
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/116207/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Metters, Owen J., Flynn, Stephanie R., Dowds, Christiana K., Sparkes, Hazel A., Manners, Ian and Wass,
Duncan 2016. Catalytic dehydrocoupling of amine-boranes using cationic zirconium(IV)-phosphine

frustrated Lewis pairs. ACS Catalysis 6 (10) , pp. 6601-6611. 10.1021/acscatal.6b02211 

Publishers page: http://dx.doi.org/10.1021/acscatal.6b02211 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Research Article   
 

 
 
 

Catalytic Dehydrocoupling of Amine−Boranes using 

Cationic Zirconium(IV)−Phosphine Frustrated Lewis Pairs 
 
Owen J. Metters, Stephanie R. Flynn, Christiana K. Dowds, Hazel A. Sparkes, Ian 

Manners,* and Duncan F. Wass* 
 
School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K. 
 

*S Supporting Information  
 

ABSTRACT: A series of novel, intramolecular Zr(IV)/P 
frustrated Lewis pairs (FLPs) based on cationic zirconocene 
fragments with a variety of ancillary cyclopentadienyl and 2-

phosphinoaryloxide (−O(C6H4)PR2, R = 
t
Bu and 3,5-CF3-

(C6H3)) ligands are reported and their activity as catalysts for 

the dehydrocoupling of dimethylamine−borane (Me2NH· 

BH3) assessed. The FLP system [(C9H7)2ZrO(C6H4)P
t
Bu2]-

[B(C6F5)4] is shown to give unprecedented turnover 
frequencies (TOF) for a catalyst based on a group 4 metal 

(TOF ≥ 600 h
−1

), while also proving to be the most efficient 
FLP catalyst reported to date. The mechanism of this reaction 
has been probed using analogous intermolecular Zr(IV)/P  
FLPs, permitting deconvolution of the reactions taking place at both the Lewis acidic and basic sites. Elucidation of this 
mechanism revealed an interesting cooperative two-cycle process where one cycle is FLP mediated and the other, a 
redistribution of a linear diborazane intermediate, relies solely on the presence of a Zr(IV) Lewis acid.  
KEYWORDS: frustrated Lewis pairs, FLP, amine−borane, dehydrocoupling, zirconocenes 

 

 

 

 

1. INTRODUCTION 
 
Catalytic dehydrogenation and dehydrocoupling of amine− 
boranes is of broad current interest due to their potential 

applications as hydrogen storage materials,
1
 as reagents for 

hydrogen transfer to organic or inorganic substrates,
2
 and as 

precursors to BN-based ceramics and polymeric materials.
3
 

There exists a wide range of transition-metal-based catalysts 

which facilitate these transformations;
4
 however, work has 

also been carried out exploring the use of catalysts based on 
main-group elements. As a consequence dehydrogenation 
method-ologies which employ catalysts based on elements 
from group 2 (Mg, Ca) and group 3 (Al, Ga, Sc, Y) are now 

known.
5
 Furthermore, simple Brønsted acid/base and Lewis 

acid catalysts can be used to promote hydrogen release from 

ammonia−borane (H3N·BH3).
6 

In recent years solution-phase combinations of sterically 
encumbered Lewis acids and Lewis bases, frustrated Lewis pairs 

(FLPs),
7
 have also been shown to mediate these dehydrogen-ation 

reactions. Initially the focus was on metal-free FLP systems which 
were able to dehydrocouple dimethylamine− borane 

(Me2NH·BH3) stoichiometrically (Scheme 1).
8
 More recently, 

however, there have been reports of FLPs based on main-group 
elements which are able to mediate this trans-formation in a 
catalytic fashion. In 2013 Uhl, Slootweg, et al. reported an 
intramolecular Al/P FLP capable of dehydrogen-ating 

Me2NH·BH3 under melt conditions (45 °C, 9.3 mol %), complete 

consumption of the monomer is achieved by heating to 90 °C for 

45 min, however, only a 71% yield of the desired  

 

 
Scheme 1. Main-Group FLPs Capable of Mediating the 

Stoichiometric Dehydrogenation of Me2NH·BH3  
 
 
 
 
 
 
 
 
 
 

 

product was obtained.
9
 Aldridge et al. have developed a P/B 

FLP, based on a dimethylxanthene backbone, which is able to 
dehydrogenate a wider range of amine−borane substrates  
(RR′NH·BH3, R = R′ = H, R = Me and R′ = H, R = R′ = Me); 
however, the reaction still requires elevated temperatures and  
long reaction times (1 mol %, CH2Cl2 or THF, 55 °C, 

24−48 h) (Scheme 2).
10 

 
Alongside these breakthroughs, we have developed a range 

of zirconium(IV) based FLPs with the aim of combining the 
fascinating small-molecule activation chemistry of FLPs with 
the well-established catalytic chemistry of the transition 

metals.
11

 These transition-metal-based FLP systems (e.g., 1)  
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Scheme 2. P/B FLP Developed by Aldridge et al. Capable 
of Mediating the Catalytic Dehydrocoupling of a Range of 
Amine−Boranes  
 
 
 
 
 
 
 
 
 
 

 

have been shown to rapidly dehydrocouple several amine− 
borane substrates under ambient conditions to yield the 

expected products (Scheme 3).
11b 

 
 
Scheme 3. Catalytic Dehydrocoupling of Amine−Boranes 

using Zr/P FLP 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Herein we report a series of novel intramolecular Zr/P FLP 

systems featuring variations to the ancilliary ligands bound to 
Zr and also incorporating a weakly Lewis basic phosphine 

(RP(3,5-CF3(C6H3))2). These were subsequently applied to 

the catalytic dehydrocoupling of Me2NH·BH3. Crucial 
insights into the mechanism of this reaction was gained by 
using a range of previously reported intermolecular Zr(IV)/P 

FLPs of the type [Cp
R

2ZrOMes][B(C6F5)4]/PR′3 (R = Me, H; 

R′ = 
t
Bu, Cy, Et, Ph, Mes, C6F5).

12
 Such systems permitted 

deconvolu-tion of the mechanism owing to the ability to 
separate Lewis acid and Lewis base mediated reactions. 
 

2. RESULTS AND DISCUSSION  
2.1. Synthesis of Novel Intramolecular Zr/P FLP Systems. 

The synthetic approach employed is analogous to that previously 

used by us to access intramolecular FLP system 1.
11

 This 
involved synthesis of the relevant dimethylzircono-cene precursor 

(R2ZrMe2) followed by protonolysis with the corresponding 

alcohol (HO(C6H4)P
t
Bu2). Subsequently the catalytically active 

cationic species was generated by reaction with [H-

DTBP][B(C6F5)4] (DTBP = 2,6-di-tert-butylpyridine) with 
concomitant release of 1 equiv of methane (Scheme 4).  

The generation of cationic species 2−4 can be monitored by 
31

P NMR spectroscopy. Upon addition of [H-DTBP][B-

(C6F5)4] to the neutral precursors, protonation of the pendant 

 
Scheme 4. Synthesis of Intramolecular Zr/P FLP Systems 

2− 4 with a Variety of Ancillary Ligands  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
phosphine moiety is observed. This is manifested as a new 

resonance in the 
31

P NMR spectra (δP 20−25 ppm in all cases) 

displaying a characteristic P−H splitting pattern (doublet, JPH 

ca. 400 Hz). Eff ervescence (CH4) and a concomitant color 
change (colorless to yellow) is then observed, which is 
complete within 1 h, resulting in quantitative conversion to a 

new species, as evidenced by the 
31

P NMR spectra (2, δP 55.9 

ppm; 3, δP 58.1 ppm; 4, δP 57.6 ppm). The chemical shifts of 
these resonances, in comparison to that of 1, suggest the 
presence of a Zr−P interaction in all cases (for comparison the 

free ligand δP −5.7 ppm). Attempts to isolate 2−4 by layering 
PhCl solutions of the species with hexane were unsuccessful 
and yielded intractable oils. The characterization of 2−4 was 

therefore carried out in situ (
1
H, 

13
C, and 

31
P NMR 

spectroscopy and ESI-MS).  
This methodology had to be adapted when using the 

more electron deficient phosphine moiety, as protonolysis 

by [H-DTBP][B(C6F5)4] was found not to yield the desired 
product, which was attributed to the less basic nature of the 

phosphine. Upon addition of [H-DTBP][B(C6F5)4], 
protonation of the pendant phosphine moiety did not occur. 

This is not unexpected, as the pKa of the related compound 

[(p-FPh)3P-H]
+
 is known to be 1.97 (in H2O);

13
 however, 

the pKa of [DTBP-H]
+
 under the same conditions is 4.95 

(in H2O).
14

 As a consequence, [CPh3][B(C6F5)4] was used 
to mediate the methyl abstraction reaction and generate the 
cationic species 5 (Scheme 5).  

Interestingly, when this reaction was monitored by 
31

P 

NMR spectroscopy, no change in the 
31

P NMR spectrum was 
observed upon formation of 5. This strongly suggests the  
 
Scheme 5. Synthesis of Intramolecular Zr/P FLP System 5 
with an Electron-Deficient Phosphine  
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absence of a Zr−P interaction. Formation of 5 is, however, 

clearly evidenced by the 
1
H NMR spectrum, where loss of the 

resonance corresponding to the Zr−Me (δH −0.07 in PhCl) and 
the appearance of a new resonance corresponding to 

triphenylethane (MeCPh3, δH 2.09). Again, isolation of the 
cationic species was attempted by precipitation into hexanes. 
However, this only resulted in the generation of intractable 
solutions and 5 was therefore used in situ.  

2.2. Dehydrocoupling of Me2NH·BH3 using 2−5. 
Catalyst systems 2−5 (Figure 1) were trialled in the catalytic  

 

continues with removal of the bulky 
t
Bu moiety in 1, and finally 

the lowest TOF is observed with the least sterically hindered 

system 4 (TOF: 2 > 3 > 1 > 4). However, this is also mirrored by 

the electronic properties of these species. Indenyl ligands (present 

in 2) are known to be significantly more electron donating than Cp 

ligands in 1,
16

 with Cp (1) and (Me2Si)Cp2 (4) thought to be 

similar. Due to this, it is difficult to discern whether this change in 

rate is electronic or steric in nature.  
Further examination of the product distribution and 

intermediates present during the reactions by 
11

B{
1
H} NMR 

spectroscopy revealed not only the expected dehydrocoupling 

product, cyclodiborazane [Me2N-BH2]2, but also the linear 
diborazane  Me NH-BH -Me N-BH (I)  and  aminoborane 

  2 2 2 3 

Me2N BH2  (II) intermediates (Figure 2). The amounts of  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. FLP systems 2−5 trialled in the dehydrocoupling of 

Me2NH·BH3.  
 

dehydrocoupling of Me2NH·BH3. Initially a 5 mol % catalyst 

loading was employed and the reaction monitored by 
11

B{
1
H} 

NMR spectroscopy. The results are shown in Table 1, where 
the previously reported catalyst 1 is shown for comparison.  
 

Table 1. Catalytic Dehydrocoupling of Me2NH·BH3 using 
FLP Systems 2−5 with the Previously Reported Catalyst 1 

Included for Comparison
a 

 

catalyst [Zr] (mol %) temp (°C) time (min) TOF (h−1) 

1 2 25 14 210 

2 5 25 1 >600 

3 5 25 4 282 

4 5 25 9 138 

5 5 25 >60 0  
a
All reactions were conducted in chlorobenzene in sealed NMR tubes.  

 

From these data it can be seen that catalyst 5, possessing 
the electron-withdrawing phosphine, shows no activity 
even after heating to 80 °C for 7 days. This suggests that 
the phosphine moiety is required to possess a certain degree 
of basicity in order to mediate the dehydrocoupling. This 
strongly implies that NH deprotonation is a key step in the 
catalytic cycle. This is in good agreement with the behavior 
noted for the main-group systems and also corroborates the 

mechanism previously proposed by our group.
11b 

 
Further to this, it is observed that 2 is a highly efficient 

catalyst for the dehydrocoupling of Me2NH·BH3 and, in fact, 
possesses the highest TOF (turnover frequency) of any group 4 

catalyst (>600 h
−1

), the previous highest being the Zr-amide 

species ([NSiN]
Dipp

Zr(NMe2)2(μ-Cl)Li(THF)3) reported by 

Rivard et al. (TOF = 420 h
−1

).
15

 Decreasing the steric bulk 

present in compound 2 down to the single 
t
Bu group, off ered 

in compound 3, leads to a decrease in TOF. This decrease 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. 
11

B{
1
H} NMR spectra after ca. 10 min (1 mol % [Zr], 25 

°C, PhCl), for the catalytic dehydrocoupling of Me2NH·BH3 with 
(from back to front) 4, 2, 3 and 1: (black *) Me2NH·BH3; (red *) H3B-

NMe2-BH2−NHMe2; (black 
◊
) [Me2N-BH2]2. Note that the 

terminal  BH peak  for  *  overlaps  with  *.  Minor  amounts  of 
3
∼  

HB(NMe2)2 ( 29 ppm), Me2N BH2 (36.6 ppm), and Me2N(B2H5) 
( −17 ppm) are also observed.  

 

each intermediate (I and II) vary with the ancillary ligand 

employed. Increasing the steric bulk in the order 4 < 1 < 3 < 2 

leads to less I being observed, indicating that the predominant 

mechanism in these cases involves preferential formation of II. 

Due to the rapid nature of these reactions, however, the exact 

ratios of these intermediates could not be calculated.  
The presence of both I and II in such dehydrocoupling 

reactions is unusual. There are thought to be three diff erent 

mechanisms by which Me2NH·BH3 is converted to the cyclic 
diborazane product. One possible mechanism is an “on-metal” 

process where linear diborazane I, the sole intermediate,
17

 is 
generated from a metal-mediated intermolecular dehydrocou-

pling of two molecules of Me2NH·BH3. In a further metal-
mediated step, dehydrogenative cyclization could occur to 
yield the cyclic diborazane product. In an alternative “off -
metal” mechanism only one of the steps is thought to be metal 

mediated. In this step one molecule of Me2NH·BH3 is 

dehydrogenated to produce the aminoborane II.
18

 The 
aminoborane then spontaneously dimerizes to form the cyclic 

diborazane [Me2N-BH2]2. The third possible mechanism, and 
one which may be useful in this discussion, has been proposed 
by Schneider et al.; their calculations show that rearrangement 

among Me2NH·BH3, [Me2N-BH2]2 and II is approximately 
  



 

thermoneutral (2.0 kcal mol
−1

) and may take place if 

“kinetically feasible”.19 
 

In the previous literature it is the off -metal mechanism which is 

the favored model for FLP-catalyzed dehydrocoupling of 

Me2NH·BH3.
8,11b

 However, with the recent report by Aldridge et 

al. strongly supporting the viability of a linear chain growth on an 

FLP catalyst, it appears that the previously proposed mechanisms 

may require some modification.
10

 In their work Aldridge et al. 

isolated several key intermediates in the P/B FLP catalyzed 

dehydrocoupling of amine−boranes, suggesting that insertion of 1 

equiv of amine−borane into an FLP-bound amine−borane results 

in the formation of linear oligomeric species akin to those 

observed with our systems (Scheme 6).  
 
Scheme 6. Growth of a Linear Dimeric Species on a P/B 
FLP Synthesized by Aldridge et al.  
 
 
 
 
 
 
 
 
 
 
 
 

 
In order to confirm the identity of I as a catalytically relevant 

intermediate, an authentic sample was treated with 5 mol % of 1 

in PhCl at 25 °C. Monitoring the reaction by 
11

B NMR 

spectroscopy revealed a product distribution similar to that  
observed for the reaction of Me2NH·BH3 with 1. Species I, II, 

and Me2NH·BH3 were all identified in the 
11

B{
1
H} NMR  

spectrum shown in Figure 3. Full conversion to the cyclic 
diborazane was evident after 20 min.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. 
11

B{
1
H} NMR spectrum (300 MHz, PhCl, 25 °C, 2 min) of 

I + 5 mol % 1: (○) MeNH(B2H5) (−18.8 ppm); (■) [B(C6F5)4]− 

(−17.5 ppm); (◆) Me2NH·BH3 (−14.4 ppm); (★) Me2NH-BH2-

Me2N-BH3 (−14.4 and 0.84 ppm); (+) [Me2N-BH2]2 (4.02 ppm); 

(×) Me2N BH2 (36.6 ppm).  
 

This leads us to propose that two diff erent reaction 
mechanisms occur simultaneously. The first cycle involves 

simple deprotonation of a Zr κ
2
-amine−borane adduct by a 

sufficiently basic phosphine to form II, the phosphonium 

species [R3P-H]
+
, and Zr−H. An intermediate zirconium 

amido−borane species is not observed in our experiments, 
suggesting a concerted pathway with simultaneous deprotona- 

 
tion and hydride abstraction in line with other FLP-type 

reactions. Subsequent release of H2 from the phosphonium 
species and the Zr−H renders the process catalytic. This is 

similar to the mechanism proposed in our previous work.
11b

 
The second proposed process involves insertion of a second 

equivalent of Me2NH·BH3 to yield the linear diborazane I 
prior to a subsequent cyclization step. The exact nature of this 
alternative “on-metal” pathway, however, remains unclear and 
the roles of the Lewis acid and Lewis base in each step was 
judged to require further investigation. As discussed above, 
the formation of I may also be reversible and this could prove 
to be the origin of II in the reaction. To this end we utilized a 
series of our recently reported analogous intermolecular Zr/P 

FLP systems to probe this reaction.
12 

 
2.3. Dehydrocoupling of Me2NH·BH3 using Intermo-

lecular FLPs. Initially it was necessary to determine if the 
intermolecular analogues 7−19 (Scheme 7) retained their  
 
Scheme 7. Generation of Previously Reported 
Intermolecular FLP Systems  
 
 
 
 
 
 
 
 
 
catalytic activity after removal of the aryl tether. It was found 

that treatment of Me2NH·BH3 with 10 mol % of 

[Cp*2ZrOMes][B(C6F5)4]/PR3 (R = 
t
Bu (7), Cy (8), Et (9), Ph 

(10), Mes (11), C6F5 (12)) in PhCl (25 °C) led to a sluggish 

reaction resulting in <5% conversion to [Me2N-BH2]2 over 24 

h in all cases, as calculated by 
11

B NMR spectroscopy, and 

when R = Ph, Mes, C6F5 no conversion was observed. 
Changing the ancillary ligands on Zr from Cp* (pentam-
ethylcyclopentadienyl) to Cp (14−19) led to a marked 
improvement in the reactivity, as shown in Figure 4. This is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Reaction of Me2NH·BH3 with 10 mol % 14−19 (25 °C, 
PhCl, 14 h): (yellow ●) 14; (orange ■) 15; (gray ▲) 16. 17−19 

show no reaction with Me2NH·BH3.  

 

consistent with previous observations, where intramolecular Zr/P 

FLPs, bearing Cp ancillary ligands, give significantly more rapid 

reactivity in comparison to their Cp* cousins.
11

 Ligands with 

intermediate steric bulk, specifically in complexes 2 and 3, lead to 

more subtle eff ects, with complex 2 in particular giving a highly 

active catalyst despite having more bulky indenyl ligands. 
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In contrast to Cp*, the indenyl ligands (and indeed the 
ligand in complex 3) may orient themselves in such a way 
as to still not hinder substrate binding. Clearly the diff erent 
electronic characteristics of these ligands may then come 
into play in yielding a more active catalyst. The possibility 

for more facile η5
 to η3

 ring slippage for indenyl during the 

catalytic cycle may also play a role. 
FLP systems 15−19 (10 mol %, PhCl, 25 °C, 14 h) gave low 

conversion (<5%) to [Me2N-BH2]2 even after 14 h, with 17− 19 

showing no conversion over the same period. The lack of 

conversion using 19 bearing an electron-withdrawing phos-phine 

is consistent with the result observed with 5. Despite this,  
14 shows 97% conversion to [Me2N-BH2]2 in 7.5 h. 

Interestingly, Figure 4 shows an induction period; this is 
attributed to the formation of I prior to its consumption to 

generate [Me2N-BH2]2. In operando NMR spectroscopy (see 
later) gives no evidence for any gross changes to the catalyst 
structure during this initiation period; there is also no evidence 
for the formation of heterogeneous or colloidal species.  

2.4. Mechanistic Investigation. Monitoring the 

reaction between Me2NH·BH3 and a catalytic amount of 

14 (10 mol %, PhCl, 25 °C, 7.5 h) by 
11

B{
1
H} NMR 

spectroscopy led to a distribution of reaction intermediates 
similar to that observed for the reactions with catalysts 1−4 

(Figure 1), with both Me2NH-BH2-Me2N-BH3 (I) and 

Me2N BH2 (II) generated simultaneously (Figure 5 and 
Figure S1 in the Supporting Information).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. 

11
B{

1
H} NMR spectrum (300 MHz, PhCl, 25 °C, 280 min) 

of Me2NH·BH3 + 10 mol % 14: (○) MeNH(B2H5) (−18.8 ppm); (■) 

[B(C6F5)4]− (−17.5 ppm); (◆) Me2NH·BH3 (−14.4 ppm); (★) 
Me

 NH-BH -Me N-BH (I) (−14.4 and 0.84 ppm); (+) [Me N- 
2 2 2 3 2 

BH2]2 (4.02 ppm); (×) Me2N BH2 (II) (36.6 ppm).  

 
In order to further probe the mechanism of the reaction, 

Me2NH·BH3 was treated with 10 mol % of [Cp*2ZrOMes]-

[B(C6F5)4] (6) and [Cp2ZrOMes][B(C6F5)4] (13) in the 
absence of a Lewis base. In neither case was dehydrocoupling 

observed by 
11

B NMR spectroscopy (24 h, 25 °C, PhCl);  
however a new Zr amine−borane complex was identified 

(
11

B{
1
H} δ −11.5 (broad singlet, Me2NH·BH3), −16.9 (s,  

[B(C6F5)4]
−
)). In the case of 6, this complex (20) was isolated 

through a stoichiometric reaction between 5 and Me2NH·BH3; 
the solid-state structure of 20 is shown in Figure 6. From the 

solid-state structure of 20 it is clear that Me2NH·BH3 is bound 

in a κ
2
 fashion;

19
 however, the 

1
H NMR spectrum shows a 

broad resonance for three equivalent hydrides, suggesting a 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Solid-state structure of the cation present in 20 as 
determined by X-ray crystallography. Ellipsoids depicted at the 50% 
probability level. The second unique cation, nonessential hydrogens, 

and two [B(C6F5)4]− counterions are omitted for clarity. Selected 

bond lengths (Å) and angles (deg): Zr1−O1 1.968(3), N1−B1 
1.587(6); Cp*−Zr−Cp* 135.14(7). The Zr−B distance is 2.709(5) Å.  
 

 

dynamic structure in solution, where the hydrides bound to 
Zr are exchanging on the NMR time scale. Structurally 
characterized transition-metal complexes of amine−boranes 
bearing N−H moieties are rare, as the isolation of such 
compounds is usually hindered by subsequent 

dehydrocoupling reactivity.
20e,g 

 
Subsequent reaction of 20 with phosphine Lewis bases 

(PhCl, 25 °C, <10 min) led to dehydrogenation, release of 

Me2N BH2 (II), and formation of the corresponding 

phosphonium salt [HPR3][B(C6F5)4] and a Zr hydride. 
Aminoborane II subsequently dimerized to form the cyclic 
diborazane. Protonation of the Zr hydride by the 

phosphonium species to release H2 is sluggish (PhCl, 25 
°C, <6 h) in the case of the Zr species bearing the Cp* 
ligands. This is consistent with the slow catalytic turnover 
achieved with catalyst systems 7−12.  

Varying the phosphine is seen to have a dramatic eff ect 

on this transformation. More basic phosphines (PR3, R = 
t
Bu, Cy, Et) show the deprotonation/dehydrogenation 
reactivity described above. Analogous treatment of 20 with 

PPh3, PMes3, or P(C6F5)3 showed no reaction after 6 h. 
This is consistent with the fact that 14−16 are catalysts for 
the dehydrocoupling reaction, whereas 17−19 show little to 
no conversion. This dehydrogenation of a Zr-bound amine− 
borane could be one mechanism for the dehydrocoupling of 

Me2NH·BH3; however, this process does not account for 
the observation of the linear diborazane I. Nevertheless, 
these findings do indicate the necessity for both the Lewis 
acidic and Lewis basic fragments in the initial 

dehydrogenation of Me2NH·BH3, yielding either Me2N 

BH2 (II) or Me2NH-BH2-Me2N-BH3 (I). Crucially, in 
support of this hypothesis, addition of further amounts of 

Me2NH·BH3 to 20 leads to the formation of no new 
products on a catalytically relevant time scale (8 h, 25 °C).  

To probe the intermediacy of linear diborazane (I), a 
chlorobenzene solution of I was treated with 20 mol % of 

[Cp2ZrOMes][B(C6F5)4] // P
t
Bu3 (14) (PhCl, 25 °C, 6 h). 

In this case complete conversion to [Me2N-BH2]2 was 
observed in 6 h (Figure 7). It is evident from Figure 2 that, 
upon consumption of I, both II and the parent amine-

borane, Me2NH·BH3 are formed. Redistribution of such 
linear diborazanes to form amine−borane dehydrocoupling 

products has been previously reported by our group.
21 

  

http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b02211/suppl_file/cs6b02211_si_001.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. I with 20 mol % 14 (25 °C, PhCl, 6 h): (blue ◆) Me2NH-  
BH

 -Me N-BH  (I); (orange ■) [Me N-BH ] ; (yellow ●) Me NH· 
2 2 3 2 2 2 2 

BH3; (gray ▲) Me2N BH2 (II); (light blue ×) Me2N(B2H5).  
 

In order to determine if this second step in the cycle also 
requires both Lewis acidic and Lewis basic fragments, the Lewis 

base (P
t
Bu3) was removed. Reaction of I with 20 mol % 13 (PhCl, 

25 °C, 14 h) resulted in the redistribution of linear diborazane 

intermediate I to yield Me2NH·BH3 and Me2N BH2 (II), which 

subsequently cyclodimerized, as expected, to form the cyclic 

dimer [Me2N-BH2]2. We observe that Me2NH· BH3 is not 

consumed in the absence of exogenous phosphine (no reaction is 
observed between complex 13 alone and 

Me2NH·BH3)  
The proposed mechanism for the Zr(IV)/P FLP catalyzed 

dehydrocoupling of Me2NH·BH3 is shown in Scheme 8. Cycle A 
is analogous to the previously reported mechanism for this 

transformation,
11b

 wherein the FLP mediates an intramolecular 

loss of H2 from Me2NH·BH3, forming the aminoborane II. The 
aminoborane spontaneously dimerizes to form the cyclic 

diborazane product [Me2N-BH2]2. Alternatively, in the  
 
Scheme 8. Proposed Reaction Mechanism for the Catalytic 

Dehydrocoupling of Me2NH·BH3 using a Zr(IV)/P FLP  

 
presence of another 1 equiv of Me2NH·BH3, an intermolecular 

dehydrocoupling event could occur to yield the linear diborazane 
I. This then feeds into cycle B. Cycle B is the phosphine-
independent redistribution of I and involves initial complexation 
of I to the Zr center in a fashion analogous to that observed for 20. 

Loss of the terminal Me2NH group, as previously reported in 

other redistribution reactions,
21

 then occurs, resulting in a μ-

amido diborane species, Me2NH(B2H5). As shown in Figures 7 

and 8, Me2NH(B2H5) is observed in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. I with 20 mol % 13 (25 °C, PhCl, 12 h): (blue ◆) Me2NH- 
BH

 -Me N-BH  (I); (orange ■) [Me N-BH ] ; (yellow ●) Me NH· 
2 2 3 2 2 2 2 

BH3; (gray ▲) Me2N BH2 (II); (light blue ×) Me2N(B2H5).  
 
solution throughout these reactions and is thus not thought 

to be bound to the Zr; in fact, addition of Me2NH(B2H5) to 
6 or 13 results in no reaction (vide infra). The fate of 

Me2NH-(B2H5) remains uncertain. We believe it is likely 

that the formation of Me2NH·BH3 and II could be via an 
alternative, concerted process from I, as indicated in 

Scheme 8 (cycle B). When formed, Me2N BH2 would 

spontaneously dimerize to form [Me2N-BH2]2. The 
formation of this dimer is thought to be the driving force for 

this step. In the presence of P
t
Bu3, Me2NH·BH3 could be 

dehydrocoupled to re-form the linear diborazane I. 
However, as mentioned above, it is thought that such a 
transformation cannot occur in the absence of phosphine.  

This mechanism also provides some insight into the cause of 
the diff ering TOFs depending on the steric bulk of the 
ancillary ligands in the intramolecular systems (1−4). The 
increase in steric bulk is thought to preclude the formation of 

linear diborazane (II), as 2 equiv of Me2NH·BH3 is not able to 

organize around the sterically congested catalytic site. It is 
therefore thought that in the case of the most sterically bulky 
system, 2, cycle A is far more dominant and decreasing steric 
bulk allows cycle B to become more viable.  

2.5. Model System for Proposed Cycle A. The 
intermolecular nature of FLP 14 also allowed us to further 
probe both cycles A and B. Additional insight into the validity 
of cycle A can be gained through a systematic study of the 

dehydrogenation of 
i
Pr2NH·BH3 by 14. Due to the increased 

steric bulk around nitrogen, dehydrogenation of 
i
Pr2NH·BH3 

only yields one product, the corresponding aminoborane 

(
i
Pr2N BH2), through an intramolecular loss of H2.

17f
 This 

substrate therefore provides an ideal model for cycle A where 

we propose this intramolecular H2 elimination to be a 
catalytically viable pathway. Intramolecular FLP 1 has been 
shown to dehydrogenate 

i
Pr NH·BH (1 mol % [Zr], PhCl, 25 

° i 2 3 

C, 19 h) to yield Pr2N BH2; however, revisiting this reaction 

seemed pertinent in light of the current study.
11b

 Upon 
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treatment of a PhCl solution of 
i
Pr NH·BH with 10 mol % of 

14 (25 °C, 14 h) a 73% conversion to 
i
Pr2N  BH2  was 

 
observed with no other intermediates apparent (Figure 9).

23 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9. 
i
Pr NH·BH  with 10 mol % 14 (25 °C, PhCl, 14h): (blue 

● i · 2 3 ● i 

) Pr2NH BH3; (orange ) Pr2N BH2.  
 

As in the case of Me2NH·BH3, reaction of 6 and 13 with 
i
Pr2NH·BH3 resulted in no detectable conversion to 

dehydrocoupling products, but formation of an amine−borane 
complex was again observed. In the case of the system bearing 
the Cp* ligand set, this complex (21) has been isolated and 
crystallographically characterized (Figure 10).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Solid-state structure of the cation present in 21 as 
determined by X-ray crystallography. Ellipsoids depicted at the 50% 
probability level. Nonessential hydrogens, solvent of crystallization 

(PhCl), and [B(C6F5)4]− counterion are omitted for clarity. Selected 

bond lengths (Å) and angles (deg): Zr1−O1 1.974(1), N1−B1 
1.590(3), Cp*−Zr−Cp* 135.07(3). The Zr−B distance is 2.722(3) Å.  

 

The solid-state structure of 21, as was to be expected, 
proves to be nearly identical with that of 20, with the 

amine−borane again bound in a κ
2
 fashion.

20
 In a manner 

similar to that for 20 treatment of 21 with a stoichiometric 

amount of P
t
Bu3 results in deprotonation of the bound 

amine−borane and formation of 
i
Pr2N BH2. These results, 

when combined with the data in Figure 9, confirm the validity 
of a mechanistic pathway involving the intramolecular loss of 

H2 from an amine−borane mediated by a Zr/P FLP.  
2.6. Model System for Proposed Cycle B. Gaining more 

detailed insight into cycle B has proven to be more of a 

 
challenge, as our initial attempts to isolate the proposed 
intermediates have been unsuccessful. Attempts to synthesize 
a Zr-bound linear diborazane have been precluded by the 
redistribution chemistry described above. Efforts to block this 
reactivity were also made by capping the linear diborazane 

with other Lewis bases (DMAP, PMe3; see the Supporting 

Information for further discussion) but this strategy also 
proved unsuccessful. In addition, attempts to isolate a Zr μ-

amidodiborane complex were made, but addition of Me2N-

(B2H5) to 6 or 13 resulted in the formation of no new 

products, as observed by 
11

B NMR spectroscopy. Two 
possible conclusions may be drawn from this. First, that such 
complexes are transient in solution and therefore isolation is 

impossible, or second, that the conversion of Me2N(B2H5) to 
the observed products is in fact not metal-mediated. The latter, 
however, appears unlikely, as it is known that, in the absence 

of a catalyst but in the presence of Me2NH, Me2N(B2H5) 
readily undergoes a ring-opening reaction to yield the 

corresponding linear diborazane I.
21 

 
Experiments using alternative linear diborazanes have 

provided insight into the decomposition pathway of I. Upon 

reaction of the linear diborazane H3B-NMeH-BH2-NMe2H 

with diff erent substituents at nitrogen
20

 with 10 mol % of 13 

(PhCl, 25 °C, 14 h) formation of Me2NH·BH3 was observed 

by 
11

B NMR spectroscopy (Figure 11). This was accompanied 
by formation of trace amounts of N-methylborazine, [HB-

NMe]3, and μ-N-methylamidodiborane, MeNH(B2H5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11. Reaction of Me2NH-BH2-MeNH-BH3 with 10 mol % 13 

(25 °C, PhCl, 14 h): (blue ◆) Me2NH-BH2-MeNH-BH3; (orange ●) 

Me2NH·BH3; (light blue ×) MeNH(B2H5); (green ■) [HB-NMe]3.  
 
 

The origin of these intermediates provides useful 

information about cycle B in Scheme 8. MeNH(B2H5) appears 

to arise from elimination of the terminal Me2NH moiety from 

Me2NH-BH2-NMeH-BH3, with the formation of Me2NH·BH3 
providing further evidence for the presence of both free amine 

and free BH3 in solution. The lack of detectable amounts of 

Me2N BH2 or [Me2N-BH2]2 indicates that any aminoborane 
that is generated arises from the internal BN unit of the linear 
diborazane. In this case formation of [HB-NMe] provides 

3 

further evidence for the presence of MeNH BH2, as direct 

observation of this aminoborane by 
11

B NMR spectroscopy 

under ambient conditions would prove impossible.
22

 The 
borazine [HB-NMe]  is thought to arise through trimerization 

3 

of MeNH BH2 to form [MeNH-BH2]3, which is further 
dehydrogenated through now well-established hydrogen 

trans-fer reactions.
2d,21 
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3. SUMMARY 
 
A range of intramolecular Zr(IV)/P FLP catalysts have been 
prepared that are competent in the dehydrocoupling of 

Me2NH·BH3 Moreover, FLP system 2 exhibited the highest 

TOF yet reported for a catalyst based on a group IV transition 
metal. Studies of intermolecular FLP analogues allowed 
elucidation of a novel reaction mechanism comprising two 
cooperative cycles which provides a new concept for FLP-
catalyzed reactions. The first cycle involves a two-step process 
involving amine−borane coordination and subsequent phos-

phine-mediated H2 loss. The second cycle is based on Lewis 

acid mediated redistribution of a linear diborazane intermedi-
ate. The concept that the Lewis acidic and Lewis basic 
fragments can mediate transformations independently, in 
addition to acting as an FLP, may have wide-reaching 
consequences for other FLP-catalyzed reactions. Further 
studies are underway to widen the substrate scope for these 
reactions with, in the case of group 13−15 adducts, the 
formation of polymeric materials as a particular target. 

 

4. EXPERIMENTAL SECTION 
 

4.1. General Considerations. Unless otherwise stated, all 
manipulations were undertaken under an atmosphere of argon or nitrogen 

using standard glovebox (MBraun O2 <0.1 ppm, H2O <0.1 ppm) and 
Schlenk line techniques and all glassware was oven and vacuum-dried 

prior to use. Cp2ZrCl2, Cp*2ZrCl2, MeLi (1.6 M in Et2O), PtBu3, PCy3, 

PEt3, PPh3, PMes3, and P(C6F5)3 were purchased from Sigma-Aldrich 

and used as received. [CPh3][B(C6F5)4] was purchased from Acros 

Organics and used as received. Me2NH·BH3 was purchased from Sigma 
Aldrich and purified by sublimation prior to  
use (25 °C, 2 × 10−2

 Torr). 
i
Pr2NH·BH3, Me2NH-BH2-Me2N-BH3, 

[Cp*2ZrOMes][B(C6F5)4] (5), [Cp2ZrOMes][B(C6F5)4] (6), 

[Cp2ZrO(C6H4)P
t
Bu2][B(C6F5)4] (1), and o-tBu2P(C6H4)OH 

were synthesized according to literature protocols.
11,21,22

 All 
other reagents were used as obtained unless otherwise stated. 

Common laboratory solvents (Et2O, DCM, hexane, THF) were 

purified using a Grubbs type purification system.
23

 Nonstandard 
solvents (chlorobenzene, pentane) were purchased from Sigma-

Aldrich and distilled from CaH2 prior to use.  
NMR spectra were recorded using JEOL ECP-300 (300 MHz), 

Varian-400 (400 MHz), and Varian NMRS500 (500 MHz) 
spectrometers. Deuterated solvents were obtained from Sigma-

Aldrich (d6-benzene, d8-THF, and d2-DCM) or Apollo Scientific 

(d5-PhBr) and distilled from CaH2 prior to use. Spectra of air-
sensitive compounds were recorded using NMR tubes fitted with 
J. Young valves. NMR spectra of boron-containing compounds 
were obtained in quartz NMR tubes fitted with J. Young valves.  

X-ray diff raction experiments were carried out on a Bruker 
APEX II diff ractometer using Mo Kα radiation (λ = 0.71073 Å). 
For further details see the Supporting Information. 

Mass spectrometry experiments were carried out by the University 
of Bristol Mass Spectroscopy Service on a Bruker Daltronics micrO 
TOF II with a TOF analyzer. All samples were run in predried PhCl.  

4.2. Synthesis of Intramolecular Zr/P FLPs (2−4). 4.2.1. Syn-thesis of 

R2ZrMe2 Precursors. 4.2.1.1. Ind2ZrMe2. This compound was  
obtained by following a modified literature procedure.24 

Methyllithium (1.6 M in Et2O, 32.3 mL, 51.6 mmol) was added 

dropwise to a solution of indene (3.00 mL, 25.8 mmol) in Et2O (35 
mL) at room temperature to give a yellow-orange solution. This 

solution was stirred for 30 min, before addition of ZrCl4 (3.00 g, 12.9 
mmol) slurried in hexane (40 mL). The resulting mixture was stirred 
for 2 h, during which a white precipitate (LiCl) formed. The solvent 
was removed in vacuo, and the residue was dissolved in hot hexane 
(50 mL) and filtered through Celite. Removal of the solvent in vacuo 
gave the desired product as a white powder (3.54 g, 78%) that was 
recrystallized from hexane at −40 °C. All recorded data are consistent 

with literature values.24 
1
H NMR (400 MHz, C6D6): δ 7.36 (dd, 4H, J 

 
= 2.9, 6.7 Hz, H4,7), 7.06 (dd, 4H, J = 3.1, 6.7 Hz, H6,5), 5.95 (d, 4H, J  
= 2.9 Hz, H1,3), 5.79 (t, 2H, J = 3.1 Hz, H2), −0.68 (s, 6H, Zr(CH3)2). 

4.2.1.2. Me2Si(C5H4)2ZrMe2. The preparation of this compound was 

adapted from a literature procedure.
25

 Me2Si(C5H4)2ZrCl2 (244 mg, 

0.70 mmol) was suspended in hexane (20 mL) and cooled to −78 °C. 

Methyllithium (1.6 M in Et2O, 0.83 mL, 1.33 mmol) was added 

dropwise, and the reaction mixture was warmed to room temperature 

and stirred for 2 h. Solvent was removed in vacuo, and the residue 

was redissolved in hexane. The resulting solution was filtered through 

Celite, the volume was reduced to ∼5 mL, and the temperature was 

lowered to −20 °C, which resulted in the precipitation of white 

crystals of the title compound (172 mg, 80%). All recorded data are 

consistent with literature values.
26

 
1
H NMR (400 MHz, toluene-d8): δ 

6.88 (t, 4H, J = 2.2 Hz, Cp), 5.76 (t, 4H, J = 2.2 Hz, Cp), 0.52 (s, 6H, 

Si(CH3)2), −0.35 (s, 6H, Zr(CH3)2).  
4.2.1.3. (tBu-C5H4)2ZrMe2. Methyllithium (1.6 M in hexanes, 

0.54 mL, 0.86 mmol) was added dropwise to a stirred solution of the 

zirconocene dichloride (165 mg, 0.41 mmol) in Et2O (15 mL) at −78 
°C. After addition, the reaction mixture was warmed to room 
temperature and stirred overnight. Solvent was removed in vacuo, and 
the resulting residue was extracted with hexanes and the extract 
filtered through a Celite plug. Solvent was removed in vacuo, yielding 
a white solid (272 mg, 87%) of the title compound. All recorded data 

are consistent with literature values.
26

 
1
H NMR (400 MHz, CDCl3): 

δ 5.80−5.83 (m, 4H, Cp), 5.70−5.75 (m, 4H, Cp), 1.10 (s, 18H, 

CpC(CH3)3), 0.01 (s, 6H, Zr(CH3)2). 

4.2.2.  Synthesis  of  Neutral  Complexes  [R2Zr(Me)(O∧P(tBu)2)]. 

4.2.2.1. General Method. A solution of the 
dimethylzirconocene (1 equiv) and phosphino alcohol (1 equiv) 
were individually dissolved in the minimum amount of hexane 
prior to combination. The resulting solutions were stirred 
overnight and until no further gas evolution was observed. The 
solvent was removed in vacuo, yielding the desired complexes.  

4.2.2.2. (tBuC5H4)2Zr(Me)(OC6H4P(tBu)2). Viscous oil (702 

mg, 95%). 
1
H NMR (400 MHz, C6D6): δ 7.61 (dt, 1H, J = 7.6, 1.8 

Hz, H6), 7.12−7.16 (m, 1H, H3), 6.77 (t, 1H, J = 7.6 Hz, H4), 6.55 
(dd, 1H, J = 5.1, 2.6 Hz, H5), 6.11−6.15 (m, 2H, Cp), 5.90−5.94 (m, 

2H, Cp), 5.87−5.89 (m, 4H, Cp), 1.25 (d, 18H, 
3
JHP = 11.3 Hz, 

PC(CH3)3), 1.19 (s, 18H, CpC(CH3)3), 0.75 (s, 3H, ZrCH3); 
13

C{
1
H} NMR (125 MHz, C6D6): δ 169.8 (d, 

2
JCP = 23.7 Hz, C1), 

138.8 (s, ipso-Cp(tBu)), 136.0 (d, 
3
JCP = 3.2 Hz, C6), 130.1 (s, C3),  

125.2 (d, 
1
JCP = 25.3 Hz, C2), 120.1 (d, 

4
JCP = 3.4 Hz, C5), 118.1 (s, 

C4), 110.8, 110.7, 109.8, 107.2 (Cp), 32.3 (d, 
1
JCP = 24.7 Hz, 

PC(CH3)3),  30.9  (d,  
2
JCP  =  16.3  Hz,  PC(CH3)3),  29.3  (s, 

CpC(CH3)3), 26.3 (d, JCP = 6.6 Hz, ZrCH3), 22.9 (s, CpC(CH3)3). 
31

P{
1
H} NMR (161 MHz, C6D6): δ 10.17 (s). 

4.2.2.3. Ind2Zr(Me)(OC6H4P(tBu)2). White solid (567 mg, 95%). 1H 

NMR (400 MHz, toluene-d8): δ 7.57 (dt, 1H, J = 7.7, 1.8 Hz, H6), 7.28 

(dq, 2H, J = 8.4, 1.0 Hz, H4,7), 7.21 (dq, 2H, J = 8.4, 1.0 Hz, H4,7), 7.10 
(ddd, 1H, J = 8.1, 7.1, 1.7 Hz, H3), 6.87 (ddd, 2H, J = 8.4, 6.6, 1.2 Hz, 
H6,5), 6.80 (ddd, 2H, J = 8.4, 6.6, 1.2 Hz, H6,5), 6.76 (dt, 1H, J = 7.4, 1.3 
Hz, H4), 6.33 (ddd, 1H, J = 8.1, 5.0, 1.3 Hz, H5), 6.06 (ddd, 2H, J = 3.2, 
2.1, 0.9 Hz, H1,3), 5.96 (t, 2H, J = 3.3 Hz, H2), 5.73 (ddd, 2H, J = 3.2, 2.1, 

0.9 Hz, H1,3), 1.20 (d, 18H, 3JHP = 11.4 Hz, C(CH3)3), −0.1 (s, 3H, 

ZrCH3). 13C{1H} NMR (125 MHz, toluene-d8): δ 168.6 (d, J = 23.9 Hz, 

C1), 135.6 (d, J = 7.1, C6), 129.8 (s, C3),  
125.4 (d, J = 22.7 Hz, C2), 125.2 (s, C3a,7a), 125.0 (s, C3a,7a), 124.4 
(s, C5,6), 124.3 (m, C4,7), 124.0 (s, C5,6), 120.29 (d, J = 3.3 Hz, C5), 
118.6 (s, C4), 117.6 (d, J = 1.9 Hz, C2), 101.5 (d, J = 1.2 Hz, C1,3), 

98.9 (d, J = 1.3 Hz, C1,3), 32.8 (d, JCP = 7.5 Hz, ZrCH3), 32.4 (d, 1JCP = 

24.9 Hz, C(CH3)3), 31.0 (d, 2JCP = 15.7 Hz, C(CH3)3). 31P{1H} NMR 

(161 MHz, toluene-d8): δ 10.23 (s). Anal. Calcd: C, 69.07; H, 6.85. 
Found: C, 68.92; H, 6.93.  

4.2.2.4.  Me2Si(C5H4)2Zr(Me)(OC6H4P(tBu)2).  Viscous colorless oil 

(227 mg, 98%). 1H NMR (400 MHz, PhCl-d5): δ 7.76 (dt, 1H, J = 7.5, 
1.5 Hz, H6), 7.32 (dt, 1H, J = 7.1, 1.2 Hz, H3), 6.96 (dt, 1H, J = 7.7, 
1.6 Hz, H4), 6.80−6.82 (m, 2H, Cp), 6.77−6.80 (m, 1H, H5), 6.44−  
6.46 (m, 4H, Cp), 5.70−5.73 (m, 2H, Cp), 1.36 (d, 18H, 3JHP = 10.2 Hz, 

C(CH3)3), 0.73 (s, 3H, SiCH3), 0.60 (s, 3H, SiCH3), 0.52 (s, 3H, ZrCH3). 
13C{1H} NMR (100 MHz, PhCl-d5): δ 169.9 (d, J = 22.1 Hz, 
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C1), 135.5 (d, J = 3.5 Hz, C6), 130.3 (d, J = 0.5 Hz, C3), 124.2 (d, J = 
22.7 Hz, C2), 122.0 (s, ipso-CpSi), 119.7 (d, J = 2.2 Hz, C5), 119.5 
(d, J = 2.7 Hz, C4), 118.4 (s, Cp), 113.6 (s, Cp), 110.6 (s, Cp), 110.5 

(s, Cp), 107.5 (s, Cp), 32.2 (d, 
1
JCP = 24.0 Hz, C(CH3)3), 31.8 (s, 

ZrCH3),  30.8  (d,  
2
JCP  =  15.9  Hz,  C(CH3)3),  −4.96,  −5.67  (s, 

Si(CH3)2). 
31

P{
1
H} NMR (161 MHz, PhCl-d5): δ 9.96 (s). ESI-MS: 

529.1621 [M − H]+. 

4.2.3. Synthesis of Cationic Complexes [R2Zr(O∧P(tBu)2)][B(C6F5)4] 

(2−5). Data for the [B(C6F5)4] anion are reported separately. 11
B{

1
H} NMR 

(96 MHz, CD2Cl2): δ −17.60 (s). 
19

F NMR (376 MHz, DCM-d2): δ −133.17 

(s), −163.70 (s), −167.71 (s). 
13

C{
1
H} NMR (125 MHz, DCM-d2): δ 148.26 

(d, J = 245.3 Hz, o-B(C6F5)4), 136.68 (d, J  
= 242.4 Hz, p-B(C6F5)4), 134.76 (d, J = 254.1 Hz, m-B(C6F5)4), 
124.30 (br, ipso-CB).  

4.2.3.1. Via Protonolysis with [DTBP(H)][B(C6F5)4]. In a 

glovebox, stoichiometric amounts of the relevant neutral complex 

[R2Zr(Me)-(O∧P(
t
Bu)2)] and [DTBP(H)][B(C6F5)4] were weighed 

into separate vials and dissolved in the minimum amount of PhF (note 

that PhCl and PhBr can be used interchangeably). The solution of 

[DTBP-(H)][B(C6F5)4] was added dropwise to the vial containing the 

zirconium complex. Gas evolution was evident, and the resulting 

solution was stirred for 1 h, yielding bright yellow solutions. Due to 

inherent instability, the complexes were used in situ to investigate the 

reactivity toward Me2NH·BH3.  
4.2.3.2. [Ind2Zr(OC6H4P(tBu)2)][B(C6F5)4] (2). Near-quantitative 

yield by 1H NMR. 1H NMR (400 MHz, PhCl-d5): δ 7.59−7.70 (m, 5H, 
H6 and H4,7), 7.53 (pseudo t, 1H, J = 7.3 Hz, H3), 7.30−7.40 (m, 5H, 
H6,5 and H4), 6.57−6.61 (m, 1H, H5), 6.27−6.31 (m, 2H, H1,3), 

5.80−5.85 (m, 2H, H2), 5.74−5.80 (m, 2H, H1,3), 1.36 (18H, d, 
3
JHP  

= 14.6 Hz, PC(CH3)3). 13C{1H} NMR (125 MHz, PhCl-d5): δ 166.2 (d, 
2JCP = 15.6 Hz, C1), 133.6 (d, 4JCP = 4.2 Hz, C5), 132.4 (d, 3JCP = 1.2 
Hz, C4), 130.1 (s, C6,5), 129.1 (s, C3a,5a), 127.9 (s, C6,5), 125.5 (s, 

C3a,5a), 125.3 (s, C4,7), 124.4 s, (s, C4,7), 123.0 (d, 1JCP = 27.0 Hz, C2), 

122.8 (d, 3JCP = 3.4 Hz, C6), 122.3 (s, C2), 117.7 (d, 2JCP =  
5.0 Hz, C3), 103.6 (s, C1,3), 103.5 (s, C1,3), 37.0 (s, 

1
JCP = 7.4 Hz, 

PC(CH3)3), 29.7 (d, 
2
JCP = 4.5 Hz, PC(CH3)3). 

31
P{

1
H} NMR (161 

MHz, PhCl-d5): δ 55.9 (s). ESI-MS: 589.1771 m/z [M + MeOH].  
4.2.3.3. [(tBuC5H4)2Zr(OC6H4P(tBu)2)][B(C6F5)4] (3). Near-

quantita-tive yield by 1H NMR. 1H NMR (400 MHz, PhCl-d5): δ 7.13 (dt, 
1H, J = 0.9, 7.7, H6), 7.03 (ddd, 1H, J = 1.6, 6.0 Hz, H4), 6.80−6.85 (m, 
1H, H5), 6.70−6.75 (m, 2H, Cp), 6.39 (dq, 1H, J = 1.0, 4.5 Hz, H3), 

6.25−6.30 (m, 2H, Cp), 6.00−6.08 (m, 4H, Cp), 1.11 (d, 18H, 
3
JHP = 

14.8 Hz, PC(CH3)3), 0.90 (s, 18H, CpC(CH3)3). 
13

C{
1
H} NMR (125 

MHz, PhCl-d5): δ 167.1 (d, 
2
JCP = 15.2 Hz, C1), 149.9 (s, ipso-

Cp(tBu)), 133.8 (d, 
4
JCP = 2.8 Hz, C5), 133.3 (d, 

3
JCP = 1.4 Hz, C4), 

122.1 (d, 
1
JCP = 21.3 Hz, C2), 121.9 (s, C6), 118.2 (d, 

2
JCP = 4.8 Hz, 

C3), 115.7, 113.3, 113.2, 111.1 (Cp), 37.4 (d, J = 4.9 Hz, PC(CH3)3), 
31.7 (s, CpC(CH3)3), 30.3 (d, J = 4.7 Hz, PC(CH3)3), 30.1 (s, 

CpC(CH3)3). 31P{1H} NMR (161 MHz, PhCl-d5): δ 58.05 (s). ESI- 

MS: 569.2483 m/z [M]
+
. 

4.2.3.4. [Me2Si(C5H4)2Zr(OC6H4P(tBu)2)][B(C6F5)4] (4). Near-

quanti-tative yield by 1H NMR. 1H NMR (400 MHz, PhCl-d5): δ 7.41 (t, 

1H, J = 7.8 Hz, H5), 7.14−7.16 (m, 1H, H4), 7.06−7.08 (m, 1H, H6), 6.93 
(br s, 2H, Cp), 6.63−6.65 (m, 1H, H3), 6.28 (br s, 2H, Cp), 6.20 (br s, 

2H, Cp), 5.37 (br s, 2H, Cp), 1.12 (d, 18H, 
3
JHP = 13.3 Hz, C(CH3)3), 

0.82 (br s, 3H, SiCH3), 0.56 (br s, 3H, SiCH3). 
13

C{
1
H} (100 MHz, 

PhCl-d5): δ 165.3 (d, 2JCP = 15.4 Hz, C1), 134.4 (d, 4JCP = 1.1 Hz, C5), 

132.8 (d, 3JCP = 1.5 Hz, C4), 126.9 (br s, Cp), 122.7 (d, 3JCP = 4.4 Hz, 

C6), 121.9 (d, 1JCP = 26.7 Hz, C2), 119.0 (br s, Cp), 118.4 (br s, Cp), 

117.3 (d, 2JCP = 6.7 Hz, C3), 116.0 (br s, Cp), 115.4 (s, ipso-CpSi), 

37.6 (d, 1JCP = 6.0 Hz, PC(CH3)3), 30.0 (d, 2JCP = 4.6 Hz, PC(CH3)3), 

−5.2 (br s, SiCH3), −7.3 (br s, SiCH3). 31P{1H} NMR (161 MHz, 

PhCl-d5): δ 57.57 (s). ESI-MS: 513.1313 m/z [M]
+

. 
4.3. Synthesis of Intramolecular FLP System 5. 4.3.1. 

Synthesis of Electron Deficient Phosphino Alcohol. 4.3.1.1. 
Bis[3,5-bis-(trifluoromethyl)phenyl]chlorophosphine. Magnesium 
turnings (700 mg) were covered with THF and a solution of 1,3-
bis(trifluoromethyl)-5-bromobenzene (4.91 mL, 28.5 mmol) in THF 
(20 mL) added dropwise with cooling (0 °C). The reaction mixture 
was stirred at room temperature for 1 h, leading to formation of a 

 
brown solution. The reaction mixture was cooled to 0 °C, and a 
solution of diethylphosphoramidous dichloride (2.00 mL, 13.7 
mmol) in THF (10 mL) wa added dropwise. The reaction mixture 
was warmed to room temperature and stirred overnight. The 
solvent was removed in vacuo and the resulting residue dissolved 
in hexane, filtered through Celite, and concentrated to ∼20 mL. 
Hydrogen chloride solution (2.0 M in Et2O, 13.7 mL, 27.4 mmol) 
was added dropwise at room temperature and the reaction mixture 
stirred for 2 h, yielding a white precipitate of the amine 
hydrochloride. Subsequent filtration and removal of solvent in 
vacuo yielded the desired chlorophosphine as a white solid (4.45 
g, 66%). All recorded data are consistent with those in the 
literature.

27
 
31

P{
1
H} NMR (121 MHz, CDCl3): δ 70.4 (s).  

4.3.1.2. Bis[3,5-bis(trifluoromethyl)phenyl]phosphine. A 

solution of (3,5-CF3-C6F3)2PCl (2.56 g, 5.21 mmol) in Et2O (12 

mL) was added dropwise to a suspension of LiAlH4 (198 mg, 

4.27 mmol) in Et2O (40 mL) at room temperature. The solution 

was heated at reflux for 2 h and then quenched with degassed H2O 
(0.15 mL). Filtration through Celite and removal of solvent in 
vacuo yielded the desired phosphine as a white solid (2.10 g, 
88%). All recorded data are consistent with those in the 

literature.
28,29

 
1
H NMR (300 MHz, CDCl3): δ 7.55 (s, 1H, ArH), 

7.44 (ps d, 2H, J = 5.7 Hz, ArH), 4.56 (d, 1H, 
1
JPH = 223.9 Hz, 

PH). 
31

P NMR (121 MHz, CDCl3): δ −41.1 (d, 
1
JPH = 216.8 Hz).  

4.3.1.3. [Bis(3,5-bis(trifluoromethyl)phenyl)phosphanyl]phenol. 2-

Iodophenol (371 mg, 1.69 mmol), (3,5-CF3-C6F3)2PH (773 mg, 1.69 

mmol), Cs2CO3 (1.10 g, 3.37 mmol), and palladium(II) acetate (37 mg, 

0.17 mmol) were combined in a Schlenk tube and dissolved in toluene (15 
mL). The reaction mixture was heated at 100 °C for 16 h. The solution 
was filtered through a silica plug and eluted with DCM and the solvent 
removed in vacuo to give the desired product, which was further purified 
by flash chromatography: silica, DCM/hexane (50/50). Brown solid (817 

mg, 88%). 1H NMR (300 MHz, C6D6): δ 7.93 (s, 2H, P-ArH), 7.82−7.83 

(pseudo d, 4H, J = 6.9 Hz, P-ArH), 
7.44 (ddd, 1H, J = 1.7, 7.4, 8.1, H6), 7.02 (dt, 1H, J = 0.9, 7.5, H3), 

6.91−6.97 (m, 2H, H4 and H5). 
31

P{
1
H} NMR (121 MHz, C6D6): δ 

−11.0 (s). 
13

C{
1
H} NMR (125 MHz, C6D6): δ 158.3 (d, J = 15.7 

Hz, C1), 138.7 (d, 
1
JCP = 15.7 Hz, ipso-P-Ar), 134.6 (d, J = 8.5 

Hz, C5), 133.4 (pseudo d, J = 21.3 Hz, P-Ar), 132.8 (s, C6), 131.7 

(dq, 
2
JCF = 6.3, 34.0 Hz, ipso-C(CF3)), 123.3 (q, 

1
JCF = 273.0 

Hz, C(CF3)), 123.2 (qu, 
3
JCF = 3.9 Hz, P-Ar), 121.9 (d, J = 3.7 

Hz, C3), 118.1 (d, J = 9.2 Hz, C2), 115.9 (d, J = 1.6 Hz, C4).  
4.3.2. Synthesis of Cationic Complex [(C5H 5)2Zr(OC6H4P(m-

CF3C6H3)2)][B(C6F5)4] (5). In a glovebox, a solution of the dimethyl  
zirconocene (1 equiv) and phosphino alcohol (1 equiv) were 
individually dissolved in the minimum amount of PhF prior to 
combination. The resulting solutions were stirred for 30 min. 

[Ph3C][B(C6F5)4] (1 equiv) was weighed into a separate vial and 
dissolved in the minimum amount of PhF (note that PhCl and PhBr 

can be used interchangeably). The solution of [Ph3C][B(C6F5)4] was 
added dropwise to the vial containing the zirconium complex. The 
resulting solution was stirred for 1 h. Due to inherent instability, the 
complexes were used immediately to investigate the reaction toward 

Me2NH·BH3. Attempted isolation of both complexes resulted in 

decomposition. 
1
H NMR (300 MHz, PhCl/toluene-d8; aromatic 

signals are obscured by PhF signals and could not be unambiguously 

identified): δ δ 6.68−6.72 (m, 2H, H4 and H5), 5.83 (s, 10H, C5H5). 
31

P{
1
H} NMR (121 MHz, PhCl/toluene-d8): δ −13.9 (s).  

4.4. Dehydrocoupling of Me2NH·BH3 by Complexes 2−5. 
General Method. In a glovebox, a PhCl stock solution of the cationic  
zirconocene complex (0.025 M) was made as detailed above. A 0.5 
mL portion of the solution (0.012 mmol) was added to a glass vial of 

preweighed Me2NH·BH3 (15 mg, 0.25 mmol). A color change from 

yellow to colorless and evolution of gas was evident. The solution 
was transferred to a J. Young NMR tube and removed from the 
glovebox, and the relevant spectra were obtained.  

4.5. Reaction of FLP System 1 (5 mol %) with Me2NH-BH2-

Me2N-BH3. In a glovebox 1 (9 mg, 0.008 mmol) and Me2NH-BH2-

Me2N-BH3 (18.6 mg, 0.16 mmol) were weighed out into glass vials 
and combined in PhCl (0.5 mL). The solution was transferred to a 
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quartz J. Young NMR tube and then removed from the glovebox. The 
reaction was monitored by 

11
B NMR spectroscopy and found to give 

complete conversion to [Me2N-BH2]2 in 20 min. 

4.6. Dehydrocoupling of Me2NH·BH3 by Complexes 7−12. In 

a glovebox [Cp*2ZrOMes][B(C6F5)4] (6; 21 mg, 0.018 mmol) and 

the relevant phosphine (0.018 mmol; 7, PtBu3 4 mg; 8, PCy3 5 mg; 9, 

PEt3 2 mg; 10, PPh3 5 mg; 11, PMes3 7 mg; 12, P(C6F5)3 10 mg) 
were weighed into glass vials. The phosphine was dissolved in PhCl 

(0.5 mL) and mixed with [Cp*2ZrOMes][B(C6F5)4] (6). The resulting 

red solution was added to a glass vial containing Me2NH·BH3 (9.5 
mg, 0.16 mmol), and the solution was mixed to ensure full dissolution 
of the amine−borane before it was transferred to a quartz J. Young 
NMR tube. The tube was subsequently removed from the glovebox, 
and the relevant spectra were obtained. In all cases the reactions show 

<5% conversion to [Me2N-BH2]2 after 24 h.  
4.7. Dehydrocoupling of Me2NH·BH3 by Complexes 14−19. 

In a glovebox [Cp2ZrOMes][B(C6F5)4] (19 mg, 0.018 mmol) and the 

relevant phosphine (0.018 mmol; 14, PtBu3 4 mg; 15, PCy3 5 mg; 16, 

PEt3 2 mg; 17, PPh3 5 mg; 18, PMes3 7 mg; 19, P(C6F5)3 10 mg) 
were weighed into glass vials. The phosphine was dissolved in PhCl 

(0.5 mL) and mixed with [Cp2ZrOMes][B(C6F5)4]. In the cases of 
15−17 a color change from orange to yellow was observed indicative 
of a persistent Zr−P bond. The resulting solutions were added to a 

glass vial containing Me2NH·BH3 (9.5 mg, 0.16 mmol), and the 
solution was mixed to ensure full dissolution of the amine−borane 
before it was transferred to a quartz J. Young NMR tube. The tube 
was subsequently removed from the glovebox, and the relevant 

spectra were obtained. 15−17 showed <5% conversion to [Me2N-

BH2]2 after 14 h. The reaction using 14 was followed by 
11

B NMR 
spectroscopy, and the stacked spectra are shown in Figure S1 in the 
Supporting Information. 

4.8. Synthesis of Compound 20. In a glovebox a chlorobenzene 

(1 mL) solution of Me2NH·BH3 (4 mg, 0.07 mmol) was added 
dropwise to a chlorobenzene (1 mL) solution of 6 (78 mg, 0.07 
mmol). An immediate color change from orange to yellow was 
observed. The resulting solution was precipitated into a large volume 
(20 mL) of rapidly stirred pentane. The solvent was decanted off  
before washing with pentane (3 × 5 mL). The resulting yellow solid 
was dried in vacuo (65 mg, 79%). Crystals of 20 suitable for analysis 
by X-ray crystallography were obtained by layering a PhCl solution of 

20 with pentane (5 days). 
1
H NMR (500 MHz, d5-PhBr): δ 0.54 (3H, 

br s, Me2NH·BH3), 1.49 (30H, s, Cp*), 1.77 (6H, s, ortho-CH3), 2.02 

(3H, s, para-CH3), 2.12 (6H, s, Me2NH·BH3), 3.60 (1H, br s, 

Me2NH· BH3), 6.56 (2H, s, Ar-H). 
13

C NMR (125 MHz, d5-PhBr): δ 

15.3 (s, Cp*), 24.0 (s, ortho-CH3), 26.2 (s, para-CH3), 47.7 (s, 

Me2NH·BH3), 128.5 (s, Cp*), 159.1 (s, ipso-C). Other aromatic peaks 
are obscured by the PhBr solvent. Signals corresponding to 

[B(C6F5)4]− are also present as reported above. 
11

B NMR (96 MHz, 

d5-PhBr): δ −16.9 (s, [B(C6F5)4]−), −11.5 (br s, Me2NH·BH3).  
4.9. Deprotonation of 20 with PR3. In a glovebox 20 (20 mg, 

0.016 mmol) and the corresponding phosphine (0.016 mmol; 

PtBu3 3 mg; PCy3 5 mg; PEt3 2 mg; PPh3 5 mg; PMes3 6 mg; 

P(C6F5)3 9 mg) were weighed into a glass vial and dissolved in 
chlorobenzene (0.5 mL). The resulting solution was transferred to 
a quartz J. Young NMR tube and removed from the glovebox. 

The reaction was monitored by 
11

B and 
31

P NMR spectroscopy.  
4.10. Reaction between Me2NH-BH2-Me2N-BH3 and 20 mol 

% of 14. In a glovebox [Cp2ZrOMes][B(C6F5)4] (37 mg, 0.036 

mmol) and the PtBu3 (8 mg, 0.036 mmol) were weighed into glass 
vials. The phosphine was dissolved in PhCl (0.5 mL) and mixed with 

[Cp2ZrOMes][B(C6F5)4]. The resulting solution was placed in a glass 

vial containing Me2NH-BH2-Me2N-BH3 (18.6 mg, 0.16 mmol), and 
the solution was mixed to ensure full dissolution of the amine−borane 
before it was transferred to a quartz J. Young NMR tube. The tube 
was subsequently removed from the glovebox, and the relevant 
spectra were obtained (Figure S2 in the Supporting Information).  

4.11. Reaction between Me2NH-BH2-Me2N-BH3 and 20 mol 

% of 6. In a glovebox [Cp2ZrOMes][B(C6F5)4] (37 mg, 0.036 mmol) 
was weighed into a glass vial and dissolved in PhCl (0.5 mL). The 

resulting solution was placed in a glass vial containing Me2NH-BH2- 

 

Me2N-BH3 (18.6 mg, 0.16 mmol), and the solution was mixed to 
ensure full dissolution of the amine−borane before it was 
transferred to a quartz J. Young NMR tube. The tube was 
subsequently removed from the glovebox, and the relevant spectra 
were obtained (Figure S3 in the Supporting Information).  

4.12. Reaction between iPr2NH·BH3 and 10 mol % of 14. In a 

glovebox [Cp2ZrOMes][B(C6F5)4] (18 mg, 0.018 mmol) and the 

PtBu3 (4 mg, 0.018 mmol) were weighed into glass vials. The 
phosphine was dissolved in PhCl (0.5 mL) and mixed with 

[Cp2ZrOMes][B(C6F5)4]. The resulting solution was placed in a glass 

vial containing 
i
Pr2NH·BH3 (20.5 mg, 0.18 mmol), and the solution 

was mixed to ensure full dissolution of the amine−borane before ot 
was transferred to a quartz J. Young NMR tube. The tube was 
subsequently removed from the glovebox, and the relevant spectra 
were obtained (Figure S4 in the Supporting Information).  

4.13. Synthesis of Compound 21. The methodology used for the 
synthesis of 21 was analogous to that employed for the synthesis of 20. In 

a glovebox a chlorobenzene (1 mL) solution of iPr2NH·BH3 (4 mg, 0.03 

mmol) was added dropwise to a chlorobenzene (1 mL) solution of 6 (40 
mg, 0.03 mmol). An immediate color change from orange to yellow was 
observed. The resulting solution was precipitated into a large volume (20 
mL) of rapidly stirred pentane. The solvent was decanted off  before 
washing with pentane (3 × 5 mL). The resulting yellow solid was dried in 
vacuo (35 mg, 79%). Crystals of 21 suitable for analysis by X-ray 
crystallography were obtained by layering a PhCl solution of 21 with 

pentane (2 days). 1H NMR (500 MHz, d5-PhCl): δ 1.04 (12H, d, 
iPr2NH·BH3), 1.69 (30H, s, Cp*), 1.97 (6H, s,  
ortho-CH3), 2.18 (3H, s, para-CH3), 3.09 (2H, m, iPr2NH·BH3), 3.35 (1H, 

br s, Me2NH·BH3), 6.72 (2H, s, Ar-H). 13C NMR (125 MHz, d5- 

PhCl): δ 11.6 (s, Cp*), 19.4 (s, ortho-CH3), 19.7 (s, 
i
Pr), 26.2 (s, para-

CH3), 54.3 (s, 
i
Pr), 123.3 (s, meta-C), 128.5 (s, Cp*), 155.7 (s, ipso-

C). Other aromatic peaks are obscured by the PhCl solvent. Signals 

corresponding to [B(C6F5)4]− are also present as reported above. 
11

B  
NMR (96 MHz, d5-PhCl): δ −16.9 (s, [B(C6F5)4]−), −9.5 (br s, 
i
Pr2NH·BH3). 
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