
fgene-09-00497 October 23, 2018 Time: 12:50 # 1

ORIGINAL RESEARCH
published: 23 October 2018

doi: 10.3389/fgene.2018.00497

Edited by:
Robert Klein,

Icahn School of Medicine at Mount
Sinai, United States

Reviewed by:
Juergen Reichardt,

Yachay Tech University, Ecuador
Hui-Qi Qu,

Children’s Hospital of Philadelphia,
United States

*Correspondence:
Seth M. Weinberg
smwst46@pitt.edu

†Joint first authors

Specialty section:
This article was submitted to

Applied Genetic Epidemiology,
a section of the journal

Frontiers in Genetics

Received: 06 July 2018
Accepted: 05 October 2018
Published: 23 October 2018

Citation:
Roosenboom J, Indencleef K,

Lee MK, Hoskens H, White JD, Liu D,
Hecht JT, Wehby GL, Moreno LM,

Hodges-Simeon C, Feingold E,
Marazita ML, Richmond S,

Shriver MD, Claes P, Shaffer JR and
Weinberg SM (2018) SNPs

Associated With Testosterone Levels
Influence Human Facial Morphology.

Front. Genet. 9:497.
doi: 10.3389/fgene.2018.00497

SNPs Associated With Testosterone
Levels Influence Human Facial
Morphology
Jasmien Roosenboom1†, Karlijne Indencleef2†, Myoung Keun Lee1, Hanne Hoskens2,
Julie D. White3, Dongjing Liu4, Jacqueline T. Hecht5, George L. Wehby6,
Lina M. Moreno7, Carolyn Hodges-Simeon8, Eleanor Feingold4, Mary L. Marazita1,4,
Stephen Richmond9, Mark D. Shriver3, Peter Claes2, John R. Shaffer1,4 and
Seth M. Weinberg1,4*

1 Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA,
United States, 2 ESAT-PSI, Department of Electrical Engineering, Medical Imaging Research Center, KU Leuven, Leuven,
Belgium, 3 Department of Anthropology, Penn State University, University Park, PA, United States, 4 Department of Human
Genetics, University of Pittsburgh, Pittsburgh, PA, United States, 5 Department of Pediatrics, University of Texas McGovern
Medical Center, Houston, TX, United States, 6 Department of Health Management and Policy, University of Iowa,
Iowa City, IA, United States, 7 Department of Orthodontics, University of Iowa, Iowa City, IA, United States,
8 Department of Anthropology, Boston University, Boston, MA, United States, 9 Applied Clinical Research and Public Health,
School of Dentistry, Cardiff University, College of Biomedical and Life Sciences, Cardiff, United Kingdom

Many factors influence human facial morphology, including genetics, age, nutrition,
biomechanical forces, and endocrine factors. Moreover, facial features clearly differ
between males and females, and these differences are driven primarily by the influence
of sex hormones during growth and development. Specific genetic variants are known
to influence circulating sex hormone levels in humans, which we hypothesize, in
turn, affect facial features. In this study, we investigated the effects of testosterone-
related genetic variants on facial morphology. We tested 32 genetic variants across 22
candidate genes related to levels of testosterone, sex hormone-binding globulin (SHGB)
and dehydroepiandrosterone sulfate (DHEAS) in three cohorts of healthy individuals
for which 3D facial surface images were available (Pittsburgh 3DFN, Penn State
and ALSPAC cohorts; total n = 7418). Facial shape was described using a recently
developed extension of the dense-surface correspondence approach, in which the
3D facial surface was partitioned into a set of 63 hierarchically organized modules.
Each variant was tested against each of the facial surface modules in a multivariate
genetic association-testing framework and meta-analyzed. Additionally, the association
between these candidate SNPs and five facial ratios was investigated in the Pittsburgh
3DFN cohort. Two significant associations involving intronic variants of SHBG were
found: both rs12150660 (p = 1.07E-07) and rs1799941 (p = 6.15E-06) showed an
effect on mandible shape. Rs8023580 (an intronic variant of NR2F2-AS1) showed an
association with the total and upper facial width to height ratios (p = 9.61E-04 and
p = 7.35E-04, respectively). These results indicate that testosterone-related genetic
variants affect normal-range facial morphology, and in particular, facial features known
to exhibit strong sexual dimorphism in humans.
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INTRODUCTION

Differences in facial morphology between males and females
are well documented, with major shape differences apparent in
the jaw, lips, eyes, nose and cheek regions (Toma et al., 2008;
Klotz et al., 2010; Claes et al., 2012b; Koudelová et al., 2015).
Although facial sexual dimorphism has now been described in
children (Kesterke et al., 2016; Matthews et al., 2016, 2018),
differences become much more pronounced after the onset of
puberty. This accelerated dimorphism post-puberty is the result
of changes in circulating hormone levels, which regulate the
development and differentiation of male and female primary and
secondary sex characteristics, such as voice, body shape and facial
morphology (Hines, 2011). In fact, testosterone levels are 20–30
times higher in males than in females during this developmental
stage (Duncan et al., 2009).

Several studies showed a relationship between testosterone
levels (either measured directly or through proxy) and
facial morphology, using several different study set-ups and
approaches. For example, the second to fourth digit ratio
(2D:4D), which is a marker of prenatal androgen exposure,
corresponds to measures of facial masculinity and sexually
dimorphic facial features (Schaefer et al., 2005; Meindl et al.,
2012). Similarly, Whitehouse et al. (2015) investigated the effect
of prenatal testosterone exposure (measured in umbilical cord
blood) on postnatal facial morphology, and showed that higher
cord testosterone levels were associated with masculinized
facial features. Hodges-Simeon et al. (2016) showed that facial
width/lower facial height decreases, cheekbone prominence
decreases, and lower face height/full face height increases under
the influence of pubertal testosterone. In a study by Marečková
et al. (2011), facial appearance was rated to be more masculine
in males with a higher level of bioavailable testosterone. Other
evidence for the influence of testosterone on facial morphology
comes from the craniofacial differences in boys with delayed
puberty before and after testosterone treatment. Verdonck
et al. (1999) described an accelerated craniofacial growth after
testosterone treatment, especially in total mandibular length,
ramus length, and upper and anterior facial height.

The amount of circulating testosterone present in the body
is the result of many factors, including genetics. Genome-wide
association studies (GWAS) have identified multiple variants
that influence testosterone regulation in healthy adults (Ohlsson
et al., 2011; Zhai et al., 2011; Coviello et al., 2012; Jin et al.,
2012; Prescott et al., 2012; Chen et al., 2013; Ruth et al., 2016),
including variants in SHBG, the gene encoding sex-hormone
binding globulin. We hypothesize that these variants may also be
associated with aspects of facial morphology, particularly those
features that demonstrate strong evidence of sexual dimorphism
in humans. In this study, we investigated the effect of previously
identified genetic variants involved in testosterone regulation on
normal-range human facial shape in 7418 European individuals
belonging to three cohorts with available 3D facial and genomic
data. Additionally, the association between these candidate SNPs
and five facial ratios was investigated in a subset of individuals;
these ratios have been shown in the literature to correlate with
testosterone levels or testosterone-related traits (e.g., aggressive

behavior). As a consequence, this study has the potential to
shed new light on the biological basis of human facial sexual
dimorphism and, more generally, normal-range facial shape
variation.

MATERIALS AND METHODS

Study Sample
The study sample consists of 7418 individuals belonging to three
separate cohorts: the Pittsburgh 3D Facial Norms (3DFN) cohort
(Weinberg et al., 2016), the Penn State cohort and the Avon
Longitudinal Study of Parents and their Children (ALSPAC)
cohort (Boyd et al., 2013; Fraser et al., 2013). The Pittsburgh
3DFN cohort consists of 2297 participants (age 3–40 years) of
self-reported Western-European descent without a history of
facial defects or craniofacial surgery. These individuals were
recruited at four United States sites: Pittsburgh, PA; Seattle, WA;
Houston, TX and Iowa City, IA. The Penn State cohort consists
of 1555 subjects (age 18–83 years) of European descent without
a history of facial defects or craniofacial surgery, recruited
from a number of United States and international sites: State
College, PA; New York, NY; Urbana-Champaign, IL; Twinsburg,
OH; Dublin, Ireland; Rome, Italy; Warsaw, Poland and Porto,
Portugal. 3566 subjects of the Avon Longitudinal Study of Parents
and their Children (ALSPAC) cohort (age 14–17 years) were
included in this study These subjects are of Western–European
descent without a history of facial defects or craniofacial surgery,
recruited in Avon, England. ALSPAC recruited 14541 pregnant
women resident in Avon, United Kingdom with expected dates of
delivery 1st April 1991 to 31st December 1992. 14541 is the initial
number of pregnancies for which the mother enrolled in the
ALSPAC study and had either returned at least one questionnaire
or attended a “children in focus” clinic by 19/07/1997. Of these
initial pregnancies, there was a total of 14676 fetuses, resulting in
14062 live births and 13988 children who were alive at 1 year of
age. Please note that the study website contains details of all the
data that is available through a fully searchable data dictionary 1.
Genome-wide data was available for 8,952 subjects of the B2261
study which is titled “Exploring distinctive facial features and
their association with known candidate genes.”

Defining Facial Phenotypes
3D facial surface images were acquired using multiple
stereophotogrammetry systems: the VECTRA H1 camera
(Canfield Scientific, Parsippany, NJ, United States) and the
3dMDface system (3dMD, Atlanta, GA, United States) were
used for the Pittsburgh 3DFN and Penn State cohorts, and
the Konica Minolta Vivid 900 laser scanner (Konica Minolta
Sensing Europe, Milton Keynes, United Kingdom) was used for
the ALSPAC cohort. The process of registration, quality control
and segmentation is described in detail in Claes et al. (2018).
Briefly, the 3D images were imported in MatlabTM 2016b for a
spatial-dense registration of the images (Claes et al., 2012a), in
which a symmetrical anthropometric mask was mapped onto

1http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
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the images, leading to a homologous spatial-dense configuration
of quasi-landmarks. Subsequently, a two-step image quality
control was performed: first, outlier faces were identified by
calculating the z-scores from the Mahalanobis distance between
the mean face and each subject, and subjects with z-scores
higher than two were manually checked; second, a score was
calculated that reflects the missing data in the images (due to
mesh artifacts or holes) and images with a high score were
also manually checked and removed from the dataset when
necessary. The spatial-dense configurations then underwent a
generalized Procrustes superimposition to eliminate differences
in orientation, position and scale (Rohlf and Bookstein, 2003).
Analyses were done using symmetrized images, created by
averaging the original and reflected images (created by changing
the sign of the x-coordinate of the original mapped images).

The images were adjusted for the effects of age, age 2,
sex, weight, height, facial size and the first four principal
components (PCs) of genetic ancestry using partial least-
squares regression. The images were adjusted in each dataset
separately. After the adjustment, segmentation was performed
on all three datasets combined to develop multivariate facial
phenotypes representing specific facial modules. Briefly, facial
modules were defined by grouping vertices that are strongly
correlated and connected using hierarchical spectral clustering.
The strength of co-variation between the modules was defined
using Escoufier’s RV coefficient (Robert and Escoufier, 1976),
which is a scalar measure of the strength of association
between two groups of variables and is used in morphometric
studies on biological shapes (Klingenberg, 2009). The RV
coefficient allowed us to build a structural similarity matrix
that defined the hierarchical construction of 63 facial modules,
which is represented in Figure 1. Subsequently, for each of
the 63 modules, quasi-landmarks were aligned via generalized
Procrustes superimposition, followed by principal component
analysis (PCA) to reduce the dimensionality of the data, and
finally parallel analysis to determine the number of PCs needed
to adequately capture the shape variation (Hayton et al., 2004).
These linear combinations of PCs formed the multivariate shape
phenotypes to be used in genetic association testing (described
below).

Genotyping and Quality Control
Genotyping and quality control of the Pittsburgh 3DFN and Penn
State cohorts were previously described by Claes et al. (2018).
Briefly, for the Pittsburgh 3DFN cohort, DNA was extracted
from saliva samples and genotyped along with 72 HapMap
control samples on the Illumina HumanOmniExpress + Exome
v1.2 array (Illumina, San Diego, CA, United States) plus custom
content by the Center for Inherited Disease Research (CIDR).
Samples were interrogated for genetic sex, chromosomal
aberrations, relatedness, genotype call rate, and batch effects.
SNPs were interrogated for call rate, discordance among 70
duplicate samples, Mendelian errors among HapMap controls
(parent-offspring trios), deviations from Hardy-Weinberg
equilibrium, and sex differences in allele frequencies and

2http://www.ncbi.nlm.nih.gov/gap

heterozygosity. To assess population structure, we performed
a PCA within each cohort using subsets of uncorrelated
SNPs. Based on the scatterplots of the PCs and scree plots
of the eigenvalues, we determined that population structure
was captured in four PCs of ancestry for the 3DFN cohort.
Imputation of unobserved variants was performed using
haplotypes from the 1000 Genomes Project Phase 3 as the
reference. Imputation was performed using IMPUTE2 (Howie
et al., 2009). We used an info score of >0.5 at the SNP level and
a genotype probability of >0.9 at the SNP-per-participant level
as filters for imputed SNPs. Masked variant analysis, in which
genotyped SNPs were imputed in order to assess imputation
quality, indicated high accuracy of imputation.

Participants in the Penn State cohort were genotyped using
the Illumina Human Hp200c1 BeadChip; and the 23andMe
v3 and v4 arrays. Samples were interrogated for genetic sex,
chromosomal aberrations, relatedness, genotype call rate, and
batch effects. SNPs were evaluated for call rate, discordant
genotype calls between duplicate samples, Mendelian errors in
HapMap control parent–offspring trios, deviation from Hardy–
Weinberg genotype proportions and sex differences in allele
frequency and heterozygosity. Imputation was performed as
described for the 3DFN cohort. An ADMIXTURE analysis was
done with the 1000 Genomes Phase 1 dataset as the reference, to
select subjects with European ancestry (Alexander et al., 2009).

Participants from the ALSPAC cohort were genotyped using
the Illumina HumanHap550 quad genome-wide SNP genotyping
platform, by Sample Logistics and Genotyping Facilities at the
Wellcome Trust Sanger Institute (Cambridge, United Kingdom)
and the Laboratory Corporation of America (Burlington,
NC, United States), supported by 23andMe. Haplotypes were
estimated using SHAPEIT2 (Delaneau et al., 2013) and imputed
to the 1000 genomes reference panel (Phase 1, Version 3)
(Abecasis et al., 2012) using IMPUTE2 (Howie et al., 2009, 2011).

The following procedure was used to identify and exclude
biological relatives in the ALSPAC cohort. First, SNPs with
a minor allele frequency (MAF) less than 5% or more than
5% genotype data missing, were filtered out. Second, SNPs
were pruned for linkage disequilibrium (LD) with r2 set at
0.2 in a pairwise manner, with a moving window size of
50 variants shifting five variants each step. Finally, related
individuals were identified and removed when the proportion of
identity by descent (IBD) was higher than 0.125. To control for
population structure, self-identified non-European individuals
were removed, and then genetic outliers (n = 15) were removed
based on z-scores calculated in the first 10 PCs. Z-scores higher
than six indicated outliers, who were subsequently removed after
which PCA was computed again. These calculations were done
using PLINK 1.9 (Purcell et al., 2007). After these steps, ancestry
axes were determined with PCA and used as described above.

Candidate Genes
SNPs reported to influence testosterone levels in the human
body were identified from the literature. Since free circulating
testosterone levels are variable and not easy to measure,
proxy-measurements have been used to estimate the levels of
free testosterone in the human body. Dehydroepiandrosterone
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FIGURE 1 | Rosette diagram showing the hierarchical global-to-local facial segmentation scheme. A total of 63 facial modules are represented. Modules are
indicated in turquoise.

(DHEAS) is the most prevalent circulating steroid in humans
(Vandenput and Ohlsson, 2014) and is a precursor for
testosterone. Furthermore, SHBG binds to free circulating
testosterone and estradiol and is therefore a good proxy for
testosterone levels in the body. Therefore, genetic studies
of testosterone regulation have focused on free circulating
testosterone, DHEAS, and/or SHBG. Forty-three testosterone-
related SNPs were selected based on genetic association results
from seven publications (Ohlsson et al., 2011; Zhai et al., 2011;
Coviello et al., 2012; Jin et al., 2012; Prescott et al., 2012; Chen
et al., 2013; Ruth et al., 2016; Supplementary Table S1). 32 of
these SNPs were present in all three cohorts and were tested
for association with the 63 facial modules. Three SNPs were not
tested because of MAF < 5% in one or more cohorts and the other
SNPs were excluded due to low imputation quality in one or more
cohorts.

Statistical Testing and Meta-Analysis
Canonical correlation analysis (CCA) was used to test the effect
of 32 SNPs on facial shape using the multivariate phenotypes
derived as described above. CCA is a multivariate testing
framework which extracts the linear combination of PCs from

a facial module that has maximal correlation with the SNP being
tested. The correlation was tested for significance by a Roa’s F-test
approximation (right tail, one-sided test), after removing the
effects of age, age2, sex, weight, height, facial size and the first four
dimensions of ancestry using PLSR. Both the independent (SNP)
as the dependent (facial shape) variables were corrected for these
covariates.

Since the direction of the effect through the face shape space
determined by the CCA can and will differ across the three
cohorts, we use a two-step procedure where CCA is performed
in one cohort, after which the two other cohorts were projected
onto the direction of the effect found in CCA. Thus, three
meta-analyses were performed in a round-robin fashion with
each of the three cohorts serving as the discovery set for the
CCA and the other two serving as replication sets. Association
tests were performed in the replication sets by projecting the
PCs onto the loadings calculated in the discovery CCA, which
returned a specific genetic effect score. As described in Claes
et al. (2018), the phenotypic trait discovered in CCA, can be
explicitly measured in the replication datasets. The genetic effect
score was subsequently used in a standard linear regression with
the SNPs as independent variables. This function employs a

Frontiers in Genetics | www.frontiersin.org 4 October 2018 | Volume 9 | Article 497

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00497 October 23, 2018 Time: 12:50 # 5

Roosenboom et al. Testosterone SNPs Influence Facial Morphology

t-statistic and a positive-sided p-value was obtained with the
Student’s T cumulative distribution function (Devroye, 1986).
The p-values were combined according to Stouffer’s method
(1949). The facial segments are overlapping and hierarchically
constructed (thus not completely independent). Therefore we
determined 37 independent segments by the Li and Ji method (Li
and Ji, 2005). Thirty-two candidate SNPs were tested, of which 30
were independent. An additional correction factor was added due
to the three meta-analyses performed. Therefore, the Bonferroni-
corrected significance p-value cut-off was p < 1.50E-05 (i.e.,
0.05/(37×30×3)).

Analyses were repeated for males (n = 4055) and females
(n = 2892) separately, and in a strictly post-pubertal cohort
(age > 15 years; n = 6947).

Investigating Alternative Phenotypes:
Facial Ratios
Several standard facial ratios have been previously associated
with either testosterone levels or testosterone-related phenotypes
(e.g., aggression, perceived masculinity) (Carré et al., 2010;
Haselhuhn and Wong, 2012; Geniole et al., 2015; Hodges-Simeon
et al., 2016). We therefore looked at the relationship between
our candidate SNPs and five facial ratio measurements in the
Pittsburgh 3DFN cohort (n = 2297), including standard facial
width-to-height ratios (Supplementary Figure S1). These ratios
were calculated based on linear distance measurements collected
directly on the 3D facial images or through direct anthropometry
(see Weinberg et al., 2016 for details).

A total of 42 of the 43 literature-identified SNPs associated
to testosterone levels were available for testing in the Pittsburgh
3DFN cohort (genotyping and quality control of this cohort
is described above). All five ratios were adjusted by sex, age
and body size before genetic analysis, then linear models were
used to test genetic association between each phenotype and
each SNP adjusting for the first four PCs of ancestry using
PLINK. The Bonferroni-corrected significance p-value cut-off
was p < 0.00119 (i.e., 0.05/42). For completeness, associations in
subgroups of the total study population were also investigated:

males only (n = 856), females only (n = 1323), and post-pubertal
(>14 years) participants (n = 1750).

RESULTS

Association of Testosterone-Associated
SNPs With Facial Shape Modules
We tested 32 SNPs for genetic association with 63 multivariate
facial modules. Two of the 32 tested SNPs showed significant
associations with modules in the mandible region in at least
one of the three meta-analyses: rs12150660 (p = 1.07E-07) and
rs1799941 (p = 6.15E-06) (Table 1 and Figures 2, 3). Both of
these SNPs are located in introns of the SHBG gene, and have
been shown to affect circulating SHBG as previously described
in literature (Ohlsson et al., 2011; Jin et al., 2012). SHBG is a
binding globulin secreted by the liver and its major function
is to bind and transport circulating sex hormones with a high
affinity; transporting them into the circulation and regulating
their action by controlling their bioavailability (Coviello et al.,
2012; Vandenput and Ohlsson, 2014). In the circulation, 50–60%
of the free testosterone is bound to SHBG, while only 1–2% is
free-circulating (Jin et al., 2012). Low levels of circulating SHBG
are associated with decreased glucose control and are predictors
for type 2 diabetes (Kuijper et al., 2007). Subjects with the minor
allele of rs12150660 were more likely to show lower testosterone
levels (Ohlsson et al., 2011), while subjects with the minor allele of
rs1977741 showed higher testosterone levels (Jin et al., 2012). The
minor alleles of both SNPs were associated with a broader and
more protruding mandible – a characteristic feature associated
with male faces. While the effects of rs1799941 were localized to
the mandibular region, rs12150660 showed additional effects in
modules containing the philtrum and was associated specifically
with midfacial retrusion or a more protruded chin (Figures 2, 3).
Since both identified SNPs are in LD (r2 = 0.89), it is possible that
only one of them is actually functional, or both of them may be in
strong LD with yet another untested causal variant (Ohlsson et al.,
2011). This could mean that, although being in high LD, both
SNPs might still have a separate effect on SHBG and testosterone

TABLE 1 | Discovery and meta-analysis results of rs12150660 and rs1799941 for the 3D facial modules.

SNP Location (hg19) Candidate gene Allele MAF Module CCA Meta-analysis

CC P-value P-value

rs12150660 17:7618597 SHBG G > T 0.0925 6 0.163 2.02E-02 1.07E-07

0.178 1.67E-01 7.08E-06

0.154 7.65E-05 5.03E-05

rs1799941 17:7630105 SHBG G > A 0.10 12 0.145 1.70E-02 6.15E-06

0.129 6.87E-01 9.80E-04

0.137 3.41E-04 2.08E-03

For the allele column, major allele > minor allele. MAF = minor allele frequency (based on 1000 genomes phase 3 for Europeans). Genome build hg19 is used as standard
reference genome sequence to indicate the genomic location of the variants. The module number refers to Figure 1 and shows the facial segment with the lowest p-value
for the SNP. CCA shows the canonical correlation (CC) analysis results for the module listed. Results are ordered by row according to which cohort served as discovery in
the meta-analysis: Pittsburgh, Penn State, ALSPAC. The meta-analysis p-values are ordered in the same manner. The first p-value (under CCA) represents the statistical
significance observed for the cohort separately. The second p-value (under meta-analysis) represents with combined statistical significance observed with each cohort
serving in the discovery position.
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FIGURE 2 | Meta-analysis results for rs12150660. (A) Representation of the significant modules of the meta-analysis based on the different discovery datasets.
(B) Heat map displacement plot of the effect of rs12150660 on facial morphology, with red representing an outward displacement and blue representing an inward
displacement. (C) Surface warp showing the effect (exaggerated) of the major allele (G) on lower facial shape. (D) Surface warp showing the effect (exaggerated) of
the minor allele (T) on lower facial shape.

levels in the body, reflected in the face. The same phenotypic
effect of these SNPs was observed in the post-pubertal subset
(Supplementary Figure S2). No significant associations were
observed in the male- and female-only subsets. Meta-analysis
results for all 32 SNPs are displayed in Supplementary Table S2.

Testing Facial Ratios
Based on the findings of Hodges-Simeon and others, who have
showed an association between pubertal testosterone levels and
ratios of facial width-to-height (Lefevre et al., 2013; Hodges-
Simeon et al., 2016), we tested five facial ratios in our candidate
gene approach. The genetic associations between the candidate
SNPs and the ratios (Supplementary Table S3) were investigated
in the entire 3DFN sample, in males/females separately, and
in a post-pubertal subpopulation. One of the 42 testosterone
SNPs we tested (rs8023580) showed an association with two
related facial ratios in the male-only subset: total facial width-to-
height (p = 9.61E-04) and upper facial width-to-height (FWH1;
p = 7.35E-04). rs8023580 is an intronic SNP in NR2F2-AS1, a
non-coding RNA showing high expression in the ovary. The
complete results are shown in Supplementary Table S3. The
nearby NR2F2 gene has been implicated in testicular Leydig
function, essential for male testosterone production (Hu et al.,
2013). Furthermore, several animal studies suggest an influence
of NR2F2 on craniofacial morphology. NR2F2 is expressed in the
mandibular component of the first branchial arch in mice. In
zebrafish, it has been reported that NR2F genes are required for

upper jaw formation (Barske et al., 2018). Furthermore, loss of
these genes transforms the maxillary component of the upper jaw
into lower-jaw-like structures. Dieterich et al. (2015) suggested
that the expression of NR2F2 might be regulated by NR2F2-AS1
via MAFB, which is a gene known to be involved in craniofacial
development (Dieterich et al., 2015). In a recent GWAS of
human facial morphology, variants near MAFB were shown to
be associated with overall width of the cranial base (Shaffer et al.,
2016). This measure is a reasonable proxy for upper facial width,
which is a key determinant of the facial width-to-height ratios
associated with NR2F2-AS1 variants here.

DISCUSSION

The impact of sex hormones on human craniofacial morphology
is well documented and is most apparent in the post-pubertal
dimorphism we see between male and female faces (Kesterke
et al., 2016; Matthews et al., 2018). The most prominent sex
differences in human facial morphology tend to involve the
mandible, zygomatic region (cheeks), lips, forehead, and nose
(Toma et al., 2008; Koudelová et al., 2015; Kesterke et al., 2016;
Matthews et al., 2018). Prior studies have connected these aspects
of facial morphology to both testosterone levels directly or to
other physical and behavioral markers of testosterone activity
(Verdonck et al., 1999; Whitehouse et al., 2015; Hodges-Simeon
et al., 2016). If this causal model is correct, then any factor
affecting testosterone levels should also impact facial morphology
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FIGURE 3 | Meta-analysis results of rs1799941. (A) Representation of the significant modules of the meta-analysis based on the different discovery datasets.
(B) Heat map displacement plot of the effect of rs1799941 on facial morphology, with red representing an outward displacement and blue representing an inward
displacement. (C) Surface warp showing the effect (exaggerated) of the major allele (G) on lower facial shape. (D) Surface warp showing the effect (exaggerated) of
the minor allele (A) on lower facial shape.

along with a host of other sexually dimorphic traits. We now
understand that the level of free testosterone in individuals
is at least partly under genetic control (Ohlsson et al., 2011;
Zhai et al., 2011; Coviello et al., 2012; Jin et al., 2012; Prescott
et al., 2012; Chen et al., 2013; Ruth et al., 2016). In the
present study, we performed an in silico candidate gene study
to investigate the effects of common genetic variants known to
impact testosterone levels on normal-range facial morphology.
The SNPs we chose were previously reported in several large-
scale GWAS to influence free testosterone levels in adults. We
observed associations with three of these SNPs in two genes:
SHBG and NR2F2-AS1. These SNPs were shown to impact
specific regions of the face that show strong evidence of sex
differences – the mandible, lips, and upper face. The lower third
of the face (mandibular region), in particular, has been shown
to correlate strongly with traits related to prenatal testosterone
exposure, such as second-to-fourth digit ratio. In prior research,
individuals with lower digit ratios (indicating greater prenatal
testosterone exposure) showed broader, more robust, and more
protrusive mandibles (Meindl et al., 2012; Weinberg et al.,
2015). In contrast, nasal morphology, which often shows striking
differences post-puberty between males and females (Kesterke
et al., 2016), was not associated with these or any other SNPs we
tested.

The mechanism of effect of the implicated variants on facial
morphology is still unclear. Testosterone affects a wide array
of tissues and organs during development. Through altering

testosterone levels, our implicated SNPs may impact the cell
populations involved in facial growth and development. In
this indirect model, testosterone acts as a mediator. However,
testosterone levels are extremely variable during life, with a
peak during puberty and a gradual decline thereafter (Harman
et al., 2001). Also, there are immense intra-individual variation
in testosterone levels, based on immune activation, caloric
intake, interaction with other hormones, and several psychosocial
variables (Harman et al., 2001). Therefore, the influence of
testosterone levels on craniofacial growth is likely to be extremely
complex. The testosterone-related genetic variants considered
here were selected from GWAS studies on adults, while the
vast majority of facial growth occurs prior to adulthood (Enlow,
1996). Different sets of genetic variants may affect testosterone
levels in adults and children. This could be one reason many
of the SNPs we investigated did not show effects on facial
morphology. Testing genetic variants associated with circulating
testosterone levels in subadults, during the active craniofacial
growth phase, may yield improved results. Another possibility
is that we lacked power to detect facial effects for some of
the variants we tested. Power to detect testosterone-mediated
genetic associations with facial morphology, which depends on
the allele frequency of the variant, the effect size of the SNP on
testosterone, and the effect size of testosterone on the face, differ
across the SNPs tested in this study. Therefore, failure to detect
an association should not be interpreted to mean that there is no
effect.
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Interestingly, some variants, in addition to impacting free
testosterone levels, may also have a direct effect on facial
morphology. Supporting this idea is a recent experimental study
implicating NR2F genes in craniofacial morphogenesis, and, in
particular, jaw development (Barske et al., 2018). However, there
is currently no evidence supporting a similar role for SHBG
or showing expression of this gene in developing facial tissues.
Additional experimental follow-up studies will be required
to understand the mechanisms through which these variants
influence facial traits.

Several GWAS of normal-range facial morphology have now
been published (Liu et al., 2012; Paternoster et al., 2012; Adhikari
et al., 2016; Shaffer et al., 2016; Claes et al., 2018). Because
these studies utilize an unbiased approach taking into account
variants spread across the entire genome, they provide rich
datasets to explore the influence of specific genetic pathways (in
this case the testosterone pathway) on craniofacial morphology
in a hypothesis-driven manner. Accordingly, the results here
provide additional insights into the genetic basis of human facial
features that would likely be missed in a typical GWAS, due to
the very stringent adjustments for statistical significance required
to control type-1 error inflation. This more targeted approach
can help us identify biologically relevant genetic variants with
more subtle effects on craniofacial morphology. That being said,
because we identified our candidate SNPs from the literature, we
are likely only testing a small fraction of the variants associated
with testosterone levels (the ones that these studies had the
power to detect) and we do not know the functional status of
most of these variants. All of the variants associated with facial
morphology in our study were non-coding. In future studies,
it may be fruitful to consider interactions between variants
implicated in this study and additional variants in other pathways
reported to influence the same facial traits.

CONCLUSION

We reported three SNPs associated to testosterone levels in
the body with a clear effect on mandible shape (rs12150660
and rs1799941) and facial width to height ratios (rs8023580),
indicating that testosterone-related genetic variants affect
normal-range facial morphology, and in particular, facial features
known to exhibit strong sexual dimorphism in humans.
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FIGURE S1 | Five facial ratios tested for association with the candidate SNPs.
(A) Total facial width to height ratio (Total FWH). (B) Upper facial width to height
ratio – version 1 (Upper FWH1). (C) Upper facial width to height ratio – version 2
(Upper FWH2). (D) Lower facial width to height ratio (Lower FWH). (E) Upper to
lower facial width ratio (Upper:Lower FW).

FIGURE S2 | Results of the meta-analysis in the post-pubertal subset.
Representation of the significant modules of the meta-analysis based on the
different discovery datasets.

TABLE S1 | List of 44 candidate SNPs selected from the literature.

TABLE S2 | Complete meta-analysis results for all 32 SNPs tested on the 63 3D
facial modules.

TABLE S3 | Results for the 42 candidate SNPs tested for association with five
facial ratios in the 3DFN cohort.
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