering (magna cum laude)
from the University of Pisa, Pisa, Italy, and the
Ph.D. degree in computer science and engineer-
ing (with Doctor Europaeus mention) from the
IMT Institute for Advanced Studies, Lucca, Italy,
in 2005 and 2009, respectively. Since 2015, he has
been an Associate Professor with eCampus Uni-
versity. In 2017, he joined FBK CREATE-NET,
Trento, Italy, to coordinate the research activities

of the OpenIoT Research Unit. He is the Project Coordinator of AGILE
(www.agile-iot.eu), a project co-founded by the Horizon 2020 programme
of the European Union. His current research interests include computational
intelligence and soft computing techniques, the Internet of Things Paradigm
and effective engineering design and solutions for constrained and embedded
devices. Regarding his most recent editorial activity, he is a member of the
editorial board of the Applied Soft Computing Journal and of the newborn
IEEE Internet of Things Magazine, besides being the managing editor of the
IEEE IoT Newsletters.

FABIO ANTONELLI is currently the Head of
the OpenIoT Research Unit (Open Platforms and
Enabling Technologies for the Internet of Things),
FBKCREATE-NET, Trento, Italy. He received the
master’s degree in electronics engineering from
the Politecnico di Milano, Milan, Italy. He worked
in the Telco Sector (within Alcatel and Telecom
Italia Groups) for over 15 years, gaining exten-
sive knowledge in experimental research, design,
software development and management of ICT

projects. More recently, in Fondazione Bruno Kessler, his interests have
shifted on applied research in multimedia networking, architectures and plat-
forms for the Internet of Things, where he has contributed and coordinated
applied research activities in different European research projects in the
Future Internet, multimedia, and Internet of Things domains.

VOLUME 6, 2018 67609



M. Antonini et al.: Smart Audio Sensors in the IoT Edge for Anomaly Detection

PIETRO DUCANGE received the M.Sc. degree
in computer engineering and the Ph.D. degree in
information engineering from the University of
Pisa, Pisa, Italy, in 2005 and 2009, respectively.
He is currently an Associate Professor at eCam-
pus University, Novedrate, Italy, where he is the
Director of the SMART Engineering Solutions &
Technologies Research Centre. His main research
interests include evolutionary fuzzy systems, big
data mining, social sensing, and sentiment anal-

ysis. Furthermore, he has been involved in a number of R&D projects
in which data mining and computation intelligence algorithms have been
successfully employed. He has co-authored over 40 papers in international
journals and conference proceedings. He is a member of the Editorial Boards
for Soft Computing and the International Journal of Swarm Intelligence and
Evolutionary Computation.

CHARITH PERERA (M’14) is currently a
Lecturer (Assistant Professor) at Cardiff Univer-
sity, U.K. He received the B.Sc. degree (Hons.) in
computer science from Staffordshire University,
U.K., and the MBA degree in business admin-
istration from the University of Wales, Cardiff,
U.K., and the Ph.D. degree in computer science
at The Australian National University, Canberra,
Australia. He was with the Information Engineer-
ing Laboratory, ICT Centre, CSIRO. His research

interests are Internet of Things, Sensing as a Service, Privacy, Middleware
Platforms, and Sensing Infrastructure. He is a member of the ACM.

67610 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORKS
	ANOMALY DETECTION ALGORITHMS
	ANOMALY DETECTION IN IoT-BASED ARCHITECTURES
	ACOUSTIC ANOMALY DETECTION IN IoT CONTEXTS
	GAP ANALYSIS

	TECHNOLOGICAL BACKGROUND
	THE TEENSY-BASED SMART AUDIO SENSOR
	THE AGILE-BASED IoT GATEWAY FRAMEWORK

	THE PROPOSED WIRELESS SMART AUDIO SENSOR
	DESIGN FRAMEWORK
	A POSSIBLE PARAMETERS TUNING
	COTA: CONFIGURATION OVER THE AIR

	PROOF OF CONCEPT
	TRAINING
	EVALUATION
	DEPLOYMENT ON AGILE

	CONCLUDING REMARKS
	CONCLUSIONS
	FUTURE WORKS

	REFERENCES
	Biographies
	MATTIA ANTONINI
	MASSIMO VECCHIO
	FABIO ANTONELLI
	PIETRO DUCANGE
	CHARITH PERERA


