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Abstract (147 words) 

Influenza viruses are major human pathogens responsible for respiratory diseases affecting millions 

of people worldwide and characterized by high morbidity and significant mortality. Influenza 

infections can be controlled by vaccination and antiviral drugs. However, vaccines need annual 

updating and give limited protection. Only two classes of drugs are currently approved for the 

treatment of influenza: M2 ion channel blockers and neuraminidase inhibitors. However, they are 

often associated with limited efficacy and adverse side effects. In addition, the currently available 

drugs suffer from rapid and extensive emergence of drug resistance. All this highlights the urgent 

need for developing new antiviral strategies with novel mechanisms of action and with reduced 

drug resistance potential. Several new classes of antiviral agents targeting viral replication 

mechanisms or cellular proteins/processes are under development. This review gives an overview of 

novel strategies targeting the virus and/or the host cell for counteracting influenza virus infection. 

 

Keywords: Influenza virus, new antivirals, drug discovery, drug targets, virus-host interaction, 

signaling pathways. 
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Introduction 

Influenza viruses (IV) represent one of the major threats to public health, as they are responsible for 

both epidemics and pandemics characterized by high morbidity and mortality. During the past 

century, the pandemics of Spanish flu (1918), Asian flu (1957), Hong Kong flu (1968), bird flu 

(2005), and recently, swine flu (2009) caused millions of deaths worldwide [1]. In addition, the 

seasonal influenza epidemic results in hundreds of thousands of deaths per year 

(http://www.who.int/). IV belong to the Orthomyxoviridae family and include A, B, and C types, 

which differ in host range and pathogenicity. In particular, influenza A viruses (IAV) infect a wide 

range of avian and mammalian hosts, while influenza B viruses (IBV) infect almost exclusively 

humans. IAV are further classified into subtypes based on the antigenic properties of two viral 

surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA): 17 HA (H1–H17) and 10 NA 

(N1–N10) antigenic subtypes have been identified so far [2]. Within a subtype, different strains can 

arise as a result of point mutations; indeed, IAV evolve constantly and new mutant strains replace 

the old ones in a process known as “genetic drift”. 

IAV possess a single-stranded, eight-segmented RNA genome of negative polarity, which 

encodes the surface glycoproteins HA and NA and the M2 ion channel, that are all inserted into the 

viral lipid envelope; the matrix protein 1 (M1), that lies beneath the membrane; the three subunits 

(PB1, PB2, and PA) of the RNA polymerase complex, that is associated with the encapsidated 

genome; the nucleoprotein (NP), that coats the viral genome; and the nonstructural proteins NS1 

and NS2/NEP [2]. In addition, most IAV encode a nonstructural PB1-F2 protein of varying length, 

which has pro-apoptotic functions [3], and PA-x and N40, two newly identified proteins encoded by 

the PA and PB1 genes, respectively [4,5]. The IV replication cycle initiates with the attachment of 

HA to sialic acid (SA)-containing glycoprotein and glycolipid receptors on cell surface. The virus 

particle then enters the cell via clathrin-dependent endocytosis and macropinocitosis. Following 

entry, the acidic environment of the late endosome triggers a conformational change of HA which 

drives fusion of the viral envelope with the endosomal membrane. Moreover, the M2 protein creates 

a proton flow from the endosome into the virion leading to the dissociation of M1 from the viral 

ribonucleoprotein complexes (vRNPs). The released vRNPs are then transported into the nucleus, 

wherein the viral RNA polymerase initiates genome transcription and replication. Newly 

synthesized viral genome segments and proteins (PB1, PB2, PA, and NP) are complexed with M1 

and NEP and then exported from the nucleus to the cell membrane for the final assembly and 

budding phases. Finally, NA cleaves terminal SA residues from HA and the cellular receptors 

permitting the release of virions from the cell. In addition to the viral proteins, there are a number of 

http://www.who.int/
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cellular proteins involved in each stage of IV replication, which could represent potential antiviral 

targets. 

The current options for influenza therapy include vaccination and two classes of antiviral 

compounds, the M2 ion channel blockers (adamantanes) and the NA inhibitors. However, vaccines 

need to be reformulated each year due to the genetic instability of the virus and are not always 

protective; thus, vaccination is unlikely to be effective against a rapidly emerging influenza 

pandemic. Adamantanes inhibit IAV replication by blocking virus entry. However, they have no 

activity against IBV and are often associated with serious side effects. NA inhibitors block the 

release of virions after budding from the host cell. They exhibit activity against both IAV and IBV 

but can also cause side effects. In addition, a major problem with both classes of drugs is the rapid 

emergence of drug-resistant viral strains which have limited the use of the NA inhibitors and 

rendered the M2 blockers ineffective. Thus, there is a clear need to discover novel IV inhibitors. 

The necessity of developing new drugs to overcome resistance and counteract threats of 

sporadic outbreaks of pandemic IAV has fueled the interest in gaining a deeper knowledge of the 

structures and functions of the viral components. The body of information coming out of new 

research initiatives may have the potential to be developed into useful therapeutic strategies. In 

addition, targeting of cellular factors involved in IAV replication represents a novel antiviral 

approach that could counteract viral drug resistance, as resistance against host-targeted antivirals 

would likely not emerge as rapidly as it is for virus-targeted inhibitors. In this review, we present an 

overview of recent progress in designing and developing new antivirals to block critical steps of the 

viral life cycle by inhibiting functions of viral proteins and/or host-virus interactions. 

 

New virus-based anti-influenza virus strategies 

In this section, we will discuss current and new anti-influenza approaches from the point of view of 

targeting the virus itself. A number of different novel virus-based anti-influenza strategies are being 

developed, which include improving currently available drugs in potency, spectrum of activity, or 

route of delivery; discovering new classes of compounds that target different viral proteins; and the 

application of combination therapy. An overview of the viral proteins/processes that are blocked by 

current drugs and by new inhibitors under development is depicted in Fig. 1. 

 

Antiviral strategies targeting the M2 ion channel 

Influenza M2 is a homotetrameric protein that acts as a proton channel [6]. After virus endocytosis 

into the host cell, M2 is activated in response to the low pH in the endosomal lumen and creates a 

proton flux from the endosome into the virion core [6]. M2 is essential for viral replication and its 
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short N-terminal extracellular domain is highly conserved in all human IAV [7]. For these reasons, 

M2 is considered an excellent target for antiviral agents. Indeed, the M2 protein of IAV (A/M2) is 

the target of two already licensed drugs for influenza treatment: amantadine and its methyl 

derivative rimantadine [8,9]. Both these adamantane derivatives bind the N-terminal channel lumen 

of the M2 pore and, upon binding, their charged amino group produces a positive electrostatic 

potential in the channel lumen, which involves an electrostatic repulsion of protons and prevents 

virus uncoating [8]. Unfortunately, these compounds are inactive against IBV, due to the fact that 

there are significant differences in the amino acid sequence between the A/M2 and the M2 of IBV, 

except for the H37xxxW41 sequence motif in the transmembrane domain required for the channel 

activity and proton selectivity [6]. Moreover, the rapid emergence of drug-resistant virus variants 

represents the main limit of these drugs. Indeed, almost all currently circulating IAV are resistant to 

amantadine and rimantadine, greatly limiting their utility in the clinical practice [10]. Thus, new M2 

blockers active against amantadine-resistant viruses are urgently needed. 

Drug-resistance to amantadine and rimantadine is associated to single or multiple amino 

acid substitutions at positions 26, 27, 30, 31, or 34 in the transmembrane region of A/M2 located 

outside of the H37xxxW41 motif [11]. More than 95% of the reported transmissible IAV carry the 

S31N mutation in the trans-membrane region of A/M2 [12,13]. For this reason, the possibility to 

target the predominant S31N mutant represents an attractive challenge. Recently, some small 

molecules were identified as potent inhibitors of the A/M2-S31N variant. Among these compounds, 

M2WJ332 exhibited an antiviral activity against the A/M2-S31N variant higher than that of 

amantadine against the wild-type A/M2 [14]. In addition to M2WJ332, some benzyl-substituted 

amantadine derivatives were recently found to inhibit the activity of both S31N and wild-type 

viruses [14]. Other frequent mutations in the A/M2 protein that confer resistance to amantadine and 

rimantadine are L26F and V27A [11,15]. Recently, novel small molecules with inhibitory activity 

against A/M2 bearing these mutations have been reported, including the spiroadamantane 9 [16], 

the spiran amine 8 [17], and some organosilane-based compounds [18]. In addition, a number of 

studies have reported other compounds (e.g., imines, adamantanaminoalcohols, adamantanamines, 

and spiro-piperidine) with inhibitory effects against the wild-type M2 protein more potent than 

amantadine; however, these compounds do not show any activity against amantadine-resistant 

variants [19-21]. Finally, a neutralizing antibody directed against the A/M2 ion channel, M2-7A, 

which is able to inhibit the replication of both amantadine-sensitive and amantadine-resistant 

viruses with similar IC50 values, has been identified [22]. Importantly, passive immunotherapy with 

M2-7A protected mice from a lethal IV challenge [22]. Although the exact mechanism of action of 
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M2-7A and its binding epitope have not yet been clarified, this inhibitor clearly deserves further 

investigation. 

To date, there is no single M2 blocker capable of targeting both wild-type IV and all 

circulating amantadine-resistant strains. Nevertheless, the therapy with a combination of these 

inhibitors could provide an effective strategy to solve the problem of amantadine resistance. 

 

Antiviral strategies targeting the neuraminidase 

An attractive target for the development of new anti-influenza drugs is provided by the viral 

neuraminidase. NA is a homotetrameric glycoside hydrolase that binds and removes a terminal SA 

residue to the adjacent oligosaccharide moiety of the cellular receptors recognized by HA, playing a 

key role in promoting IV infectivity (for a review see [23]). Indeed, NA is responsible for virus 

penetration through mucosal secretions, helping the virus to access to the target cells by mucus 

degradation [24]. Moreover, NA allows the detachment of the virion from infected cells and avoids 

the self-aggregation of progeny virions at late stages of infection by disrupting HA-SA interactions, 

thus promoting the release and spread of IV [23]. 

The proof-of-principle for the “druggability” of this target is represented by zanamivir 

(Relenza) and oseltamivir (Tamiflu) that are the first two inhibitors of NA licensed for the treatment 

of IAV and IBV infection [25,26]; however, the development and rapid spread of IV resistant to 

these drugs have limited their efficacy [27]. This has prompted the search for new anti-NA drugs. 

On the basis of the mechanism of action and the chemical features of the molecules, NA inhibitors 

can be distinguished into two groups: (i) synthetic analogues of SA and (ii) natural molecules and 

plant extracts with anti-NA activity. 

The mechanism of SA analogues is based on the competition with the natural substrate of 

NA, resulting in a block of the enzyme active site. These compounds are active against both IAV 

and IBV thanks to the fact that the NA active site is highly conserved among different NA subtypes 

of IAV and also among IBVs [28,29]. However, these inhibitors are effective against influenza 

infection only if administrated within 36-48 h of symptoms onset [29]. Zanamivir and oseltamivir, 

currently used worldwide as therapeutic and prophylactic agents against IAV and IBV, belong to 

this class. Zanamivir (GG167) is a 4-deoxy-4-guanidino analogue of SA and was the first approved 

NA inhibitor [26]. This compound is administrated in patients at least 7 years old via inhalation, 

due to its poor oral bioavailability (less than 20%) [30]. Although zanamivir is well tolerated and 

has few adverse reactions, the route of administration of this drug can represent a problem 

especially for children and elderly patients that could not be able to inhale zanamivir suitably [31]. 

To circumvent these issues, an intravenous formulation of zanamivir has been formulated and is 
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currently in Phase III clinical trial. Oseltamivir (GS4104) is an ethyl ester prodrug, which is orally 

administrated and is quickly converted into its active form oseltamivir carboxylate (GS4071) by 

hepatic esterases. Oseltamivir possesses higher bioavailability (around 80%) than zanamivir and can 

be administrated in patients ≥ 1 year old [32]. More recently, other two SA analogues, peramivir 

and laninamivir, have been licensed in some Asian countries and are currently under clinical 

evaluation in other countries. Peramivir (BCX-1812, RWJ-270201) is a cyclopentane compound, 

approved in Japan as Rapiacta and in South Korea as Peramiflu for use in adult and pediatric 

patients with IAV and IBV infection [33]; in addition, it is currently undergoing clinical trials in the 

USA and in other countries. This compound is administrated only as an intravenous formulation, 

due to its very low bioavailability [34]. Laninamivir (R-125489) is a SA analogue structurally 

similar to zanamivir. Laninamivir is administrated as octanoyl prodrug, laninamivir octanoate (LO; 

CS-8958, R-118958), and holds great promise for its long-acting inhibitory activity [35]. LO has 

been approved in Japan for clinical use (as Inavir) since September 2010, but is still undergoing 

clinical trials in the USA. 

Although the NA active site is a highly conserved target, a number of mutations in the NA 

of viruses selected in vitro in the presence of NA inhibitors and also in patients have been 

identified, namely substitutions of residues E105, E119, I122, Q136, D151, R152, D198, R224, 

S246, H274, R292, N294, and R371 [27]. These mutations map in framework or catalytic residues 

of NA and can directly or indirectly alter the shape of the active site structure, thus leading to lower 

efficiency in inhibitor binding ability [27]. Some mutations were found to confer resistance to 

certain NA inhibitors but preserve the susceptibility to others [27]; for example, the main mutation 

conferring resistance to oseltamivir (H274Y) also confers resistance to peramivir, but not to 

zanamivir [36]. In addition, due to the similar binding properties and chemical structures of 

zanamivir and laninamivir [37], it is expected that mutations causing resistance to zanamivir confer 

cross-resistance to laninamivir. Currently, no mutation associated with resistance to laninamivir has 

been identified and, although this finding remains to be confirmed, at the moment laninamivir 

remains the only NA inhibitor not subjected to drug resistance [27]. Based on NA crystallographic 

structure and knowledge of the binding mode in which these NA inhibitors interact with the enzyme 

active site [38], many other analogues of SA have been synthesized and characterized, in order to 

further optimize the binding properties of NA inhibitors. Work on novel anti-NA compounds 

obtained by structure-based drug design strategies is well summarized in other recent reviews 

[38,39]. 

An alternative and interesting approach to increase the efficacy of the approved NA drugs is 

provided by the use of multivalent inhibitors, by conjugating the compounds to a biocompatible 
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polymer [40,41]. Indeed, several reports showed that such multivalent presentation of NA inhibitors 

results in a dramatically higher antiviral potency than that obtained with the monomeric drug [41-

43]. As an example, zanamivir attached to the biodegradable polymer poly-L-glutamine exhibited 

an antiviral activity 1,000- to 10,000-fold higher than that of monomeric zanamivir [41]. In 

addition, a single dose of zanamivir dimers resulted in an in vivo longer-lasting activity against IV 

compared to monomeric zanamivir [43].  

In recent years, natural products have acquired increasing relevance in drug discovery, 

including as anti-influenza agents. Among natural products, many classes of compounds with 

promising anti-NA activity have been identified (reviewed in [44]); however, flavonoids are the 

most studied as NA inhibitors [44]. Flavonoids are a group of secondary plant metabolites 

containing 15 carbon atoms. In addition to antioxidant effects [45], they possess antiviral activity 

against a wide array of viruses, including IV [44], showing anti-NA activity [46-49]. In addition, 

plant extracts have also been evaluated for their inhibitory potential on NA, especially extracts from 

plants of traditional Chinese medicine [44]; however, often the mechanism of action and/or the 

active principle(s) have not been yet clarified [44]. As an example, a screening of extracts from 

many medicinal plants led to the identification of five plant extracts endowed with anti-NA activity 

in vitro and among these, the extract of Melia toosendan was found to be also active against IV in a 

mouse model [50]. 

 

Antiviral strategies targeting the hemagglutinin 

HA is a homotrimeric glycoprotein composed of a stem domain supporting a globular head. Each 

HA monomer consists of two disulfide-linked polypeptides, HA1 and HA2, derived from 

proteolytic cleavage of the single immature precursor HA0 by host proteases. The most part of HAs 

are activated by cleavage at a single arginine residue by extracellular proteases, whereas for other 

HAs, associated to highly pathogenic avian viruses, this cleavage is performed by furin-like 

intracellular proteases at sites characterized by multiple basic amino acids. HA is essential for the 

interaction of the virus to cells by binding to SA receptors on host cells and also it is involved in the 

low pH-induced membrane fusion between the viral envelope and the endosomal membrane [23]. 

A possible mechanism of inhibition of viral infection is to block the interaction between 

viral surface molecules and cellular receptors and the following fusion of the virion with the 

endosome membranes, thus preventing the entry of the virus into the host cell. Some drugs already 

approved for the treatment of human immunodeficiency virus (HIV) infection (enfuvirtide and 

maraviroc) and for the prevention of respiratory syncytial virus (RSV) infection (palivizumab) 

specifically act by interfering with this step of the viral life cycle [51-53]. In the case of IV, the 
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entry step can be blocked mainly by two strategies: i) by preventing the binding between the viral 

HA and the terminal SA of glycoproteins and glycolipids present on the cell membrane; ii) by 

blocking the process of fusion between the viral envelope and endosomal membrane, necessary for 

the release of the vRNP into the cytoplasm. 

As for the first strategy, a variety of antiviral agents have been reported that can interfere 

with IV attachment to target cells. These inhibitors can be divided in different groups based on 

chemical properties and their mechanism of action: 

1) Neutralizing monoclonal antibodies (mAbs) directed against the membrane-distal globular head 

domain of HA. The globular head of HA contains three receptor binding sites (RBS) and is 

responsible for the attachment to cellular receptors [23], thus representing the principal target of 

these inhibitors. The main limit of this antiviral strategy is the hyper-variability of the globular head 

of HA. In fact, several antibodies that target regions of globular head of HA, especially the exposed 

loops that surround the RBS, are typically able to neutralize a limited range of IVs, often showing 

strain-specific responses [54,55]. Despite the overall variability of the globular head of HA, the 

RBS is relatively conserved; thus, antibodies against this site possess a broader spectrum of 

neutralizing activity. An example is represented by CH65, which is able to neutralize several strains 

of IV in vitro, by inserting its heavy-chain CDR3 loop into the receptor-binding pocket [55]. Recent 

studies reported a few examples of RBS-directed antibodies with heterosubtypic anti-influenza 

activity. In particular, two mAbs, S139/1 and C05, showed neutralization activity against strains 

from multiple IV subtypes both in vitro and in mice [56,57]. Crystal structures of the antibody–HA 

complex confirmed that both antibodies are able to bind highly conserved residues in the RBS of 

HA [56,58].  

2) Decoy receptor or SA-containing inhibitors. This class of agents that can subdivided in: (i) 

polyvalent synthetic SA-containing inhibitors; (ii) natural inhibitors containing SA. Both these 

types of inhibitors act as receptor mimics and compete with sialylated receptors on the target cells 

for binding to HA and thus neutralize the virus attachment. In addition, their binding to the virion 

surface can lead to virus particle aggregation, causing a reduction of virus infectivity. As for the 

first type of inhibitors, the design of polyvalent synthetic SA-containing compounds has been 

proposed to overcome the low affinity of HA binding to monovalent SA analogues, which are 

considered ineffective in competing with the highly multivalent interactions between the virus and 

the host cell [59]. In fact, polyvalent SA-containing inhibitors were more potent in vitro than 

corresponding monovalent molecules [59]. Some of these molecules also exhibited protective 

effects against IV infection in mice [60,61]. As an alternative to multivalent sialosides, several 

groups have proposed the use of liposomes with SA analogues on the surface in order to allow a 



 10 

multivalent presentation of SA [62-64]. The second type of inhibitors are constituted by SA-

containing natural molecules, such as glycoproteins or proteoglycans, which possess the ability to 

bind HA and at the same time to create a steric obstacle to the polyvalent interaction of the virus 

with cells, thus blocking the process of virus absorption to target cells. An example of these 

inhibitors is represented by the serum amyloid P component, which contains the α(2,6)-linked SA 

into the oligosaccharide side chains. This sialylated glycoprotein has been reported to limit IAV 

infection of airway epithelial cells and to have also therapeutic effects in mice [65]. 

3) Peptides against HA. Some peptides exhibiting potent and broad-spectrum anti-influenza activity 

recently emerged as inhibitors of viral attachment [66,67]. Similar to antibodies, these peptides 

specifically bind the HA protein and prevent IV absorption to the host cell. These peptides were 

found to be effective not only in vitro but also in vivo, even when administered post-infection. 

4) Carbohydrate-binding agents that recognize specific glycosylation sites on HA. The mechanism 

of action of these inhibitors exemplified by cyanovirin-N (CV-N). This protein, which derives from 

the cyanobacterium Nostoc ellipsosporum, recognizes high-mannose oligosaccharide structures on 

HA (oligomannose-8 and -9) and its binding to HA prevents virus adsorption to the cell [68]. In 

fact, removal of these glycans from HA causes a decrease of viral sensitivity to CV-N [68]. 

Interestingly, CV-N showed antiviral activity not only against IAV and IBV, but also against a 

broad range of enveloped viruses, such as HIV [69], Ebola virus [70], human herpesvirus 6 [69,70], 

and hepatitis C virus (HCV) [71]. The same mechanism seems to be used by a lectin from Green 

Alga Boodlea coacta (BCA) [72]. Indeed, BCA exhibited a strong inhibition of HA activity by 

specifically interacting with 1–2-linked mannose at the nonreducing terminus of HA [72]. In 

addition, BCA showed activity against HIV [72]. 

5) Natural molecules from plants. Finally, some natural molecules which interfere with the binding 

of HA to the cell surface have also been identified [73-76]. However, the molecular details of the 

mechanism of these compounds have not yet been elucidated. 

Another possible strategy of inhibition of viral entry consists in preventing the fusion of the 

viral envelope with the endosomal membrane, in order to avoid the release of virion components 

into the cytoplasm. There is a heterogeneous group of inhibitors that act at this step of the viral life 

cycle, with distinct mechanisms of action: 

1) Small molecules that inhibit the low pH-induced conformational change of HA. After binding to 

the cellular receptor, IV is internalized into endosomes by clathrin-independent endocytosis [77]. 

The low pH inside the late endosomes triggers an irreversible conformational change of HA and 

enables the extrusion of the fusion peptide and its consequent insertion into the endosomal 

membrane [78]. Several small molecules that bind pockets in the stem region of the native form of 
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HA have been identified as specific fusion inhibitors of IV [79-86]. Most of them prevent the 

fusogenic activity of the virus by blocking the low pH-induced conformational change of HA 

[79,81-86]. The most recent example of compounds acting by this mechanism is RO5464466, 

which stabilizes the neutral pH conformation of HA in a pre-fusogenic state and prevents the 

fusogenic change of HA [86]. In contrast, others compounds, such as C22, inhibit membrane fusion 

by destabilizing the structure of HA, resulting in a premature and ineffective conformational change 

[80,87]. However, these inhibitors possess common drawbacks that would severely limit their 

potential utility in the clinical practice. In fact, these small molecules show a high propensity to the 

emergence of drug-resistant variants and exhibit limited protection against different HA subtypes. 

An exception is represented by arbidol (ARB, 1-metyl-2-phenyl-thiomethyl-3-carbotoxy-4-

dimetylaminomethyl-5-hydroxy-6-bromoindolehydrochloridemonohydrate). In fact, ARB exhibits a 

broad spectrum of antiviral activity not only against IAV and IBV, but also against other viruses 

such as RSV, parainfluenza virus, coxsackie virus, rhinovirus, hepatitis B virus (HBV), and HCV 

[87,88]. This drug has been approved in Russia and in China for treatment and prophylaxis of IAV 

and IBV. Studies with viruses resistant to ARB bearing mutations which map in the HA2 subunit 

confirmed that ARB interacts with HA and acts by stabilizing its structure, thus preventing the low 

pH-induced fusogenic change of HA [89]. Recently, biochemical studies showed that ARB dually 

interacts both with cell membrane phospholipids and with aromatic residues of viral glycoproteins 

on the surface of enveloped viruses [90]. This mechanism of action of ARB can prevent the 

fusogenic change in viral glycoproteins required for membrane fusion and could explain the broad 

spectrum of antiviral activity of this compound.  

2) Neutralizing mAbs directed against the stem region of HA. Another possible approach to 

interfere with the fusogenic activity of HA is to develop mAbs directed against its highly conserved 

stem region, mostly formed by HA2 monomers. Thanks to the high conservation of this region, 

such a strategy could allow to overcome the problem of the high variability associated to the HA 

globular head. Recently, a number of studies reported antibodies that recognize conserved epitopes 

of the stem region of HA and show a broad antiviral activity against IAV both in vitro and in animal 

models [91-97]. One of these antibodies, CR9114, exhibited antiviral effects also against IBV both 

in vitro and in mice [92]. These observations suggest that the epitope recognized by CR9114 is 

highly conserved not only among the different IAV subtypes, but also among IBV and this finding 

opens the possibility to develop an universal influenza vaccine against IAV and IBV based on this 

epitope [92]. 

3) Broad-spectrum antivirals interfering with membrane fusion by a nonspecific mechanism. An 

additional approach is to block the fusion between virus and endosomal membrane in a step 
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subsequent to the conformational rearrangement of HA. High-molecular weight molecules can 

prevent the fusion between the virus and endosomal membrane by acting as a steric barrier. For 

their nonspecific - still not entirely clear - mechanism of action, these compounds are active against 

a wide range of viruses, including IV. Dextran sulfate and retrocyclin 2 represent two examples of 

this type of inhibitors. Dextran sulfate is a sulfated polysaccharide which exhibits inhibitory effects 

not only against IAV, but also against HIV, cytomegalovirus, herpes simplex virus (HSV), vesicular 

stomatitis virus, and RSV [98-100]. Thanks to its negatively charged sulfated/carboxyl groups, 

dextran sulfate interacts with HA, that has a net positive charge at pH ≤7 [101]. Biochemical studies 

highlighted that there is an inhibitory effect on membrane fusion only when dextran sulfate is added 

at early steps of the fusion process [102]. However, this compound does not seem to inhibit the low 

pH-dependent conformational change of HA, rather suggesting an inhibitory activity due to steric 

hindrance in the following step [102]. Other sulfated polysaccharides, such as iota-carrageenan and 

pKG-03 derived from the marine microalga Gyrodinium impudium, have been reported to possess 

anti-IV activity, although with an unknown mechanism of action [103,104]. Another broad-

spectrum antiviral that can be included in this class of inhibitors is retrocyclin 2. This molecule 

belongs to the family of theta-defensins and is able to inhibit not only IV, but also HIV and HSV 

[105-108]. Retrocyclin 2 was found to inhibit the process of membrane fusion even when HA is in a 

fusogenic conformation or when a state of membrane hemifusion is already induced [106]. Detailed 

studies on its mechanism of action demonstrated that retrocyclin 2 creates a network of crosslinked 

and immobilized surface glycoproteins both on the virus and on the host cell, thus blocking the 

successive membrane rearrangements necessary to complete the fusion process [106]. 

 

Antiviral strategies targeting the RNA polymerase  

The viral RNA-dependent RNA polymerase (RdRP) is a heterotrimer composed of subunits PB1, 

PB2, and PA, which carry out both mRNA transcription and replication of the viral genome. During 

transcription, in a process known as “cap-snatching” PB2 binds to the 5′ methyl cap of host pre-

mRNA molecules and PA, which has endonuclease activity, cleaves the pre-mRNA to produce a 

capped primer that is used to start transcription [109]. The PB1 protein possesses the RNA-

dependent RNA polymerase activity and it is also responsible for the addition of a poly(A) tail to 

viral mRNA. PB1 also catalyzes the genome replication, which occurs via a positive sense cRNA 

intermediate that is an exact copy of the vRNA [109]. The three polymerase subunits interact each 

other, in particular the N-terminus of PB1 interacts with the C-terminus of PA [110-112], while the 

C-terminus of PB1 binds the N-terminus of PB2 [110,113]; in addition, a weak transient interaction 
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has been proposed for PA and PB2 [114]. Thanks to its multidomain structure and multiple 

enzymatic activities, the RdRP can be targeted at different sites. 

While a number of nucleoside/nucleotide drugs have been developed against other viral 

polymerases and are commonly used for treating infections caused by HIV, HBV, and 

herpesviruses, very few compounds have been reported which target the polymerization activity of 

IAV RdRP. This is in part due to the fact that the RdRP active site of PB1 has not yet been 

structurally characterized and even the precise boundaries of this domain are not known. Almost 

twenty years ago, 2’-deoxy-2’-fluoroguanosine was described as an inhibitor of IV transcription, 

but it has not been further developed [115]. Ribavirin (1-β-D-ribofuranosyl-1H-1,2,4-triazole-3-

carboxamide, RBV) is a nucleoside analogue that exhibits a broad antiviral activity against RNA 

and DNA viruses, including IV [116]. RBV is converted intracellularly into its monophosphate 

form, which inhibits the cellular enzyme inosine 5′-monophosphate (IMP) dehydrogenase, 

responsible for the conversion of IMP to xanthosine monophosphate during GTP synthesis, leading 

to inhibition of RNA synthesis [116]. The triphosphate form of RBV has been shown to interact 

with the IV RNA polymerase in a cell-free system [117]. However, despite evidence of in vitro 

antiviral activity of RBV against IAV RdRP, its clinical application for anti-influenza therapy has 

been rather limited, due to toxicity and poor in vivo efficacy. Indeed, variable results have been 

reported from clinical trials using oral or aerosolized [118] and intravenous [119] RBV for treating 

IAV- or IBV-infected patients. Thus, while RBV is currently approved for therapy against HCV and 

RSV, its clinical efficacy for the treatment of IV infection remains to be further investigated. In 

addition, an analogue of RBV - viramidine - was recently shown to have similar efficacy to RBV 

against IAV infections while exhibiting lower toxicity and thus may deserve further evaluation as a 

possible therapeutic agent [120]. Another anti-influenza nucleoside analogue is favipiravir (T-705; 

6-fluoro-3-hydroxy-2-pyrazinecarboxamide), which is a pyrazine derivative first identified in 2002 

[121]. T-705 was shown to inhibit influenza A, B, and C viruses in vitro and to be more effective 

than oseltamivir in protecting mice infected with IAV [121]. By cellular kinases, T-705 is converted 

to the active form, ribofuranosyl triphosphate, which acts as a nucleoside inhibitor of IV RdRP 

[122]. Remarkably, fapiravir does not inhibit the synthesis of cellular RNA or DNA and in contrast 

to RBV, it is not an effective inhibitor of IMP dehydrogenase, thus showing less cytotoxity than 

RBV [123]. T-705 is active against a broad range of IAV and IBV strains, including 2009 pandemic 

strains, highly pathogenic avian H5N1 viruses, and the recently emerged H7N9 avian virus, and it 

also inhibits influenza strains resistant to current antiviral drugs [123,124]. Besides IV, T-705 

inhibits a number of other RNA viruses, whereas it exhibits no inhibitory effect against DNA 

viruses. Importantly, very limited resistance to favipiravir has been reported [123]. A Phase III 
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clinical trial for evaluating favipiravir for influenza therapy began in Japan in October 2009 and has 

been completed, and two Phase II studies have been conducted in the United States since February 

2010 and the results are being reviewed [124]. In the near future, we may therefore see approval of 

clinical use of favipiravir for the treatment of influenza. 

Another possible strategy for selectively inhibiting IV replication is to target the 

endonuclease cap-snatching activity of the RdRP complex, which resides in the N-terminal region 

of PA [125,126]. In past years, a number of inhibitors (e.g., flutimide and L-735882) of PA 

endonuclease activity have been discovered by Roche, Merck, and other pharmaceutical companies 

using a structure-activity relationships (SAR) approach [127-129], but most of them have not been 

developed further. More recently, crystallographic studies revealed that the endonuclease active site 

of PA contains a conserved deep cleft which could be an excellent target for structure-based design 

of novel anti- IV drugs [125,126]. On this line, two groups reported co-crystal structures of the PA 

endonuclease domain with known or predicted inhibitors [130,131], providing insights that could be 

useful for the structure-based design of new PA inhibitors. In addition, a fragment screening using a 

high-resolution crystal structure of the N-terminal endonuclease domain of pandemic 2009 H1N1 

IV and structure-based optimization led to the identification of a hydroxypyridinone series of 

compounds exhibiting promising enzymatic inhibition; a compound from this series was also found 

to have a significant antiviral activity in cells [132]. Using a different approach, Iwai et al. screened 

33 different types of phytochemicals using a PA endonuclease inhibition assay in vitro and 

identified marchantins as PA inhibitors [133]. In particular, marchantin E docked well into the 

endonuclease active site and inhibited the growth of both AV and IBV.  

The cap-binding activity of PB2 might also be targeted by anti- IV agents. The crystal 

structure of the PB2 cap-binding domain (residues 318–483) bound to a 5′-cap analogue (m7GTP) 

[134] revealed a pocket in this domain of PB2 which could be a possible drug target. An m7GTP-

mimic, if developed, would inhibit the transcription of IV mRNAs, but most likely would also be 

recognized by cellular cap-binding proteins, thus posing significant selectivity and cytotoxicity 

issues. Another target for the development of anti-PB2 compounds may be the packaging signal at 

the 5’ end of the PB2 RNA. In fact, a recent study reported that a 15-mer phosphorothioate 

oligonucleotide derived from the 5’ end of the viral PB2 RNA, complementary to the 3’ end of its 

coding region (nucleotides 2279–2293), markedly inhibited IV replication [135]. However, the 

suitability of this type of inhibitors for in vivo anti-influenza therapy remains to be investigated. 

The interactions between the PA and PB1 as well as the PB1 and PB2 subunits have been 

shown to be essential for polymerase function [136,137]. In addition, the subunits binding interfaces 

are highly conserved between different viral strains [2]. Thus, inhibition of these interactions 
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represents an attractive strategy for the development of drugs with broad efficacy against all IV 

strains [138,139]. The feasibility of this approach was first proved by studies showing that short N-

terminal PB1 peptides, corresponding to the PA-binding domain of PB1, were able to block the 

activity of IAV polymerase and also inhibit viral replication [140,141]. Recently, two crystal 

structures of a truncated form of PA bound to a PB1-derived peptide have been published 

[142,143]. Importantly, these structures showed that relatively few residues drive binding of PB1 to 

PA, suggesting the potential for small molecule-mediated inhibition. On this line, an in silico 

screening of 3 million small-molecule structures using one of these crystal structures [142] led to 

the identification of two compounds (compounds 1 and 5) able to interfere with the interaction 

between PB1 and PA both in vitro and in cells, as well as transcription by the RdRP [144]. One of 

these molecules (compound 1) also inhibited the replication of a panel of IAV strains, including 

2009 pandemic strains and an oseltamivir-resistant isolate, as well as several IBV strains, with EC50 

values in the low micromolar range [144]. Interestingly, a compound, AL18, previously shown to 

inhibit subunit interactions of human cytomegalovirus DNA polymerase [145] was found to also 

block the PA/PB1 interaction as well as the replication of IAV and IBV [146]. In a similar, but 

more restricted screening, Fukuoka and colleagues performed a docking simulation using a drug 

database of ~4000 compounds and selected candidate compounds targeting the PA/PB1 interface 

[147]. Among these, benzbromarone, diclazuril, and trenbolone acetate exhibited anti-IAV activity. 

In addition, benzbromarone and diclazuril were shown to bind the PA subunit and to decrease the 

transcriptional activity of the viral RdRP. In a different approach, a total of 15,000 molecules were 

tested in an ELISA-based screening, which led to the identification of a benzofurazan compound 

that also showed inhibition of viral replication at micromolar concentrations [148]. However, both 

this compound and its derivatives exhibited significant cytotoxicity, thus likely excluding an in vivo 

use. Overall, the compounds targeting the PA/PB1 binding interface could provide the basis for the 

development of a new generation of therapeutic agents against IAV and IBV. 

The possibility of targeting other interaction sites in the polymerase complex, e.g., those 

between PB1 and PB2 subunit, recently emerged with the publication of the crystal structure of the 

PB1/PB2 binding interface [137]. The structure showed that only small regions of PB1 (residues 

678–757) and of PB2 (residues 1–37) are required for tight binding. Since the PB1/PB2 interface 

has a crucial function in regulating the polymerase complex and it is highly conserved among IV, it 

appears as a promising target for novel broad-spectrum anti-influenza drugs. As a proof-of-

principle, a synthetic peptide corresponding to residues 1–37 of PB2 was shown to inhibit the 

PB1/PB2 interaction in vitro [149]. However, to date no small molecule targeting this protein-

protein interaction has been yet reported, and indeed the flat PB1/PB2 interface may pose 
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significant challenges in developing a nonpeptide small-molecular-weight inhibitor. Recently, Li 

and colleagues reported that a peptide derived from amino acids 731–757 of PB1 can disrupt the 

interaction between the C-terminal part of PB1 (aa 676–757) and the N-terminal part of PB2 (aa 1-

40) and also inhibit viral RdRP activity and IV replication [150]. Surprisingly, the authors showed 

that this peptide interacts with PB1 rather than PB2. Furthermore, mutational analyses and 

computational modelling suggested that PB1731–757 peptide acts as a competitor of PB2 with respect 

to binding to PB1. Thus, the inhibitory mechanism of the PB1731–757 peptide is likely different from 

that of the interfacial peptides PB11–25 and PB21–37, which inhibit complex assembly by binding to 

its interaction partner PA or PB1, respectively, and could suggest new avenues for antiviral 

discovery. 

 

Antiviral strategies targeting the nucleoprotein  

Given the pivotal role of NP during the IV life cycle, it represents an emerging target for new 

antiviral approaches [100]. IAV NP orchestrates the vRNP assembly by covering the genomic RNA 

segments, facilitating the correct folding, and by directing the proper constitution of vRNP via 

protein-protein interactions with RdRP subunits. Oligomerization of NP into a trimer coating viral 

RNA is essential to maintain vRNP structure; however, IAV NP assembles into a trimer through 

monomer interactions independently from the presence of RNA.  

NP is a multifunctional, essential protein, which plays an active role not only in vRNP 

architecture, but also in transcription and replication of the viral genome and in vRNPs nuclear 

shuttling and cytoplasmic trafficking [7]. In the recent years, the interactions of NP with itself [151-

155], with viral RNA [156], with viral RdRP, or with cellular factors were exploited for the 

development of new anti-IV strategies, demonstrating the significant druggable potential of NP. As 

an example, short interfering RNA designed for NP gene silencing and possessing a 5’-triphosphate 

moiety to induce a RIG-I-mediated interferon (IFN) response exhibited potent inhibitory effects 

both in infected cells and in mice, demonstrating that NP knockdown is a successful strategy to 

inhibit IAV propagation [157,158]. Perhaps, the most promising feature of NP from a 

pharmaceutical point of view is the ability of self-interaction mediated by a flexible tail loop present 

in each monomer that inserts in the neighboring monomer. This interaction is stabilized by 

electrostatic interactions between E339 and R416 residues [154]. In addition, the phosphorylation at 

Ser-165 seems to regulate the polymerization status and RNA binding activity of NP in infected cell 

[159]. Small molecules able to interfere with correct protein-protein interactions between NP 

monomers were independently identified by different groups [151,153-155]; among these, 

nucleozin (NCZ) is the most studied. It is widely accepted that such compounds bind at least two 
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different sites on NP and act by either stabilizing monomeric NP or by inducing the formation of 

NP aggregates. The improper interactions of NP monomers occurring in the presence of these 

antiviral compounds interfere with the different functions of NP in the virus cycle. In fact, NCZ and 

its derivatives were reported to exert antiviral activity at different times of IAV cycle [160]: there is 

an early inhibitory effect of NCZ on viral RNA transcription and replication as well as a recently 

identified antiviral effect exerted on the cytoplasmic trafficking of newly synthesized vRNPs. NCZ 

is supposed to affect both the transport of vRNPs into the nucleus and, after nuclear export, the 

transport of newly synthesized vRNP through the cytoplasm that involves the cellular protein 

Rab11 [160]. Interestingly, also cellular proteins have been recently identified as restriction factors 

for IAV replication by interfering with NP oligomerization, such as cyclophylin E [161], or with the 

NP-PB2 interaction, such as the IFN-inducible Mx1 protein [162], thus highlighting NP interactions 

with both cellular and viral partners as potential targets of antiviral strategies. Finally, very recently 

naproxen, a clinically-approved inhibitor of inducible COX-2, was identified through a structure-

based in silico screening as the first inhibitor of the interaction between NP and RNA [156]. It was 

demonstrated that naproxen targets the RNA-binding groove of NP and blocks it in a monomeric 

form. Naproxen is effective against IAV H1N1 and H5N1 replication in infected cells and in mice. 

As prospected by the authors, the dual antiviral effect of this drug against IAV, i.e., inhibition of NP 

functions and of COX-2-induced pro-inflammatory response, could be particularly useful for the 

treatment of emerging pandemic IAV infections. 

 

Antiviral strategies targeting the Nonstructural protein 1 

NS1 is a multifunctional viral protein, whose major role is to antagonize the cellular antiviral 

response and in particular the IFN-mediated response [163,164]. Actually, NS1 IFN-antagonistic 

properties seem to be strain-specific [164]. NS1 subverts the cellular IFN response by different 

strategies: (i) it cooperatively binds to viral dsRNA [165], thus protecting it from the recognition of 

two cytoplasmic “sentinels” of viral infection, i.e., protein-kinase RNA-activated (PKR) [166] and 

2’-5’-oligo(A) synthetase (OAS)/RNaseL [167], which are activated by dsRNA and serve to shut 

off host protein synthesis (and also IFN pathway effectors) and to induce viral RNA degradation, 

respectively; (ii) it binds to cellular mRNAs processing factors, such as cellular polyadenylation 

specifity factor 30 (CPSF30) and polyA-binding protein II (PABP2) [168,169], thus inhibiting 3’-

mRNAs (such as IFN mRNAs) processing and nuclear/cytoplasmic trafficking; (iii) it interacts with 

the ubiquitin-ligase TRIM25 and blocks RIG-I activation, thus preventing subsequent IFN cascade 

activation [169]; (iv) it interacts with cellular IFN-inducible hGBP1 to antagonize its antiviral 

activity [170]; and finally (v) it targets IKK to block NF-kB activation [171]. NS1 post-translational 
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modifications such as phosphorylation and SUMOylation may modulate its activity and also the 

abundance of NS1 dimers and trimers in infected cells [172]. In fact, NS1 dimerization is essential 

for RNA binding, since mutations that block dimers formation also affect the RNA binding ability 

of NS1 [173].  

Taken together, NS1 represents an attractive target for new chemotherapeutic strategies, but 

to date no anti-influenza drug targeting this viral protein is under clinical development. However, 

some molecules were recently identified by a screen aimed at searching compounds that 

phenotypically suppress NS1 functions [174]. By this approach, 2,000 compounds were tested for 

their ability to suppress the slow-growth phenotype in yeasts expressing IAV NS1; four molecules 

able to restore normal growth in yeasts and also to inhibit IAV replication in cells were identified. 

These compounds and some derivatives showed anti-influenza activity only in IFN-competent cells, 

and the ability to reverse NS1-mediated block of IFN response [175]. One derivative, JJ3297, 

resulted to be dependent on cellular RNAseL functions for antiviral activity [176]. These 

compounds provide the proof-of-principle that NS1 activity can be blocked by small molecules that 

could be also used in combination with IFN agonists to enhance their antiviral therapeutic potential. 

Another target of NS1-based antiviral strategies recently reported is the interaction of NS1 with 

viral RNA. Indeed, compounds able to interfere with NS1/viral RNA binding have been identified 

both by in silico screening [177] and by high-throughput screening (HTS) developed to search for 

inhibitors of the binding of recombinant NS1 to a viral RNA construct in vitro [178]. By this 

combinatorial approach, three compounds able to effectively inhibit NS1 binding to RNA in vitro 

and to reduce the cytopathic effect of IAV in infected cells were identified. By another approach, 

i.e., a fluorescence polarization-based assay other inhibitors of the binding between IAV NS1 and 

dsRNA, a library of quinoxoline derivatives, and a large small molecule library were tested leading 

to the identification of a compound, epigallocatechine gallate, able to inhibit virus growth 

[179,180]. These compounds provide the proof that also the interference with NS1 binding to viral 

RNA could be a feasible anti-influenza strategy. On this line, also the dimerization of NS1 could 

represent an interesting target of new anti-influenza interventions; however, to date no compound 

that acts by this mechanism has been reported yet. 

 

Antiviral strategies using drug combinations 

Combination therapies that target multiple viral protein functions have been proposed to achieve 

greater antiviral effects than each compound given individually, reduce the development of drug-

resistance and administer lower drug doses, thereby decreasing adverse effects. Analogous to the 

treatments used against HIV and HCV, a combination of anti- IV drugs would be expected to be 
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more effective than single-agent chemotherapy in treating serious influenza cases. The combined 

use of amantadine + oseltamivir [181] and oseltamivir + T-705 [182] has shown therapeutic 

synergism in infected mice. In addition, association of oseltamivir and amantadine has been 

demonstrated to reduce the emergence of drug-resistant IAVs [183]. A preliminary, controlled 

clinical study comparing the therapy with rimantadine plus inhaled zanamivir versus rimantadine 

alone in hospitalized adult patients with serious influenza showed a higher efficacy for the 

combination of zanamivir with rimantadine [184]. Several other double-, triple-, even quadruple-

drug combinations could be envisaged for achieving additive or synergistic antiviral effects, based 

not only on the currently available drugs but also on new compounds under development. 

 

New host-based anti-influenza virus strategies 

IV replication is strictly host-dependent. In fact, a plethora of cellular proteins are engaged in each 

step of the virus life cycle have been identified as restriction factors, since their activities exert a 

dramatic effect on IV replication [185-187]. In recent years, several studies reported different 

experimental approaches aimed at identifying the cellular proteins that are essential for IV 

replication and could be potential targets of new antiviral strategies. Among these, there are for 

example genome-wide RNA interference screenings (reviewed in [188]), proteomic approaches 

[189], and yeast two-hybrid screenings [190,191]. Antiviral drugs targeting cellular functions are 

expected to have some advantages over inhibitors exclusively directed against viral targets, in 

particular for highly genetically unstable viruses such as IAV. In fact, inhibitors of cellular proteins 

and/or pathways should be less prone to induce the emergence of resistant strains; on the other 

hand, perturbing the cellular environment to disrupt viral functions could have adverse side-effects 

that should be carefully considered.  

Cellular proteins are found to be actively involved in virus attachment and entry, in 

endocytosis of the virus particle and subsequent uncoating, in primary viral RNA transcription and 

protein synthesis as well as in genome replication, and finally in assembly, budding, and release of 

new IV particles. From a pharmaceutical point of view, the host-virus interplay is highly 

challenging, since each interaction between viral and cellular partners virtually represents a 

potential antiviral target for the development of new drugs and therapeutic strategies.  

Here, we will discuss a series of new antiviral approaches based on the inhibition of cellular 

functions that have emerged as essential for IV replication. We will describe cellular proteins and/or 

pathways endowed with pharmaceutical potential due to their active engagement in IV cycle and 

some already identified small-molecular weight inhibitors that are currently under preclinical or 
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clinical investigation as anti-IV agents. An overview of the cellular proteins/processes that could be 

targeted to block IV replication is illustrated in Figures 2 and 3. 

 

Antiviral strategies involving host factors that are engaged in virus attachment, entry, and release of 

virus particles 

As already mentioned above, the first step in the initiation of IV infection is the attachment of HA 

to SA-containing glycoprotein or glycolipid receptors on the host cell surface. An option for 

influenza therapy is the development of drugs targeting cellular components involved in this step 

rather than targeting the viral HA protein. The proteolytic activation of HA by cellular proteases is 

essential for IV propagation and may also represent an attractive antiviral target. Human airway 

trypsin-like protease (HAT), and transmembrane protease serine S1 members (TMPRSS) belong to 

the type II transmembrane serine proteases family expressed in human lungs and involved in HA 

activation. These proteases cleave some HAs of human IV strains with a monobasic cleavage site, 

in particular of H1, H2, and H3 strains [192]. TMPRSS2 cleaves HA intracellularly, while HAT 

cleaves HA at the plasma membrane; indeed, the cleavage by TMPRSS2, but not HAT, is resistant 

to certain protease inhibitors [193,194]. In addition, TMPRSS4 has been shown to be responsible of 

the activation of HA of 1918 H1N1 IAV, which caused the Spanish flu [195]. Protease inhibitors 

are thus potential anti-influenza agents [196]; in fact, some have been shown to suppress IV spread 

in cell culture [193], in animal models[197], and in humans [198]. IV propagation in HAT- or 

TMPRSS2-expressing cells the inhibition of HA cleavage was efficiently suppressed using specific 

low-molecular-weight peptide mimetic inhibitors [193,194]. The selectivity and potency of some of 

these peptide mimetic protease inhibitors were improved by incorporation of a synthetic amino acid 

residue, norvaline [199]. In addition, very recently a screening with the catalytic domain of 

TMPRSS2 and known trypsin-like serine proteases inhibitors identified a sulfonylated 3-

amindinophenylalanylamide derivative able to block IV propagation in human airway epithelial 

cells [200]. The soluble proteases secreted by lung epithelial cells, such as tryptase Clara [201], 

mini-plasmin [202], and ectopic anionic trypsin I [203] are involved in low pathogenic avian IV 

activation. Indeed, Kido et al. have shown that viral replication is inhibited in vitro and in infected 

rats by endogenous inhibitors of these enzymes, such as secretory leuko-protease inhibitor and 

pulmonary surfactant [196]. An inhibitor of serine proteases is aprotinin, a 58- amino-acid single-

chain globular polypeptide purified from bovine lung tissue. Aprotinin has a wide anti-protease 

spectrum and good physiologic tolerance in animals and humans [204]. There are various licensed 

formulations of aprotinin, including Trasylol, Gordox, Antagosan, and Contrycal [198]. Zhirnov et 

al. demonstrated that in the presence of aprotinin, IV prevalently contains uncleaved HA0 and the 
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resulting viral progeny is less infectious [205]. Aprotinin blocks IV replication in chicken 

embryonated eggs [206], cultured cells [194,195], mouse lung and heart [207], and airway epithelial 

cell cultures [208]. Other drugs similar to aprotinin, such as leupeptin and camostat and their 

nucleoside and nonnucleoside analogues, proved anti-IV activity [209]. Another circulating serine 

proteases inhibitor is 1-antitrypsin (AAT), a 52 kDa glycoprotein produced by the liver, also 

known as SERPINA 1 [210]. Independently of protease inhibition, AAT appears to possess anti-

inflammatory and tissue-protective effects, as well as antiviral activity especially against IV and 

HIV [210]. Finally, as mentioned above, the HA of some highly pathogenic IV strains, such as H5 

and H7 subtypes of avian IV [211], contains a multibasic cleavage site and are activated during the 

transport from ER to the plasma membrane by furin and other cellular proteases located in the trans-

Golgi network. Thus, the inhibition of furin or furin-like proprotein convertases may also represent 

an anti-IV strategy [212,213]. 

Another possible approach to block virus-host interactions is the removal of SA from the 

cellular membrane. Sialidases, that catalyze the removal of terminal SA residues from glycoproteins 

and glycolipids, have been demonstrated to be effective inhibitors of IV infection [214]. A novel 

drug currently in clinical development as a candidate inhibitor of influenza infections is DAS181 

(also known as Fludase), a recombinant fusion protein that prevents IV attachment by enzimatically 

removing SA receptors from the epithelial surface of the human airway [214]. DAS181 is 

composed of the catalytic domain of Actinomyces viscosus sialidase fused with the respiratory 

epithelium anchoring domain of human protein amphiregulin [215,216]. The advantages of A. 

viscosus sialidase with respect to other bacterial sialidases are broad substrate specificity, higher 

specific activity, and good tolerance by the human immune system [214]. Preclinical in vitro and in 

vivo studies demonstrated the inhibitory activity of DAS181 against various seasonal strains of IAV 

and IBV and prophylactic and therapeutic effects against H5N1 virus infection in mice [217,216]. 

Importantly, this compound is also effective against strains resistant to the existing antiviral drugs, 

for example against oseltamivir-resistant H1N1 clinical isolates [216]. Moreover, a recent phase II 

clinical study of inhaled DAS181 showed a significant decrease of viral load in influenza-infected 

patients [218]. 

The attachment of IV to the host cell membrane is followed by the internalization of viral 

particles via pH-dependent receptor-mediated endocytosis [219]. IV infection is in fact inhibited by 

lysosomotropic agents, such as ammonium chloride [220] and chloroquine [221]. IAV endocytic 

uptake is promoted by the activation of cellular receptors triggering signaling cascades, in particular 

the members of receptor tyrosine kinases (RTKs) family. A possible anti-influenza strategy is thus 

the inhibition of these receptors. Recently, Eirhoff et al. showed that the modulation of the 
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expression or the activity of epidermal growth factor receptor (EGFR) and c-Met receptor causes 

the alteration of IAV entry, suggesting the involvement of these receptors in the transmission of 

entry signals upon virus attachment [222]. In fact, a virus uptake reduction and consequently a 

decrease of progeny virus titer were observed upon treatment with small molecule inhibitors of 

tyrosine kinases (i.e., genistein, SU4312, picropodophyllin, and gefitinib), as well as by a specific 

EGFR and c-Met inhibition via siRNA [222]. 

The internalized influenza virions are trafficked along the endocytic pathway to acidic late 

endosomes [77]. Cellular ATP-dependent proton pumps, named vacuolar-type H+-ATPases 

(vATPases), mantain the acidification of endosomes, lisosomes, and Golgi-derived secretory 

vesicles in eukaryotic cells [223]. Selective inhibition of acidification of virus-containing 

endosomes could provide effective protection from viral infection [224]. On this line, Müller et al. 

reported the inhibition of IAV entry by the new vATPase inhibitor saliphenylhalamide (SaliPhe), a 

phenyl derivative of salicylihalamide A (SaliA), which exhibited a better antiviral effect/toxicity 

profile in comparison with various old generation vATPase inhibitors, such as concanamycin 

(ConmyA), bafilomycin A1 (BafA1), and archazolid (ArchB) [225]. Also in previous anti-influenza 

studies ConmyA and BafA1 were used as specific potent blockers of vATPase activity, but their 

pharmacological use in vivo as antivirals resulted incompatible because of their toxicity in animals 

[226]. The target of BafA1, ArchB, and ConmyA is the subunit c of the V0 domain of vATPase 

[227,228]. The new generation vATPase inhibitors with reduced toxicity probably target a different 

binding site of the proton translocation domain with respect to older inhibitors [225]. Recently, 

other small molecules, e.g. the natural compound diphyllin, have also been shown to prevent IV 

entry by inhibiting vATPases [229]. 

Many essential cellular processes are regulated by the ubiquitin-proteasome system (UPS), 

an important intracellular protein degradation pathway. Different studies reported that the UPS is 

involved in IAV replication cycle and UPS inhibitors impair viral growth. A study by Khor et al. 

showed that treatment of infected cells in vitro with the proteasome inhibitor MG132 drastically 

reduced IV infectivity by blocking the virus entry process but not virus replication and budding 

[230]. In the presence of MG132, virus particles resulted trapped into endocytic compartments 

distinct from the classical early and late endosomes [230]. Widjaja and coworkers investigated the 

role of the UPS in IAV entry and replication using MG132 in combination with BafA1 and the 

E36ts20 hamster cell line [231], which expresses a temperature-sensitive E1 [232]. The results 

showed that IAV RNA synthesis depends on UPS; indeed, the inhibition of the proteasome affected 

IAV RNA synthesis and consequently viral protein expression. Actually, the mechanism of 

inhibition of IAV RNA synthesis by proteasome inhibitors is still unknown. The experiments 
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performed with MG132 combined with BafA1 showed that these proteasome inhibitors affect IAV 

replication at a post-fusion step. A possible mechanism of antiviral activity of proteasome inhibitors 

might be interference with the disassembly of viral particles and subsequent uncoating, resulting in 

retention of the vRNPs in the cytoplasm [231]. Also studies with the FDA-approved proteasome 

inhibitor PS-341, a dipeptidyl boronic acid also known as bortezomib or velcade, revealed anti-IV 

activity [233]. The inhibition of the activation of NF-κB pathway as a consequence of the lack of 

IκB degradation was suggested as another possible explanation of the antiviral effect of proteasome 

inhibition. In addition, a new proteasome inhibitor, VL-01, was shown to inhibit IAV replication in 

vitro in A549 cells infected with H1N1 and H5N1 IAV strains and in infected mice when 

administered by aerosolic route, as well to reduce the systemic pro-inflammatory cytokine and 

chemokine release [234]. For these reasons, although the mechanism of action of protesome 

inhibitors against IV is not yet completely clear, this class of compounds deserves further 

investigation as possible new anti-influenza drugs. 

 

Antiviral strategies involving host factors that are engaged in vRNP nuclear trafficking, viral RNA 

transcription/replication, and processing 

Viral RNA synthesis, which entails both primary mRNA transcription and vRNA replication 

processes, is directed by the virus-encoded RdRP, either transported into the nucleus directly after 

viral entry or de novo synthesized in the infected cell. The initiation of primary mRNA transcription 

also depends on the activity of host RNA polymerase II (RNAP-II) and other accessory factors such 

as the positive transcription elongation factor 1b (pTEF1b), which consists of the cyclin-dependent 

kinase 9 (Cdk9) and Cyclin T1 complex [235]. In uninfected cells, pTEF1b promotes the switch 

from transcription initiation to elongation step by phosphorylating the C-terminal domain (CTD) of 

the largest subunit of RNAP-II at Ser-5. Active pTEF1b is recruited for the replication of different 

viruses, including IV, for which it was demonstrated that pTEF1b interacts with viral RdRP 

complex, thus facilitating its association with host RNAP-II and the cap-snatching process [236]. 

The cellular RNAP-II in the “initiating status”, when associated with a nascent pre-mRNA, is 

essential for viral mRNA transcription. In fact, there is a physical interaction between viral RdRP 

and hyperphosphorylated CTD of RNAP-II that results in cap-snatching by PB2 and cleavage of the 

5’-end of cellular pre-mRNA by PA. Since siRNA-mediated knock-down of cyclin T1 resulted in 

strong inhibition of viral transcription and replication, while the enzymatic activity of Cdk9 was not 

required, Zhang and colleagues hypothesized that, to enhance viral transcription, pTEF1b might 

function as an adaptor to facilitate the association between viral RdRP and stalled cellular RNAP-II 

[236]. On this line, inhibitors of RNAP-II, such as α-amanitin and actinomycin D, also inhibited IV 
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replication [237]. Furthermore, 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole, an inhibitor of 

Cdk9 that prevents elongation catalyzed by RNAP-II, was reported to block IV replication [238]. 

However, the potential of CyclinT1/Cdk9 as an anti-influenza target should be more deeply 

investigated, given the raising interest on the role of pTEF1b in many pathogenic processes, 

including HIV replication, and the number of inhibitors that are under clinical investigation as 

potential antiretroviral drugs [239,240]. The interacting portions of viral RdRP and pTEF1b remain 

to be yet identified. The identification of the residues essential for their interaction could prompt the 

design of protein-protein interactions (PPI) inhibitors, similar to the cyclin T1-derived peptides with 

anti-HIV activity [241].  

Not only the cellular transcription machinery but also polyadenylation and splicing factors 

are involved in viral mRNA processing. As already mentioned, NS1 specifically interacts with 

cleavage and CPSF30 and PABII to achieve optimal viral mRNA processing [242,243]. In 

particular, given the essential nature of the NS1/CPSF30 interaction for IV replication, it has been 

proposed as a potential target of antiviral strategies based on PPI disruption [243]. The same 

strategy could be applied once the interactome of viral RdRP and other viral and cellular proteins 

will be fully dissected and PPI essential for IV productive replication will be identified. For 

example, six cellular proteins that functionally interact with RdRP have been recently identified as 

host factors essential for RdRP activity [191]. RNAP-II is also required for nuclear export of certain 

viral mRNAs [244], thus also this additional activity of cellular RNAP-II in IV life cycle might 

represent a potential target for novel host-based antiviral strategies. 

The nuclear translocation of vRNP components to promote new vRNP assembly and export 

depends on a number of host factors such as importins and molecular chaperones that may represent 

antiviral targets less prone to raise resistant viruses. In particular, the Hsp90 protein plays a key role 

in the nuclear translocation of vRNP components PB1 and PB2, by forming a PB1-PB2-Hsp90 

complex prior to the assembly of the RdRP complex [245]. Inhibitors of Hsp90, such as 

geldanamycin and 17-AAG, affect IV replication in cell culture possibly by blocking the nuclear 

import of PB1 and PB2 and by inducing their degradation [246]. Other host factors representing 

possible antiviral targets are proteins involved in the nuclear export of vRNP. For instance, the 

interaction between nucleoporin Nup98 and viral NS2, also called viral nuclear export protein 

(NEP), has been reported [247]. The GLFG repeat domain of Nup98 has a transdominant effect on 

Nup98/NS2 and blocks virus propagation [247], suggesting that this interaction could be a target of 

an antiviral strategy based on PPI disruption. Also leptomycin B, which is a specific inhibitor of the 

binding of chromosome region maintenance 1 protein (CRM1)/Exportin complex to nuclear export 

signals, blocks IAV vRNPs nuclear export in infected cells [248]. Thus, vRNPs nuclear export is 
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CRM1 pathway-dependent and is potentially susceptible to inhibition by small molecules. Very 

recently, other specific nuclear export inhibitors of natural origin, valtrate and 1-acetoxychlavicol 

acetate, that target cellular CRM1 have been reported to be potent inhibitors of IAV replication in 

infected cells [249]. The cellular protein Hsc70 is also involved in the regulation of the nuclear 

export (but not import) of vRNPs, via an interaction with viral M1 protein. The nuclear export of 

Hsc70 is also blocked by leptomycin B; thus also this host factor could represent a possible antiviral 

target [250]. Very recently, the serum- and glucocorticoid-regulated kinase 1 (SGK1) has been 

identified as essential for IAV replication in A549 cells [251]. By using siRNA-mediated 

knockdown and pharmacological inhibition, it was demonstrated that SGK1 is involved in vRNPs 

nuclear export and that a specific SGK1 inhibitor, GSK 650394, is able to block IAV replication in 

A549 cells. Thus, inhibition of SGK1 may represent another anti-IV strategy. 

 

Antiviral strategies involving host signaling pathways 

Many host cell signaling pathways are affected during IV infection; among these there are the 

mitogen-activated protein kinase Raf/MEK/ERK pathway, the phophatidylinositol-3-

kinase/Akt/mTOR pathway, the protein kinase C (PKC) pathway, the NF-κB pathway, and a more 

recently identified inositol-requiring enzyme (IRE) stress pathway. The activation of host signaling 

pathways is essential for productive IV infection, since small molecules that inhibit any step of 

signal transduction are also able to block virus propagation by affecting different events in IV life 

cycle as it will be described below. 

The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to 

a variety of stimuli, such as mitogenic factors, oxidative stress, inflammatory cytokines, and 

morphogenic stimuli. This pathway is mainly constituted by a tripartite module effectors consisting 

of a series of protein kinases that activate the downstream effectors by phosphorylation [252]. There 

are three principal MAPKs pathways depending on the stimuli, effectors, and response. It is mainly 

accepted that the extracellular-regulated kinase (ERK) module is activated by mitogenic stimuli and 

leads to cell proliferation; the JNK/p38 module is activated by oxidative stress, inflammatory 

cytokines, and other stimuli and leads to apoptosis and inflammation; and the ERK5 module is 

activated by morphogenic stimuli [252]. IV is known to activate all the MAPKs pathways and the 

inhibition of this activation has a detrimental effect on virus replication [253]. The phosphorylating 

activity of MAPKs pathways effectors plays a major role in vRNP trafficking, particularly in NEP-

mediated vRNP nuclear export, and in viral infectious particle production [254-256]. Of particular 

interest, MAPKs inhibition can be obtained both pharmacologically (by using inhibitors) and by 

restoring the physiological reduced state of intracellular environment of the infected cells after the 
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oxidative stress caused by IV infection [257]. In fact, MAPKs pathway, like other cellular signaling 

pathways activated by IV, such as PI3K and NF-κB-mediated signaling, is strictly dependent on 

host cell redox state [258-260]. On this line, MAPKs inhibitors that can block IV replication and the 

pro-inflammatory cascade are represented by kinase inhibitors, such as the MEK-specific inhibitor 

UO126 [261,262,253], and antioxidant compounds, such as p38 inhibitor SB203580 and N-

acetylcysteine [263,264], glycyrrizin [265], glutathione and its derivatives [266,267], and curcumin 

and resveratol derivatives [268]. All these compounds are potential new host-based anti-influenza 

drugs that could be used in combination with “old” anti-influenza drugs such as oseltamivir, as 

prospected in [269].  

PKC plays a role at different stages of IAV replication, in particular in virus entry. In fact, 

the binding of viral HA to the host cell activates PKC signaling [270] and, according to this, the 

PKC signaling inhibitors bisindolylmaleimides block viral entry possibly at the stage of post-fusion 

endocytosis [271,272]. Furthermore, also the viral M1, PB1-F2, and NS1 proteins are substrates of 

PKC [273-275]. In keeping with the importance of PKC signaling during IV infection, the block of 

its activation or the treatment with specific inhibitors affect not only virus entry [272] but also 

vRNP trafficking [273] and viral propagation [276]. 

The redox state of the infected cell also influences other two important processes in the IV 

life cycle, i.e., HA maturation and NF-kB activation. HA is a disulfide-rich protein and is initially 

found as a glycosylated monomer in the endoplasmic reticulum (ER). Then it undergoes 

trimerization, oxidation catalyzed by the cellular protein disulfide isomerase (PDI), cleavage, and 

finally is inserted into the plasma membrane. The activity of PDI is enhanced by the oxidative 

environment produced by IV infection. Thus, compounds that are able to restore the cellular redox 

state, such as glutathione, are also able to exert antiviral activity by two distinct mechanisms: (i) by 

interference with the activation of redox-sensitive signaling pathways exploited by the virus, such 

as MAPKs and PI3K pathways and (ii) by blocking the maturation of viral HA protein [257,256]. 

Also thiazolides are potential broad-spectrum antivirals that exert anti-influenza activity by 

blocking HA terminal glycosylation and impairing the trafficking of HA precursors from ER to 

Golgi [277]. However, the exact mechanism of action is still to be elucidated, although a cell-

mediated effect of thiazolides has been postulated due to the observed inhibition of different viruses 

by this class of molecules.  

The redox-sensitive signaling pathway of phosphoinositide 3-kinase (PI3K)/Akt/mTOR is 

also activated by different extracellular stimuli and by IV infection. Its activation transduces the 

transcriptional signal through a phosphorylation cascade of other downstream kinases such as 

Akt/PKB, cAMP-dependent kinase (PKA), and ribosomal S6 kinases and mTOR. The role of PI3K 
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pathway activation during IV infection is still controversial. There is increasing evidence that either 

pro-viral or anti-viral effects following PI3K pathway activation might be dependent on the stage of 

virus cycle at which activation occurs, as well as on the viral strain and the spatial localization of 

kinase effectors [164,278,279]. The IV NS1 protein is known to bind PI3K [280] and this 

interaction could play a role in the activation of NF-κB activation and pro-inflammatory cascade 

and anti-apoptotic signaling; however, other viral factors could contribute to PI3K pathway 

activation. Thus, there are still a number of unresolved questions about IV and PI3K pathway 

interplay [281]. Recently, a role for PI3K and ERK activation in virus entry was reported, since the 

early activation of both kinases stimulates acidification of the intracellular environment induced by 

the vATPase and the internalization process [255]. The key role of the activation of PI3K pathway, 

although still a little fuzzy, is mirrored by the evidence that compounds targeting PI3K or 

downstream effectors, such as PI3K inhibitors wortmannin [282] and LY294002 [283], or mTOR 

inhibitors [284] block IAV replication in vitro. For this reason, considering the increasing 

availability of PI3K/Akt/mTOR inhibitors already approved or under clinical investigation as 

anticancer drugs [285], the inhibition of this host cell pathway as a new anti-influenza approach 

clearly deserves further investigation. Finally, very recently the small molecule multi-kinase 

inhibitor ON108110 was reported to reduce the IAV replication by restricting viral RNA synthesis 

[286]. 

Another pathway targeted by IV infection is that of NF-κB, a family of transcription factors 

that play a role in induction of inflammation, activation of immune response, proliferation, and 

apoptosis [287]. The activation of NF-κB pathway is critical for IV productive replication [288-

290] and is the result of the ability of viral HA, NP, and M1 proteins to produce oxidative radicals. 

The oxidative stress activates redox-sensitive signaling pathways and the NF-κB inhibitor IκB 

kinase (IKK), which is responsible of its derepression and transcriptional activation [291]. The 

essential nature of active NF-κB for IV replication makes it a promising target of antiviral 

strategies. On this line, a number of inhibitors of NF-κB activation, such as acetylsalicylic acid 

[288], SC75741 [292], BAY 11-7082 [293], pyrrolidine dithiocarbamate [294], as well as 

antioxidant agents (see above and [295]), have been reported to block IV replication and 

propagation. 

Recently, the unfolded protein response (UPR) pathway, which is activated upon ER stress 

[296], has also been proposed for new host-based anti- IV strategies. The UPR pathway is activated 

in the case of increasing protein misfolding induced by ER stress. The high presence of misfolded 

proteins in the ER induces UPR activation, upregulation of chaperones transcription, the decrease of 

cellular mRNA transcription, and the increase of ER-associated proteasomal degradation of 
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unfolded proteins. Inositol-requiring enzyme 1 (IRE1) is involved in the latter process and is also 

the only UPR pathway branch activated by IAV infection [296]. IRE1 possesses both kinase and 

endoribonuclease activity and is able to activate the MAPKs signalling and to activate, by favouring 

its unusual splicing, the transcription factor XBP1 involved in ER-associated protein degradation. 

Inhibition of IRE1 activation by chemical chaperones that alleviate ER stress or its enzymatic 

inhibition by small molecule compounds also block IAV replication, thus opening a new therapeutic 

intervention option by targeting a host cellular mechanism; however, possible off-target effects 

related to the inhibition of the cellular UPR pathway should also be carefully considered [296]. 

The cellular cyclooxigenases (COX) pathway is also engaged during IV infection, in 

particular in the case of human infection with highly pathogenic avian strains such as H5N1 [297]. 

In fact, the H5N1 strain strongly upregulates COX-2 during the infection of human macrophages, 

and COX-2 mediated pro-inflammatory signaling could be responsible of the hypercytokinemia that 

distinguishes the pathogenic mechanism of H5N1 strain in humans. Recently, it was demonstrated 

that the non-steroidal COX-2 inhibitor nimesulide is able to inhibit H5N1 strain replication in 

human macrophages; thus, also COX-2 could represent a promising cellular target for new anti- IV 

strategies [298].  

In conclusion, there is increasing evidence that understanding the molecular mechanisms 

underlying how IV modulates the host cell signaling pathways could be the key that opens the door 

to innovative therapeutic antiviral strategies.  

 

Antiviral strategies involving host cell metabolism 

IV uses cellular constituents to produce its own viral RNAs, proteins, and lipid envelope. However, 

the virus needs to purchase dNTPs, amino acids, and membrane components from the host cell and 

the best way is to induce the degradation of host nucleic acids, proteins, and organelles to obtain 

new building blocks to be recycled in the synthesis of viral components. Autophagy is a 

physiological process aimed at self-renewal and recycling of cellular constituents and consists of 

degradation of organelles and proteins that occurs into lysosomes; however, it can be induced by 

various stress conditions and by infection with certain viruses, including IV, through the inhibition 

of the mTORC1 pathway [299]. The mTORC1 inhibition, obtained either pharmacologically or 

under stress conditions, results in the activation of the so-called autophagy-related genes and in 

autophagosome biogenesis. However, it is still matter of debate whether IV really induces 

autophagy or if autophagy is just a consequence of the perturbation of cellular pathways and 

homeostasis induced by IV infection [299]. Waiting for answers to the high number of open 

questions, the presumed IV-induced autophagy is an emerging target of new antiviral strategies. 
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Indeed, two molecules recently identified by cell-based screenings, i.e., procyanidin and 

evodiamine, were able to block autophagy and also IAV replication in infected cells [300,301]. 

Other cellular proteins recently have emerged as host restriction factors and highlight the strict 

interplay with viral proteins, particularly NS1. This is the case of REDD1 protein, a major negative 

regulator of the mTORC1 pathway, whose expression is increased by the treatment with 

naphtalimides, antiviral compounds that are able to antagonize NS1 and thus to reduce IV 

propagation [302].  

The degradation of cellular nucleic acids is not the only strategy whereby IV enriches the 

dNTPs pool for viral RNA synthesis [303]; in fact, also de novo synthesis of pyrimidine and uracil 

salvage pathways are engaged during IV infection, depending on the cell type [304]. Pyrimidines 

are important precursors used for RNA (uracil and cytosine), glycoproteins, and phospholipids 

biosynthesis. On this line, compounds able to deplete the cellular pyrimidine pool show anti-

influenza activity. An example is the small molecule A3, identified by HTS, which possesses broad-

spectrum antiviral activity by targeting pyrimidine metabolism and in particular the mitochondrial 

enzyme dihydroorotate dehydrogenase (DHODH) [304]. This enzyme is an antiviral target of other 

two antiviral drugs, i.e., leflunimide and brequinar [305]; however, the authors hypothesized a 

different mechanism of action for A3. DHODH has emerged as a possible anti-IV target of another 

class of inhibitors, the quinolone carboxylic acid derivatives, which were reported to inhibit IAV 

replication in infected cells [306]. Furthermore, by studying their effects on DHODH inhibition, it 

was demonstrated that DHODH block leads to the up-regulation of cellular antiviral factors, such as 

the NXF1 protein, which is able to reverse the cellular mRNA export block mediated by viral NS1 

protein [306]. However, de novo pyrimidine synthesis requirement for efficient viral replication 

may be cell- and species-specific, since it was reported that the nonnucleoside DHODH inhibitor 

D282 showed anti-IAV and IBV activity in vitro but not in infected mice [307].  

Lipid mediators and lipid metabolic pathways are also involved in IV infection. Very 

recently, it was reported the identification of a potent IV replication inhibitor identified by a 

screening using derivatives of omega-3 polyunsaturated fatty acid (PUFA) [308], which are 

biosynthetic precursors of lipid mediators with anti-inflammatory and pro-resolving properties 

[309]. The omega-3 PUFA-derived lipid mediator protectin D1 (PD1) is able to potently inhibit 

IAV replication in vitro and in infected mice also at late stages of infection [308]. Furthermore, it 

was demonstrated that its mechanism of action specifically involves the impairment of viral 

transcripts nuclear export mediated by the cellular protein NXF1, without significant effects on 

cellular mRNA export or antiviral response. Thus, the further clinical development of PD1, given 

its potency and late-stage efficacy, is strongly encouraged.  
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Not only lipid soluble mediators, but also lipid metabolism has been involved in IV 

infection, since it was demonstrated that budding and release of new virus particles occur at specific 

domains of the plasma membrane, called lipid rafts [310]. Lipid rafts are dynamic microdomains of 

the cell membrane characterized by a higher percentage of cholesterol, sphingolipids, and 

phospholipids containing saturated fatty acids; this particular composition makes lipid rafts 

extremely flexible. IV HA and NA proteins are recruited at these specific domains, together with 

other cellular proteins responsible of vesicle formation, thus they are considered to be the sites of 

budding initiation [310]. It was reported that cholesterol depletion [311] or the expression of an 

IFN-inducible cellular protein, viperin [312], disrupt plasma membrane by perturbing lipid raft 

formation. Viperin interacts with and inhibits farnesyl diphosphate synthase (FPPS), a cellular 

enzyme involved in the synthesis of various isoprenoid-derived precursors of cholesterol and other 

essential cellular components [312] Furthermore, inhibition of FPPS, either by siRNA or by viperin 

expression, also inhibits IAV release and replication by perturbing lipid raft correct formation 

[312]. These findings suggest that perturbing membrane fluidity and/or composition could be a new 

host-based anti-influenza strategy. The recent identification by in silico screenings of new FPPS 

inhibitors, beside traditional bisphosphonate FPPS inhibitors, opens new avenues for further 

investigation of the potential anti-influenza activity of FPPS inhibitors, which are already under 

clinical investigation as anti-cancer and anti-infective agents [313,314]. In keeping with the 

importance of membrane composition for efficient IV replication, the inhibition of cellular 

sphingolipids biosynthesis has also been reported to have an abortive effect on the replication of 

IAV and IBV and to perturb the intracellular distribution of viral HA protein [315]. Very recently, 

also the biosynthetic pathway of sphingomyelin was reported to be essential for the intracellular 

transport of viral glycoproteins; thus, its modulation could also represent a possible antiviral 

strategy [316].  

 

Antiviral strategies involving host cell antiviral response 

Infection of ssRNA viruses, including IV, is known to be recognized by certain cellular pattern 

recognition receptors (PRRs), such as transmembrane Toll-like receptors (TLR) 3, 7, and 9, and 

cytoplasmic RIG-I like receptors (RLRs), which sense the invasion of a pathogen and counteract it 

both by stimulating an intracellular antiviral state and by sensitizing neighboring cells. One of the 

most important cellular defense strategy against IV infection is the activation of type I and III IFN 

pathway [317]. Type I IFN expression is the result of the PRRs activation and downstream 

signaling and leads in turn to the activation of more than 300 IFN-stimulated genes , whose 

products cooperate to inhibit IV replication at different stages, to trigger the adaptive immune 
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response, and ultimately to induce apoptosis of the infected cell. IVs have evolved various strategies 

to evade IFN response (reviewed in [317]) with NS1 representing the major player (see above). 

Given the pivotal role of IFN pathway in the early anti-influenza cellular response, its 

activation or enhancement represent an important option for antiviral intervention. Small molecules 

that act as agonists of TLRs and RLRs are able to induce IFN and other pro-inflammatory cytokines 

and chemokines, as well as to function as vaccine adjuvants. Indeed, treatment with poly(I·C), CpG 

oligodeoxynucleotides (ODNs), and other TLRs ligands proved to be effective in protecting aged 

mice against lethal IAV infection. Recently, a cell-based HTS aimed at identifying small molecules 

able to induce IFN was reported [318]. The lead compound 3 identified by this HTS is able to 

induce an IFN-dependent antiviral state that cannot be counteracted by IAV NS1 protein [318]. 

Furthermore, a novel small molecule, ASN2, which inhibits viral RdRP subunit PB1 was reported 

to have additional IFN-inducing properties [319]. ASN2 was identified by a cell-based HTS aimed 

at identifying molecules able to activate luciferase expression under control of INF-β promoter and 

is an effective inhibitor of IAV replication both in infected cells and in mice. The IFN-inducing 

properties are most likely due to the ability of ASN2 to inactivate PB1 and therefore to the loss of 

NS1 expression [319]. Also the treatment with high-molecular-weight poly-γ-glutamate (HM-γ-

PGA) produced by a bacterium from Bacillus sp. was reported to induce IFN response and to exert 

potent inhibition of highly pathogenic IAV infection in humanized mice [320]. Short synthetic 

RNA molecules with an exposed 5’-triphosphate moiety are substrate for RIG-I and were reported 

to be able to induce a potent antiviral response that results in inhibition of IAV replication in A549 

cells and also to protect mice from lethal IV infection [321].  

In conclusion, the induction of IFN antiviral response by small molecules or polymers is 

another promising strategy for the development of new anti-influenza drugs that could be used in 

combination with other already available drugs to enhance their efficacy and to counteract 

synergistically the viral infection.  

 

Concluding remarks 

Infection with IV is a life-threatening event for high-risk patients, such as the elderly and patients 

with cardiovascular, pulmonary, or renal diseases, diabetes, and immunodeficiency, but also for the 

whole human population. The IV disseminate rapidly around the world, and how and when new 

IAV emerge as pandemic strains and their mechanism of pathogenesis are still poorly understood. 

The virus changes very quickly, humans have no natural immunity to it and infected birds may be 

able to transmit it before they show symptoms. Any virus with these characteristics could devastate 

the human population while causing massive economic and social chaos. The last - but not least - 
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emerged avian highly pathogenic IAV to be reported is the H7N9 virus, which is a new reassortant 

of avian origin isolated in China and associated with severe respiratory disease with 40% of 

mortality [322]. To date, this virus represents a major concern, since it might be able to become 

pandemic [323]. Besides vaccination, treatment with M2 ion channel blockers and NA inhibitors is 

currently the only option for influenza management. However, these weapons are clearly 

insufficient and the rapid and extensive development of resistance to the existing drugs has raised 

great public health concern. There is therefore an urgent need to develop new antiviral strategies 

targeting other processes in the IV life cycle. Current research efforts include (i) the improvement 

of existing drugs; (ii) the development of inhibitors against other antiviral targets, in particular 

RdRP, NP, and NS1; (iii) strategies to block virus-cell interactions occurring at different stages of 

IV replication, such as attachment, entry, viral genome transcription and replication, nuclear export 

of viral products, and viral particles release; and (iv) modulation of cell metabolism and host 

antiviral response. In addition, like for other fast mutating viruses such as HIV and HCV, the 

application of antiviral drugs in combination, with different mechanisms of action, is being actively 

pursued, as it could be more effective in treating virulent and pandemic IV strains. Given the broad 

array of different anti-IV strategies under development, it is our hope that the discovery of new 

drugs will very soon provide wider options for improved prophylactic and therapeutic approaches 

against influenza infection. 
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Figure legends  

 

Fig. 1.  Antiviral strategies targeting viral functions essential for IV replication. 

The first step of IV infection is the interaction between viral HA and cellular SA-containing 

receptors, resulting in the attachment of the virion to the target cell. Attachment inhibitors, such as 

mAb directed against the globular head of HA, natural and synthetic compounds containing SA, 

HA-binding peptides, and compounds that recognize glycosylation sites of HA, interfere with this 

process and block IV infection. After the internalization of the virion, HA mediates the fusion of the 

viral envelope with the endosomal membrane, a pH-dependent process that can be inhibited by 

fusion inhibitors such as small molecules that inhibit the low pH-induced conformational change of 

HA (e.g., ARB), neutralizing mAbs directed against the stem region of HA, and high-molecular-

weight molecules that prevent the fusion by steric hindrance. The activity of the viral protonic pump 

M2 leads to the acidification of the endosome and to the viral uncoating, followed by the release of 

the vRNP into the cytoplasm. M2 inhibitors such as adamantanes block IAV (but not IBV) 

replication at this step. After nuclear translocation of the vRNP, the viral genomic segments are 

transcribed by the viral RdRP into mRNAs that are then transported into the cytoplasm and 

translated into viral proteins necessary for viral genome replication, also catalyzed by viral RdRP. 

Small molecules able to interfere with RdRP complex activities can inhibit both transcription and 

replication steps. Transcription, replication, correct assembly of vRNPs, and their nuclear export 

require the activity of viral NP. Also small molecules targeting NP functions have demonstrated 

effective anti-influenza activity. After the assembly of new virions, they are transported at the cell 

membrane and then released by budding process. The activity of NA present on the virion surface is 

essential for the cleavage of SA molecules from HA and to allow the release of viral particles. NA 

inhibitors such as zanamivir and oseltamivir block IAV and IBV replication by interfering with this 

step.  
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Fig. 2.  Antiviral strategies involving host factors engaged in IV replication. 

IV infection can be inhibited by inhibitors of extracellular proteases responsible of HA activation. 

Fludase interfers with the interaction of viral HA to cellular SA-containing receptors, while 

tyrosine-kinase receptors and EGFR inhibitors, as well as chemical inhibitors of endocytosis and 

macropinocytosis processes block the endosomal internalization of the virus particle. vATPase 

inhibitors have shown activity against the pH-dependent fusion step that allows viral uncoating and 

also proteasome inhibitors might have an inhibitory effect on the latter process. After the nuclear 

import of vRNPs, the first step is the transcription of the viral genome into viral mRNA and this 

process is catalyzed by RdRP with the involvement of the cellular RNA polymerase II and 

transcription elongation factor pTEF1b. Inhibitors of both RNA polymerase II and pTEF1b 

complex are able to interfere with this process and to block viral mRNA synthesis. Viral mRNAs 

are then exported into the cytoplasm and translated into viral proteins required for the viral genome 

replication, which takes place into the nucleus. At this stage, Hsp90 inhibitors can be effective in 

blocking the nuclear import of viral proteins. The newly synthesized vRNPs have then to be 

exported into the cytoplasm to be assembled into the new virions. Small molecule inhibitors of 

cellular Crm1 and SGK1 proteins involved in the vRNPs export can inhibit this step. Antioxidants 

able to restore the cellular redox potential and intracellular protease inhibitors interfere with the 

correct processing and maturation of HA; in addition, inhibitors of mitochondrial DHODH, an 

enzyme of the pyrimidine biosynthetic pathway, have demonstrated anti-influenza activity. Also the 

soluble lipid mediator PD1 is able to inhibit IV replication by interfering with the nuclear export of 

viral transcripts mediated by the cellular protein NFX1. Finally, compounds that interfere with 

proper lipid raft formation at the plasma membrane have also shown the ability to block IV 

budding. 

 

Fig. 3.  Antiviral strategies involving host signaling pathways, metabolism, and antiviral 

defense. 
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IV infection triggers the activation of a series of cellular signaling pathways as well as the IFN-

dependent antiviral response. PKC and COX-2 pathways are activated directly upon infection, 

while the oxidative stress that follows viral infection activates several redox-sensitive cellular 

pathways, such as NF-κB, PI3K, and MAPKs. COX-2 inhibitors have demonstrated to inhibit both 

IV replication and viral-induced inflammation and cytokine production. PKC inhibitors are able to 

interfere with post-fusion events and endocytosis after virion internalization. Antioxidants that 

interfere with redox-sensitive cellular processes also interfere with viral functions such as vRNPs 

trafficking and nuclear export, as well as HA maturation, thus blocking viral replication. 

Furthermore, IV replication in the host cell activates the UPR in the ER, which can be counteracted 

by chemical chaperones that alleviate ER stress and have shown anti-influenza activity. The 

antiviral response activated by IV is dependent on IFN cascade activation and initiates with the 

recognition of viral patterns by the TLR-3, -7, and -9 on the cell membrane and by cytoplasmic 

RLRs, which act as sensors of viral invasion. TLRs and RLRs agonists as well as CpG ODNs have 

shown anti-influenza activity by stimulating the IFN response. The viral NS1 protein antagonizes 

this antiviral response, thus antiviral strategies either targeted against this protein or involving the 

activation of IFN pathway have inhibitory effects on IV replication. 

 


