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On the impulse response and global
instability development of the infinite

rotating-disc boundary layer
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(Received ?? and in revised form ??)

Linear disturbance development in the von Kármán boundary layer on an infinite rotating-
disc is investigated for an extensive range of azimuthal mode numbers n. The study ex-
pands upon earlier investigations that were limited to those values of n located near the
onset of absolute instability (Lingwood 1995), where disturbances to the genuine inho-
mogeneous flow were shown to be globally stable (Davies & Carpenter 2003). Numerical
simulations corresponding to azimuthal mode numbers greater than the conditions for
critical absolute instability, display a form of global linear instability that is characterised
by a faster than exponential temporal growth, similar in appearance to that found on
the rotating-disc with mass suction (Thomas & Davies 2010) and other globally unsta-
ble flows (Huerre & Monkewitz 1990). Solutions indicate that a change in the global
behaviour arises for n ∈ [80 : 100] that is marginally greater than those disturbances
studied previously. Furthermore, the Reynolds number associated with the larger az-
imuthal mode numbers coincides with the upper bound of experimental predictions for
transition. Thus, the local-global linear stability of the infinite rotating-disc is similar to
the scenario outlined by Huerre & Monkewitz (1990) that states a region of local absolute
instability is necessary but not sufficient for global instability to ensue. Conditions are
derived to predict the azimuthal mode number needed to bring about a change in global
behaviour, based on solutions of the linearized complex Ginzburg-Landau equation cou-
pled with numerical simulations of disturbances to the radially homogeneous flow. The
long term response is governed by a detuning effect, based on radial variations of the
temporal frequency and matching shifts in temporal growth that increases for larger n,
eventually attaining values sufficient to engineer global linear instability. The analysis
is extended to include mass transfer through the disc surface, with similar conclusions
drawn for disturbances to large enough azimuthal mode numbers. Finally, we conclude
that the high n modes are unlikely to have a strong influence on disturbance development
and transition in the von Kármán flow, as they will be unable to establish themselves
across an extended radial range before nonlinear effects are triggered by the huge growth
associated with the wavepacket maxima of the lower n-valued convective instabilities.

1. Introduction

The rotating-disc boundary layer may be regarded as providing a prototypical con-
figuration for studies of the instability mechanisms that can trigger laminar-turbulent
transition in three-dimensional wall-bounded external flows. It is formed when a planar
solid surface is rotated, with a constant angular velocity, to drive the motion of an other-
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2 C. Thomas & C. Davies

wise unbounded region of incompressible fluid that lies immediately above it. This rela-
tively simple rotating flow was first identified and described almost a century ago by von
Kármán (1921). Since that time, it has been the frequent subject of investigations, con-
ducted using a variety of theoretical, numerical and experimental methods (Lingwood &
Alfredsson 2015). In recent years, attention has focused on the nature of the global sta-
bility behaviour which is displayed in the spatial and temporal development of linearized
forms of disturbance. This interest was provoked by the discovery that the boundary
layer is susceptible to an absolute form of instability (Lingwood 1995, 1996). However,
the occurrence of such an instability was only theoretically demonstrated within the
context of a mathematical approximation. In order to simplify the analysis and make it
more tractable, the genuine flow was replaced by an artificial version obtained by means
of a radial homogenization. In the present paper, we will reconsider the connections that
may be exhibited between absolute instability and the global features of the linearized
disturbance development for the exact, radially inhomogeneous, base flow.
Previous studies have shown that, despite the presence of an absolute instability mecha-

nism, the effects associated with the radial inhomogeneity of the genuine flow can become
strong enough to lead to a global stabilization of disturbances (Davies & Carpenter 2003;
Davies et al. 2007). This was carefully documented for the disturbance development over
a wide range of radial locations, when the azimuthal mode number was chosen to be
broadly comparable to the critical value for the onset of absolute instability. It was later
demonstrated that such strong effects on the global stability behaviour were persistent
across a variety of related rotating-disc boundary layers, for which the physical config-
uration of the basic state was taken to be amended in some manner. These modified
flows comprised cases where there was either mass transfer at the disc surface, an im-
posed axial magnetic field, or the fluid was allowed to rotate at large distances above the
disc (Thomas & Davies 2010, 2013; Davies & Thomas 2017). In some instances, it was
discovered that the radial inhomogeneity could give rise to globally unstable behaviour,
rather than promoting stability, which was characterised by a faster than exponential
temporal growth for disturbances triggered by a spatially localised impulsive forcing.
However, Thomas and Davies were unable to locate any fixed global temporal frequency,
which might have been anticipated for a globally unstable flow. Instead, for the time du-
ration that disturbance development could be accurately simulated, temporal frequencies
were found to vary in both the radial direction and with time.
Excellent reviews on global instability concepts and globally unstable flows are pre-

sented by Huerre & Monkewitz (1990), Huerre (2000) and Schmid & Henningson (2001).
The global instability of numerous wake flows has been investigated by Hannemann &
Oertel (1990); Oertel (1990); Zielinska & Westfried (1995); Leu & Ho (2000) and reviewed
by Huerre & Monkewitz (1990). Further examples of flows exhibiting globally unstable
properties include some jet and plume flows (again reviewed by Huerre & Monkewitz
1990) and the flickering candle (Maxworthy 1999).
For the subsequent study we will show that the same form of rapid temporal growth

observed by Thomas & Davies (2010) on the rotating-disc with mass suction, can also
be identified for the unmodified infinite rotating-disc boundary layer. However, it is only
found when the azimuthal mode number of the disturbance is taken to be significantly
greater than the values, selected to yield near criticality for the occurrence of absolute
instability, that were the primary focus of previous investigations. Thus, globally unstable
characteristics appear outside the parameter range that had been presumed to be the
most relevant for studying its possible onset.
Absolute instability in the rotating-disc boundary layer was discovered by Lingwood

(1995) using the Briggs (1964) pinch-point method. It was shown that this form of in-
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Global instability development of the infinite rotating-disc boundary layer 3

stability is generated by the coalescence of the crossflow instability (Gregory, Stuart
& Walker 1955) and a spatially damped mode that propagates radially inwards (Mack
1985). (At least one other form of instability exists within the von Kármán flow that
is a direct consequence of the Coriolis forces present in rotating boundary layers, Faller
& Kaylor 1966; Malik 1986). Critical absolute instability was identified by Lingwood
(1995) for Reynolds numbers Rea ⩾ 507.3, whilst experimental observations indicate
that transition to turbulence sets in for Reynolds numbers 500 ⩽ Ret ⩽ 560 (Gregory
et al. 1955; Gregory & Walker 1960; Kobayashi et al. 1980; Malik et al. 1981; Wilkin-
son & Malik 1985; Lingwood 1996; Othman & Corke 2006; Imayama et al. 2012, 2013,
2014). Given the apparent consistency in the onset of transition and the appearance
of absolute instability, Lingwood suggested that absolute instability may be responsible
for the breakdown of laminarity in the rotating-disc boundary layer. However, Davies &
Carpenter (2003) inferred that absolute instability was not sufficient to excite globally
unstable disturbances. Furthermore, Lingwood (1996) was unable to identify a dominant
frequency that may have been anticipated if the absolute instability were to establish a
temporally growing global mode.
Using solutions of the linearized complex Ginzburg-Landau equation (originally de-

rived by Hunt & Crighton 1991), Davies et al. (2007) were able to show that the global
behaviour depicted by Davies & Carpenter (2003) arises due to a ‘detuning’ effect that
is a result of a radially varying complex temporal frequency. Depending on the pre-
cise relationship between the radial variations in frequency and growth rate (and diffu-
sion/dispersion effects), the flow could remain globally stable despite being locally abso-
lutely unstable. Stabilisation by detuning has been familiar to many in the astrophysical
fluids research community for quite some time and is better known as ‘phase-mixing’
(Soward 1977, 1992; Harris, Bassom & Soward 2000)
Davies and co-workers (Davies & Carpenter 2003; Davies et al. 2007) discuss the inter-

pretation of the temporal frequency based on a local and global time non-dimensionalization.
The former scaling is based on the ratio of the constant boundary layer thickness and
the circumferential speed of the rotating-disc, while the global time-scale is defined by
taking the inverse of the disc angular velocity. Thus, the globally scaled temporal fre-
quency g = fRe, where Re is the Reynolds number and f is the locally scaled frequency
that is more commonly utilised in stability investigations based on a radial homogeneous
approximation of the basic state. Additionally, an integer valued azimuthal mode number
is defined as n = βRe, where the azimuthal wavenumber β is treated as a continuous
parameter in local stability analysis. For solutions to the homogeneous flow, the temporal
frequency gr and growth rate gi can then be mapped on to the {Re, n}-parameter space.
(Note that subscripts r and i denote the real and imaginary parts of g). Contours of gr
and gi are plotted in figure 1, which are consistent with the calculations given by Ling-
wood (1995) and the illustrations of Pier (2003). For a fixed value of n ⩾ 51 absolutely
unstable behaviour is only found for a finite range of Reynolds numbers. For instance,
at na = 68 (critical azimuthal mode number for absolute instability) disturbances are
absolutely unstable over the parameter range 507 ≲ Re ≲ 1600. For larger Reynolds
numbers disturbances are either convectively unstable or stable. Furthermore, temporal
growth rates vary approximately quadratically, while the matching frequencies increase
linearly with the Reynolds number (Davies et al. 2007; Thomas 2007; Healey 2010).
Recent studies on the von Kármán flow have examined finite disc effects. Utilising

the modelling work of the Davies group and solutions of the Ginzburg-Landau equation,
Healey (2010) argued that for a disc of finite radius, absolute instability could establish
globally unstable disturbances. However, experiments by Imayama et al. (2013) were un-
able to confirm a direct relationship between the onset of transition and the Reynolds
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Figure 1. Contours of the temporal frequency gr and growth rate gi in the {Re, n}-parameter
space, based on solutions of the radially homogeneous base flow. Horizontal lines correspond to
modes na = 68 (dashed) and n = 51 (dotted).

number at the edge of the disc. Instead it was suggested that the scatter of reported
transition Reynolds numbers could be explained by the different interpretations for tran-
sition. Pier (2013) undertook a similar experimental investigation on the rotating-disc
and the effects, if any, of a finite radial domain. He found that the edge of the disc
could act as a source for strong fluctuations and that the apparent inconsistencies be-
tween the analysis of Healey (2010) and Imayama et al. (2013) could be reconciled if the
downstream boundary was modelled as a source of random noise.
Appelquist et al. (2015a,b, 2016) used numerical simulations to undertake both a

linear and nonlinear study on the disturbance development on finite rotating-discs for
azimuthal mode numbers near critical conditions for absolute instability. The original
calculations of Davies & Carpenter (2003) were extended to longer time periods, and
finite disc effects were modelled by accounting for downstream turbulence. Inwardly
travelling perturbations were excited by a turbulent outer ring that led to the creation
of a form of global instability that was characterised by the conditions at the outer
boundary of the radial domain. If the pocket of local absolute instability was sufficiently
large, globally unstable disturbances could be established. A globally unstable mode
was found for na = 68 and Recg = 583. Extrapolating their analysis of finite discs
through to a rotating-disc of infinite extent (as undertaken by Davies & Carpenter 2003),
Appelquist et al. confirmed (for azimuthal mode numbers near the onset of absolute
instability) that the infinitely large rotating-disc is globally linearly stable. More recently,
Appelquist et al. (2018) simulated stationary convective instabilities excited by surface
roughness on a finite disc. Disturbance development was tracked through the linear and
nonlinear stages of transition. For all simulations modelled, turbulence was attained
before Recg, meaning that the primary instability was convective in nature. Secondary
instabilities were triggered and different transition scenarios realised, depending on the
initial roughness amplitude.
In this paper we will focus on the global linear stability characteristics on the infi-

nite rotating-disc and consider a possible oversight by previous studies regarding the
requirements for global instability. Using solutions of the linearized Ginzburg-Landau
equation with linearly varying coefficients, Chomaz, Huerre & Redekopp (1988) found
that a region of local absolute instability is a necessary but not sufficient condition for
global linearly unstable behaviour (Huerre & Monkewitz 1990; Huerre 2000). In order for
global instability to develop the region of absolute instability had to exceed a critical size
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Global instability development of the infinite rotating-disc boundary layer 5

(Chomaz et al. 1988; Huerre & Monkewitz 1990; Huerre 2000). The von Kármán flow is
only absolute unstable over a finite range of Reynolds numbers (or radii) for any fixed
azimuthal mode number n ⩾ 51, with the region of absolute instability increasing for
larger n (figure 1(b)). Previous studies of the infinite rotating-disc, that focused on the
first azimuthal mode numbers to become absolutely unstable, have only observed globally
stable characteristics. In other words the absolutely unstable mechanism was not suffi-
cient to generate global instability. Davies & Carpenter (2003) considered the evolution of
disturbances over the parameter range n ∈ [30 : 75], while Appelquist et al. (2015a) mod-
elled the na = 68 mode. However, might there exist a critical azimuthal mode number nc

(greater than that considered previously) where the flow becomes globally unstable? It
is the primary aim of the current investigation to examine the disturbance development
to high azimuthal mode numbers and the possible implications for the transition process
in the infinite rotating-disc boundary layer.
The remainder of this paper is set out as follows. In the subsequent section, the nu-

merical formulation developed by Davies & Carpenter (2001) is described for the infinite
rotating-disc boundary layer. Numerical simulation results are presented in §3 for dis-
turbances to the genuine inhomogeneous flow for a broad range of large azimuthal mode
numbers (60 ⩽ n ⩽ 150). Global linear stability characteristics are modelled in §4 us-
ing solutions of the linearised Ginzburg-Landau equation, and predictions for the onset
of global linear instability are derived based on solutions of the radially homogeneous
base flow. In §5 we discuss the results and provide an explanation for why the very high
azimuthal modal disturbances have not (to these authors knowledge) been observed ex-
perimentally and are unlikely to feature in the transition process. Finally, conclusions
are given in §6.

2. Numerical formulation

The velocity-vorticity formulation used in this study is identical to that described by
Davies & Carpenter (2001, 2003). Hence, for brevity we only outline the salient points
of the numerical scheme below.

2.1. Base flow

A disc of infinite radius, rotates in an incompressible fluid of kinematic viscosity ν∗ at
a constant angular velocity Λ∗ about the vertical axis that passes through the centre
of the disc. Cylindrical polar coordinates are used to define the system, where r∗, θ
and z∗ denote the respective radial, azimuthal and axial directions. (Asterisks denote
dimensional quantities).
The undisturbed flow field in this coordinate system is established using the von

Kármán (1921) similarity variables

U∗ = {r∗Λ∗F (z), r∗Λ∗G(z), δ∗Λ∗H(z)}, (2.1)

where F , G and H represent non-dimensional velocity profiles along the three coordinate
directions. The parameter δ∗ =

√

ν∗/Λ∗ denotes the constant boundary layer thickness
used here to scale units of length; r = r∗/δ∗ and z = z∗/δ∗. On substituting (2.1) into
the Navier-Stokes equations in cylindrical coordinates, the following system of ordinary
differential equations is derived

F ′′ = F ′2 + F ′H + (G+ 1)2, (2.2a)

G′′ = 2F (G+ 1) +G′H, (2.2b)
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6 C. Thomas & C. Davies

0 = 2F +H ′, (2.2c)

which is solved subject to the boundary conditions

F = G = 0 and H = −a on z = 0, (2.2d)

F → 0 and G → −1 as z → ∞. (2.2e)

Primes denote differentiation with respect to z and a is the mass transfer parameter that
is negative for injection and positive for suction. (Note that for the main body of this
study, a = 0, and we only consider the effects of mass transfer in §4).
The non-dimensional base flow is then given as

UB(r, z) =

{

r

Re
F (z),

r

Re
G(z),

1

Re
H(z)

}

, (2.3)

where the Reynolds number is defined as

Re = r∗o
√

Λ∗/ν∗ ≡ ro, (2.4)

for some reference radius ro.

2.2. Velocity-vorticity equations

Total velocity and vorticity fields are decomposed as

U = UB + u, Ω = ΩB + ω,

where UB and ΩB = ∇ ∧ UB represent the undisturbed velocity and vorticity of the
basic state (2.3). Perturbation variables are then defined as

u = {ur, uθ, uz}, ω = {ωr, ωθ, ωz},

which are separated into primary {ωr, ωθ, uz} and secondary components {ur, uθ, ωz}.
The three primary variables are then given as solutions of the following set of governing
equations

∂ωr

∂t
+

1

r

∂Nz

∂θ
−

∂Nθ

∂z
−

2

Re

(

ωθ +
∂uz

∂r

)

=
1

Re

((

∇2 −
1

r2

)

ωr −
2

r2
∂ωθ

∂θ

)

, (2.5a)

∂ωθ

∂t
+

∂Nr

∂z
−

∂Nz

∂r
+

2

Re

(

ωr −
1

r

∂uz

∂θ

)

=
1

Re

((

∇2 −
1

r2

)

ωθ +
2

r2
∂ωr

∂θ

)

, (2.5b)

∇2uz =
1

r

(

∂ωr

∂θ
−

∂(rωθ)

∂r

)

, (2.5c)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
,

and

N = {Nr, Nθ, Nz} = ΩB × u+ ω ×UB.

The convective term N depends on both the primary and secondary perturbation compo-
nents. However, the latter field set may be eliminated as they can be defined explicitly in
terms of the primary variables, by rearranging the definition for vorticity and solenoidal
condition:

ω = ∇× u and ∇ · ω = 0.

As we are only interested in the development of linear disturbances, it is possible to
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Global instability development of the infinite rotating-disc boundary layer 7

consider modes of the general form

{u,ω} = {û, ω̂}einθ, (2.6)

for integer valued azimuthal mode numbers n. For the subsequent analysis disturbances
were impulsively excited by specifying a surface displacement that was implemented via
a linearisation of the surface boundary conditions. The forcing was centred about a radial
location rf and prescribed for a sufficient length of time to ensure that a full range of
stationary and travelling disturbances were excited. The perturbation with the strongest
growth then governs the flow response at each radial location and point in time.

3. Numerical simulations

Numerical simulations were carried out for a broad spectrum of large azimuthal mode
numbers n ∈ [60 : 150], expanding upon the parameter range examined by Davies &
Carpenter (2003) who considered the disturbance evolution for n ∈ [30 : 75]. Figure 2
displays time histories for a perturbation impulsively excited about rf = 557 with an
azimuthal mode number n = 100. The time evolution is plotted at four successive radial
locations, while the impulse centre rf corresponds to near critical absolute instability
for this particular azimuthal mode number, for a local stability analysis that utilises the
homogeneous flow approximation. Results depicted in figure 2 correspond to solutions of
the genuine radially dependent base flow, while the time variation is scaled on the disc
rotation rate T = 2πRe. The azimuthal component of the vorticity at the wall ωθ,w is
plotted for a fixed value of θ (solid lines), along with the corresponding envelopes ±|ωθ,w|
(dashed) that are obtained from the complex-valued amplitude. (Note that no special
significance should be attached to the continued use of ωθ,w as a means of presenting the
evolution of disturbances. This particular perturbation field was also utilised by Davies
and co-workers, and as a matter of consistency we present our findings based on the
development of ωθ,w. The global stability characteristics could be described using one
of the other flow fields and our conclusions would be unchanged.) Initially, about radial
positions rf − 25 and rf the disturbance decays. However, before the end of the first
period of rotation, the perturbation is shown to grow in size. Radially downstream of the
impulse centre, about rf + 25 and rf + 50, the disturbance exhibits strong continuous
temporal growth over the entire time period shown.
Temporal frequencies and growth rates for the above disturbance may be examined by

considering the complex-valued quantity

f =
i

ωθ,w

∂ωθ,w

∂t
, (3.1)

where the real and imaginary parts of f represent the respective temporal frequency
and growth rate based on the local time non-dimensionalization. As mentioned earlier, a
global time scaling is implemented to give temporal frequencies g = fRe. This particular
non-dimensionalization is introduced to assist stability comparisons between numerical
simulations carried out for homogeneous and inhomogeneous flows.
Figure 3 displays the temporal frequencies gr and growth rates gi associated with

the four time histories depicted in figure 2. Two additional plots are included within
the illustration that correspond to the development about r = rf − 75 and rf − 50.
The solution established about the impulse centre for the matching homogeneous flow is
included within the plot using a solid-crossed line labelled P , where Re ≡ rf = 557. The
latter homogeneous result is consistent with the parameter settings required for critical
absolute instability as the temporal growth rate asymptotes towards a near zero value for
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0 0.5 1 1.5
-5

0

5

ω
θ
,w

×10
-4 (a)

0 0.5 1 1.5

-0.02

0

0.02

ω
θ
,w

(b)

0 0.5 1 1.5
-2

0

2

ω
θ
,w

(c)

0 0.5 1 1.5

t/T

-100

0

100

ω
θ
,w

(d)

Figure 2. Time histories for ωθ,w (solid lines), together with envelopes ±|ωθ,w| (dashed), for
an impulsively excited disturbance centred about rf = 557 with n = 100 (and Re = 557). (a)
r = rf − 25; (b) r = rf ; (c) r = rf + 25; (d) r = rf + 50.

large time. Moreover, the associated frequency remains fixed over the entire time period
shown.
The corresponding temporal frequencies obtained for the inhomogeneous flow display

characteristics consistent with Davies & Carpenter (2003); gr varies with both the radius
and time. This particular observation is not too surprising, as spatially-temporally vary-
ing frequencies have been shown to be a general feature of the disturbance development
in rotating boundary-layers (Thomas & Davies 2010, 2013; Davies & Thomas 2017).
However, the trend of the temporal growth rates, depicted in figure 3(b), is very different
to the earlier observations of Davies & Carpenter (2003) and instead results develop in a
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Figure 3. (a) Temporal frequencies gr; (b) growth rates gi, for a disturbance centred about
rf = 557 with n = 100 (and Re = 557). Development in the genuine inhomogeneous flow at
rf − 75, rf − 50, rf − 25, rf , rf + 25 and rf + 50. Solid-crossed lines labelled P depict the
corresponding solutions in the homogeneous flow about the impulse centre.

manner comparable with that found for the rotating-disc with mass suction (Thomas &
Davies 2010); growth rates are increasing and eventually positive at all radial positions
considered, including those locations far upstream of the impulse centre. Indeed, growth
rates continue to increase over the entire time duration shown, with little to suggest that
they will reverse direction and tend towards negative values and temporal decay.
The spatial-temporal disturbance development for the above numerical simulation is

displayed in figure 4(b), while 4(a) depicts the corresponding wavepacket given for the
homogeneous flow. The disturbance evolution is plotted using contours of |ωθ,w|, where
solutions have been normalised to have a maximum amplitude of unity at t = 0.2T .
Additionally, contours were drawn using a natural logarithmic scaling

N = ln |ωθ,w|, (3.2)

which may be interpreted as the N -factor used in eN transition prediction strategies
(Van Ingen 1956). The leading and trailing edges of those disturbance wavepackets are
identified as the outer contours (labelled N = −2) that originate from the radial centre of
the initial impulse. Both leading edges propagate radially outwards with approximately
the same non-zero velocity. However, there are noticeable differences between the trailing
edges of the two wavepackets. The trailing edge of the disturbance given for the homo-
geneous flow propagates with a diminishing velocity, which is to be anticipated when the
Reynolds number is taken to be near critical conditions for absolute instability. In con-
trast, the trailing edge of the disturbance to the genuine flow propagates radially inwards
and a form of global instability develops.
The disturbance development illustrated above is very different to that found by Davies
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Figure 4. Spatial-temporal development of the azimuthal vorticity on the disc surface |ωθ,w|,
for an impulsively excited disturbance centred about rf = 557 with n = 100 (and Re = 557). (a)
Homogeneous flow; (b) Inhomogeneous flow. (Contours are drawn using a logarithmic scaling).

& Carpenter (2003). For instance, figure 8 of their paper depicts time histories of a dis-
turbance centred near the onset of absolute instability for the azimuthal mode number
n = 75. The amplitude of their perturbation decreases in magnitude, at least for those
positions about and radially inboard of the impulse centre. However, calculations given
here for n = 100 are comparable with the disturbance evolution illustrated in Thomas
& Davies (2010) for the rotating-disc with mass suction (see for instance figure 8 of that
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Figure 5. (a) Temporal frequencies gr; (b) growth rates gi, for a disturbance centred about
rf = 516 with n = 80 (and Re = 516). Development in the genuine inhomogeneous flow at
r = rf − 25, rf , rf + 25 and rf + 50. Solid-crossed lines labelled P depict the corresponding
solutions in the homogeneous flow about the impulse centre.

paper). It was originally speculated that it was the introduction of suction at the disc
surface that generated globally unstable behaviour. However, given the above observa-
tions it would appear that global instability is not restricted to only those flows with
mass suction.
We now consider the development of a disturbance with an azimuthal mode number

nearer to the range of n considered by Davies & Carpenter (2003). Figure 5 displays tem-
poral frequencies and growth rates of a perturbation impulsively excited about rf = 516
(and Re = 516) with n = 80. These parameter settings correspond to near critical abso-
lute instability for this azimuthal mode number; the homogeneous temporal growth rate
gi asymptotes towards a near zero value in figure 5(b). Growth rates corresponding to
the inhomogeneous flow behave very differently to that found for n = 100 and instead
display characteristics consistent with the observations of Davies & Carpenter (2003).
Decreasing growth rates develop at all radial locations considered, including those down-
stream of the impulse centre. Given sufficient time, negative growth and temporal decay
might be expected to develop at all four radial positions considered. Thus, this particular
disturbance might be classified as being globally stable.
The temporal growth rates illustrated in figures 3 and 5 display very contrasting stabil-

ity characteristics, with the latter case establishing globally stabilising attributes akin to
Davies & Carpenter (2003) and the former promoting a form of global instability that is
similar in appearance to that found by Thomas & Davies (2010). From the above analysis
we can make some predictions regarding the trend of perturbations to the von Kármán
flow. Firstly, it is possible that disturbances with a large azimuthal mode number expe-
rience a sustained period of strong temporal growth, but globally stable behaviour and
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12 C. Thomas & C. Davies

temporal decay emerge at some later point in time. However, given the rapid temporal
growth depicted in figure 3 this particular interpretation of the results would seem to be
unlikely. A second, more plausible scenario, is that there exists a critical azimuthal mode
number nc that for all larger n a form of global instability develops. Given the above
observations it would appear that if nc does exist then it is most likely located within
the parameter range n ∈ [80 : 100]. If this is the case, it would explain why previous
investigators were unable to find globally unstable behaviour in the infinite rotating-
disc boundary layer, as their analysis were limited to disturbances n ⩽ 75 or the first
azimuthal mode number to become absolutely unstable (na = 68).
To further highlight the variations in the global stability characteristics, two per-

turbations were excited about rf = 525, for n = 70 and 100. The Reynolds number
Re ≡ rf = 525 associated with these two disturbances is greater than the onset of ab-
solute instability for the lower valued azimuthal mode number, but less than that given
for the higher mode number (ra ≈ 507 and 557 for n = 70 and 100, respectively). This
particular feature of the two disturbances is confirmed in figure 6, as the two growth
rates (from the homogeneous flow analysis, labelled P ) asymptote towards a positive
and negative value for n = 70 and 100, respectively. However, the behaviour is reversed
for those growth rates obtained for the inhomogeneous flow. For the smaller valued n-
simulation, negative growth rates and temporal decay are eventually found at all given
radial positions. Whereas for n = 100, growth rates increase rapidly and are positive at
all locations at the end of the given time domain. Thus, strongly unstable behaviour is
again established for the larger azimuthal mode number. Additionally, the radial varia-
tion in temporal growth, that is measured by computing the differences in gi at a fixed
point in time, is significantly greater for n = 100. As we will discover later in this paper,
this particular feature of the disturbance development is fundamental to the creation of
global instability.
Figure 7 depicts the disturbance development associated with the two simulations de-

scribed above. Wavepacket contours are again drawn using a natural logarithmic scaling,
while the dotted vertical line in figure 7(b) represents the radial location (ra ≈ 557)
matching the onset of absolute instability for n = 100. The corresponding vertical line
for the n = 70 disturbance has not been included in figure 7(a), as ra ≈ 507 is located
upstream of the radial domain shown. The two perturbations display very contrasting
characteristics, which is not too surprising given the observations regarding the temporal
growth depicted in figure 6. Although difficult to discern in the illustration, the trailing
edge of the lower n-valued perturbation propagates to the left or radially inboard for a
short time period (0.5 ⩽ t/T ⩽ 1.1). However, the inward propagation does not persist in-
definitely and eventually the trailing edge reverses direction and propagates downstream
along the radial axis. The trend of the trailing edge is reversed for n = 100. Initially, the
disturbance propagates to the right, but as it approaches the critical location for absolute
instability, the trailing edge changes direction and travels upstream.
Velocities Utr associated with the trailing edges of the above disturbance wavepackets

are plotted in figure 8. The velocity Utr is defined as the incremental change in the ra-
dius per unit time, where solid and dashed lines respectively illustrate solutions given for
azimuthal mode numbers n = 70 and 100. Positive velocities correspond to downstream
disturbance development, while negative velocities are matched to radial upstream prop-
agation. A short period of relatively weak negative velocity is established for n = 70
about 0.5 ⩽ t/T ⩽ 1.1 (that matches the earlier observations given in figure 7(a)), but
is strongly positive at later points in time. For n = 100, Utr < 0 for all time t/T > 1.2,
which coincides with the change in direction of the disturbance development illustrated
in figure 7(b). The magnitude of Utr continues to increase in size over the remaining time
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Figure 6. Temporal growth rates gi for a disturbance centred about rf = 525 (Re = 525).
Development in the genuine inhomogeneous flow at r = rf − 25, rf , rf + 25 and rf + 50.
Solid-crossed lines labelled P depict the corresponding solutions in the homogeneous flow about
the impulse centre. (a) n = 70, (b) n = 100.

n rf (≡ Re) n rf (≡ Re)

60 515 110 581
70 507 120 608
80 516 130 636
90 534 140 665
100 557 150 694

Table 1. Parameter settings used to generate the results depicted in figure 9.

interval shown, which further supports the conclusion that disturbances of large enough
azimuthal mode numbers are globally unstable.

Variation of behaviour with increasing azimuthal mode numbers

Further numerical simulations were conducted to better understand the trend of distur-
bances and systematically trace the changes in the global stability characteristics as the
azimuthal mode number n increases. Figure 9(a) depicts temporal growth rates for distur-
bances impulsively excited about the radius corresponding to critical absolute instability
(based on the homogeneous flow analysis) for each value of n considered. Solutions are
displayed for ten azimuthal mode numbers given at equally spaced increments over the
range n ∈ [60 : 150] (the radial locations for each numerical simulation are as tabulated
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Figure 7. Spatial-temporal development of the azimuthal vorticity on the disc surface |ωθ,w|, for
an impulsively excited disturbance centred about rf = 525 (Re = 525). (a) n = 70; (b) n = 100.
The dotted vertical line in (b) defines the critical radius (ra ≈ 557) for absolute instability for
this particular azimuthal mode number.

in table 1). The data line nearest the bottom of the illustration (blue solid line) plots the
solution given for n = 60, where rf = 515. The growth rate for this particular disturbance
is always negative, tending towards ever stronger decay rates. As the azimuthal mode
number increases, growth rates are shifted vertically upwards in ascending order of n,
with unstable behaviour obtained for sufficiently large azimuthal mode numbers. A short
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Figure 8. Velocity of the trailing edge of those disturbances described in figure 7, for n = 70
(solid curve) and n = 100 (dashed).

period of relatively small temporal growth is exhibited for n = 80 (yellow chain line)
about 1.2 ⩽ t/T ⩽ 1.5. However, for larger time, the growth rate reverses direction and
temporal decay sets in. Nevertheless, for all larger azimuthal mode numbers, very strong
positive growth rates are found that continue to increase in size for the time duration
shown. Indeed, gi ≈ 0.5 about t/T ≈ 1.6 and 0.9 for the respective azimuthal mode
numbers n = 100 (green solid) and 150 (yellow dashed). Hence, as n becomes larger,
growth rates increase at a faster rate and disturbances become more unstable. However,
it should be noted that the radius corresponding to each simulation has also increased
with larger n, and for n > 100 the radius is significantly greater than the experimental
predictions for transition (500 ⩽ Ret ⩽ 560).
Figure 9(b) displays gradients of the growth rates plotted in figure 9(a). Gradients

were computed at each point in time by calculating the rate of change of gi with respect
to t/T . Negative and positive gradients respectively represent decreasing and increasing
growth rates, where the zero horizontal axis defines the location that growth rates change
direction. The line types are the same as above, where the value of n associated with
each data type increases monotonically from the bottom to the top of the illustration.
For n ⩽ 80 gradients are eventually negative, matching the locations in figure 9(a) where
growth rates reverse direction and begin to decrease. For n ⩾ 100 (six data lines near the
top of the plot) gradients are always positive and are either increasing or tending towards
a constant for large time (as appears to be the case for n = 100). Hence, results suggest
that these disturbances will be globally unstable. The long-term behaviour for the n = 90
disturbance is a little harder to determine, as the gradient is positive but decreasing for
the time duration shown. Given the trend of the illustration, we might expect a negative
gradient to appear before the end of the second rotation of the disc. If this is the case
then the growth rate will begin to decrease and temporal decay may set in several disc
rotations later. However, as we were unable to establish numerical simulations longer
than that shown, we cannot say with certainty whether or not this is the case. The
gradient may in fact approach a small positive constant or increase in size at some later
point in time. As with previous studies undertaken by Davies and co-workers, longer-
time numerical simulations were difficult to carry out due to the enormous amplitudes
that could be established as the linear perturbations were allowed to grow exponentially
without limit. (Nonlinear effects were neglected in this study that could serve to saturate
temporal growth). Thus, extending simulations beyond that illustrated in the figures,
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Figure 9. (a) Temporal growth rates gi for disturbances excited about the critical location for
absolute instability, for n ∈ [60 : 150]. (b) Corresponding gradients. The parameter settings are
as given in table 1.

proved to be very difficult. Nevertheless, whichever path the disturbance follows, there
is clearly an extended time period of strong temporal growth that may be sufficient to
trigger the latter stages of transition.

Page 16 of 32



Global instability development of the infinite rotating-disc boundary layer 17

4. Predicting global instability using homogeneous flow solutions

In previous studies on the global behaviour of the infinite rotating-disc boundary layer,
Davies et al. (2007) and Thomas & Davies (2010, 2013) drew comparisons with the
impulse solutions of the linearized Ginzburg-Landau equation, in order to explain why
some disturbances were globally stable and others unstable. Quantities of the Ginzburg-
Landau equation were carefully matched with numerical simulations established for the
inhomogeneous flow. It was concluded that the long-term behaviour was dependent on
the precise balance between the radial variations in the temporal frequency and the
corresponding shifts in temporal growth. A so-called ‘detuning’ effect was established
that explained why a disturbance could remain globally stable even if it was locally
absolutely unstable.
In the subsequent discussion we make similar comparisons with the simulation re-

sults presented in §3, to explain why globally unstable characteristics can be generated
for sufficiently large azimuthal mode numbers. However, while Thomas & Davies (2010,
2013) based their calculations on solutions of the inhomogeneous flow, we will only use
numerical simulations established by the application of the radially homogeneous flow
approximation. By doing this, we hope to develop a method for predicting the azimuthal
mode number nc needed to generate global instability, which is based only on the cal-
culations of a local stability analysis. Thus, we may be able to state, to a reasonable
degree of accuracy, when globally unstable characteristics are likely to appear, before
ever undertaking an investigation of the genuine radially dependent flow.

4.1. Modelling with the Ginzburg-Landau equation

The linearized Ginzburg-Landau equation is given as

∂A

∂t
+ U

∂A

∂r
= µA+ γ

∂2A

∂r2
, (4.1)

where A(r, t) is a measure of the disturbance amplitude at the spatial location r and time
t. The parameters µ,U and γ (where Re(γ) > 0) respectively denote the stability, flow
convection and diffusion/dispersion effects. For a spatially homogeneous flow solution to
(4.1), these three parameters are taken as constants. However, if µ is allowed to vary
linearly with the spatial direction

µ(r) = µ0 + µ1r,

a simple expression can be determined that models the local stability variations. The real
and imaginary parts of µ1 respectively represent the spatial variations in the temporal
growth rate and matching frequency. For this form of the stability parameter µ, Hunt &
Crighton (1991) obtained the following Green’s solution G(r, t) to the Ginzburg-Landau
equation (4.1)

G(r, t) =

√

1

4πγt
exp

(

µ0t−
(r − Ut)2

4γt
+

1

2
µ1rt+

1

12
µ2

1
γt3

)

, (4.2)

which was established for a localised impulse of the form δ(r)δ(t). (Note that the impulse
was centred about r = 0, but in order to draw direct comparisons with the earlier
numerical simulations the radial centre needs to be translated to r = rf ).
In order to fit the impulse solutions (4.2) with the disturbance development in the

rotating-disc boundary layer, it is convenient to re-write the Green’s solution as

G(r, t) =

√

1

4πγt
exp

(

−
r2

4γt
+

1

2
µ1rt+

1

12
µ2

1
γt3

)

exp{i(α0r − f0t)}, (4.3a)
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where

f0 = i

(

µ0 −
U2

4γt

)

and α0 = −i
U

2γ
. (4.3b,c)

(Note that this particular form of the Green’s function is identical to that formulated by
Thomas & Davies 2010, 2013). In general the temporal frequency f0 and radial wavenum-
ber α0 are both taken to be complex. In homogeneous flow analysis, where µ1 = 0, the
imaginary part of µ0 represents the temporal growth rate that determines whether or
not the disturbance is locally absolutely unstable.
In the earlier studies by Thomas and Davies, unknowns U and γ were computed using

velocity measurements of the leading and trailing edges of the disturbance wavepacket,
and taking an average. Although this method led to excellent comparisons between nu-
merical simulations and Ginzburg-Landau solutions, we felt that the analysis could be
improved upon by instead tracing the trajectory of the disturbance maximum. Hence,
the convection velocity U is computed using the constant contour line in the {r, t}-plane
along which the perturbation achieves a maximum amplitude. Additionally, we introduce
a phase shift φ such that

G = |G|eiφ, (4.4)

which allows us to develop an improved formula (see below) for representing the diffu-
sion/dispersion parameter γ.
The complex frequency of (4.2) can be determined by setting

f =
i

G

∂G

∂t
,

which gives a disturbance growth rate

Re(f) → ρt2 as t → ∞, (4.5a)

for

ρ = [(µ2

1,r − µ2

1,i)γr − 2µ1,rµ1,iγi]. (4.5b)

Hence, the long-term disturbance development is quantified by the stability coefficient
µ1 = µ1,r + iµ1,i and the diffusion/dispersion parameter γ = γr + iγi. A negative valued
ρ corresponds to temporal decay, while positive ρ establishes temporal growth.
The complex stability coefficient µ1 can be estimated using the relationship derived

by Thomas & Davies (2010)

µ1,r = 2
∂gi
∂r

and µ1,i = −2
∂gr
∂r

, (4.6a,b)

where g = gr + igi is the global definition of the complex temporal frequency for dis-
turbances to the rotating-disc boundary layer. In earlier studies by Thomas & Davies
(2010, 2013) ∂g/∂r was estimated using solutions of the inhomogeneous flow. However,
for the subsequent analysis we apply this particular formula for µ1 to results based on
the homogeneous flow. For a fixed azimuthal mode number n, temporal frequencies and
growth rates are determined for an extensive range of radii r (or Reynolds numbers Re).
Radial gradients are then measured by calculating the variation of g with respect to r
(or Re); figure 1 shows that gr increases linearly, while gi varies parabolically with the
radius.
Diffusion and dispersion effects are then given by the expression

1

γ
=

γr
|γ|2

− i
γi
|γ|2

, (4.7a)
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for

γr
|γ|2

= −
2α0,i

U
and

γi
|γ|2

=
2

U

(

∂φ

∂r

∣

∣

∣

max

− α0,r

)

, (4.7b,c)

where the complex-valued radial wavenumber α0 = α0,r + iα0,i is taken directly from
the numerical simulations. The expression given here for γi differs from that originally
implemented by Thomas & Davies (2010, 2013) (due to the introduction of the phase
shift φ in (4.4)) and is found to improve comparisons between numerical simulations
and solutions of the Ginzburg-Landau equation. The term ∂φ/∂r|max denotes the phase
variation of the disturbance at its maximum, which is measured about the contour line
given for U .

4.2. Application to the von Kármán flow

Disturbances to the homogeneous flow were generated for azimuthal mode numbers n ∈
[60 : 150] at regular intervals ∆n = 10. For each n modelled, the analysis was performed
about the radial location (Reynolds number) that matches critical absolute instability
(the impulse centre used for each n is tabulated in table 1). Flow quantities ∂g/∂r, α
and ∂φ/∂r|max required for the Ginzburg-Landau formulation (4.1-4.7) were carefully
calculated and are plotted here in figure 10. Gradients ∂g/∂r required to determine µ
are depicted in figure 10(a), while the terms used in the expression for γ are illustrated
in figure 10(b). For the given range of n, α and ∂φ/∂r|max are relatively unchanged
by increases in the azimuthal mode number. Additionally, the gradient of the globally
defined frequency, ∂gr/∂r, is approximately the same for all azimuthal mode numbers
considered. However, the radial variation of the growth rate (drawn with a dashed line in
figure 10(a)) increases significantly for larger n. From n = 60 through to n = 150, ∂gi/∂r
grows by about an order of magnitude. Hence, as n increases, the region of local absolute
instability is enhanced, leading to a larger maximum growth rate and a stronger radial
variation about critical conditions for absolute instability. This particular feature was
observed in the earlier simulations of the genuine radially dependent flow. In figure 6,
radial variations of the temporal growth were significantly greater for the larger azimuthal
mode number.
Results plotted in figure 10 are substituted into expression (4.5) for ρ that represents a

measure of the long-term temporal growth. The solid black curve at the centre of figure 11
depicts the size of ρ against the matching value of n. The cross-symbol marks the location
that n = na ≡ 68. (The remaining four line types represent a similar set of calculations,
but for the rotating-disc boundary layer with mass transfer. We will discuss these results
in §4.3). A negative valued ρ is obtained for n = na ≡ 68 and indeed ρ < 0 for all
n ≲ 83. Thus, we might expect perturbations to this range of azimuthal mode numbers
to display globally stable characteristics. For n ≳ 83, ρ is positive, which indicates that
globally unstable behaviour is established. On comparing these predictions for the global
behaviour with the earlier numerical simulations of the genuine inhomogeneous flow
(see figure 9), it would appear that our calculations based on coupling solutions of the
homogeneous flow with the Ginzburg-Landau equation give a reasonable estimate for the
onset of global instability. The results in figure 11 predict that nc ≈ 83, which is within
the parameter range 80 ⩽ n ⩽ 100 that numerical simulations suggest disturbances will
become globally unstable.
Figure 12 displays temporal growth rates established for a disturbance to the inhomo-

geneous flow with n = 83. The perturbation was impulsively excited about rf = 521,
which is near the radial location for critical absolute instability for this azimuthal mode
number. Growth rates are plotted about the impulse centre and for four other radial
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Figure 10. Disturbance characteristics required for the expression (4.5), measured about the
location for critical absolute instability. Calculations are based on the disturbance development
to the homogeneous base flow. (a) Radial rate of change of the complex temporal frequency g;
(b) Radial wavenumber α and the phase variation ∂φ/∂r.

positions. Temporal growth is found for r ⩾ rf , which appears to be tending towards
positive constants for large time (at least for those plots centred about r = rf and
rf + 25). About those radial locations upstream of the impulse centre, growth rates are
negative, but increasing. If the plots about r = rf − 50 and rf − 25 continue to grow
along their current trajectories, unstable behaviour may be observed before the end of the
second period of rotation. However, we are again unable to state with absolute certainty
whether unstable characteristics will be sustained indefinitely. There is a possibility that
growth rates will eventually reverse direction and tend towards negative values. Never-
theless, numerical calculations strongly suggest that there will at the very least exist a
continuous time period for which disturbances are strongly unstable. This may then be
sufficient to establish nonlinear effects and trigger full transition to turbulence.

4.3. Mass transfer effects

The above analysis was extended to include the effects of mass transfer through the disc
surface. Two flows with injection (a < 0) and two with suction (a > 0) were considered,
where the size of a (mass transfer coefficient) was the same as that implemented by
Lingwood (1997a) and Thomas & Davies (2010). Numerical solutions of the homogeneous
flow were simulated for a range of Reynolds numbers and azimuthal mode numbers. The
parameters required for computing ρ were then measured about the locations for critical
absolute instability (as given in table 2). The corresponding ρ-solutions are plotted as a
function of n in figure 11, where a increases in size from left to right. Cross symbols on
each data line mark the azimuthal mode number na that is first to become absolutely
unstable (refer to table 3). For those flows with a ⩽ 0, ρ is strongly negative for the
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Figure 11. The growth rate parameter ρ as a function of the azimuthal mode number n, for
variable values of the mass transfer parameter a. Cross markers denote the respective azimuthal
mode numbers na associated with critical absolute instability.

a = −1 a = −0.5 a = 0.5 a = 1

n rf n rf n rf n rf

30 202 40 309 100 933 180 1896
40 218 50 312 110 911 190 1878
50 242 60 330 120 913 200 1871
60 271 70 454 130 924 210 1877
70 297 80 381 140 941 220 1889

90 408 150 962 230 1906

Table 2. Parameter settings used to generate the results depicted in figures 11 and 13.

critical mode number na. Whereas for a > 0, ρ is found to be near zero or marginally
positive. Thus, our predictions based on the homogeneous flow would appear to reflect
the original observations of Thomas & Davies (2010) for disturbances n = na; mass
injection was shown to be stabilising, while mass suction promotes globally unstable
characteristics.
For all of the flows considered in figure 11, ρ is positive for relatively high azimuthal

mode numbers. Table 3 tabulates the predicted values for nc (labelled nc,H in the table)
for each of the flows investigated. Figure 13 illustrates temporal growth rates for the four
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Figure 12. Temporal growth rates gi for a disturbance centred about rf = 521 with n = 83
(and Re = 521). Development in the genuine inhomogeneous flow at rf −50, rf −25, rf , rf +25
and rf + 50.

a na nc,H nc,I

-1 29 43 40:50
-0.5 43 58 60:70
0 68 83 80:100
0.5 118 118 110:120
1 194 191 180:190

Table 3. Azimuthal mode number na associated with the onset of absolute instability and the
critical value nc for the appearance of globally unstable disturbances. The value nc,H is based
on the predictions drawn by coupling the homogeneous flow calculations with the solutions
of the Ginzburg-Landau equation, while nc,I represents the parameter range suggested by the
numerical simulations of the inhomogeneous flow.

flows with mass transfer. Plots are depicted about the impulse centre that match the loca-
tions for critical absolute instability for each of the azimuthal mode numbers considered
(refer to table 2 for the parameter settings). Some solutions could not be extended to the
end of the time domain shown due to those numerical difficulties described earlier. For
all flows considered, decreasing growth rates are obtained for sufficiently low azimuthal
mode numbers. However, as n increases to larger values, increasing and positive growth
rates are established. Additionally, the variation of the temporal growth rate, that is
measured from one azimuthal mode number to the next, changes far more rapidly for
the flows with mass injection. For a = −1 (figure 13(a)) growth rates display relatively
large variations between the lowest and highest mode numbers considered, whereas for
a = 1 (figure 13(d)) growth rates are clustered about a small region of the parameter
space. This particular feature is consistent with the behaviour for ρ plotted in figure 11
that was found to vary far more quickly for negative a than for positive a.
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Figure 13. Temporal growth rates gi about the impulse centre for critical absolute instability.
(a) a = −1; (b) a = −0.5; (c) a = 0.5; (d) a = 1. Parameter settings are as given in table 2.

Comparing those solutions given in figure 13 for the inhomogeneous flow with the
predictions given by the Ginzburg-Landau modelling (figure 11 and table 3), suggests that
the latter method can be used to give a reasonable estimate for the likely onset of global
instability. For instance, growth rates in figure 13(a) (for a = −1) indicate that unstable
behaviour arises for n ∈ [40 : 50], which coincides with the prediction that unstable
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disturbances develop for nc ≈ 43. Similarly, in figure 13(c) (for a = 0.5) calculations
suggest that temporally growing perturbations first appear for n ∈ [110 : 120], while our
predictive method suggests nc ≈ 118.

5. Discussion

Results presented in the preceding sections are rather surprising, as the infinite rotating-
disc boundary layer was previously thought to be globally stable to linear perturbations.
However, there are some clues within the literature that maybe globally unstable char-
acteristics should have been anticipated. Firstly, Thomas & Davies (2010, 2013) found
unstable behaviour comparable with that seen herein for the von Kármán flow, but with
the inclusion of mass suction and an axial magnetic field. It was suggested (rather naively)
that the locally stabilising effect brought about by the flow control mechanisms, induced
a form of global linear instability not previously seen on the infinite rotating-disc. Given
the above observations it would appear that this original conclusion was incorrect and
globally unstable behaviour should, for large enough azimuthal mode numbers, develop in
many rotating boundary layers, comparable with that observed in other globally unstable
flows (Huerre & Monkewitz 1990). The primary goal of the earlier studies by Thomas
and Davies was to examine the development of disturbances to the critical azimuthal
mode number na for absolute instability, and it was simply a coincidence that na was
large enough to establish global linear instability in those flows with mass transfer and
an axial magnetic field.
A second indicator to the appearance of global linear instability relates to the local-

global stability criteria described by Huerre & Monkewitz (1990). Local absolute instabil-
ity is a necessary but not sufficient condition for the onset of globally unstable behaviour.
The von Kármán flow is only absolutely unstable over a finite range for any fixed az-
imuthal mode number n ⩾ 51, and for n ≲ 83 this is not sufficient to generate global
linear instability. However, for larger azimuthal mode numbers, disturbances triggered
by an impulsive localised forcing exhibit globally unstable characteristics, that for the
time duration numerical simulation results could be relied upon, is characterised by a
faster than exponential temporal growth.
For the range of nc suggested as being necessary to establish global instability, critical

Reynolds numbers for absolute instability are given as 516 < Rea < 557, which coincides
with the mid to upper range of values observed experimentally for the onset of transition.
Thus, our simulation results may provide an explanation for why transition to turbulence
in the rotating-disc boundary layer appears to be bounded by an upper Reynolds number
limit.
Evidence for the appearance of the high azimuthal mode numbers in physical experi-

ments is difficult to identify from within the available literature. Primarily this is because
earlier studies examined convectively growing stationary crossflow instabilities (Gregory
et al. 1955), while more recently the focus has been aimed at connecting the initial ap-
pearance of absolute instability (n = na) with the onset of transition. Additionally, it is
possible that the physical interpretation of experimental results needs to be re-examined
in light of the new findings. For instance, Imayama et al. (2012) undertook an experi-
mental investigation of transition characteristics in the rotating-disc boundary layer. In
their study growth rates were depicted using measurements of the root-mean-square as a
function of the Reynolds number. In figure 5 of their paper a sharp exponential growth
was observed about 475 ⩽ Re ⩽ 530, while disturbances were shown to grow at a smaller
exponential rate at larger Re. Imayama et al. (2012) suggest that the change in slope
near Re = 545 could correspond to the appearance of a secondary instability to the
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global mode that is similar to that seen in an open rotating cavity (Viaud et al. 2011).
It was further suggested that the experimental observations may provide a validation
for the theoretical predictions made by Pier (2003) that secondary instabilities to the
primary instability are responsible for triggering transition. However, given the results of
the current investigation, the change in growth observed by Imayama et al. (2012) might
now be viewed as the emergence of the global linearly unstable high azimuthal mode
numbers.

Strong amplification of convective instabilities

The apparent lack of evidence for the high n mode numbers in experiments might be
explained by considering the huge growth associated with the disturbance maxima of the
lower valued azimuthal mode numbers. Figures 4 and 7 demonstrate that perturbations
can grow by severalN -factors (recall equation (3.2)) over a very short radial range. Indeed
Davies & Carpenter (2003) show that disturbances grow by many orders of magnitude
in only one period of the disc rotation (see figure 9 of their paper). To illustrate the
considerable growth of the wavepacket maxima, many disturbances were simulated for
initial settings (and a comprehensive range of n) that match the experimental conditions
implemented by Lingwood (1995) and Othman & Corke (2006).
Numerical simulations were impulsively excited about rf = 311 for n ∈ [5 : 150] at

regular intervals ∆n = 5. A similar analysis was undertaken by Davies & Carpenter
(2003) for n = 67 (see figure 19 of their study). Figure 14 depicts the development of
three spatial-temporal wavepackets established for n = 50, 75 and 100. Contours are
again labelled using a logarithmic N -factor, while perturbations have been normalised
about t/T = 0.2. (It should be noted that the leading and trailing edge contours are
not represented by the same N -factor, as the three disturbances develop at varying rates
and only grow in magnitude once they have attained radial positions that match the
onset of convective or absolute instability associated with that particular azimuthal mode
number). The trailing edge of the disturbance wavepacket given for n = 50 (illustrated
in figure 14(a)) displays convective characteristics and propagates downstream along the
radial direction, while the trailing edge established for the largest azimuthal mode number
(plotted in figure 14(c)) would appear to be slowing down as it approaches the radial
range 500 < r < 600. Based on the results presented in §3 it might be speculated that
the trailing edge of the latter perturbation will, given sufficient time, reverse direction
and propagate radially upstream.
Although the disturbance presented for n = 50 displays convectively unstable be-

haviour, its maximum amplitude grows at a faster rate than that established for the two
higher valued azimuthal mode numbers. For instance, contour levels labelled N = 2 are
first obtained about r ≈ 400 for n = 50, but are not achieved until r ≈ 470 and 590
for n = 75 and 100, respectively. Furthermore, about r = 500, the smaller azimuthal
modal disturbance has a magnitude of order N = 7, which is significantly greater than
the corresponding amplification factors N = 3 and −5 obtained for the larger valued n.
The wavepacket maxima

Nmax = max
r

(N),

is computed for all disturbances n ∈ [5 : 5 : 150] and is plotted in figure 15 using contours
in the {t/T, n}-plane. Contours are plotted at five-step intervals and the dashed curve
depicts the path of the most amplified mode. Convective modes n < 51 are shown to
achieve the greatest amplification factors and absolutely unstable modes (n ⩾ 51) only
attain comparable amplitudes at later points in time. Using an eN method for predicting
transition in wind-tunnel tests on airfoils, Van Ingen (1956) and Smith & Gamberoni
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Figure 14. Spatial-temporal development of the azimuthal vorticity on the disc surface |ωθ,w|,
for impulsively excited disturbances centred about rf = 311. (a) n = 50; (b) n = 75; (c)
n = 100. Magnitudes |ωθ,w| have been normalised so that all perturbations are equal to unity
at t/T = 0.2.

(1956) found the onset of transition coincides with anN -factor between 7 and 9. Although
the eN method does not account for receptivity effects or nonlinear mechanisms it is still
today the primary tool for transition prediction in the aerospace industry. Supposing
that we can utilise this particular strategy for determining the onset of transition in the
infinite rotating-disc boundary layer, figure 15 would suggest that convectively unstable
modes quickly achieve large enough magnitudes to trigger nonlinearity and the latter
stages of the laminar-turbulent transition process (assuming of course that a similarly
sized N -factor, as that predicted by Van Ingen 1956, is required to establish transition
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Figure 15. Contours of the wavepacket maxima, Nmax, in the {t/T, n}-parameter space for
disturbances impulsively excited about rf = 311. Magnitudes |ωθ,w| have been normalised so
that all perturbations are equal to unity at t/T = 0.2 and the dashed line illustrates the
development of the most amplified azimuthal mode number.

on the rotating-disc). Figure 16 displays N -factors in the {t/T, n}-plane about r = 400,
500, 550 and 600, where Nmax is respectively of the order 1, 7, 11 and 15, with the
most amplified azimuthal mode number corresponding to n = 45, 50, 50 and 55. Hence,
convective disturbances attain very large magnitudes N ∈ [7 : 11] over the radial range
500 ⩽ r ⩽ 550, which matches the onset of experimentally observed transition. Thus,
larger n-modes may not be strongly relevant to the long term disturbance development;
smaller n-modes can achieve very large magnitudes that might be sufficient to trigger
nonlinearity and transition, before the high n-modes develop further outboard.

6. Conclusions

An investigation has been carried out on the global linear stability of the von Kármán
flow on an infinite rotating-disc boundary layer, for an extensive range of azimuthal mode
numbers n. This study expands upon earlier investigations (Davies & Carpenter 2003)
that found globally stable characteristics for azimuthal mode numbers near the onset of
absolute instability. For larger azimuthal mode numbers, disturbances excited by an im-
pulsive forcing display a rapidly increasing temporal growth that is similar to that found
when mass suction was applied through the disc surface (Thomas & Davies 2010). Nu-
merical simulations suggest that a change in the global response arises for n ∈ [80 : 100]
that corresponds to the mid-upper range of Reynolds numbers reported experimentally
for the onset of transition. Thus, the absolutely unstable mechanism establishes a form
of global instability that comprises a faster than exponential temporal growth, but only
for azimuthal mode numbers greater than the conditions for critical absolute instability.
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Figure 16. Contours of N = ln |ωθ,w| in the {t/T, n}-parameter space about fixed radial lo-
cations r, for disturbances impulsively excited about rf = 311. (a) r = 400; (b) r = 500; (c)
r = 550; (d) r = 600.

However, as with previous studies pertaining to the global linear stability of the infinite
rotating-disc, there was no selection of any global temporal frequency, which might have
been expected for a globally unstable flow. Instead temporal frequencies varied with both
the radial location and time, at least for the time duration that numerical simulations
could be accurately computed. As mentioned above, extending simulations of disturbance
development beyond that illustrated herein was very difficult to accomplish due to the
huge amplitudes that perturbations could achieve.
Comparisons were drawn with solutions of the Ginzburg-Landau equation with a lin-

early varying stability parameter (Hunt & Crighton 1991), using a technique similar to
that implemented by Davies et al. (2007) and Thomas & Davies (2010, 2013). However,
whilst Davies and co-workers based their Ginzburg-Landau modelling on solutions of the
genuine radially dependent flow, the analysis conducted herein utilised results of the ho-
mogeneous flow. Computations predict that globally unstable behaviour can be achieved
for azimuthal mode numbers n ≳ 83, which is in reasonably good agreement with numer-
ical solutions of disturbance development to the inhomogeneous flow. Results show that
the radial variations in the temporal growth rate increases for larger n and are eventually
large enough to engineer globally unstable characteristics.
The study was extended to include mass transfer through the disc surface. For those

flows considered, both numerical simulations and Ginzburg-Landau modelling displayed
strong temporal growth for relatively high azimuthal mode numbers. Hence, it would
appear that the behaviour seen here for the von Kármán flow is a consistent feature of
rotating boundary layers. Furthermore, we anticipate that globally unstable disturbances
will be found in many other rotating boundary layers, including, but not limited to, the
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Figure 17. Diagram illustrating the local and global stability of the rotating-disc boundary
layer.

BEK family, rotating-spheres and rotating-cones (Lingwood 1997b; Garrett & Peake
2002, 2007).

Although a form of global instability can develop for sufficiently large azimuthal mode
numbers, our analysis suggests that transition to turbulence may still be dominated by
the huge spatial growth associated with convective instabilities. The amplitude of dis-
turbances, at relatively small azimuthal mode numbers, increases in size very quickly
and achieves exponential orders of magnitude N ∈ [7 : 11] across the range of Reynolds
numbers (radii) that transition is observed experimentally. Similar amplitudes are only
achieved by the absolutely unstable modes at larger radii and at later points in time.
Hence, the globally unstable high n-modes are unlikely to establish themselves over a suf-
ficient radial range before nonlinear effects are triggered by the faster growing convective
instabilities.

Results of our investigation suggest that the local-global linear stability of the infinite
rotating-disc boundary layer (and similar flows) can be described by the {Re, n}-diagram
illustrated in figure 17. For small Re and n, the flow is stable. Then as Re and n are
increased to larger values, regions of local convective (solid curve) and absolute (dashed)
instability emerge. The flow is then globally stable up to some critical mode number
nc (represented by the horizontal dotted line), even though the flow might be locally
absolutely unstable for a finite range of Re. However, for n > nc (which is not necessarily
equal to na) globally unstable characteristics emerge. Improvements to the prediction
for nc and the local-global stability diagram might be achieved by implementing the
Hunt & Crighton (1991) Ginzburg-Landau model with a quadratically varying stability
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parameter, with global stability determined using the saddle point criteria described in
Huerre & Monkewitz (1990).

Finally, it should be emphasised that our results do not invalidate the recent theory
and experiments that suggest global instability can be engineered at smaller azimuthal
mode numbers by modelling a radially finite rotating-disc. Furthermore, results of this
investigation pose a number of questions for the future study of rotating-discs. Do high
azimuthal mode numbers affect stability and transition processes on finite discs (Healey
2010; Imayama et al. 2013; Pier 2013; Appelquist et al. 2015a,b, 2016) and do they impact
the formation of secondary instabilities (Pier 2003, 2007)?
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