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Abstract 

Fibre reinforced composites have been widely applied to many fields for their 

extraordinary mechanical and other physical properties such as thermal and electric 

conduction etc. The structure of the composites can be crucial to the overall 

mechanical properties of the composites. The designed fibre-network composite in 

this research is inspired by fibrous materials with overlap, such as metal fibre sintered 

sheet (MFSS). With a fibre network instead of uncontacted fibres as the 

reinforcement, the composite is expected to produce enhanced mechanical properties. 

Based on the designed transversely isotropic fibre-network composite, the elastic, 

elastoplastic and viscoelastic properties of the composite have been investigated by 

the Finite Element Method (FEM) to better understand the mechanical properties of 

the fibre-network composite. 

The in-plane stiffness has illustrated a much larger value than the out-of-plane 

stiffness for this designed fibre-network structure. Furthermore, the normalised in-

plane stiffness has revealed a linear relationship with volume fraction, whereas the 

normalised out-of-plane stiffness has demonstrated a polynomial relationship with 

volume fraction when the volume fraction is not too large. 

The in-plane and out-of-plane yield surfaces, under biaxial stress states, indicate that 

the yield strengths meet the Hill yield criterion. The transversely isotropic fibre 

network composite structure exhibits a larger out-of-plane yield strength than the in-

plane yield strength, although the out-of-plane stiffness is smaller than the in-plane 

stiffness, which is expected to be related to the matrix properties. An analytical model 

has been proposed and have successfully modelled the elastoplastic stress-strain 
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response of the simplified RVE.  

In terms of the viscoelasticity of the fibre-network structure, the collagen aerogel 

indicates a linear relationship with relative density for the in-plane relaxation 

modulus, while a cubic polynomial relation with relative density for the out-of-plane 

relaxation modulus. For the collagen hydrogel, it illustrates a larger in-plane strain 

than the out-of-plane strain under constant stress. When a constant tensile strain is 

applied, both the in-plane and out-of-plane relaxation moduli exhibit a nearly 

proportional relation with volume fraction. 
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Chapter 1 Introduction 

1.1 Research Background and Objectives 

Fibre reinforced composites have been increasingly used in various fields for their 

extraordinary mechanical and other physical properties such as thermal and electric 

conduction with a wide selection of constituent materials and geometry structures. 

Numerous different structures of fibre composites, such as uni-directional fibre 

composites, cross-ply fibre composites, woven fabric composites and fibre laminates 

etc., have been designed and applied primarily for their advantages in directional 

mechanical properties, specifically, axial or planar mechanical properties. However, 

superior properties are achieved by sacrificing the properties in the other axial or 

planar directions. In addition, it is inevitable in engineering that loads are applied to 

off-axis/plane directions. This may increase the risk of fracture and failure. For 

instance, delamination [1] is a common problem for laminate composites due to the 

weakly bonded interfaces between plies when it is subjected to loading in its inferior 

directions. Some three-dimensional short fibre reinforced composites are either 

isotropic with fibres distributed randomly in three dimensions [2] or transversely 

isotropic with fibres distributed stochastically in a planar direction or within a certain 

inclined angle [3] to the planar direction, which possess no obvious inferior 

directions. However, the constraints among fibres are weak because they are at most 

in contact but not perfectly bonded, thus rendering easy pull-out [4] of fibres and 

large deformation when subjected to loads.   

Porous materials are another type of promising structures in engineering applications. 
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Porous materials, such as foam [5], honeycomb [6], and fibre network etc., indicate 

excellent mechanical properties as porous structures and can perfectly serve as the 

reinforcement to composites as well. Fibre network structure is universal in biologies 

such as cytoskeleton [7] and collagen gel [8, 9], and metal fibre sintered sheet 

(MFSS) [10-16] is one of the most common man-made fibre networks. Compared to 

fibrous materials like textiles which possess obvious directional mechanical 

properties, fibre network has demonstrated the same level of properties in the primary 

direction while still delivers relatively better performance in the other directions due 

to the introduction of cross-linkers among fibres. Zhang et al. [17] have created a 

numerical model of carbon-bonded carbon fibre network by inserting a beam [18] 

between the intersected points of the two fibres and it shows good agreement with 

the experimental results. A similar 3D fibre network has also been studied 

experimentally and numerically in [13] and the stress-strain relations indicate that the 

fibre-fibre connection can dramatically improve the fibre network strength.  

Thus the behaviours of fibre networks imply that the introduction of fibre networks 

into the composites would be an advantage in improving mechanical properties of 

composites. Compared to conventional structures of fibre reinforced composites, the 

cross-linkers or intersections between fibres are supposed to enhance both the in-

plane and out-of-plane mechanical properties, such as stiffness and strength. Apart 

from improved mechanical properties, good thermal and electrical conductivities [19, 

20] can also be an advantage for fibre network composites owing to the connected 

network of fibres. Therefore, we aim to construct a 3D fibre network reinforced 

composite structure in which fibres are connected into a network. The proposed 

composite structure is supposed to provide more options for certain application 

requirements in mechanics or other properties. 
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The main objectives and contributions of this research can be briefly described as: 

1. To generate or prepare a novel 3D transversely isotropic fibre network reinforced 

composite model with fibres curved and intersected to build up a network. This aims 

to be accomplished by altering the key parameters of the model, such as aspect ratio, 

cross-link density and overlap coefficient. The nature of the constructing procedure 

of this model tends to be extremely attractive as a composite plate structure because 

the through-thickness dimension is adjustable. 

2. To investigate the elastic behaviours of this novel transversely isotropic fibre 

network composite. As cross-linkers are introduced in this composite structure, both 

the in-plane and out-of-plane stiffnesses are expected to be enhanced. Thus the elastic 

properties of this transversely isotropic structure need to be primarily explored and 

compared with conventional composite structures. 

3. To investigate the plastic, more precisely, elastoplastic properties of this novel 

transversely isotropic fibre network composite. The yield behaviours of the selected 

material systems under different loading conditions need to be investigated. 

4. To investigate the viscoelastic behaviours of this newly built transversely isotropic 

fibre network composite and the fibre network alone in the case of biological 

applications of this structure. Key characteristics such as stress relaxation and creep 

of the fibre network alone and the fibre network composite are focused on for the 

analysis. 

1.2 Thesis Outline 

In relation to the major objectives, the thesis is organised as follows: 
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Chapter 1 gives a brief introduction of the motivation of this research and outlines 

the framework of the thesis. 

Chapter 2 reviews relevant studies with respect to fibre composite materials and fibre 

network materials as well as the theoretical framework of elastic, elastoplastic and 

viscoelastic properties.  

Chapter 3 introduces the procedure of constructing a three-dimensional transversely 

isotropic fibre network composite model in which fibres are curved and intersected 

thus generating a network. 

Chapter 4 explores the elastic behaviours of the transversely isotropic fibre network 

composite as previously developed in Chapter 3. The five independent constants in 

terms of volume fraction are mainly studied by finite element method (FEM). A 

simplified analytical model is also proposed for comparison. 

Chapter 5 investigates the elastoplastic properties of the newly built transversely 

isotropic steel fibre network composite with a ductile matrix and brittle matrix,  

respectively. Based on the Hill yield criterion, the yield strength and yield surface 

under uniaxial and biaxial loadings are explored. An analytical model of the 

elastoplastic stress-strain response is explored towards the simplified RVE. 

Chapter 6 focuses on the exploration of viscoelastic properties, e.g. stress relaxation 

and creep, of the collagen network alone and of collagen gels based on the designed 

fibre network structure. 

Chapter 7 summarises the main conclusions of the proposed composite structure and 

mechanical properties it exhibits. Furthermore, limitations regarding the current work 

and possible further work are underlined. 
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Chapter 2 Literature Review 

2.1 Fibre Reinforced Composites 

Composites refer to materials consisting of two or more individual constituents, 

where they are formed with the reinforcing constituent embedded in a matrix. In 

composites, the properties like mechanical properties are determined by the 

combination of the matrix and reinforcement. By choosing the appropriate 

reinforcement and matrix from the variety of materials, composites with 

extraordinary properties over individual constituent materials can be produced.  The 

rapidly expanding application of composites in aerospace, marine, automotive, 

construction, sports and other mass production industries, has encompassed an 

abundance of structures and materials ranging from natural to synthetic, in order to 

meet the requirements of producing composites with desired properties for certain 

applications.  

2.1.1 Reinforcement Materials 

Composite structures are quite common in nature, of which fibre reinforced 

composites is one of the most widely used structures where natural fibre and matrix 

are combined. Natural fibre-reinforced composites have attracted intense interest as 

a potential structural material [21]. Natural fibres originate from plants, animals and 

minerals etc. Plant or vegetable fibres are usually adopted as reinforcements for 

plastics and may include seed fibres, fruit fibres, bast (or stem) fibres, leaf (or hard) 

fibres, wood fibres, cereal stalk fibres, and other grass fibres etc [22]. Animal fibres 

are composed in the form of protein and may include alpha keratin fibres (hairs, 
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wools, quills, and other mammalian appendages), fibroin fibres (silks and spiders 

webs) and collagens (major components of extracellular matrix, tendons, ligaments, 

skin, cornea, bone and dentin etc. ) [8, 23, 24], for which the mechanical properties 

are of primary importance to both the animal from which they originate and their 

ultimate applications. Mineral fibres may include basalt fibre, stone wool, slag wool, 

asbestos, fibrous brucite and wollastonite etc [22, 25]. The main advantages of 

natural fibres lie in their sustainability, renewability, recyclability, economy and 

environmentally friendly features. However, there are also drawbacks, such as 

durability, fibre strength, commercial supply and demand cycles and quality 

variations [26]. 

In order to fulfil the abundant demands of fibres with required properties, some 

synthetic or post-processed natural fibres have been produced to fill in the gap of 

properties that natural fibres fail to possess or replace natural fibres with similar 

properties as overall better choices. Two most common man-made fibres in the 

composite industry would be glass fibre and carbon fibre. Glass fibre still indicates 

good mechanical behaviours although not as stiff or strong as carbon fibre and it 

exhibits a higher elongation at break point than carbon fibre. In addition, the 

combining properties, i.e. high specific strength, chemical resistance, moisture 

resistance, heat resistance and electric insulation have made glass fibre particularly 

attractive in the industry [27]. Most importantly, its relatively low cost has gained 

glass fibre wider applications than carbon fibre, for instance, in the construction of 

large structures, e.g. large boats, wind turbines and so on. 

To meet the demand of fibre with extremely high stiffness and strength properties, 

carbon fibre emerges. Carbon fibre possesses dramatically high specific stiffness and 
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strength due to the well aligned and bonded carbon atoms along the fibre. Together 

with the light weight, carbon fibre proves to be promising in applications which 

require extremely high strength and lightweight structures while ignoring the cost of 

materials preparation and manufacturing process. Furthermore, carbon fibre also 

possesses good impact and fatigue behaviours, thermal stability, high temperature 

resistant, electric conductivity and corrosion resistance etc [27]. However, carbon 

fibre is a very stiff and brittle material that is apt to break in a small elongation. 

Another synthetic fibre that has long been used as the reinforcement for polymer 

composites is Kevlar fibre. Kevlar has been adapted to a variety of applications since 

born, such as aircraft, marine and construction. As a member of aramid fibres, Kevlar 

fibre has exhibited high strength, distinct tenacity, impact resistance under 

environmental conditions and thus it plays a crucial role in tough and damage-tolerant 

composites as the reinforcement [28-30]. However, the strengths of Kevlar fibre, 

such as high tensile strength and stiffness, have been found not to be fully utilised in 

composites according to predictions based on the rule of mixtures. The main reason 

lies in that the surfaces of Kevlar fibres are chemically inert and smooth due to high 

crystallinity, resulting in poor adhesion with the matrix phase to transfer stress 

between fibres and matrix [29]. Additionally, degradation of the fibre properties can 

be introduced when the fibres are exposed to thermal environments either 

intentionally or accidentally during the fabrication process and following usage stage 

[31]. 

Steel, which is a very common metal material to us, has been vastly adopted in 

various civil engineering applications, such as machines, buildings and structures. 

Steel fibre is also not a new synthetic fibre and has been commonly used for structural 
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and non-structural purposes [32, 33]. For instance, steel fibre is utilized as 

reinforcement of concrete in the form of fibres, wires or rebars [34, 35], and applied 

as reinforcement of rubber in tyres and belts in the form of continuous wires, cords 

and filaments [36, 37]. Steel fibres can prevent/delay crack propagation from micro-

cracks to macro-cracks and decrease crack width in concrete, thus reducing the 

shrinkage and increasing toughness [38].  

In recent years, glass and carbon fibres have drawn the major attention for their 

superior strengths. However, this is achieved at the expense of stiffness and the 

strain-of-failure is extremely low due to the low ductility of the fibres. In contrast, 

steel possesses the feature that its strain-of-failure can be tailored by adopting a 

certain heat treatment without affecting its stiffness. Thus a strain-of-failure of 22% 

can be achieved for ductile steel fibre reinforced composites, which is around 10 and 

5 times larger than those of carbon and glass reinforced composites, respectively. 

Steel fibres, more specifically, annealed stainless steel fibres, with diameters ranging 

from 5 to 100 μm, can be conducted with combining high stiffness (193GPa) and 

high strain-of-failure (<20%) [39, 40]. Therefore, steel fibre reveals a promising 

application in structural composites which exhibit both high stiffness and good 

ductility.  

Finally, the main mechanical properties of a variety of natural and synthetic fibres 

are listed and compared in Table 2.1. The selected natural and synthetic fibres have 

included an approximate range of 3-400GPa in Young’s modulus and 130-4800MPa 

in tensile strength. 
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Table 2.1. Mechanical properties of some natural and synthetic fibres [22, 39, 41]. 

Fibres Diameter(μm) 

Young’s 

modulus 

(GPa) 

Tensile 

strength 

(MPa) 

Elongation at 

break (%) 

Flax 40-600 27.6 345-1500 2.7-3.2 

Hemp 25-500 70 690 1.6 

Jute 25-200 13-26.5 393-800 1.16-1.5 

Kenaf - 53 930 1.6 

Ramie - 61.4-128 400-938 1.2-3.8 

Nettle - 38 650 1.7 

Sisal Henequen 50-200 9.4-22 468-700 3-7 

PALF 20-80 34.5-82.5 413-1627 1.6 

Abaca - - 430-760 - 

Oil palm EFB 150-500 3.2 248 25 

Cotton 12-38 5.5-12.6 287-800 7-8 

Coir 100-460 4-6 131-220 15-40 

E-glass <17 73 3400 2.5 

Kevlar - 60 3000 2.5-3.7 

Carbon 5-7 240-425 3400-4800 1.4-1.8 

Steel >5 193 660 17 

 

2.1.2 Matrix Materials 

Matrix is one of the constituent materials in composites and usually binds and 

supports the reinforcements as a base to maintain the continuity and shape of 

composites. Thus the mechanical and physical properties, such as force and heat, can 

be delivered through the interfaces between reinforcement and matrix inside the 

composites. The properties of the matrix can be enhanced by the imported 

reinforcement and, in return, the matrix also impacts the reinforcement in the way of 

compatibility, such as the stability of the interfaces [42].  
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Common matrix materials may include polymer, ceramic, metal and carbon [43]. 

Polymer matrices, also called resin, are most widely used for composites in 

commercial and high-performance aerospace applications. Based on the ingredients 

and structures, the polymer can be divided into several categories, of which the most 

widely known are polyester, vinylester, epoxy, phenolic, polyimide, polyamide, 

polypropylene and PEEK. Ceramic matrix and metal matrix are typically applied in 

extremely high-temperature environments, like engines. Carbon as a matrix is used 

in very high-temperature applications like carbon-carbon brakes and rocket nozzles. 

The main mechanical properties of selected matrix materials are listed in Table 2.2. 

 

Table 2.2. Mechanical properties of selected matrix materials [43]. 

Matrix Class 

Young’s 

modulus 

(GPa) 

Tensile 

strength 

(MPa) 

Tensile 

failure strain 

(%) 

Polyester Thermosetting 2-4.5 40-90 2 

vinylester[44] Thermosetting 3.5 80 4 

Epoxy Thermosetting 3-6 35-100 1-6 

polyimide[45] - 2.5 231 72 

polyamide Thermoplastic 1.4-2.8 60-75 40-80 

polypropylene Thermoplastic 1-4 25-38 >300 

PEEK Thermoplastic 3.6 93 50 

Aluminum(6061) Metal 69 300 10 

Titanium(6Al-4V) Metal 105 1100 10 

Silicon carbide Ceramic 520 - <0.1 

Alumina Ceramic 380 - <0.1 

Glass(borosilicate) Ceramic 63 - <0.1 

Carbon Carbon 20 - <0.1 
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2.1.3 General Fibre Reinforced Composites 

By the combination of the abundant fibres and matrices including, but not limited to, 

constituent materials listed in 2.1.1 and 2.1.2, with the varying structures brought 

about by various fibre distributions, numerous fibre reinforced composites can be 

achievable to meet the growing wide demand. In general, fibre reinforced composites 

may include aligned fibre composites, woven fabric composites, laminates and 

random fibre composites [46], based on fibre orientation. For instance, all the fibres 

are paralleled along the designated loading direction in the case of aligned fibre 

reinforced composites; woven fabric composites contain fibres or fibre bundles 

which are typically cross-woven with fibres distributed in two perpendicular 

directions; laminates reinforced by fibres generally consist of several layers and each 

layer can be regarded as an aligned fibre reinforced plate. Thus a nearly in-plane 

isotropic or anisotropic structure can be obtained by laying each ply along different 

directions; For the case of random fibre composites, it literally means that the fibres 

are distributed inside the matrix randomly, either in a priority of in-plane directions 

or evenly in all directions. 

2.1.3.1 Aligned Fibre Composites  

In the case of aligned fibre composites, also known as uni-directional (UD) fibre 

composites, all the fibres have the same orientation, which means that fibres are all 

parallel to each other. Aligned fibres composites can be further categorised as two 

types, namely continuous and discontinuous aligned fibre composites (see Figure 

2.1), according to the critical size of fibre length, which is defined as the ratio of 

single fibre length over the side length. Aligned fibres are occasionally grouped as 
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bundles to enhance the strength of fibres. Obviously, this structure is anisotropic and 

it is mainly designed to afford the load imposed along the fibre direction. When the 

load is applied to different directions, such as the directions parallel to fibres or 

perpendicular to fibres, the composites exhibit a dramatic difference in mechanical 

behaviours like stiffness and strength. 

        

(a)                                                        (b) 

Figure 2.1. Two-dimensional schematic of continuous (a) and discontinuous (b) 

aligned fibre composites [47], where the coloured bars represent fibres and the gap 

is supposed to be filled with matrix materials. 

 

Since all fibres are aligned in the aligned fibre composite, the effective elastic 

modulus of the composites can be simply presented, according to the Rule of Mixture 

when the composites are subjected to load parallel to or perpendicular to fibres, 

respectively, as 

 𝐸∥ = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚 (2.1) 

 𝐸⊥ =
𝐸𝑓𝐸𝑚

𝐸𝑓𝑉𝑚 + 𝐸𝑚𝑉𝑓
 (2.2) 

Where 𝐸𝑓 and 𝐸𝑚 are Young’s moduli of fibre and matrix, respectively. 𝑉𝑓 and 𝑉𝑚 

are the volume fractions of fibre and matrix and they obey 𝑉𝑓 + 𝑉𝑚 = 1 . The 
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expression of 𝐸∥ is more widely known as the Voigt limit [48] and the equation of 

𝐸⊥ is the well-known Reuss limit [49], which are often recognised as the maximum 

and minimum values of the modulus of a two-phase compothe site. It is not surprising 

that both the stiffness and strength of aligned fibre composites were found to decrease 

drastically as off-axis loading angles (i.e. angle between fibre direction and loading 

direction, ranging from 0 to π/2) increase [50]. 

One word, although aligned fibre composites can obtain a modulus close to upper 

limit when loaded along the fibre direction, this structure has to face the considerable 

weakness of the transverse modulus.  

2.1.3.2 Woven Fabric Composites 

Another fibre composite structure is woven fabric composites, in which fibre bundles 

are woven in different angles, and the plain fabric structure, as shown in Figure 2.2, 

is most familiar to us. The manufacturing process has long been used in textiles. The 

woven fabric is generally manufactured into a ply and then applied alone or stacked 

with several plies to create laminates. The structure is also anisotropic with largest 

stiffness and strength along either of the fibre direction and weaker mechanical 

behaviours in other directions. For example, Cai et al. [50] have measured the in-

plane elastic modulus of plain fabric composite along various directions and obtained 

decreasing stiffness as increasing off-axis angles (see Figure 2.3). As for the out-of-

plane behaviour, woven fabric composites indicate a high flexibility of deformation 

especially in the out-of-plane direction [51]. This may increase the risk of crack 

propagation and, even worse, fracture. Moreover, the constraints among intersected 

fibres are weak since they are at most in contact but not perfectly bonded, thus 

rendering easy pull-out of fibres and large deformation when just subjected to 
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uniaxial tension in the out-of-plane direction.  

 

Figure 2.2. Two-dimensional schematic of woven fabric composites [47], where the 

coloured bars represent fibres and the gap is supposed to be filled with matrix 

materials. 

 
Figure 2.3. In-plane elastic modulus of plain fabric composite in terms of various off-

axis angles [50]. 

 

2.1.3.3 Laminates  

Laminates [52-54] are composites in which various plies are bonded together with 

adhesive, to give added strength, durability, or some other benefits. There is one 

category of laminate, in which each ply is composed of uni-directional fibres and 

matrix, and the laminate can be regarded as a combination of several UD composite 
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plies as shown in Figure 2.4. In order to ensure the in-plane isotropy or quasi-isotropy 

of the laminate, each stacked ply is distributed to a different orientation 

corresponding to the fibre directions. For example, plies distributed with orientations 

0°/90°/+45°/-45°/-45°/+45°/90°/0° comprise a quasi-isotropic laminate. Laminates 

have been widely used in many fields benefitting from enhanced strength by UD 

fibres in all in-plane orientations rather than single direction or limited directions. 

However, we also have to face with the delamination [1, 55, 56] of the structure due 

to the weakly bonded interfaces between plies when tensile load or impact is 

imposed. 

 
Figure 2.4. Exploded view of generic three-layered laminate with arbitrary ply 

orientation angles [57]. 

 

2.1.3.4 Random Fibre Composites 

Random fibre composites consist of discontinuous fibres which are literally all 

randomly distributed inside of the composites, both in location and in orientation. 

Both two-dimensional and three-dimensional random fibre composite structures (see 

examples in Figure 2.5) have been constructed and investigated for their mechanical 

properties by many researchers [2, 58-61] experimentally and numerically. Since 

fibres are randomly distributed in a ‘unit cell’, which is a representative volume 
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element (RVE) of the periodic geometry, the structure exhibits in-plane isotropy or 

complete three-dimensional isotropy when fibre number is large enough.  

   

Figure 2.5. Two-dimensional [62] and three-dimensional [2] schematic of random 

fibre composites, where the bars represent fibres and the gap is supposed to be filled 

with matrix materials. 

 

One of the most frequently used methods in generating geometries with random 

members, such as fibres [3], spheres [63], spherocylinders [63], ellipsoids and rods, 

in fibre/particle reinforced composites is the random sequential adsorption (RSA) 

technique. The RSA technique adds fibres sequentially in a 3D space according to 

the random distribution of each fibre. However, since the RSA algorithm tries to 

avoid any intersections among fibres and all fibres are straight, it has become 

essentially difficult to increase the fibre volume fraction and it is really time-

consuming in constructing the models when fibre number is large enough. Different 

from the above fibrous structure without intersections generated by the RSA method, 

there is another random fibre composite, in which fibres are bonded at the intersected 

points thus creating a network among fibres. The appearance of this fibre network 

structure is of prevalence in most connective tissues of the human and animal bodies, 

such as cartilage, tendon and ligaments, and cornea that involve collagen fibre 
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networks [58], in individual cell scale like the cytoskeleton and in the artificial 

geometry of metal fibre sintered sheet (MFSS) [14]. 

2.2 Fibre Network 

Fibrous materials are widely used for various purposes, owing to their variety and 

flexibility in structure, and high ratios of stiffness and strength to weight. Among 

them, fibre network is one of the specific fibrous structures in which fibres are 

connected as shown in Figure 2.6 thus generating a fine network instead of 

uncontacted and dispersed individual fibres. Fibre network can either function as a 

porous material alone or fundamentally serve as the reinforcement of composites in 

engineering applications so as to improve the overall performance. 

   

Figure 2.6. Microstructures of the metal fibre network by SEM and μ-CT [64]. 

 

Van Wyk [65] studied the mechanics of fibre network at the very early stage, in which 

the relation between the compression stress and volume was investigated on a 3D 

model with wool fibres randomly oriented and in contact with other fibres. However, 

it just took the bending of fibres into consideration while neglecting the effect of 

twisting, slippage and extension of fibres on the deformation mechanism.  

Kallmes and Corte [66, 67] and other researchers have explored the statistical 
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geometry of paper. Both two-dimensional and three-dimensional geometries have 

been discussed by Kallmes and Corte and the main concept of the study was to 

investigate the geometry of fibre network including the effects of fibre distribution 

and inter-fibre spaces on the paper properties. The study also provided direct 

correlations between different network geometrical properties (e.g. the number of 

cross-linkers, average segments length between cross-linkers) and various fibre 

properties (e.g. fibre length, number of fibres). Different from the ‘negative 

exponential’ distribution of fibre to fibre distances given by Kallmes and Corte, Dent 

[68] has proposed a ‘general gamma’ distribution protocol which can statistically 

describe ‘non-random’ as well as ‘random’ structures. The more recent studies by 

Komori et al. [69, 70] also questioned the limitation of Van Wyk’s theory due to the 

lack of other compression properties and the proposed new theories for curved beams 

and considered fibre sliding.  

After that, Toll and Manson [71] conducted theoretical analysis on the elastic 

compression of a fibre network with in-plane fibre orientation distribution based on 

beam bending and obtained a five-degree polynomial relation between pressure and 

volume fraction. Then a new micromechanical theory was developed by Toll [72] to 

demonstrate the packing mechanics of fibre reinforcement and an equation in relation 

to the mean number of contact points per slender fibre was derived.  

Further work on fibre network was carried out by Heyden [73] who developed a finite 

element model of both two-dimensional and three-dimensional cellulose fibre 

networks for the analysis of the effect of micro-mechanical parameters on the overall 

mechanical behaviours. Sampson [74] modelled stochastic fibrous materials by 

adopting Mathematica® simply by applying different probabilities and distributions. 
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Zhang et al. [17] have created a numerical model of carbon-bonded carbon fibre 

network by inserting a beam [18] between the intersected points of the two fibres and 

it shows good agreement with the experimental results. A similar 3D fibre network 

has also been studied experimentally and numerically in [13] and the stress-strain 

relations indicate that the fibre-fibre connection can dramatically improve the fibre 

network strength. 

2.2.1 Metal Fibre Sintered Sheets  

Metal fibre sintered sheets (MFSSs) are a type of fibrous material with transversely 

isotropic nature as shown in Figure 2.7 below and attract a high interest for their light 

weight, high specific stiffness and strength as well as high specific surface. MFSSs 

have been widely used in various industrial practices benefiting from their high 

structural and functional performances. For example, MFSSs have been successfully 

applied in filtration membrane [75], structural components, sound adsorption [76], 

catalyst carrier [77] and heat exchanger [78].  

 

Figure 2.7. An example of a bulk metal fibre sintered sheets (MFSSs) [10]. 

 

The typical process of fabricating MFSSs includes five main stages, which are fibre 

chipping, mould pressing, sintering, cooling and testing [79]. By compression and 
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sintering, the in-plane randomly distributed individual metal fibres are merged into 

an in-plane transversely isotropic network with porosities in a large range. It is not 

surprising that the stiffness and yield strength are enhanced as the relative density 

increases and the relations to relative density are found to be linear [80]. More 

specifically, both the stiffness and yield strength in-plane are much larger than those 

through the thickness direction [12]. Moreover, geometry parameters such as cross-

link concentration and aspect ratio etc. can also alter the mechanical behaviour of 

MFSS. In addition, it is noticed that the Poisson’s ratio 𝑣13 = 𝑣23 ≈ 0 , which 

indicates that transverse loading introduces nearly no contraction or expansion to the 

through-thickness direction. However, the elongation can be as large as 13.5% [81] 

and remains relatively constant with relative density [14]. Furthermore, both the 

shear properties and deformation mechanisms of porous MFSSs were considered by 

Zhao and Chen [82] based on an experimental procedure and micromechanics 

models. To be specific, both of the in-plane shear modulus and strength were linearly 

dependent on the MFSSs relative density. In contrast, the shear modulus and strength 

in the through-thickness direction were found to have a quartic and cubic dependence 

on the relative density of MFSSs, respectively. The reason behind shear behaviour 

that occurred in-plane and out-of-plane lies in the different dominant deformation 

mechanisms. In particular, the in-plane deformation mechanism for MFSSs is fibre 

bending while out-of-plane is fiber stretching or compression. In addition, the in-

plane shear modulus and yield strength are also much larger than the out-of-plane 

values. Meanwhile, yields occurred at a smaller strain when loaded in the in-plane 

direction than when loaded in the through-thickness direction. Uniaxial tensions in 

the in-plane and out-of-plane directions separately also indicate two dominanted 

failure mode, that is, fibre fracture for the in-plane tension and fibre decohesion for 
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the out-of-plane tension [10]. 

2.2.2 Biological Fibre Network 

Fibre network is also a very general structure in biologies such as tissues and cells. 

For example, cytoskeleton (see Figure 2.8) is a complex network of interlinking 

filaments and tubules and is composed of proteins. It mainly functions as the support 

of cell shape and mechanical resistance to deformation. It can also deform with 

initiatives according to the external environment change of a cell thus allowing the 

cell to migrate [83, 84]. Moreover, the network structure has nominated itself as a 

good signal transmission path inside of the cell. These biomaterials are observed to 

be viscoelastic, which shows that the stress response of them is dependent on strain 

rate, time and temperature [85], thus making the deformation extremely complicated. 

Therefore, the understanding of the mechanics of the cytoskeleton can be of crucial 

importance for the overall deformation mechanism. 

 

Figure 2.8. Electron Microscopy of neurofilament gel in which neurofilament 

polymers are linked together [86]. 

 

Another common bio-structure involving network is the extracellular matrix (ECM). 
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It is a complex assembly of structural proteins, of which Type I collagen is the most 

abundant component, that provides physical support and biochemical signalling to 

cells in tissues. Type I collagen self-assembles into fibrils, and these fibrils are then 

cross-linked to form networks in vitro [8]. Collagen networks have been found to 

exhibit both nonlinear elasticity and viscoelasticity, the relation of which has not been 

completely discovered yet [87, 88]. In tissues like ligaments and tendons, there exists 

the ground substance matrix surrounding the collagen fibres, mainly consisting of 

proteoglycan and functioning as cross-linkers among fibres and entrapment in 

retaining water or another solvent, thus forming a gel-like extracellular matrix [89]. 

2.2.3 Honeycomb and Open-cell Foams 

Open-cell foams, as one category of continuous porous structures, can be equally 

regarded as fibre networks. Within this structure, the cells are usually in highly 

complex and tortuous shape, thus rendering adjustable geometrical characteristics in 

the specific surface, density and porosity etc. [90] for wide applications [91]. One 

example of the open-cell foam structure is shown in Figure 2.9 (a). Geometries with 

regular [92-95] and irregular cells [5, 96-98] have been intensively manufactured in 

industry or constructed by 3D modelling methods. Among various open-cell foams, 

aluminium has been the most frequently applied material due to its low density, high 

specific mechanical and thermal properties. The mechanical properties, such as the 

stress-strain response of open-cell foams, have been largely investigated and the 

improved specific stiffness and strength have been observed compared to bulk metal 

[99]. The combination of materials and cellular structure [5] has made the open-cell 

foam more attractive for various applications. When the 3D open-cell foam reduces 

to 2D structure, the structure turns into another fibre network, which is commonly 
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called honeycomb. As shown in Figure 2.9 (b), the honeycomb with irregular cells 

[100, 101] can be regarded as a 2D fibre network. Different from MFSSs, in which 

two fibres intersect at most cases, three or more fibres/cell walls completely emerge 

at the intersections for open-cell foams and honeycomb. In addition, honeycomb is 

size-dependent as a hierarchical structure, in which the mechanical properties are 

largely affected by the strain gradient effect at the microscale and influenced by the 

surface elasticity and initial stresses at the nanoscale [102, 103]. 

       

Figure 2.9. (a) Open cell Al foams with a relative density of 42% by SEM [96]; (b) 

Voronoi honeycomb with irregular cells [100]. 

 

2.3 Characterisation of Fibre Reinforced 

Composites 

2.3.1 Elasticity Analysis of Fibre Reinforced Composites 

2.3.1.1 Stiffness and Compliance Matrix 

Fibre reinforced composites are often highly anisotropic in structure. While only two 
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independent elastic constants are required to describe the elasticity of isotropic 

materials, twenty-one constants are required for anisotropic materials with no planes 

of symmetry. There are normally six independent stresses and six independent strains 

for anisotropic materials, i.e. stresses: 𝜎1, 𝜎2, 𝜎3, 𝜏12, 𝜏23, 𝜏31 and strains: 𝜀1, 𝜀2, 𝜀3, 

𝛾12, 𝛾23, 𝛾31 (where 1, 2 and 3 represent x, y and z directions separately in a 3D 

model). Then the stress-strain relations [104] are expressed as 

 

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

𝐶14 𝐶15 𝐶16
𝐶24 𝐶25 𝐶26
𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34
𝐶15 𝐶25 𝐶35
𝐶16 𝐶26 𝐶36

𝐶44 𝐶45 𝐶46
𝐶45 𝐶55 𝐶56
𝐶46 𝐶56 𝐶66]

 
 
 
 
 

[
 
 
 
 
 
𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12]
 
 
 
 
 

 (2.3) 

where the [𝐶𝑖𝑗] is the stiffness matrix and the compliance matrix [𝑆𝑖𝑗] can be written 

accordingly as 

 

[
 
 
 
 
 
𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13
𝑆12 𝑆22 𝑆23
𝑆13 𝑆23 𝑆33

𝑆14 𝑆15 𝑆16
𝑆24 𝑆25 𝑆26
𝑆34 𝑆35 𝑆36

𝑆14 𝑆24 𝑆34
𝑆15 𝑆25 𝑆35
𝑆16 𝑆26 𝑆36

𝑆44 𝑆45 𝑆46
𝑆45 𝑆55 𝑆56
𝑆46 𝑆56 𝑆66]

 
 
 
 
 

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12]
 
 
 
 
 

 (2.4) 

Laminae of fibre reinforced composites with all the fibres parallel are orthotropic 

materials, in which there are three mutually orthogonal planes of symmetry for 

mechanical properties, and there are no interactions between normal stresses and 

shearing strains.  Therefore, the number of independent elastic constants is reduced 

to only nine and stress-strain relations [104] are illustrated in the compliance matrix 

form as  

 

[
 
 
 
 
 
𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13
𝑆12 𝑆22 𝑆23
𝑆13 𝑆23 𝑆33

 0     0    0  
 0   0 0
 0   0 0

 0     0    0  
 0   0 0
 0   0 0

𝑆44 0 0
0 𝑆55 0
0 0 𝑆66]

 
 
 
 
 

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12]
 
 
 
 
 

 (2.5) 
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By measuring Young’s moduli, shear moduli and Poisson’s ratios in the practical 

test, in addition, 𝑣𝑖𝑗 𝐸𝑖⁄ = 𝑣𝑗𝑖 𝐸𝑗⁄  (i, j=1, 2, 3), Eq. (2.5) can be rewritten as  

[
 
 
 
 
 
𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12]
 
 
 
 
 

=

[
 
 
 
 
 
 
1 𝐸1⁄ −𝑣12 𝐸1⁄ −𝑣13 𝐸1⁄

−𝑣12 𝐸1⁄ 1 𝐸2⁄ −𝑣23 𝐸2⁄

−𝑣13 𝐸1⁄ −𝑣23 𝐸2⁄ 1 𝐸3⁄
  
0         0         0  
0       0      0
0       0      0

 0               0               0  
0             0            0
0             0            0

1 𝐺23⁄ 0 0

0 1 𝐺31⁄ 0

0  0 1 𝐺12⁄ ]
 
 
 
 
 
 

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12]
 
 
 
 
 

 (2.6) 

Therefore, only the nine independent elastic constants, 𝐸1 , 𝐸2 , 𝐸3 , 𝐺12 , 𝐺23 , 𝐺31 , 

𝑣12, 𝑣23 and 𝑣13 are required for orthotropic materials. For the situation when the 

structure exhibits the same properties in x and y directions, taking cross-ply woven 

fabric composites for example, which means 𝐸1 = 𝐸2, 𝑣23 = 𝑣13 and 𝐺23 = 𝐺31, the 

number of independent elastic constants then further reduces to six (i.e. 𝐸1, 𝐸3, 𝐺12, 

𝐺31, 𝑣12 and 𝑣13).  

For composites such as in-plane randomly distributed fibre reinforced composites 

and some laminates which are transversely isotropic structure, the mechanical 

properties are equal in all directions in a plane, e.g. x-y plane. Then they have only 

five independent elastic constants, i.e. 𝐸1 , 𝐸3 , 𝐺31 , 𝑣12  and 𝑣13 . The stress-strain 

relations [104] are expressed as 

[
 
 
 
 
 
𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12]
 
 
 
 
 

=

[
 
 
 
 
 
 
1 𝐸1⁄ −𝑣12 𝐸1⁄ −𝑣13 𝐸1⁄

−𝑣12 𝐸1⁄ 1 𝐸1⁄ −𝑣13 𝐸1⁄

−𝑣13 𝐸1⁄ −𝑣13 𝐸1⁄ 1 𝐸3⁄
  
0         0               0        
0         0                 0          
0         0                0         

 0               0               0  
0             0            0
0             0            0

1 𝐺31⁄ 0 0

0 1 𝐺31⁄ 0

0  0 2(1 + 𝑣12) 𝐸1⁄ ]
 
 
 
 
 
 

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12]
 
 
 
 
 

 

 (2.7) 

Last but not least, isotropic materials such as three-dimensional random fibre or 

particle reinforced composites have only two independent elastic constants (i.e. 𝐸 

and 𝑣). 
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2.3.1.2 Theoretical Models of Elastic Analysis 

Theoretical analysis has long been conducted towards the mechanical properties, like 

elasticity, of fibre-reinforced composites. Some preliminary attempts have been 

made for the prediction of mechanical behaviours and yet have exerted a fundamental 

influence on the further endeavour. One of the most commonly used theories for 

predicting the bounds of composite stiffness is the Rule of Mixture, in which the 

mechanical properties of a composite can be calculated simply by summating the 

properties of fibre and matrix with their volume fractions. For elastic modulus, 

Voight limit [48] is corresponding to the situation when the composite is subjected 

to ‘in parallel’ loading and Ruess limit [49] subjected to an ‘in serial’ loading. The 

overall moduli for these two situations are expressed as 

 𝐸∥ = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚 (2.8) 

 𝐸⊥ =
𝐸𝑓𝐸𝑚

𝐸𝑓𝑉𝑚 + 𝐸𝑚𝑉𝑓
 (2.9) 

The Voight and Ruess limits have been widely recognised as rigorous upper and 

lower bounds. However, these bounds are based on the isotropy of both the 

reinforcement and the matrix, which is not always the true situation for composites, 

such as aligned fibre-reinforced composites which are anisotropic. This has 

introduced large error and it is suggested that the Voight and Ruess limits just provide 

a considerably rough prediction.  

Accordingly, a tighter bound estimation was proposed by Hashin and Shtrikman 

[105, 106] which is derived according to the variational approach and is applicable 

to not only isotropic materials but also heterogeneous structures. In order to further 

improve the bounds, more details related to the geometry of composites, e.g. fibre 
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length and fibre orientation, which are expected to matter dramatically to the 

properties of composites, are required to be taken into consideration. Bowyer and 

Bader [107, 108] have modified the Rule of Mixture by taking fibre length and fibre 

orientation into consideration and Eq. (2.8) is modified as  

 𝐸𝐶 = 𝐾1𝐾2𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚 (2.10) 

where K1 and K2 are the fibre length factor and fibre orientation factor, respectively. 

K1 meets [109] 

 𝐾1 = {
𝐿 − 𝑙𝑐 2𝐿⁄ ,    𝐿 > 𝑙𝑐
𝐿 2𝑙𝑐⁄ ,           𝐿 < 𝑙𝑐

 (2.11) 

where 𝐿 is the fibre length and 𝑙𝑐 is the critical length of the fibre [110]. In the case 

of misaligned fibres or off-axis loading condition, the contribution of the fibres to 

overall properties is then reduced. This is reflected on 𝐾2. For the term of fibres 

randomly distributed in a plane, 𝐾2 is reduced to one third [108], and if the fibres are 

randomly distributed in three dimensions the factor is one sixth [111]. Thus the 

orientation factor 𝐾2 may lie between 1 and 0.167 and can be adjusted according to 

fibre distribution. 

Bert (25) has developed a simplified method in terms of the elastic properties of 

random fibre composites, which is based on the original model proposed by Nielsen 

and Chen [112] as follows 

 𝐸𝐶 = 3 8⁄ 𝐸∥ + 5 8⁄ 𝐸⊥ (2.12) 

Nielsen and Chen have also taken the effect of Poisson’s ratio of the matrix into 

account in their model and gives a better fitment to experimental results [112, 113], 

in which, 

 𝐸⊥ =
𝐸𝑓𝐸𝑚

′

𝐸𝑓𝑉𝑚 + 𝐸𝑚
′𝑉𝑓

 (2.13) 
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where 𝐸𝑚
′ = 𝐸𝑚 𝑣𝑚

2⁄ . 

Cox [111] originally developed a shear-lag model to investigate the stiffness of 

fibrous materials and fibre reinforced composites, in which fibres oriented either 

randomly or according to some definite law of statistical distribution and the effect 

of fibre orientation on the stiffness has been taken into consideration in his model. 

However, the model assumes to be only subjected to tension and the flexural stiffness 

and compression are negligible. Based on the shear-lag model, other researchers 

[114-116] found it extensively suitable for the study of aligned fibre reinforced 

composites, both in stiffness and in strength, in a simplified form of expressions in 

[111] while in a more accurate analytical model than the ideal model based on the 

rule of mixture. According to the shear-lag model, the elastic modulus of composites 

can be derived as 

 𝐸𝑐 = (1 − 𝑉𝑓)𝐸𝑚 + 𝑉𝑓𝐸𝑓 {
1 + (𝐸𝑚 𝐸𝑓 − 1⁄ ) 𝑡𝑎𝑛ℎ(𝛽𝑙 2⁄ )

𝛽𝑙 2⁄
} (2.14) 

where 𝐸𝑚 and 𝐸𝑓 are the Young’s modulus of the matrix and the fibre, respectively, 

𝑉𝑓 is the volume fraction of the fibres, and β is a matrix material constant [117], 

which is expressed as  

 𝛽 = √
2𝐺𝑚

𝑟2𝐸𝑓 𝑙𝑛 (𝑅 𝑟)⁄
 (2.15) 

where 𝐺𝑚 is the shear modulus of the matrix and 𝑅 and 𝑟 are the diameters of the 

unit cell and a fibre separately. 

A model similar to the shear-lag model is proposed by Fukuda and Kawata [118] in 

terms of the axial stiffness of single short fibre-reinforced composites by considering 

the axial stress of the fibre and interfacial shear stress. Then it is further extended to 
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the elasticity study of a two-dimensional random fibre-reinforced composite, which 

also managed to give analytical expressions of stiffness corresponding to the 

distribution of fibre length and fibre orientation. The expression is written [118] as 

 𝐾𝑐 =
𝐸𝑓

𝐸𝑚
𝑅0𝐶0𝑉𝑓 + 1 − 𝑉𝑓 (2.16) 

where, 

 𝑅0 = −
2𝜋

𝑊𝑓(3 + 2𝑣 − 𝑣2)
∫ (𝑙 ∫ 𝜎𝑙(𝑢)

𝑙

0

𝑑𝑢)ℎ(𝑙)𝑑𝑙
∝

0

𝐸𝑓

𝐸𝑚
⁄  (2.17) 

 𝐶0 = ∫ 𝑔(𝜃) 𝑐𝑜𝑠 𝜃
𝜋 2⁄

0

𝑑𝜃∫ 𝑓(𝜃) 𝑐𝑜𝑠 𝜃 𝑔(𝜃)𝑑𝜃
𝜃0

0

 (2.18) 

𝑅0 is called the reinforcement ratio of zero dispersion, which shows the degree of the 

reduction of Young's modulus caused by fibre length. 𝐶0 is defined as the coefficient 

of alignment which shows the degree of stiffness reduction caused by fibre 

misalignment. However, this model tends to under-estimate the in-plane Young’s 

modulus for the situation of high modulus ratio and low aspect ratio [117]. 

Eshelby [119, 120] has explored the elasticity of a two-phase structure with an 

ellipsoidal inclusion embedded in an infinite matrix. The fundamental idea of this 

theory lies in the equivalence of the inhomogeneous inclusion and a homogeneous 

replacement of the inclusion with the same dimension and shape. Specifically, the 

inclusion with a different stiffness as the matrix is replaced by an alternative inclusion 

with the same stiffness as the matrix (schematic illustration see Figure 2.10), and the 

effective stress-strain relation is realised by equalling the two situations through the 

transformation strains. The average composite stiffness tensor 𝐶 with respect to the 

fibre and matrix properties can be expressed as 

 𝐶 = 𝐶𝑚 + 𝑣𝑓(𝐶
𝑓 − 𝐶𝑚)[𝐼 + 𝐸𝑆𝑚((𝐶𝑓 − 𝐶𝑚))]−1 (2.19) 
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                                 (a)                                                (b) 

Figure 2.10. Schematic drawing of Eshelby's method in the equivalence of 

homogeneous inclusion (a) and inhomogeneous inclusion (b) [117]. 

 

Further work by Eshelby [121] included detailed expressions of the elastic field 

outside the inclusion by an improved harmonic potential. This theory has been 

extensively adopted as the basic theory for the further development of similar models 

[122, 123]. Russel [124] has predicted the moduli of aligned short-fibre composites 

based on Eshelby's equivalent inclusion. However, this model needs to be improved 

due to reason that the stiffness is predicted to be proportional to fibre volume fraction 

by this model and the modulus predicted is accurate only at low volume fractions 

(i.e. 𝑉𝑓 < 1%). 

Based on Eshelby’s model, a self-consistent method, also called the embedding 

method, has been proposed, in which a similar strain-concentration tensor 

𝐴 = [𝐼 + 𝐸𝑆((𝐶𝑓 − 𝐶))]−1 with Eq. (2.19) was adopted towards composites with 

particles and continuous, aligned fibres. Furthermore, a generalised self-consistent 

model was developed by Kerner [125] regarding a geometrical model with the 

spherical particles surrounded by a shell of matrix. Then together, they are embedded 

in an infinite body with average composite properties, thus also called double 
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embedding method. Hill [126] has adopted the self-consistent approach which took 

the inhomogeneity of stress and strain into account in predicting the macroscopic 

elastic moduli of two-phase composites. 

Not limited to a single particle in an infinite matrix, Mori and Tanaka [127] have 

proposed a further theory regarding materials with numerous misfitting inclusions 

inside of the matrix. The average internal stress in the matrix is calculated under the 

situation that inclusions alone undergo uniform transformation strain. Based on the 

Mori-Tanaka model, the investigation of the stiffness of composites, which mainly 

focused on aligned fibre/particle reinforced composites, has been widely conducted 

[122, 128-130]. For instance, Abaimov et al. [129] have developed a closed form 

expression, which directly involved the engineering constants, of the Mori-Tanaka 

theory for the prediction of both longitudinal and transverse elastic constants of a 

unidirectional fibre-reinforced ply. Benveniste [131] has reformulated the combined 

equivalent inclusion idea of Eshelby [119] and the average stress concept in the 

matrix of Mori and Tanaka [127] in the form of a ‘direct approach’ [132] in 

determining the effective properties of two-phase composites with isotropic elastic 

constituents and an inclusion phase consisting of aligned or randomly oriented 

ellipsoidal particles. 

The Halpin-Tsai [133] equation is also a common method in predicting the 

behaviours of fibre reinforced composites. It is developed based on the generalised 

self-consistent model of Hermans and Hill [126]. Halpin and Tsai concluded 

Hermans’ equations for stiffness as  

 
𝑃

𝑃𝑚
=
𝑃𝑓 + 𝑃𝑚 + 𝜁𝑣𝑓(𝑃𝑓 − 𝑃𝑚)

𝑃𝑓 + 𝑃𝑚 − 𝑣𝑓(𝑃𝑓 − 𝑃𝑚)
 (2.20) 

where 𝑃, 𝑃𝑓 and 𝑃𝑚 can represent the bulk or shear moduli of composites, fibres and 
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matrix, respectively. 𝜁  is a parameter which is related to the geometry of the 

reinforcement. 

Although the Halpin-Tsai model works perfectly at low volume fractions, it tends to 

under-estimate the stiffness at high volume fractions. Thus some modifications [134, 

135] have been conducted towards the Halpin-Tsai equation to include more precise 

expressions of stiffness in relation to volume fraction. 

Hill [136] has managed to deduce the overall elastic moduli of fibre composites, in 

which both phases are homogeneous and elastically transversely isotropic about the 

fibre direction, independent of the detailed geometry.  

2.3.2 Elastoplastic Behaviours of Fibre Reinforced 

Composites 

2.3.2.1 Theoretical Models for Elastoplastic Analysis of Fibre 

Reinforced Composites 

In metals, yielding occurs due to the flow of dislocations, which mainly depends on 

shear stress/strain. In terms of fibre reinforced composites, there are three phases: 

fibre, matrix and interface, and the yield and failure criteria will be dependent on all 

of them. Accordingly, two modes of yielding or failure, that are fibre dominated and 

matrix dominated, are proposed and investigated in corresponding to the regions 

where yielding or failure happens. Several theoretical models are developed with 

respect to metals and other homogeneous materials but rigorous analysis of the 

elastoplastic behaviour of composites is limited due to the complication in structure 

[137]. One relevant example is the early stage analysis conducted by Hill [138] who 
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has given an approximate analysis of the elastoplastic behaviour of fibre-

strengthened materials under axial and transverse plane-isotropic loadings. 

Furthermore, Hill [139] obtained a rigorous general theory of the macro-mechanics 

of heterogeneous and non-linear elastoplastic systems. Approaches to the 

elastoplastic analysis can be categorized as micromechanical and macroscopic 

models. 

Miwa [140] has proposed a model for the investigation of the tensile strength 

corresponding to composites in which short fibres are oriented random-planarly, in 

which the strength depends strongly on the yield shear strength at the fibre-matrix 

interface and can be expressed, using the critical fibre length 𝑙𝑐  and the apparent 

interfacial shear strength 𝜏, as  

 𝜎𝑦 =

{
 
 

 
 
2𝜏

𝜋
[2 + 𝑙𝑛

(1 − 𝑙𝑐 2𝐿⁄ )𝜎𝑓𝜎𝑚𝑣𝑓 + 𝜎𝑚𝜎
′
𝑚𝑣𝑚

𝜏2
] ,   𝐿 ≥ 𝑙𝑐

2𝜏

𝜋
[2 + 𝑙𝑛

𝜏(𝐿 𝑑⁄ )𝜎𝑚𝑣𝑓 + 𝜎𝑚
2𝑣𝑚

𝜏2
] ,                      𝐿 < 𝑙𝑐

 (2.21) 

where 𝜎𝑓 and 𝜎𝑚 are the tensile strengths of the fibre and the matrix separately, 𝑣𝑓 

and 𝑣𝑚 are the volume fraction of the fibre and the matrix, respectively, 𝜎′𝑚 is the 

matrix stress at fracture strain of the composite, L is the fibre length and d is the fibre 

diameter. 

The self-consistent method was originally developed by Hershey [141] and Kroner 

[142] for the elastic deformation study of aggregates. It involves the incremental 

approach [143], in which the overall incremental stress and strain are corresponding 

to the incremental behaviours of local individual phases. Thus the overall mechanical 

behaviours can be determined step by step during the deformation history [144]. 

Dvorak and Bahei-El-Din [145] have modified the self-consistent model for the 

overall instantaneous moduli calculation of fibrous composites. Then, the self-
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consistent model has been improved by Budiansky & Wu [146] and intended to 

include plastic analysis by Kroner in [147], with elastoplastic accommodation taken 

into account, to solve the plastic problem of an inclusion within an infinite matrix. 

Hill [126] also employed the self-consistent model to estimate the global elastoplastic 

properties of aggregates by applying uniform tensors to local individual phases. The 

Hill model is also applicable in dealing with the anisotropic problem. Hutchinson has 

employed a self-consistent method for the exploration of the elastic-plastic behaviour 

of both metals and composites and also compared the models proposed by Kroner 

[142] and Budiansky & Wu [146], and Hill [126]. It was found that the model of 

Kroner and Budiansky & Wu have shown identical results with the Hill model for 

small-scale plastic deformation while larger plastic strain rate than the Hill model for 

large-scale deformation. It is also argued that Kroner’s model indicates good 

predictions of elasticity but dissatisfactory plasticity predictions [148]. Therefore, 

Berveiller and Zaoui [148] have introduced the secant model, which is derived from 

the formulation of the self-consistent scheme, aiming to obtain a better plastic 

approximation of polycrystals than Kroner’s model [147] by introducing a simple 

scalar accommodation function. In the secant model, the effective strain of individual 

phase is simplified as the average strain of this phase by means of strain concentration 

tensor. Hutchinson [149] extended the self-consistent method to the analysis of creep 

behaviours of polycrystalline materials together with an upper bound technique. 

Besides polycrystals, the self-consistent model also applies to composites. Castañeda 

[150] has exploited the self-consistent model to estimate the effective mechanical 

properties of nonlinear composites, such as a two-phase incompressible composite, 

in the proposed new variational model. 

Extensions to the secant model have been investigated [150-154]. Suquet [155] has 
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developed a modified secant model, in which the effective strain of individual phase 

is expressed as a relation to the second-order moment of the strain field of this phase 

instead of the average strain of this phase described in a classical secant model. In 

addition, this modified model has saved the procedure of obtaining the concentration 

tensors [156]. Hu [153] has combined a general concept of the secant moduli method 

with an improved evaluating approach for the average matrix effective stress [157] 

to provide a more precise prediction of nonlinear effective properties of aligned fibres 

or void composites than the classical secant method.  

Another micromechanical approach to determine the effective macroscopic 

mechanical behaviours of composites is the variational model [150, 158]. Hashin and 

Shtrikman [106] have successfully derived the upper and lower bounds for the 

effective magnetic permeability of multiphase materials by using the variational 

theory. Furthermore, they have also established various variational principles in the 

wide investigation of the elasticity of isotropic or anisotropic nonhomogeneous 

composite materials [105, 159-161]. Castañeda [150] has proposed an alternative 

variational structure that is capable of estimating the effective behaviours of 

nonlinear composites by the corresponding properties for the linear composites with 

the same distribution of microstructure. Lahellec and Suquet [162] have proposed an 

incremental variational formulation to determine the effective behaviour of nonlinear 

inelastic composites by describing the behaviour of constitute phases with an 

incremental energy function using implicit time-discretization scheme. In this way, 

the stress-strain relations of local phases are represented by a single potential and the 

effective behaviour of the whole heterogeneous composites can be solved by a 

homogenisation method at each time step [158]. 
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Macroscopic models may include nonlinear elasticity [163, 164], progressive 

damage-elasticity [165, 166] and elastoplasticity [167-170] methods. Petit et al. [163] 

adopted a piecewise linear method in which the overall behaviour is obtained from 

the incremental stress-strain relations to study the nonlinear elastic behaviour of 

unidirectional laminae. However, it requires the quasi-linearity of the materials so as 

to neglecting the coupling among stress components. Hahn et al. [164] have derived 

the nonlinear stress-strain relation of laminae based on a complementary strain 

energy density function. As for damage-elasticity models, an anisotropic damage 

assessment model of lamina based on the concept of damage surface was developed 

by Chow et al. [165] and a nonlinear constitutive model was proposed by Lin et al. 

[166] for the nonlinear analysis of composite laminates by using a mixed failure 

criterion to detect the damage onset. Elastoplasticity models adopt an incremental 

plastic potential function with an associated flow rule to describe the elastic-plastic 

stress-strain relation [167-169]. Sun et al. [170] proposed an extensively attractive 

one-parameter plasticity model which is simple and still in high accuracy.  

2.3.2.2 Determination of Yield Strength 

The yield point is rather difficult to precisely determine due to the wide variety of 

stress-strain curves exhibited by various materials and structures. Possible methods 

can be yield point, proportional limit, elastic limit, offset yield point and upper and 

lower yield points etc. Offset strain method is one of the most commonly used 

methods in determining equivalent yield strength in non-yielding materials which are 

ductile or brittle. Usually, an offset strain between 0.05% and 0.3% is adopted. It is 

universally acknowledged that the point on the stress-strain curve, where the offset 

strain is equal to 0.2%, is regarded as the yield point. For example, 0.2% strain offset 
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is also adopted in determining the yield point of hybrid carbon fibre/self-reinforced 

polypropylene composites in [171]. Cahoon et al. [172] have related the yield 

strength to hardness in the studies of brass, steel and aluminium alloys. Apart from 

these methods, graphic method and equivalent energy method are also applied to the 

stress-strain curve to determine the yield point for certain materials. For example, in 

one of the graphic methods applied in the analysis of yielding and stress-strain 

behaviour of structured soft clay [173], the yield point is defined as a foot of a 

perpendicular which is through the intersection of rectilinear extrapolations of the 

pre-yield and post-yield portions of the stress-strain curve and perpendicular to the 

curve (see Figure 2.11(a)). Equivalent energy method used to be employed in the 

fracture mechanics analysis [174, 175]. Equivalent energy method is adopted to 

determine the yield point in the way that the stress-strain curve is replaced by an 

elastic-perfectly plastic curve with the same envelope and the strain of the elastic 

limit on the elastic-perfectly plastic curve is regarded as the yield strain of the original 

curve [176] (see Figure 2.11(b)). However, these methods are still not suitable for 

some newly emerged materials and structures. 

In terms of composites, it becomes more complicated to determine the yield point 

since there is more than one material or component and the yielding of composites 

means the overall yielding instead of just the yielding of certain individual 

components. In addition, the loading conditions, such as loading directions, matter 

for the exhibited stress-strain behaviour due to the anisotropy of structure composites 

may possess. For instance, in the uniaxial tension test of aligned fibre reinforced 

composites exhibit only linear elastic behaviour and then break without hardening 

process when the load is along the fibre direction whereas indicating typical 

elastoplastic behaviour when the loading offset is 45° to the fibre direction. Feng et 
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al. [177] have proposed a method called ‘Farthest Point Method’ to determine the 

yield point of steel-concrete-FRP-concrete. To be specific, the point on the curve, 

where the tangent slope is the same as the slope of the straight line determined by the 

peak and origin points, is defined as the yield point (see Figure 2.11(c)). This method 

is practicable for traditional elastic-plastic curves and elastic-plastic curves without 

obvious turning [177]. Johnson has long proposed the apparent elastic limit method 

in view of materials without a significantly proportional stress-strain relation, in 

which the yield point is determined as the point at which the strain rate is 50% greater 

than that of the origin (see Figure 2.11 (d)). There are also various methods for 

determining the yield point. Yet no methods apply to all the materials. Therefore, an 

appropriate method should be chosen for a certain material or structure. 

 
 

(a) (b) 

 

 

 
(c) (d) 

Figure 2.11. Schematic plotting of several methods of yield point determination: (a) 

Graphic method [173]; (b) Equivalent energy method [176]; (c) Farthest Point 

Method [177]; (d) Apparent elastic limit. 
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2.3.3 Viscoelasticity of Soft Tissues 

2.3.3.1 Viscoelastic Models 

Various materials, such as wood, polymers, mammal tissue and solid rocket 

propellants etc., exhibit viscoelastic behaviour, where the deformation is dependent 

on load, time and temperature [85].  

In recent decades, soft biological tissue has become one of the most attractive 

research fields and a variety of models have been proposed for the theoretical 

investigation of the viscoelasticity of soft tissue, including microstructural, 

phenomenological/rheological, and continuum models [89, 178, 179].  

Microstructural models [180-182] describe the overall mechanical behaviour of the 

tissue simply by combining or generalising the mechanical responses of the 

components, which provides a direct connection between the microscopic constituent 

characteristics (i.e. materials and structures) and the macroscopic response of the 

tissue [183-186]. Decraemer et al. [184] derived a corresponding nonlinear 

viscoelastic constitutive equation in the proposed model, which took the structure 

change, more specifically, fibre length change, into consideration. Lanir [180, 181] 

explored the viscoelastic behaviours of tissues under multiaxial loading. Stretching 

of fibres are mainly involved in the constitutive model. Egan et al. [182] also 

investigated the viscoelastic behaviour of soft tissues through a constitutive model. 

Instead of the deformation characteristics, the strain energy criteria was adopted in 

determining and characterising the mechanical response. 

Viidik [187] proposed a rheological model, in which the viscoelasticity of soft tissues 

can be mathematically described by combining the basic mechanical properties, such 
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as elasticity, viscosity and plasticity, in the ways that simple spring (representing 

elasticity), dashpot (representing viscosity) and dry friction (representing plasticity) 

are grouped in various ways, either in series or in parallel. Further to this,  Frisen et 

al. [188] have derived more detailed mathematical equations for the viscoelasticity 

and then extended the model to include the nonlinear elastic response which is 

manifested from the time-independent relation between force and deformation. 

Sanjeevi [189] developed a mathematical model for the stress-strain characteristic 

that is composed of  two components, i.e. elastic component and viscous component 

[190], and the complete viscoelastic equation is expressed as 

                  𝜎 = 𝜎𝑒 + 𝜎𝑣                 

 = 𝐸1𝜀 + 𝐸2𝜀
2 + 𝜂1

𝑑𝜀

𝑑𝑡
+ 𝜂2𝜀

𝑑𝜀

𝑑𝑡
                     (2.22) 

where σ and ε are stress and strain, and 𝐸1, 𝐸2, 𝜂1 and 𝜂2 are constants. Further to 

this, Sanjeevi et al. [189] argue that the length and thickness of the chosen collagen 

fibre also play a crucial role in the viscoelastic response. 

Since linear viscoelasticity did not completely match the nonlinear behaviours as 

observed in tissues [191], Fung [192] introduced the quasi-linear viscoelastic (QLV) 

model, which has been the most frequently used model in the study of viscoelasticity 

of tissues. The QLV model combines the elastic component with a time-dependent 

component of a tissue's mechanical response by adopting a hereditary integral 

formulation [178]. In the QLV model, the stress can be expressed as 

 𝜎(𝜀, 𝑡) = 𝐺(𝑡)𝜎𝑒(𝜀) (2.23) 

where 𝐺(𝑡) is the reduced relaxation function and 𝜎𝑒(𝜀) is the time-independent 

elastic response. The stress at time t is then given as 
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 𝜎(𝜀, 𝑡) = ∫ 𝐺(𝑡 − 𝜏)
𝜕𝜎𝑒

𝜕𝜀

𝜕𝜀

𝜕𝜏

𝑡

−∞

𝑑𝜏 (2.24) 

Based on association with linear viscoelasticity, but with 𝜎𝑒 assuming the traditional 

role of strain within the linear theory, Fung [179] chose the reduced relaxation 

function, 𝐺(𝑡), as: 

 𝐺(𝑡) =
1 + ∫ 𝑠(𝜏)𝑒−𝑡 𝜏⁄ 𝑑𝜏

∞

0

1 + ∫ 𝑠(𝜏)𝑑𝜏
∞

0

 (2.25) 

where the relaxation spectrum 

 𝑠(𝜏) = {
𝐶 𝜏⁄ , 𝜏1 ≤ 𝜏 ≤ 𝜏2
  0, 𝜏 < 𝜏1, 𝜏 > 𝜏2 

 (2.26) 

The reduced relaxation function can be rewritten in terms of exponential integrals as 

 𝐺(𝑡) =
1 + 𝐶(𝐸(𝑡/𝜏2) − 𝐸(𝑡/𝜏1))

1 + 𝐶 𝑙𝑛(𝜏2/𝜏1)
 (2.27) 

with exponential integral function [193] 

 𝐸(𝑦1) = ∫
𝑒−𝑦

𝑦
𝑑𝑦

∞

𝑦1

,   𝑦1 =
𝑡

𝜏1
,   𝑦 =

𝑡

𝜏
 (2.28) 

Based on experimental observations of the stress-strain relation of soft tissues, an 

exponential form is chosen for the elastic stress term: 

 𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝜀 − 1) (2.29) 

where 𝐴 and 𝐵 are material constants that relate to the magnitude and nonlinearity of 

the elastic stress response, respectively.  

The QLV model has been intensively applied in modelling a variety of tissues [194-

197], including ligaments and tendons [198-201]. Based on this model, some further 

work has been conducted by other researchers [183, 197, 202-204] to refine the 

parameters involved in the model for wider applications. Fung’s model utilizes five 
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parameters to explain the complex viscoelastic behaviour of collagenous tissues and 

allows easy, direct comparisons among the studies carried out by different research 

groups and performed on different species and tissue types [205]. 

Several continuum-based approximate constitutive theories [206-209] have been 

proposed for characterising the nonlinear viscoelasticity of polymers and tissues. 

Lianis [206] developed a continuum approximation to characterise the nonlinear 

viscoelastic behaviours of polymeric materials according to the finite linear 

viscoelastic theory proposed by Coleman and Noll [210]. Then a single integral 

constitutive equation was derived by Bingham and Dehoff [207] based on the 

modification of the Lianis model [206]. Another continuum-based constitutive theory 

is an incompressible elastic fluid theory proposed by Bernstein, Kearsley, and Zapas 

(BKZ) [208]. Haut and Little [198] proposed a constitutive equation for the 

characterisation of the time-dependent behaviour of collagen fibre bundles and the 

relaxation behaviour was proven to be derived from both the Lianis theory [206] and 

the BKZ theory [209]. 

2.3.3.2 Characterisation of Viscoelasticity of Soft Tissues 

Numerous studies have been conducted on the viscoelastic properties of soft tissues 

in recent decades, both experimentally and theoretically. Soft tissues in vitro are 

typically subject to uniaxial tensile or shear loading to measure mechanical 

behaviours, such as elastic and viscoelastic properties. Collagen is one of the most 

common constituents in comprising tissues in vivo and collagen is generally 

organised in hierarchical structures of tissues together with other constituents. For 

example, the tendon has five distinct substructures, including the collagen molecule, 

the collagen fibril, the fibril bundle, the fascicle, and the whole tendon [178]. In 
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tendons, the hierarchical structures can be demonstrated as shown in Figure 2.12. 

Accordingly, studies have been conducted towards tissue structures of different 

levels.  

 

Figure 2.12. Hierarchy of tendon structure according to Kastelic et al. [211]. 

 

Generally, there are three main types of measurements towards the viscoelastic 

behaviours in the tissue level, that is, stress-strain relation, stress relaxation and creep. 

The stress-strain relation is the fundamental feature in characterising the non-linear 

behaviour of tissues. To measure the stress-strain relation, various magnitudes of 

stress are rapidly applied to the sample, respectively, and the resulting deformations 

(i.e. strain) can be accordingly measured after holding the load for the same short 

term, e.g., 30s. The stress-strain response has been investigated corresponding to 

cornea [212, 213], ligaments [178, 183, 214], and tendons [178, 183] etc. 

In the stress relaxation measurement, the sample is subject to a constant strain for a 

long term and the stress will be partly released gradually over time. Then the dynamic 

stress over time is recorded as stress relaxation. Stress relaxation tests were carried 
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out on tendons [183, 204, 215-217], ligaments [183, 218, 219], heart valves [220], 

skin [221], bone [222], cornea [223], cartilage [224, 225] and gels [8, 226, 227] etc. 

As for the creep behaviour, a constant stress is imposed on the sample and the slow 

deformation over time can be quantified in a plot of strain vs. time [228, 229]. Creep 

tests were performed on tendons [215, 230], heart valves [231], skin [232], and gels 

[226, 233] etc. 

At the fibrillar level, direct mechanical measurements have not become feasible and 

reliable until the maturity of technologies like atomic force microscopy (AFM) and 

micro electro mechanical systems (MEMS). AFM is capable of visualizing and 

characterizing specimens like biopolymers on the sub-nanometer scale by contouring 

the surface in the way of controlling forces between a tiny and sharp probe and the 

specimen surface [234, 235]. The AFM nanotechnology has only recently been 

widely used in investigating materials [236], physics, biology [237], medicine, food 

and so on although it was first proposed early in 1986 [238]. The major advantage of 

AFM lies in its convenient operation and nearly nondetective feature to samples. 

Based on AFM, nanoindentation [239-241], tensile [242, 243], and bending [244, 

245] tests of single collagen fibril have been possible to study the elastic modulus 

and the hardness of the single fibril. Svensson et al. [246] have successfully studied 

the strain-rate-dependent behaviour of single collagen fibrils isolated from human 

patellar tendon by utilising an AFM-based tensile test. However, the capability of 

AFM in applying only a few strains has constrained its application in strength or 

toughness test by axial tension. But MEMS can be complementary to this as MEMS 

can be used in large strain load situation. Based on MEMS method, elastic modulus, 

yield strength/strain, fracture strength/strain, and toughness [247-249] can all be 
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obtained through quasistatic tensile tests of single collagen fibrils. In addition, the 

further work by Shen et al. [205] has performed in vitro coupled creep and stress 

relaxation tests on collagen fibrils isolated from the sea cucumber dermis and 

managed to obtain the viscoelastic behaviour of the fibril, which can be fitted by a 

two-time-constant Maxwell-Weichert model. This provides solid data for the 

exploration of viscoelastic behaviours on larger scales like the tissue scale. 

2.3.3.3 Deformation of Tissues 

As parts of a body, various tissues perform multiple functions, of which mechanical 

properties are essential in undertaking sufficient loads/deformation and supporting 

the shape of the body apart from biological functions. Typically, the structures of 

tissues are composed of fibrous or porous structure serving as the skeleton, and 

solution/water surrounding the skeleton and interacting with it. Due to the high 

mobility of solvent, it remains a focus of research on the deformation of tissues under 

load, especially for the mathematical model. By means of regarding the skeleton as 

the basement and the solvent as the matrix, tissues can be simplified as composites 

possessing nonlinear elastic and viscoelastic properties. A mathematical model 

which is appropriate in characterising the mechanical behaviour of the matrix (i.e. 

solvent) in tissues, such as elasticity and viscoelasticity, has been explored. Hong et 

al. [250] have investigated a polymeric gel system with polymer network surrounded 

by molecules and have proposed two modes of deformation that may occur under 

stretching according to the motion of molecules, that is short-range motion and long-

range motion, as sketched in Figure 2.13. In the short-range motion mode, molecules 

are corresponding to just the local rearrangement, resulting in only the shape change 

of the gel. Whereas, the long-range motion mode involves long-range migration of 
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the small molecules, resulting in changes of the gel not only in the shape but in the 

volume, thus causing swelling to the gel [250]. It is assumed that the local 

rearrangement is instantaneous, and the long-range migration is a time-dependent 

process of molecules diffusing inside the gel.  

 
Figure 2.13. A schematic of two deformation modes: short-range motion and long-

range motion, in a gel consisting of a polymer network (lines) and small molecules 

(dots) [250]. 

 

In tissues, like ligaments and tendons, there exists the ground substance matrix 

surrounding the collagen fibres, consisting of mainly proteoglycan and functioning 

as cross-linkers among fibres and entrapment in retaining water or another solvent, 

thus forming a gel-like extracellular matrix [89]. In some tissues such as skin, most 

of its water or another solvent can be constrained inside the tissue even under high 

pressure [251]. Therefore, it is usually assumed that the tissue is incompressible [252, 

253] in many models during the constitutive analysis. For instance, Lanir [254] treats 

tissues as a bicomponent mixture of incompressible solid and fluid, and then the 

motions and stresses of both solid and fluid under quasistatic conditions are derived 
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accordingly. However, it has been proven that exudation of water from ligamentous 

tissue has occurred [255] and the volume of the ligament has changed during the 

deformation [256, 257]. This volume change in vivo may result from fluid exudation 

[255] or inherent compressibility of the solid phase. Because of the limited 

availability of experimental data describing interstitial fluid flow in ligaments and 

tendons, FE models have been used to gain a better understanding of the flow 

behaviour [258]. Chen et al. [259] have developed finite element (FE) models to 

investigate interstitial fluid flow behaviour and tissue permeability in terms of 

interfibrillar spacing and fluid properties in ligaments and tendons, and the results 

indicated a much higher longitudinal permeability than the transverse permeability 

(up to 50 times). 
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Chapter 3 Three-dimensional Geometrical 

Model of Transversely Isotropic Random Fibre 

Network Reinforced Composites 

 

 

In this chapter, we aim to introduce the construction of the geometrical model of the 

fibre network composites. A novel transversely isotropic fibre network is designed 

and constructed, where the 3D beam elements are adopted to represent the fibres and 

cross-linkers among fibres are introduced to connect fibres and develop an integrated 

fibre network. The details about how the individual fibres are distributed and 

intersected with other fibres are illustrated in this chapter. Then an automatic 

searching & coupling (ASC) method is employed to couple the nodes of fibres and 

those of the solid matrix to thus generate a complete geometry of the composite. 

Periodic boundary condition (PBC) is applied to the representative volume element 

(RVE) and the way of loading for the finite element analysis (FEA) of mechanics has 

been explained. Last but not least, the key parameters that are dominant in the 

mechanical properties of the geometry, namely, cross-linker density, overlap 

coefficient, aspect ratio and volume fraction, are briefly described prior to the 

mechanical analysis of this structure. 
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3.1 Introduction 

Fibre reinforced composites are a category of structure that has been widely used in 

industry. Numerous different structures of fibre composites, for instance, uni-

directional fibre composites, cross-ply fibre composites and fibre laminates etc., are 

designed primarily for their advantages in directional mechanical properties, more 

precisely, axial or planar mechanical properties. However, the superior properties are 

achieved by sacrificing the properties in the other axes or planes. Delamination is a 

common problem when those structures happen to be subject to loading in their weak 

directions. 

Porous materials are another type of promising structures in engineering applications. 

Porous materials, such as foam, honeycomb and fibre network etc., have indicated 

extraordinary mechanical properties over the adopted materials themselves 

benefitting from their specificity in structures. Compared to fibrous materials like 

textiles which possess obvious directional mechanical properties, fibre networks 

have demonstrated the same level of properties in the primary directions while still 

possessing relatively good performance in the other directions due to the introducing 

of cross-linkers among fibres. 

Based on the aim of our structure, that is, building a transversely isotropic structure 

of fibre reinforced composites, the introduction of fibre network into the original 

fibre reinforced composites would be an advantage. The remaining directional 

characteristics of fibres in the fibre network reinforced composites provide the 

primary load bearing, in the meanwhile, cross-linkers strengthen the loading capacity 

of other directions. 
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The objective of this chapter is to construct RVEs of transversely isotropic fibre 

network reinforced composites where the network is formed by the cross-linking 

among fibres. To start with, RVEs of transversely isotropic fibre network with cross-

linkers are to be constructed according to the geometrical periodicity of fibres along 

x, y and z directions, respectively. Then the fibre network will be combined with the 

solid matrix to compose the entire fibre network composites. We have tried to 

generate the fibre network model in a similar way of fabricating MFSS so as to make 

it more realistic and engineering implementable. 

 

3.2 Generation of the 3D Stochastic Fibre Network 

Before applying FEA, one common procedure is to generate a representative volume 

element (RVE) or a unit cell (UC) of the studied geometry. We intend to create a 

novel stochastic structure of fibre network reinforced composite which is 

transversely isotropic. In this chapter, the process of generating a three-dimensional 

RVE for the novel fibre network reinforced composite will be introduced. A flow 

chart in Figure 3.1 has demonstrated the brief procedure of how an RVE is generated, 

followed by the detailed description in Sections 3.2.1-3.2.4.  
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Figure 3.1. The flowchart of the process of generating the representative volume 

element (RVE). 

 

3.2.1 In-plane Distribution of Fibres 

The initial fibres are modelled as cylinders described by the centre point C(x, y), 

length L, diameter d and angle θ (i.e., the angle between the cylinder and x-axis, 

ranging from 0 to π). For an RVE with fibre number of N, the centre point C(x, y) 

and angle θ are generated randomly for each fibre using the function rand( ) in 

Matlab. It should be noted that the function rand( ) needs to be initialised each time 
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to make sure that rand seeds are from different random data. The distribution of fibre 

lengths is stochastic ranging from 0.8L to 1.2L, thus to make the average length of 

the N fibres close to L. The diameters of the fibres are kept the same as d. Therefore 

the aspect ratio ranges from 0.8𝐿/𝑑 to 1.2𝐿/𝑑. The fibres will be added into a ‘unit’ 

cell (L × L) sequentially making sure that the centre point C(x, y) of any fibre is inside 

of the cell (see Figure 3.2). It is noted that all the fibres are originally distributed 

horizontally in the x-y plane during this step. In order to ensure the periodicity of 

geometry, the generated fibres are copied to the other 8 cells around the central cell, 

where ‘copy’ means that the relative position of centre points in the corresponding 

cell and orientation of each fibre are kept exactly the same as those in the central cell. 

As shown in Figure 3.2, the sketch of those fibres with dash profile in each cell are 

the copies of fibres lying in the central cell. Therefore, the x and y coordinates of 

each node on fibres are all given from this step. 

 
Figure 3.2. An example of fibres randomly distributed in the square region of L×L. 

Red dots represent the centre points of the fibres. 
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3.2.2 Determination of Intersections in the z-direction 

The previous step has just generated stochastic fibres which lie in the x-y plane and 

this step is to determine the z coordinates of nodes on fibres, or in other words, to 

determine the shape of each fibre in the z-direction, as each fibre goes up and down 

to intersect with other fibres and is no longer horizontally straight as generated from 

the last step. So each fibre will consist of several segments, where each segment is 

straight but is still continuous as a whole fibre. Therefore, what we need to do is to 

determine the coordinates of all vertexes of the segments and then the whole fibre 

with the segments can be formed simply by connecting the vertexes of the segments 

and the two vertexes of the original straight fibre. It should be noted that nodes on a 

fibre refer to the nodes on the axis of the fibre.  

The process of determining the shape of each fibre will be conducted one by one and 

can be imagined as the falling down of each horizontal fibre created from z = ∞ to 

finally z = 0. Obviously, the first fibre is still straight since there are no other fibres 

to intersect with and its z coordinates are all d/2. For the following fibres in all the 9 

cells, the x and y coordinates of the intersections between the 𝑖th (1 < i ≤ 9𝑁) fibre 

and all the former ones will be recorded. Furthermore, the fibre numbers and segment 

numbers are also important in figuring out which segment of fibres it intersects with. 

Since the shapes of fibres are determined in sequence, it means that the shapes of all 

the former fibres have already been obtained. Therefore, the z coordinates of the 

former fibres at the intersection points can be calculated from the certain segments 

of the former fibres that the 𝑖th fibre intersects with, according to the given x, y and 

z coordinates of both ends of the segment. The z coordinates of the ith fibre at the 

intersection points depends on the z coordinates of the former fibres at the 
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intersection points and the overlap coefficient c, more specifically, 𝑧(𝑖)  =  𝑧(𝑗)  +

(𝑑(𝑖) + 𝑑(𝑗))(1 − 𝑐)/2; (1<j<i). Overlap coefficient c is defined as the ratio of the 

overlap depth over the sum of the two intersected fibres’ radii, which ranges from 0 

to 1. When c = 0, there is no intersections between fibres but they are about to 

intersect. When c = 1, the two fibres completely intersect and the z coordinates of the 

two fibres will be the same.  

When the coordinates of the fibre at all intersections are obtained, a criterion is 

introduced to choose from the intersections to compose the fibre as not all 

intersections meet the requirement. So the first factor, cross-linker density, is 

introduced. Cross-linker density is defined as  𝑁𝑐 = 𝐿/𝑙𝑐 , where 𝑙𝑐  is the mean 

distance between any two neighbouring intersection points along a fibre of length L. 

So (𝑁𝑐 − 1) is the maximum number of intersection points for each fibre. It is 

controllable and adjustable according to the manufacturing of the structure. We can 

imagine that when a fibre falls down, it is most likely to intersect at the intersections 

with large z coordinates. Another factor also needs to be considered is the slope and 

distance of each segment. Those segments with lengths less than d or, inclination 

angles larger than 21.5° [13] will be discarded. Thus, the (Nc − 1) intersection points 

with largest z coordinates and, in the meanwhile, meeting the requirement of the 

second factor are eventually selected to compose the segments of a fibre in order. 

Apart from this, the two segments on both ends of a fibre are assumed to be 

horizontal.  

Therefore, by controlling the maximum number of intersection points for each fibre 

we can successfully obtain the RVE with different volume fractions since the number 

of intersection points determines the extent of the fluctuation of fibres in terms of the 
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shapes thus influencing the compactness of fibres. In Figure 3.3, the three red circles 

demonstrate the bonding areas between the fibre in yellow and other fibres.  

 

Figure 3.3. A scenario of how fibres are bonded to one another. The fibre in yellow 

colour drops down and intersects with other three silver fibres at the locations where 

they are marked with red circles, and the fibre is divided into four segments but still 

connected. 

 

3.2.3 In-plane Periodicity 

The whole in-plane structure of the material can be obtained by replicating the RVE 

itself and extending it periodically in the x and y directions, respectively. In order to 

keep the geometrical periodicity of the RVE, the same group of fibres is generated in 

the 9 cells as indicated in Figure 3.2 and the surrounding 8 cells are cut off. Then 

parts of fibres that exceed the edges of the central cell are cut and can be regarded as 

if they are translated to the opposite sides as there are copies of themselves at the 

corresponding position (see Figure 3.4). 

 

 



Chapter 3. Geometrical model 

56 

 

 
  

Figure 3.4. Operations on one of the fibres that parts of it exceed the central cell. The 

dashed parts represent the segments cut off by the boundary of the cell and the solid 

parts that are inside of the cell are reserved.  

 

3.2.4 Out-of-plane Periodicity 

The most complicated step is to ensure the periodicity of RVE in the z-direction as 

the shape of each fibre varies and is dependent on the fibres generated ahead of it. 

The process can also refer to the details in [260]. To fulfil the periodicity of RVE in 

the z-direction, we replicate the generated N fibres through the processes described 

in Section 3.2.1 and 3.2.2 over themselves again by assigning the same x and y 

coordinates for fibres (N+i) and i, i.e., 𝑥(𝑁 + 𝑖) = 𝑥(𝑖), 𝑦(𝑁 + 𝑖) = 𝑦(𝑖), (𝑖 =

1,2, …𝑁) while the z coordinates of the fibre (N+i) is determined by all the previous 

(N+i­1) fibres. Then the process traces back to generate another N fibres sequentially 

again and again. Since the (N+1)th fibre is generated based on the previous N fibres. 

Therefore, there will be a slight offset for the shapes of fibres (N+i) and i. However, 
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the corresponding fibres will tend to be the same shape if the number of fibres N is 

large enough and if we repeat enough cycles. For example, if the cycle has been 

repeated for m times, then there will be m×N fibres generated and we assume the 

fibres ((m-1)N+i) and ((m-2)N+i), (𝑖 = 1, 2, …𝑁) share the same shape. Then the N 

fibres from fibre ((m-2)N+1) to fibre (m-1)N will be the fibres we need to construct 

the RVE. In addition, we also have to make sure that the faces of the top and bottom 

boundary being flat as the constructed fibre network has to be assembled into the 

solid brick. Therefore, the z coordinate of one end of the fibre ((m-1)N+1) the z 

coordinate of the same end of the fibre ((m-2)N+1) are chosen as the upper and lower 

limits and the fibres are cut from these two horizontal planes. Then fibres and parts 

of fibres between the limits will be kept and they compose a complete RVE with full 

periodicity in geometry. Figure 3.5 shows a geometry model with complete 

periodicity in the x, y and z directions. 

 

Figure 3.5. A scenario of RVE geometry model with 50 solid fibres. 
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3.3  Construction of Stochastic Fibre Network 

Reinforced Composites 

3.3.1  Beam Model of Fibres 

Beam elements were eventually applied to fibres instead of solid elements. The 

reason lies in the difficulty in meshing solid elements to both fibres and the matrix 

due to the complex interfaces between them, not to mention even more complicated 

interfaces with a large number of closed angles introduced by the overlap between 

fibres. Moreover, the test carried out shows that even a model with 50 fibres, which 

is far from enough to establish a transversely isotropic structure, generates 

approximately 1~2 million solid elements. Such a large number of elements 

dramatically increase the pre-processing time and slow down the computing speed 

which is relatively time-consuming. In consideration of the above two reasons, beam 

element is a better option in representing fibres of large aspect ratios with much less 

meshing elements. Moreover, beam elements indicate relatively satisfactory results 

in elastic and elastoplastic properties of fibres compared to solid ones in the following 

studies. Figure 3.6 is an example of the geometrical model of a fibre network with 

200 beam fibres.   

From the nature of this fibre network structure (see Figure 3.5) we can see that fibres 

are intersected and bonded to generate a network. However, the beams representing 

fibres cannot demonstrate the overlap between fibres due to their dimensional feature 

in diameters without thickness. Therefore, an inserted beam is applied to wherever 

two fibres are overlapped as indicated in Figure 3.7. Three inserted beams connect 

the top fibre and other three ones and fibre network are alternatively generated with 
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beam elements. In this model, the diameter of the inserted beam is set to be the same 

as that of fibres. 

 
Figure 3.6. Periodic RVE geometric model of the composite reinforced by a 

transversely isotropic random fibre network containing 200 complete fibres, where 

the matrix is partitioned into brick elements and the fibres are partitioned into 

Timoshenko beam elements. 

 

 

Figure 3.7. A scenario of inserting beams between overlapped fibres. 
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3.3.2 Assembly of Fibre Network and Matrix 

After the programme of fibre network alone is obtained in Matlab, the commercial 

software NX from Siemens is applied for pre-processing before importing the fibre 

network structure into Abaqus. In Abaqus, a solid brick with exactly the same size as 

the fibre network in the x, y and z directions is created to represent the matrix. Then 

the fibre network will be translated accurately to the inside of the matrix. 

Furthermore, the fibre network and the matrix also share the same boundary(see 

Figure 3.8). 

 

Figure 3.8. Assembly process of fibre network and matrix. 

 

3.3.3 Constraints between Fibre Network and Matrix 

Although the fibre network and matrix have been successfully assembled together, 

corresponding nodes in the fibre network and matrix are still independent. Therefore, 

constraints have to be applied to the corresponding nodes to ensure that the 

corresponding nodes have the same translation and rotation so as to transfer the load 

between fibres and matrix. One common method is the Embedded Element Method 

(EEM), in which method each node of the fibre network will be coupled with the 
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nodes of the coinciding element. However, one reason that this method cannot be 

applied to this model is that over-constraint occurs when both periodic boundary 

condition and embedded element method are applied to the matrix nodes on the 

surface simultaneously. Therefore, another method, ASC [2] technique, has been 

adopted in this model because the conflict can be avoided in this method. 

There are two steps for application of ASC technique: node searching and coupling. 

Firstly, for each node, 𝑁𝑓 (see Figure 3.9), in the fibre network, a searching algorithm 

will be carried out to search through matrix nodes around the node of the fibre 

network. The closest matrix node, 𝑁𝑚, is then found out eventually for the coupling 

with the corresponding node of the fibre network. Secondly, the translational freedom 

degrees of 𝑁𝑚  and 𝑁𝑓  will be coupled. Since there are six degrees of freedom in 

beam fibres while only three degrees of freedom in the solid matrix, the rotational 

degrees of freedom of fibres will be dismissed after the coupling. In this way, all the 

corresponding nodes will be coupled and constrained for mechanical analysis. 

 

Figure 3.9. A sketch for the node coupling of the ASC technique [2]. 
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3.4 Mesh 

One of the advantages of applying ASC technique is that no complex meshing is 

needed for matrix thus saving times in mesh generation and computing. Since the 

matrix is structural, the structured technique can be conveniently applied by 

generating meshes with 8-node linear brick solid elements (C3D8R) for the matrix 

(see Figure 3.10). There are two beam models that are often used for fibres, which 

are Timoshenko beam model and Euler-Bernouli beam model, both showing good 

predictions of mechanical properties of long and slender beams. However, the 

Timoshenko model can predict the mechanics more accurately for short beams [58] 

and shear deformation effects are considered in this model. Furthermore, due to the 

random length of each segment of a fibre, it is anticipated that there exist a large 

number of short segments which cannot be precisely modelled with the Euler-

Bernoulli formulation. Therefore, 2-node linear beam elements (B31) are applied to 

fibres. Moreover, the cross sections are assumed to be circular throughout the beams.  

 

Figure 3.10. The meshing of the matrix with structured 8-node linear brick solid 

elements (C3D8R). 
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3.5 Boundary Conditions 

3.5.1 Periodic Boundary Conditions 

Composite materials can be envisaged as a periodic replication of the RVEs. 

Therefore, the periodic boundary conditions also must be applied to the RVE models. 

This implies that each RVE in the composite has the same deformation mode and 

there is no separation or overlap between the neighbouring RVEs.  

There are two types of periodic boundary conditions which are briefly described in 

Figure 3.11 for the 2D case. In Figure 3.11 (a), the left edge is fixed and no 

displacement will happen along the x-direction when loaded in the x-direction. Thus, 

take two arbitrary nodes on the corresponding edges perpendicular to the x-axis for 

example, 

 𝑢𝐼 = 0; 𝑢𝐽 = 0 (3.1) 

   

 𝑢𝐼′ − 𝑢𝐼 = ∆𝑥 (3.2) 

   

 𝑢𝐽′ − 𝑢𝐽 = ∆𝑥 (3.3) 

It is obvious that 𝑢𝐽′ = 𝑢𝐼′ = ∆𝑥, which indicates that the right edge keeps straight 

after loading. However, this constraint seems too strong since the shape of the RVE 

does not necessarily have to be straight in all the edges due to the stress concentration 

of fibre reinforced composites. Therefore, a general periodic boundary condition is 

applied as shown in Figure 3.11 (b), where 

   

 𝑢𝐼′ − 𝑢𝐼 = ∆𝑥 (3.4) 

   

 𝑢𝐽′ − 𝑢𝐽 = ∆𝑥 (3.5) 
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While 𝑢𝐼 ≠ 𝑢𝐽 and 𝑢𝐽′ ≠ 𝑢𝐼′, which means that only the displacement differences of 

the corresponding nodes are constrained to be the same. In addition, the RVE also 

meets the requirement of replicating itself to form the whole composites under this 

deformation mechanism since the corresponding edges in the x-direction and in the 

y-direction remain the same shape. Therefore, the general periodic boundary 

condition is more appropriate for the RVE of fibre network reinforced composites. 

 
                               (a)                                                     (b) 

Figure 3.11. Two types of periodic boundary conditions: (a) Strict periodic boundary 

condition; (b) General periodic boundary condition. 

 

Figure 3.12. A cubic representative volume element (RVE). 

 

For the case of 3D geometries in this research, the general boundary conditions have 
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to be applied to the nodes on the corresponding faces, edges and joints separately in 

finite element analysis. Otherwise, over-constraints will occur. Furthermore, only 

three degrees of freedom, i.e., translation (x, y and z), need to be constrained for solid 

elements. Therefore, for a unit cell (L×W×H) (In the specific case of a transversely 

isotropic structure in this research, L=W) as shown in Figure 3.12, the linear 

constraint equations of boundary conditions can be categorised as follows under the 

strain load situations (𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦, 𝛾𝑦𝑧, 𝛾𝑥𝑧) [261]: 

1) Constraint equations for the corresponding faces; 

a) For the relative nodes on the corresponding faces that are perpendicular to 

the x-axis (i.e., faces ABFE and DCGH), the constraint equations can be 

expressed as 
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 (3.6) 

b) As for the relative nodes on the corresponding faces that are perpendicular 

to the y-axis (i.e., faces ADHE and BCGF), the constraint equations can be 

described as 
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 (3.7) 

c) In terms of the relative nodes on the corresponding faces that are 

perpendicular to the z-axis (i.e., faces ABCD and EFGH), the constraint 

equations can be expressed as 
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Where the three faces on x=L, y=W and z=H are called master planes while those 

faces opposite to the master planes are slave planes. Constraint equations listed above 

are applied to each pair of nodes (one on the master plane and the other on the slave 

plane) which are relative in coordinates. 

2) Constraint equations for the corresponding edges;  

Take the corresponding nodes among the four edges parallel to the z-axis (i.e., edges 

EA, FB, GC and HD) for example, constraint equations are given below:  

                                 0
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Similarly, constraint equations to the corresponding nodes among the four edges 

parallel to the x-axis (i.e., edges DA, CB, HE and GF) and the y-axis (i.e., edges AB, 

DC, EF and HG), respectively, can be obtained. 

3) Constraint equations for the corresponding joints. 

Take point D as the datum point, examples of constraint equations between points  
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E/F/G and D are  
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Then the constraint equations between A/B/C/H and D can also be obtained 

according to the relative positions. 

Eventually, the complete constraints can be achieved from all the 57 constraint 

equations. In the application of MPC equations in Abaqus, several reference nodes 

are set to represent the relative faces and get involved in the constraint equations. In 

this way, all the nodes are integrated to the reference nodes so as to simplify the 

process of loading and obtaining results which will be demonstrated in the next part 

(3.5.2).  

 

3.5.2 Load 

Since reference nodes are created to represent the relative faces, they will undertake 

the applied load. For example, when the RVE is applied a uniaxial loading in the x-

direction, the three translation freedoms of the origin of coordinates which is marked 

as D in Figure 3.12 are restrained, in the meanwhile, a normal strain 𝜀𝑥 along the x-
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direction is applied to the reference node for the face ABFE (see Figure 3.12). By 

this way, the reaction force of the reference node 𝐹𝑟, which is the concentrated force 

of the whole face ABFE, can be obtained and the displacements of faces BCGF and 

EFGH (𝑢𝑦  and 𝑢𝑧 ) separately can be achieved from the corresponding reference 

nodes for these faces. Thus, the Young’s modulus in the x-direction can be acquired 

from  

 𝐸𝑥 =
𝐹𝑟
𝑆𝑥𝜀𝑥

 (3.15) 

   

where 𝑆𝑥 is the initial area of the face ABFE. It should be noted that the stress and 

strain calculated are all engineering values.  

The Poisson’s ratios 𝑣𝑥𝑦 and 𝑣𝑥𝑧 can simply be obtained from  

 𝑣𝑥𝑦 = −
𝑢𝑦

𝑊𝜀𝑥
 (3.16) 

 𝑣𝑥𝑧 = −
𝑢𝑧
𝐻𝜀𝑥

 (3.17) 

where 𝑊  and 𝐻  are the dimensions of RVE in the y-direction and z-direction, 

respectively. 

In terms of shear modulus,  taking 𝐺𝑧𝑥 for example, the shear strain 𝛾𝑧𝑥 is applied to 

the reference node to the top face as indicated in Figure 3.13 and the node at O is 

fixed in all three degrees of freedom. With periodic boundary conditions applied to 

RVE, the cubic RVE shows a deformation and the schematic profile of RVE is 

similar as indicated dash lines which are actually not necessary to be straight as 

discussed in 3.5.1. Therefore, with the reaction force obtained from the reference 

node, the shear modulus of 𝐺𝑧𝑥 can be calculated by 
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𝐺𝑧𝑥 =

𝐹𝑟
𝑆𝑧𝛾𝑧𝑥

 (3.18) 

where 𝑆𝑧 is the initial area of the top face. 

 

Figure 3.13. The schematic diagram of RVE undertaking shear loading 𝜏𝑧𝑥. 

 

3.6 Key Parameters 

3.6.1 Cross-linker Density 

The cross-linker density 𝑁𝑐  is defined by the ratio of 𝐿/𝑙𝑐, where 𝑙𝑐 is the mean 

distance between the intersections along a fibre of length 𝐿. In the numerical model, 

an innovative way to deal with the intersections is introduced in the three-

dimensional random beam model. As shown in Figure 3.2, each fibre is represented 

by a line of length 𝐿, and the lengths are not uniform, ranging from 80 to 120 

dimensionless. All the lines are deposited with random position and orientation with 

a range of 0~2π. An additional beam is inserted at the intersection point of two lines 

in the thickness direction (z direction). The inserted beams represent the cross-linkers. 
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It is not hard to imagine that, as the cross-linker density getting larger, which means 

more intersections between fibres, each fibre will fluctuate more frequently to a 

larger extent thus making fibres condenser. Therefore, thickness decreases (see 

Figure 3.14) and volume fraction increases as we increase the cross-linker density. 

 

                             (a)                                                                (b)  

 

                            (c)                                                                 (d) 

Figure 3.14. Fibre network structure with cross-linker density (a) Nc = 3, (b) Nc = 

11,(c) Nc = 21, and (d) Nc = 27, when L/d = 100. 

 

3.6.2 Overlap Coefficient 

Overlap coefficient defines the extent that one fibre is capable of intersecting to the 

neighbour fibres. It ranges from 0 to 1, where 0 means no overlap and 1 means totally 

intersected. Taking the processing procedure of this structure into consideration, the 
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intersecting process is similar to the heat treatment process of randomly piled fibres 

in which there is no any overlap yet. When the temperature is increased gradually, 

fibres tend to be softened and drop down to contact other fibres. When the 

temperature is high enough, fibres will start to intersect with the contacting fibres 

instead of just contacting with each other. The heat treatment temperature and time 

determine the overlap coefficient and cross-linker density at the same time. Therefore 

we can conclude that the two factors, i.e., cross-linker density and overlap coefficient, 

are dependent on each other. It is noted that in reference [260], only two fixed values 

of the fibre overlap coefficients, i.e. 0.05c =  and 0.6c = , are considered; while in 

this paper, the value of fibre overlap coefficient is not a constant, but always increases 

with the volume fraction of the fibre-network or the density of cross-linkers. Since 

there is a positive correlation between these two factors, a linear relation is assumed 

to be reasonable and applied to them for simplification of computing as given by 𝑐 =

0.025(𝑁𝑐 + 1). For an RVE model containing N complete fibres, its thickness H 

depends on the density of crosslinkers and can be determined during the construction 

process of the fibre-network model. 

3.6.3 Aspect Ratio 

Aspect ratio is defined as the ratio of the length over the diameter of a fibre. It plays 

a crucial role in changing the volume fraction of fibres in fibre reinforced composites 

since it is obvious that the volume fraction is closely dependent on both L and d, as 

obtained in Eq. (3.20). Composites with fibres of different aspect ratios have been 

studied and proven to show variant elastic and plastic properties. Therefore, fibre 

network composites with different aspect ratios in this model will be investigated to 

compare the mechanical properties of different conditions. 
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3.6.4 Volume Fraction 

The volume fraction is the key parameter to elucidate the mechanical behaviours of 

composites. In this model, it depends on the above mentioned cross-linker density, 

overlap coefficient and aspect ratio. By calculating the distance between the 

corresponding nodes in the z-direction, the thickness H is obtained. The scale of the 

RVE in the x and y directions are both set as 100 with the same unit as other 

parameters like L, d and H. Thus the volume of RVE can be obtained as 

100 × 100 × 𝐻. As for the volume of the fibre network, it cannot be calculated 

simply by summing the volumes of individual fibres due to the overlap of fibres, 

especially when the cross-linker density and overlap coefficient are large enough and 

the volume fraction difference caused by the intersections can be dramatic. 

Therefore, the volume of the intersected parts should be deducted from the total 

volume of individual fibres. In experiments, the cross-section area of the intersection 

depends on the way the overlap is formed and on the compliance of the fibre material 

[262]. Chen and Silberstein [263] have calculated the bond/overlap area A as 

𝜋𝐷√𝑅1𝑅2  (where 𝑅1, 𝑅2  are the fibre radii and D is the indentation distance) 

according to the non-adhesive elastic contact solution [264]. Deogekar and Picu 

[262] assumed the bond cross-section to be square which is actually not exactly the 

real case. Moreover, since the fibres are curved into segments and the orientations of 

individual fibres vary from 0 to π in the current designed fibre network, the shape of 

the intersections can also be dependent on the included angle of the two intersected 

fibres and overlap coefficient. To this end, we aim to obtain the analytical relation of 

the volume of intersections with the included angle and overlap coefficient.  

A schematic model with two intersected fibre segments is illustrated in Table 3.1. 
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The diameters of both segments are set as 1. The geometry of intersected fibres with 

various included angles (see Table 3.1) are constructed in the Siemens NX software 

and the volumes of the intersections with combined included angle and overlap 

coefficient are also tabulated in Table 3.1. An approximate calculation of the 

intersection is also approached in terms of combined included angle α and overlap 

coefficient as 

𝑉𝑖𝑗 = 4 × {
1

2
(
𝑑

2
)2 arctan(

√𝑐(2 − 𝑐)

1 − 𝑐
) −

1

2
(
𝑑

2
−
𝑐𝑑

2
)
𝑑√𝑐(2 − 𝑐)

2
}  

          ×
𝑑(√𝑐(2 − 𝑐) + 2√𝑐(1 − 𝑐))

2 sin 𝛼
  

     =
𝑑3(√𝑐(2 − 𝑐) + 2√𝑐(1 − 𝑐))

4 sin 𝛼𝑖𝑗
  

          × {arctan(
√c(2 − c)

1 − c
) − (1 − c)√c(2 − c)} (3.19) 

where 𝛼𝑖𝑗 and 𝑉𝑖𝑗 are respectively the angle and the overlap volume between the two 

connected fibres at the jth crosslinker of fibre i. The calculated values of overlap 

volume according to Eq. (3.19) are also tabulated in Table 3.1 and they indicate a 

good agreement with the accurate volume of the intersection obtained from the 

measurement in Siemens NX. Therefore, 𝑉𝑖𝑗  will be substracted from the total 

volume of individual fibres when calculating the volume fraction of the fibre 

network. 

Then, combined with Eq. (3.19), the volume fraction of the fibre network composite 

can be specified as 

 𝑉𝑓 =
∑ (𝐿𝑖 × (

1

4
𝜋𝑑2) − ∑ 𝑉𝑖𝑗

𝑁𝑐
𝑗=1 )𝑁

𝑖=1

100 × 100 × 𝐻
 (3.20) 
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where 𝐿𝑖 is the fibre length, 𝑁 is the number of fibres and d is the diameter of the 

circular cross section. The diameters of fibres in this model are assumed to possess 

the same value.  

 

Table 3.1. The volume of the intersection with respect to the included angle and 

overlap coefficient. 

Fibres 
     

Intersection 

     

                𝜃 

 𝑐     𝑉𝑖𝑗 
10 30 45 60 90 

0.1 
Meas. 0.0871 0.0297 0.0208 0.0173 0.015 

Calc. 0.0875 0.0304 0.0215 0.0175 0.0152 

0.2 
Meas. 0.3229 0.1132 0.0789 0.0653 0.0565 

Calc. 0.3295 0.1144 0.0809 0.0660 0.0572 

0.3 
Meas. 0.6913 0.2388 0.168 0.1384 0.1197 

Calc. 0.6937 0.2409 0.1703 0.1391 0.1204 

0.4 
Meas. 1.145 0.3968 0.2807 0.2306 0.1994 

Calc. 1.1461 0.3980 0.2814 0.2298 0.1990 

0.5 
Meas. 1.6594 0.5809 0.4096 0.3357 0.2903 

Calc. 1.6500 0.5730 0.4052 0.3308 0.2865 

0.6 
Meas. 2.181 0.7733 0.5467 0.4468 0.3864 

Calc. 2.164 0.7516 0.5314 0.4339 0.3757 

 

3.7 Conclusions 

A transversely isotropic fibre network with beam elements has been successfully 

constructed and it is designed to function as the reinforcement of the composite 

structure. Compared to laminates or cross-ply composites, the fibre network based 
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composites proposed in this research is supposed to possess an advantage in the 

enhanced out-of-plane mechanical properties, attributed to the vertical cross-linkers 

that are introduced among fibres to connect fibres and develop an integrated fibre 

network instead of dispersed fibres. Based on this motivation, the transversely 

isotropic fibre network reinforced composite is developed for the following 

mechanical studies in Chapters 4-6.  

In order for the coupling of the nodes of fibres and those of the solid matrix, an 

automatic searching & coupling (ASC) method is employed and this has avoided the 

over constraints that the application of both embedded element method (EEM) and 

periodic boundary conditions (PBC) would have brought about. Furthermore, the 

ASC method has dramatically reduced the complexity of meshing as a structural 

mesh with hexagonal solid elements. Periodic boundary condition (PBC) is essential 

to the representative volume element (RVE) in terms of replicating itself to represent 

the entire geometry and transferring force and displacement through the boundaries. 

and the way of loading for the finite element analysis (FEA) of mechanics has been 

explained. Last but not least, the key parameters that are dominant to the mechanical 

properties of the geometry, namely, cross-linker density, overlap coefficient, aspect 

ratio and volume fraction, are briefly described. The volume fraction of the fibre 

network is the key parameter corresponding to the mechanical properties of fibre 

reinforced composites. It is dominated by the cross-linker density and overlap 

coefficient collectively. As the cross-linker density and overlap coefficient increase, 

the fibre network is getting denser, thus decreasing the thickness and increasing the 

volume fraction of RVE. 
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Chapter 4 Elastic Properties of Transversely 

Isotropic Random Fibre Network Reinforced 

Composites 

 

 

 

A transversely isotropic composite geometry with beam fibre network serving as the 

reinforcement has been successfully constructed in Chapter 3 and, in this chapter, the 

FEA of elastic properties is performed on this novel structure where vertical cross-

linkers are introduced among fibres to develop an integrated fibre network. As a 

transversely isotropic structure, the five independent constants for the transversely 

isotropic geometry are obtained to fully characterise the elasticity, especially the 

diverse in-plane and out-of-plane elastic properties of it. The influence of Poisson’s 

ratios of the fibres and matrix on the stiffness of the geometry is also investigated. 

Moreover, aspect ratio and cross-linker density are key factors in affecting the elastic 

properties by varying the volume fraction. Therefore, the dependence of elasticity on 

aspect ratio and cross-linker density, respectively, is explored. Furthermore, a 

simplified model, which is similar to the structure of the novel fibre network 

reinforced composites, is developed for the analytical investigation of the elastic 

properties of the geometrical model and comparison with the numerical results. 
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4.1 Introduction 

As the RVE of the 3D transversely isotropic fibre network composites has been 

successfully generated, the relative mechanical properties aimed to be discovered 

towards this new structure, in which elasticity is certainly the fundamental yet most 

important properties of the composites. The elastic properties of composites are not 

invariable, and they are mainly dependent on the constituent materials and phase 

structures. In addition, the interface between phases is also very important for the 

elasticity of the composites although it contributes a major effect on the plasticity of 

the composites. The overall composite structure can be either isotropic or anisotropic 

and there are wide choices for the selection of reinforcement and matrix materials as 

shown in Chapter 2. All these factors have made composites considerably 

complicated and characteristic in terms of the mechanical and other properties, in the 

meanwhile, opening more possibilities for various promising applications of 

composite structures.  

Due to the complicated structure of 3D fibre network composites, it is extremely 

challenging in obtaining the relation between mechanical properties and internal 

structure. Finite element analysis (FEA) provides an efficient method in the 

investigation of the mechanical properties of the complex fibre network composites 

[17, 265]. FEM reduces the cost in experimental test and material and structural 

exploration and provides a more direct approach for in-depth investigation of 

mechanical properties regarding structures in different scales compared to the 

theoretical methods [266]. Thus, the elastic properties can be determined through the 

stress-strain response by applying FEM to the RVE.  
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The objective of this chapter is to investigate the elastic behaviours of transversely 

isotropic fibre network composites. To begin with, the FEA results of both the in-

plane and out-of-plane elastic behaviours of the composites have been predicted. The 

influences of Poisson’s ratio, aspect ratio and cross-linker density, respectively, on 

the stiffness of composites have also been considered. Secondly, a simplified 

analytical model has been proposed for comparison with the numerical results. 

Finally, the stiffness of this fibre network composite has been compared with other 

composite structures. 

 

4.2 Geometry and Material Properties 

Transversely isotropic RVEs with different volume fractions have been generated 

according to the procedure of developing an RVE as introduced in Chapter 3. The 

RVE size is set as 100 mm×100 mm×H in this research where H is the thickness of 

the RVE and the value of H differs in different models depending on the cross-linker 

density and overlap coefficient. The fibres are meshed using linear beam elements 

(B31) and the matrix is meshed using 8-node linear brick solid elements (C3D8R). 

The material parameters that are applied to the fibres and matrix for the elasticity 

study are listed in Table 4.1. Instead of applying certain values of Young’s moduli 

for the fibres and matrix, different ratios of Young’s moduli of the fibres and matrix 

are applied in order to study the elastic properties of a wide varity of composites with 

combinations of different fibres (listed in Table 2.1) and matrices (listed in Table 

2.2), such as Glass/polymer, carbon/ceramic and metal matrix (carbon/Titanium) 

composites. 
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Table 4.1. Materials parameters for the elasticity study in FE models. 

The ratio of Young’s moduli of 

fibre and matrix, 𝐸𝑓/𝐸𝑚 

Fibre’s Poisson’s 

ratio, 𝑣𝑓 

Matrix’s Poisson’s 

ratio, 𝑣𝑚 

100 

0.3 0.3 
50 

10 

5 

100 0.05 0.495 

100 0.495 0.05 

100 0.495 -0.8 

 

4.3 Discussions of RVE 

4.3.1 Statistical Analysis 

In this study, periodic random structures have been constructed with a range of fibre 

lengths and orientations taken into consideration. These random data is obtained from 

the function in Matlab, which generates uniformly distributed pseudorandom 

numbers between 0 and 1 with rand( ). Therefore, all the fibre network models are 

randomly generated and the mechanical behaviour has a significant specimen to 

specimen variation [100, 267]. So, in order to get the mechanical parameters, massive 

calculations and statistical analysis are needed. Mean results and standard deviations 

are obtained from a number of independent, but similar structural models with the 

same set/combination of parameters. 

4.3.2 Mesh Sensitivity 

As we know, the FE model is considerably sensitive to the mesh size. Therefore, it is 
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necessary to study the effective stiffness difference caused by mesh densities. 

Different mesh configurations have been applied to models in 9% 𝑉𝑓 and 30% 𝑉𝑓 

cases and the in-plane and out-of-plane Young’s moduli and Poisson’s ratios have 

been obtained and listed in Table 4.2. The convergence of both in-plane and out-of-

plane moduli in Figure 4.1 gives us a more transparent vision of mesh sensitivity of 

the results. Taking the computing precise and efficient into consideration, matrix 

mesh size of 1.5 mm×1.5 mm×0.6 mm through the x, y and z directions has been 

chosen for the following analysis. With this element mesh size and RVE size of 

100mm × 100mm × 𝐻, the number of solid C3D8R elements in matrix varies from 

20000 to 230000 depending on the thickness of RVE and the number of  Timoshenko 

beam elements (B31) in fibres is around 60000 with the fibre mesh size of 1 mm. 

 

Table 4.2. Mesh size effect on the in-plane and out-of-plane Young’s moduli and 

Poisson’s ratios of RVE. 

Elastic 

properties 
Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 

Size of elements 

(mm× mm×mm) 

4×4×1 

1.5×1.5×

0.8 

1.5×1.5

×0.6 

1.25×1.2

5×0.6 

1×1×0.

5 

0.8×0.8

×0.4 

9%(𝑉𝑓) 

𝐸11 4.37 3.99 3.86 3.8 3.74 3.7 

𝐸33 1.89 1.71 1.565 1.54 1.5 1.48 

𝑣12 0.339 0.337 0.336 0.335 0.335 0.334 

𝑣31 0.094 0.096 0.097 0.098 0.1 0.101 

30%(𝑉𝑓) 

𝐸11 12.4 12.01 11.9 11.88 11.86 11.87 

𝐸33 4.15 3.81 3.55 3.46 3.45 3.4 

𝑣12 0.291 0.288 0.332 0.331 0.329 0.328 

𝑣31 0.039 0.041 0.041 0.041 0.042 0.042 
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Figure 4.1. Mesh size effect on in-plane and out-of-plane Young’s moduli for 10 

RVEs with volume fractions of 9% and 30%, respectively. 

 

4.3.3 Fibre Quantity Determination 

In order to ensure that the RVE generated can best represent the properties of the 

materials, it is necessary to determine the number of fibres required. Therefore, RVE 

models with different numbers of fibres, N = 50, 75, 100, 150, 200, 400, have been 

investigated while remaining the same density of cross-linker, 𝑁𝑐  = 11, the same 

aspect ratio, L/d = 100, and the same overlap coefficient, c = 0.3. Since the fibres are 

distributed according to the stochastic number of fibres orientations in Matlab, there 

exists instability in geometries. Thus, to eliminate the error, ten samples of RVE 

models which only differ in random numbers of fibres orientations were generated 

for each fibre quantity and statistical mechanical results were explored for discussion. 

With the materials properties 𝐸𝑓 𝐸𝑚⁄  = 100 and 𝑣𝑓 = 𝑣𝑚 = 0.3, the mean in-plane 



Chapter 4. Elasticity 

82 

 

Young’s modulus 𝐸11 and volume fraction 𝑉𝑓 of ten RVEs with fibre number N = 50, 

75, 100, 150, 200 and 400 have been obtained and listed in Table 4.3 to study the 

difference caused by the number of fibres.  

It can be seen from Table 4.3 that the volume fractions of RVE are almost identical 

in all cases while Young’s moduli are approaching the exact value and the standard 

deviations for both tend to be smaller as the number of fibres increases. That means 

that the more fibres there are, the smaller the error will be. Furthermore, the ratio of 

Young’s moduli of each double layers and single layer (i.e., N = 100 vs. N = 50, N = 

200 vs. N = 100) has been compared and shown in Table 4.4. When the number of 

fibres is large enough, Young’s moduli of double layers and a single layer should be 

the same and the ratio is expected to be 1. Table 4.4 indicates that, when the number 

of fibres increases to 200, the ratio is very close to 1 which means that N = 200 is 

already sufficient for the computation. Taking the above conclusion and 

computational efficiency into consideration, the number of fibres in each RVE is 

fixed at N = 200 in all the following models. 

 

Table 4.3. Statistic Young’s modulus, E11, and volume fraction of 10 RVEs for 

different numbers of fibres (N = 50, 75, 100, 150, 200, 400) with the density of cross-

linker at Nc= 11, the overlap coefficient at c = 0.3, and the aspect ratio at L/d = 100. 

 Volume Fraction, 𝑉𝑓 Normalised Young’s Modulus, 𝐸11 

 Mean STDEV MAX MIN Mean STDEV MAX MIN 

N=50 0.0983 0.0095 0.1149 0.0842 3.9127 0.4063 4.4528 3.1564 

N=75 0.0896 0.0052 0.0956 0.0809 3.6167 0.3770 4.0178 2.7895 

N=100 0.0905 0.0031 0.0955 0.0853 3.8132 0.2019 4.2661 3.6298 

N=150 0.0908 0.0039 0.0988 0.0869 3.7868 0.2717 4.3925 3.4796 

N=200 0.0924 0.0026 0.0972 0.0880 3.8653 0.1973 4.2450 3.5497 

N=400 0.0923 0.0016 0.0937 0.0896 3.8604 0.1790 4.1071 3.6346 
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Table 4.4. The mean ratio of paired Young’s moduli. 

 N100/N50 N150/N75 N200/N100 N400/N200 

Mean Ratio 1.055485 1.051586 1.031098 0.983844 

Abs. Error 0.055485 0.051586 0.031098 0.016156 

 

4.3.4 Dependence of the RVE Thickness and Volume 

Fraction on the Cross-linker Density 

The volume fraction of fibres is the crucial parameter for the properties of this 3D 

structure. From the regulation of how the RVE is generated, it is not difficult to figure 

out that there are two factors, i.e., cross-linker density and overlap coefficient, in 

determining the volume fraction of fibres on condition that the aspect ratios of fibres 

remain constants. According to the definition of cross-linker density, it is no doubt 

that the larger the cross-linker density is, the more intersections there will be for each 

fibre, which means that each fibre needs to drop down deeper to connect to other 

fibres below, thus decreasing the thickness of the RVE and, in the meanwhile, 

increasing the volume fraction. Then the volume fraction of fibres is only determined 

by the single factor cross-linker density and, as shown in Figure 4.2, the relationship 

of the thickness and volume fraction against cross-linker density is obtained. From 

the figure, we can see that there is an exponential decay in the thickness of the RVE 

while an exponential rise in volume fraction as the cross-linker density Nc increases. 

These trends agree with how this structure is constructed. This has also inspired us 

of a method of manufacturing the fibre composite plate that a plate with only a single 

layer and the required thickness can be produced simply by controlling the geometry 

parameters such as cross-linker coefficient. In addition, this reduces the possibility 

of delamination compared to laminates. Therefore, this advantage highlights a 
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promising application of fibre network composite in industry. In addition, a structure 

with a considerably large volume fraction of 0.42 can be achieved by this geometrical 

model. By curve fitting, volume fraction as a function of cross-linker density can be 

approximately fitted as  

𝑉𝑓 = 1.1816 × 10
−5𝑁𝑐

3 − 2.2327 × 10−5𝑁𝑐
2 + 0.00715𝑁𝑐 − 0.00286 (4.1) 

It indicates that 𝑉𝑓 is a cubic polynomial of 𝑁𝑐. 

 
Figure 4.2. Effect of cross-linker density, Nc, on RVE thickness (the curve with 

square symbol) and fibre volume fraction (the curve with round symbol) with aspect 

ratio L/d = 100. 

 

4.3.5 Fibre Element Type Difference 

The above results are based on the analysis of RVE with beam elements applied to 

the fibres and solid elements to the matrix. As mentioned before, the ASC Technique 

has been adopted to constrain every single node of the beam elements within the 

corresponding solid elements in the matrix. This method greatly reduces the 
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complexity of pairing the coincident nodes on fibres to that in the matrix. However, 

it has to be aware that there are limitations to this technique. The biggest concern lies 

in that additional stiffness might be added to RVE. Therefore, it is necessary to 

investigate the difference introduced by the application of beam elements to fibres 

compared to solid elements.  

Ten RVEs which consist of 50 fibres each were generated with a degree of cross-

linkers 𝑁𝑐 = 15, overlap coefficient c = 0.4 and aspect ratio 𝐿 𝑑 = 30⁄ . Beam and 

solid elements were ensured to be applied to the same model, respectively, while 

keeping the other conditions the same. The value of 𝐸𝑓 𝐸𝑚⁄  is assumed as 100 and 

Poisson’s ratios of fibres and matrix are kept the same as 0.3. A uniaxial 

tensile/shearing strain of 0.001 was applied to the models and the corresponding 

reaction force was recorded. Table 4.5 lists the mean results of the five independent 

elastic constants with two different element types. 𝐸11 and 𝐺31 of the RVEs with 

beam elements show smaller values than those of the RVEs with solid elements 

whereas 𝐸33 of the RVEs with beam elements is larger than that of the RVEs with 

solid elements. It can be calculated that the largest difference between the stiffnesses 

of the RVEs with the two different element types is around 15%. It is also noticed 

that the model with beam fibre elements tends to underestimate  the in-plane stiffness 

and overestimate the out-of-plane stiffness compared to the model with solid fibre 

elements. One unavoidable problem is computing efficiency. When solid elements is 

adopted, the quantity of the RVE elements reaches 1-2 million or even larger 

depending on the dimensions of fibres, which is really time-consuming and 

unaffordable for a research involving several hundreds of such RVEs. Therefore, it 

can be a good choice to use beam elements considering feasibility, efficiency and 

accuracy in computation. This is also how most other researchers deal with complex 
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fibre reinforced composites and fibre network.  

 

Table 4.5. The independent elastic properties of RVE with beam and solid fibre 

element types, respectively, in which degree of cross-linkers Nc=15, overlap 

coefficient c = 0.4 and aspect ratio L/d = 30. The values are averaged for 10 RVEs. 

Fibre element type 𝐸11 𝑣12 𝐸33 𝑣31  𝐺31 

Beam 2.496059 0.225184 1.383805 0.207891 0.466779 

Solid 2.862772 0.190082 1.142895 0.227317 0.526806 

 

4.3.6 Transverse Isotropy of RVE 

In order to testify the transverse isotropy of the generated RVEs, Young’s moduli, 

shear moduli and Poisson’s ratios of 10 models with the density of cross-linkers 𝑁𝑐 =

11, the overlap coefficient 𝑐 = 0.3 and the aspect ratio 𝐿 𝑑 = 100⁄  are tabulated in 

Table 4.6 and the mean values are calculated. It is shown that the mean values of 

Young’s modulus and Poisson’s ratio for the 10 models are almost identical in the x 

and y directions. In addition, the observed values of Young’s modulus and Poisson’s 

ratio satisfy 

𝐸11
𝐸22

∗
𝑣21
𝑣12

= 0.998364 (4.2) 

𝐸11
𝐸33

∗
𝑣31
𝑣13

= 1.002852 (4.3) 

𝐸22
𝐸33

∗
𝑣32
𝑣23

= 1.002748 (4.4) 

The above equations imply that the relationship between Young’s modulus and 

Poisson’s ratio meets 

𝐸𝑖
𝐸𝑗
=
𝑣𝑖𝑗

𝑣𝑗𝑖
 (4.5) 
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The results also show that the shear modulus, Young’s modulus and Poisson’s ratio 

in the x and y directions meet that 

𝐺12 =
𝐸11

2(1 + 𝑣12)
 (4.6) 

where 𝐸11can be replaced by 𝐸22, and 𝑣12 can be replaced by 𝑣21. In addition, 𝐺13 =

𝐺31, 𝑣13 = 𝑣23 and 𝑣31 = 𝑣32 with the largest error less than 5%. These all suggest 

that the stochastic fibre network composite structure is transversely isotropic and 

only five independent constants, 𝐸11, 𝑣12,  𝐸33,  𝑣31  and 𝐺31  are needed for full 

elastic analysis. 

 

Table 4.6 Young’s moduli, Poisson’s ratios and shear moduli of 10 RVEs with 

density of cross-linkers Nc = 11, overlap coefficient c = 0.3, fibre number N = 200, 

and aspect ratio L/d = 100. The volume fraction is 0.09. 

 𝐸11 𝑣12 𝑣13 𝐸22 𝑣21 𝑣23 … 

01 3.874956 0.313329 0.245138 3.833344 0.309964 0.248317 

… 

02 3.972831 0.338440 0.235412 3.702278 0.315392 0.242851 

03 3.960358 0.373321 0.226916 3.374779 0.318121 0.243142 

04 3.777534 0.361487 0.227803 3.546943 0.339420 0.233979 

05 3.624164 0.329107 0.239986 3.838568 0.348577 0.234099 

06 4.245049 0.354521 0.233621 3.498124 0.292142 0.249743 

07 3.549718 0.298000 0.254791 3.896780 0.327136 0.245870 

08 3.797864 0.310732 0.245548 3.941230 0.322462 0.240366 

09 3.989732 0.324433 0.241150 3.779278 0.307320 0.246934 

10 3.861258 0.360456 0.231369 3.452893 0.322335 0.240102 

Mean 3.865346 0.336383 0.238173 3.686422 0.320287 0.242540 
… 

Std. 0.197312 0.025311 0.008820 0.202581 0.016048 0.005491 

 

 𝐸33 𝑣31 𝑣32  𝐺12  𝐺23  𝐺31 

01 1.562067 0.098820 0.101188 1.392429 0.454912 0.452931 

02 1.579220 0.093577 0.103589 1.439120 0.453450 0.456408 
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03 1.560705 0.089424 0.112444 1.484580 0.448540 0.457150 

04 1.575962 0.095038 0.103961 1.525346 0.452607 0.456802 

05 1.565345 0.103655 0.095464 1.468601 0.455882 0.452770 

06 1.570637 0.086438 0.112133 1.433872 0.449030 0.460255 

07 1.531894 0.109956 0.096656 1.344693 0.452540 0.447162 

08 1.576973 0.101958 0.096176 1.410652 0.455451 0.453879 

09 1.567528 0.094746 0.102420 1.406203 0.451545 0.453021 

10 1.560764 0.093522 0.108530 1.459255 0.448647 0.456727 

Mean 1.565110 0.096713 0.103256 1.436475 0.452260 0.454711 

Std. 0.013519 0.006999 0.006245 0.051342 0.002785 0.003582 

 

4.4 Numerical Results 

4.4.1 Five Independent Constants 

As mentioned in 4.3.6, only five independent constants, namely 𝐸11, 𝑣12, 𝐸33, 𝑣31 

and 𝐺31, are needed to study the elastic properties. By imposing a tensile or shear 

strain of 0.001 to the RVEs with the aspect ratio L/d=100, the same Poisson’s ratios 

𝑣𝑓 = 𝑣𝑚 = 0.3 and various values of 𝐸𝑓 𝐸𝑚⁄ (=100, 50, 10, 5), the results of the five 

independent constants in terms of volume fraction, respectively, have been obtained 

and shown in Figure 4.3, where 𝐸11, 𝐸33 and 𝐺31 are normalised by 𝐸𝑚. From the 

figure, we can see that the in-plane Young’s modulus 𝐸11, out-of-plane Young’s 

modulus 𝐸33 and shear modulus  𝐺31 all increase as the volume fraction increases, 

which indicates that both tensile and shear properties can be improved by raising the 

volume fraction of the fibre network. Specifically, 𝐸11 shows a linear relationship 

with the volume fraction while 𝐸33 possesses a nonlinear relation, where 𝐸33 grows 

faster and faster as the volume fraction arises when the volume fraction is still less 
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than 0.4 approximately and then tends to slow down as the volume fraction continues 

to increase. 𝐺13 indicates a similar relationship with the volume fraction as 𝐸33. In 

terms of Poisson’s ratio, it can be seen from Figure 4.3 (b) and (d) that 𝑣12 slightly 

fluctuates around 0.32, which is consistent with the results by Markaki and Clyne 

[268, 269] and this is not affected by the matrix, for different volume fractions while 

𝑣31 decreases as the volume fraction increases. In addition, there is no doubt that 𝐸11, 

𝐸33 and 𝐺31 will be strengthened with larger value of 𝐸𝑓 𝐸𝑚⁄ . However, 𝑣12 seems 

not to be affected by the changing of the value of 𝐸𝑓 𝐸𝑚⁄  whereas 𝑣31 decrease as 

𝐸𝑓 𝐸𝑚⁄  increases. Interestingly,  Poisson’s ratio 𝑣31 tends to be very small enough 

when the ratio of 𝐸𝑓 𝐸𝑚⁄  is as large as 100 and the volume fraction is large as well. 

In the case of both the value of 𝐸𝑓 𝐸𝑚⁄  and volume fraction approaching large 

enough, 𝑣31 tends to reach 0 which indicates that out-of-plane tension/compression 

introduces almost no effect on in-plane expansion under this condition. 

 
(a) 
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(b)  

 
(c)  
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(d) 

 
(e) 

Figure 4.3. Effect of volume fraction on (a) in-plane Young’s modulus 𝐸11, (b) in-

plane Poisson’s ratio 𝑣12, (c) out-of-plane Young’s modulus  𝐸33, (d) out-of-plane 

Poisson’s ratio 𝑣31 and (e) out-of-plane shear modulus  𝐺31 with the aspect ratio L/d 

= 100 and same Poisson’s ratios 𝑣𝑓 = 𝑣𝑚 = 0.3. 
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4.4.2 Comparison of In-plane and Out-of-plane Elastic 

Properties 

In consideration of the transverse isotropy characteristic of this geometry, it 

obviously possesses different elastic properties transversely (i.e. in-plane direction) 

and longitudinally (i.e. out-of-plane direction) (see Figure 4.3). Therefore, this 

section aims to compare the in-plane and out-of-plane elastic properties so as to better 

understand the directional properties of the geometry. Figure 4.4 is simply the re-

organised data from Figure 4.3 with Poisson’s ratios 𝑣𝑓 = 𝑣𝑚 = 0.3 and the ratio of 

𝐸𝑓 𝐸𝑚 = 50⁄  and 10, respectively. Also, 𝐸11 , 𝐸33  and 𝐺31  are normalised by 𝐸𝑚 . 

The results in Figure 4.4 indicate that the in-plane Young’s modulus 𝐸11 shows a 

higher value than the out-of-plane Young’s modulus 𝐸33. Moreover, the larger the 

volume fraction is, the bigger the difference between the in-plane Young’s modulus 

and out-of-plane Young’s modulus is. The in-plane Young’s modulus can be three 

times of the out-of-plane Young’s modulus when the volume fraction of fibres 

reaches approximately 50% and the ratio of 𝐸𝑓 𝐸𝑚 = 50⁄  (see Figure 4.4(a)). Figure 

4.4(b) shows that the out-of-plane Poisson’s ratio 𝑣31 is always smaller than the in-

plane Poisson’s ratio 𝑣12 and the difference between them is getting larger. This is 

because the volume fraction increases since in-plane Poisson’s ratio remains 

constants whereas the out-of-plane Poisson’s ratio decreases with the volume fraction 

increasing. Furthermore, the in-plane shear modulus  𝐺12  and out-of-plane shear 

modulus  𝐺31 are also compared in Figure 4.4(c). We can see that the in-plane shear 

modulus is also always larger than the out-of-plane shear modulus. For instance, the 

in-plane shear modulus is almost five times of the out-of-plane shear modulus when 

the volume fraction of fibres reaches approximately 50% and the ratio of 
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𝐸𝑓 𝐸𝑚 = 50⁄ . 

 
(a) 

 
(b) 
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(c) 

Figure 4.4. Comparison of in-plane and out-of-plane elastic properties: (a) in-plane 

and out-of-plane Young’s moduli, (b) in-plane and out-of-plane Poisson’s ratios, (c) 

in-plane and out-of-plane shear moduli, with 𝐸𝑓/𝐸𝑚 =10 and 50. 

 

4.4.3 The Effect of Poisson’s Ratio on the Elastic Properties 

Poisson’s ratio is a crucial parameter for the mechanical properties of materials. The 

effective elastic properties of fibre-reinforced composites are significantly related to 

the Poisson’s ratios of fibres and matrix. It is well known that Poisson’s ratios of 

most solid materials range from 0.1 to 0.4 and this range has been widely extended 

to (−1, 0.5) by some materials or designed structures. For instance, auxetic materials 

have a Poisson’s ratio close to −1; open cell foams constructed with re-entrant cells 

show negative Poisson’s ratios; cork has a Poisson’s ratio close to 0 and polymer or 

rubber possesses a Poisson’s ratio close to 0.5 [270, 271]. 
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In order to explore the influence of Poisson’s ratio alone on the elastic properties of 

the composites, the ratio of 𝐸𝑓  and 𝐸𝑚  is kept constant (e.g. the value of 100 is 

applied to  𝐸𝑓 𝐸𝑚⁄  here) while a combination of different Poisson’s ratios, either 

positive or negative, is adopted (i.e. 𝑣𝑓 = 0.05 & 𝑣𝑚 = 0.495 , 𝑣𝑓 = 0.3 & 𝑣𝑚 =

0.3 , 𝑣𝑓 = 0.495 & 𝑣𝑚 = 0.05  and 𝑣𝑓 = 0.495 & 𝑣𝑚 = −0.8 ). The effect of 

Poisson’s ratio on the relationships between 𝐸11, 𝑣12, 𝐸33, 𝑣31 and  𝐺31, respectively, 

and volume fraction are shown in Figure 4.5(a)-(e), where 𝐸11 , 𝐸33  and  𝐺31  are 

normalised by 𝐸𝑚.  

For the in-plane Young’s modulus 𝐸11, the proportional increasing tendency seems 

not to be affected by the selection of different Poisson’s ratios. Specifically, there is 

no difference for the situations 𝑣𝑓 = 0.3 & 𝑣𝑚 = 0.3 and 𝑣𝑓 = 0.495 & 𝑣𝑚 = 0.05 

whereas the situation when 𝑣𝑓 = 0.05 & 𝑣𝑚 = 0.495 shows a slightly higher value 

than the former two situations. However, we have also noticed that a selection of 

negative Poisson’s ratio (down triangle dot curve) can remarkably increase the in-

plane Young’s modulus compared to those with positive Poisson’s ratios. This 

inspires us of a method to enhance the elastic modulus during the material design. As 

for the out-of-plane Young’s modulus  𝐸33 , positive Poisson’s ratios can also 

dramatically affect it, let alone negative Poisson’s ratios. We can see from Figure 

4.5(c) that  𝐸33 with the case of 𝑣𝑓 = 0.05 & 𝑣𝑚 = 0.495 indicates a smaller value 

than that of 𝑣𝑓 = 0.495 & 𝑣𝑚 = −0.8 when the volume fraction is less than around 

10% and then surpasses and increases faster than it as the volume fraction keeps 

arising. Still, the situations when 𝑣𝑓 = 0.3 & 𝑣𝑚 = 0.3  and 𝑣𝑓 = 0.495 & 𝑣𝑚 =

0.05 demonstrate almost identical results in 𝐸33. 

When the in-plane and out-of-plane Poisson’s ratios (𝑣12 and 𝑣31) of the composites 
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are compared, we can see that both are affected by different combinations of fibres 

and matrix Poisson’s ratios. However, 𝑣12 shows a smaller variety (0.2-0.5) than 𝑣31 

(0-0.5) for the cases of positive fibres and matrix Poisson’s ratios. For the scenario 

of composites with negative matrix Poisson’s ratio, 𝑣12 varies from −0.6 to 0.2 while 

𝑣31 ranges from −0.6 to 0. Therefore, we can design the geometry with the expected 

effective in-plane and out-of-plane Poisson’s ratios varying from negative to positive. 

It is also noticed that the out-of-plane shear modulus  𝐺31  does not change 

significantly as the Poisson’s ratio varies in positive ranges whereas negative 

Poisson’s ratios drastically improve 𝐺31.  

In conclusion, we can either select the certain materials for their inherent properties 

or adopt the hierarchical foams to obtain the designated Young’s moduli and certain 

Poisson’s ratios of fibres and matrix ranging from −1 to 0.5. Thus a two-phase 

composite with desired elastic properties can be achieved on demand. 

 
(a) 
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(b) 

 
(c) 
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(d) 

 
(e) 

Figure 4.5. Dependence of elastic properties (a) 𝐸11, (b) 𝑣12, (c) 𝐸33, (d) 𝑣31 and 

(e) 𝐺31 on the volume fraction under different Poisson’s ratios. 
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4.4.4 The Effect of Aspect Ratio on the Elastic Properties 

Aspect ratio is one of the key parameters for RVE models. It is dependent on 

dimensions (length L and diameter d) of fibres which can alter the volume fraction, 

thus influencing the elastic properties of the RVE models. Therefore, it is necessary 

to study the effect of aspect ratio on elastic properties. Elastic results of the RVEs 

with different aspect ratios (L/d = 40, 80, 100, 125) will be compared to figure out 

the effect of aspect ratio on elastic properties of the structure. 

To obtain geometries with fibre aspect ratios of 40, 80, 100 and 125, the average 

length of fibres is set as constant 100 which is the same size as the width of an RVE 

here. Therefore, the fibres’ aspect ratio is changed to be 40, 80, 100 and 125, 

respectively by adjusting the diameter of the fibres. In Figure 4.6, the curves for the 

dependence of the five independent constants on fibre aspect ratios under three 

different cross-linker densities (𝑁𝑐  = 7, 15, 19) are obtained for comparison. In 

addition, the value of  𝐸𝑓 𝐸𝑚⁄  is fixed as 100 and the Poisson’s ratios of the fibre and 

the matrix are set the same as 0.3. All the elastic and shear moduli are normalised by 

𝐸𝑚. From Figure 4.6 (a) and (b), we can see that both 𝐸11 and 𝐸33 increase as the 

volume fraction increases. According to the relationship between volume fraction 

and aspect ratio, which is specifically, volume fraction decreases as aspect ratio 

increases, we can therefore relate elastic/shear moduli with volume fraction as that 

elastic/shear moduli decrease as aspect ratio increases. This result is consistent with 

the trend of in-plane Young’s modulus from FEA and laminate analogy approach 

(LAA) in [2]. Furthermore, 𝐸11  and 𝐸33  show the same tendency, specifically, 

growing linearly as aspect ratio decreasing independent of cross-linker density. This 

linear growth indicates that the aspect ratio does not affect the change of stiffness. 
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The similar situation also happens to 𝐺31  yet it decreases as the aspect ratio 

decreases. 𝑣12 fluctuates around 0.32 which is consistent with the results by Markaki 

and Clyne [268, 269]. In addition, the rise of aspect ratio can cause the increase of 

𝑣31. 

 
(a) 
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(b) 

 
(c) 

 
(d) 



Chapter 4. Elasticity 

102 

 

 
(e) 

Figure 4.6. The effect of aspect ratio (L/d = 40, 80, 100, 125) on the relationship 

between elastic properties (a) 𝐸11, (b) 𝑣12, (c) 𝐸33, (d) 𝑣31 and (e) 𝐺31 and volume 

fraction. 

 

4.4.5 The Effect of Cross-linker Density on the Elastic 

Properties 

Cross-linker density is the dominant parameter in determining the fibre volume 

fraction of the composites. As described in the section of construction of the 

geometry, volume fractions within a wide range can be obtained by changing the 

cross-linker density. In order to study the effect of cross-linker density on the elastic 

properties, RVEs with different volume fractions have been generated by changing 

the cross-linker density (𝑁𝑐= 7, 15, 19, 23, 25, 27) while fixing the aspect ratio as 80, 

100 or 125. The results of the five constants against the volume fraction have been 
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presented in Figure 4.7 where the value of  𝐸𝑓 𝐸𝑚⁄  is fixed as 100 and the Poisson’s 

ratios of fibres and matrix are set the same as 0.3. We can see that 𝐸11 indicates a 

linear relationship with volume fraction as we increase the cross-linker density. 

Furthermore, the curves of 𝐸11  under different aspect ratios nearly coincide, 

demonstrating that aspect ratio does not affect the trend of 𝐸11. This result is also 

consistent with that in section 4.4.4. 𝐸33 grows faster when the volume fraction is 

small and then slows down to show a linear relationship with volume fraction as we 

increase the cross-linker density. 𝐺31  shows an exponential increase as volume 

fraction increases. Still, 𝑣12 fluctuates around 0.3 without being influenced by the 

change of cross-linker density. In addition, 𝑣31 drops dramatically to close to 0.   

 
(a) 
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(b) 

 
(c) 



Chapter 4. Elasticity 

105 

 

 
(d) 

 
(e) 

Figure 4.7. The effect of cross-linker density (𝑁𝑐  = 7, 15, 19, 23, 25, 27) on the 

relationship between elastic properties (a) E11, (b) 𝑣12, (c) 𝐸33, (d) 𝑣31 and (e) 𝐺31 

and volume fraction. 
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4.4.6 Discussions 

In order to demonstrate the superior elastic properties of this new type of 3D 

transversely isotropic fibre-network reinforced composite, we compared their in-

plane and out-of-plane Young’s moduli with the experimental [16, 40, 272-274] and 

numerical [2, 3, 275-277] results of other conventional fibre or particle composites 

(see Table 4.7 and Figure 4.8). When compared to the simulation results of two 

transversely isotropic fibre composites without any intersections among the fibres, 

one with inclined randomly distributed short straight fibres [3] and the other with 

curved planar randomly distributed short fibres [275], both the in-plane and out-of-

plane stiffnesses of our proposed composites indicate significantly greater values. 

Further comparison with the cross-ply composites [40] has been conducted and our 

proposed composite still demonstrates superior in-plane stiffness to the later. In 

addition, the new type of fibre-network composite demonstrates much larger in-plane 

stiffness than particle composites (Glass/epoxy [273] and Particle/matrix [276]). 

These results verified the expectation of the elastic properties of this novel structure, 

that is, with the intersections among fibres, the network can greatly enhance the 

stiffness of the composite. 

 

Table 4.7. Stiffness comparison between this research and others’ experimental and 

numerical results. 

Composites Vf(%) 𝐸𝑓 

(GPa) 

𝐸𝑚 

(GPa) 

𝑣𝑓 𝑣𝑚 Stiffness 

𝐸11 (GPa) 

Stiffness 

𝐸33 (GPa) 

Cross-ply [40] 43 193 0.7 0.3 0.3 29 - 

This research 41.9 193 0.7 0.3 0.3 33.36 - 

Short fibre [3] 13.5 70 3 0.2 0.35 6.8656 5.7658 
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This research 13.7 70 3 0.2 0.35 10.2261 7.1698 

Short curved 

fibre [275] 

 

35.1 70 3 0.2 0.35 14.47 9.49 

This research 34.3 70 3 0.2 0.35 17.15 12.31 

Glass/epoxy 

[273] 

 

31 69 3 0.15 0.35 5.3 - 

This research 32 69 3 0.15 0.35 10.3765 - 

Particle/matrix 

[276] 

 

20 450 70 0.17 0.3 96 - 

This research 20.2 450 70 0.17 0.3 105.4307 - 

 

 

Figure 4.8. Comparison of several results of Young’s modulus 𝐸11  in terms of 

volume fraction. 

 

The in-plane Young’s modulus of our proposed composite is also compared with 

both the experimental results [272] and the FEA results [2] where all the fibres in the 

composites are randomly distributed in parallel to the transverse plane (i.e. the x-y 
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plane). By applying the same materials properties (𝐸𝑓=75GPa, 𝐸𝑚=1.6GPa, 𝑣𝑓=0.25 

and 𝑣𝑚=0.35) as given in [2], the relationship between 𝐸11  and the fibre volume 

fraction of our proposed composite has been obtained and demonstrated in Figure 4.8 

together with the experimental results [272] and the FEA results [2] for comparison. 

All the results have demonstrated an approximately proportional tendency, which is 

consistent with the numerical results of 𝐸11 as shown in Figure 4.3(a). As can be seen 

in Figure 4.8, the values of the in-plane Young’s modulus of the novel composite are 

larger than the experimental results [272] and the FEA results [2] under the same 

volume fraction. It should be noted that all fibres are straight and planar randomly 

distributed in the composites in [2] and [272] whereas the fibres are curved and the 

fibre segments are inclined out of the transverse plane in the proposed fibre network 

composites. Similarly, the transversely isotropic composite architecture studied in 

[274] (experimental study) and [277] (numerical analysis) is composed of fibres 

which are physically overlaid on each other [277] and intersections among fibres are 

ignored. The in-plane stiffness of our proposed composite also exhibits a larger value 

than both experimental and numerical results. In addition, the proposed composite 

has also been compared with the similar composite reinforced by a fibre network mat 

[16]. As shown in Figure 4.8, the proposed fibre network composite still illustrates 

larger stiffnesses. This is possibly due to the difference in in-plane curvatures of 

fibres, which are straight in the proposed model and curved in [16]. This is consistent 

with a conclusion drawn in [277] that the Young’s modulus decreases as the fibre 

curvature increases. Besides, it should be noted that the in-plane stiffness tends to be 

under-estimated when the fibres are modelled as beam elements compared to the 

model with solid elements as discussed in the Section 4.3.5. Therefore, the actual in-

plane stiffness of the proposed model can be even larger than other composites 
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compared here. 

To conclude, the reason why our composite structure has a larger stiffness can be 

attributed to the introduction of cross-linkers between the fibres in the composites. 

Furthermore, there is no doubt that the cross-linkers along the out-of-plane direction 

in the fibre network composites also render a superior out-of-plane stiffness to planar 

random fibre composites. Therefore, it is conjectured that both the in-plane and the 

out-of-plane stiffnesses of our new type of composite are superior to those of planar 

random fibre composites.  

 

4.5 Analytical Model 

4.5.1 Geometrical and Mechanical Model 

Based on the simulation results of elastic properties we have obtained on this fibre 

network reinforced composites, we also aim to investigate the theoretical results for 

comparison. Since the fibres are randomly distributed, it increases the complexity 

and difficulty of deducing the theoretical expressions, not to mention the structures 

with two phases. Therefore, for simplification and similarity, a simplified scaffold 

alike model has been proposed for analysis as shown in Figure 4.9. The fibre network 

consists of several layers in the x-y plane, in which a certain number of parallel fibres 

are distributed in the x-direction and y direction alternately. Furthermore, the fibres 

in the adjacent layers will intersect to some extent which is determined by the overlap 

coefficient c. Also, the cross-section of each fibre is set as a square shape with an 

edge length of d for the sake of predigesting analysis and the error caused by the 

cross section difference is assumed to be neglectable when the fibres are slender (i.e. 
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the aspect ratio of a fibre is large enough). Therefore, the overlapping thickness 

between two fibres will be 𝑐𝑑. For a geometry model with a fibre length of 𝐿 and 

cross-linking density of 𝑁𝑐, the length of each fibre segment will be 𝑁𝑐 = 𝐿 𝑙𝑐⁄ . In 

this way, a regular fibre network with cross-linking has been generated and the 

volume fraction of fibres can be dominated by adjusting 𝑁𝑐  and 𝑐  changing 

accordingly (𝑐 = 0.025(𝑁𝑐 + 1) ). Then the matrix fills in the gap of the fibre 

network in three dimensions to make it a complete composite structure. Although the 

simplified geometry model is not strictly transversely isotropic as fibres are along 

either the x direction or the y direction, the deformation mechanism under axial 

loading is still similar and can be referential to this type of fibre network reinforced 

composites, including the geometry model we proposed with stochastic fibres.  

In order to illustrate the similarity of the regular fibre network reinforced composites 

(Figure 4.9) and the fibre network reinforced composites with stochastic fibres 

(Figure 3.6) in structures, the relationships between volume fraction and cross-linker 

density of both geometries have been compared in Figure 4.10. As already obtained 

in Section 4.3.4, the volume fraction of the fibre network reinforced composites with 

random fibres has indicated a three-degree polynomial relationship with the cross-

linker density. We can also see from Figure 4.10 that the volume fraction of the 

simplified regular fibre network reinforced composites also demonstrates a similar 

trend as that of the fibre network reinforced composites with random fibres with 

cross-linker density increasing although there exists a big difference in the value of 

the volume fraction under the same cross-linker density which has been brought 

about due to the simplification of the model. This has provided a solid ground that 

the trend of the elastic properties under axial tension of the simplified geometry 

model can be worthy of reference for the novel geometry model we have proposed.  
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Figure 4.9. A simplified geometrical model of the fibre network reinforced 

composites with aligned fibres along x and y directions.  

 

Figure 4.10. Comparison of the relationships between volume fraction and cross-

linker density of the fibre network reinforced composites with random fibres (the 

square dot curve) and the simplified regular fibre network reinforced composites (the 

round dot curve). 

 

Now that the simplified geometry model can represent the novel geometry model we 
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proposed, theoretical analysis based on the simplified model will be carried out in 

this part. Considering the periodicity of the simplified structure, a representative 

volume element (RVE) of it can be selected to simplify the analysis as shown in 

Figure 4.11. The dark blue blocks with square cross-section represent fibres and the 

rest light green blocks represent the matrix. Besides, due to the existing of overlap 

between adjacent fibres, which renders the cross-section of fibres more complex at 

the joints, the whole RVE has to be divided into a number of sub-cells (exactly, 20 

sub-cells in total) as indicated with dash lines in Figure 4.11. 

 
Figure 4.11. A representative volume element (RVE) of the simplified geometrical 

model of the fibre network composite. 

 

The interfaces between fibres and matrix are assumed to be perfectly bonded and we 

only consider the normal stresses within the 20 sub-cells and the compatibility 

conditions on the outer surfaces while ignoring the shear stresses and the 

compatibility conditions on the interfaces of the cuboids [270]. Thus when an axial 
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load is applied, only the three normal stresses on the surface of each cuboid will be 

taken into account and the three normal stresses inside of each cuboid are assumed 

to be constants. In addition, the RVE is also symmetrical in the z-direction. Therefore 

there will be 6 different normal stresses (i.e. 𝜎𝑥1, 𝜎𝑥2, 𝜎𝑥3, 𝜎𝑥4, 𝜎𝑥5 and 𝜎𝑥6) in the x- 

direction, 6 different normal stresses (i.e. 𝜎𝑦1 , 𝜎𝑦2 , 𝜎𝑦3 , 𝜎𝑦4 , 𝜎𝑦5  and 𝜎𝑦6) in the y- 

direction and 4 different normal stresses (i.e. 𝜎𝑧1, 𝜎𝑧2, 𝜎𝑧3 and 𝜎𝑧4) in the z-direction 

as labelled in Figure 4.11 when an axial force/displacement is loaded, either in the x-

direction or in the z-direction. Furthermore, periodic boundary conditions are applied 

to the RVE. In the elastic study, the normal stress-strain relations for the cuboids in 

series can be expressed as follows (Eq. (4.7)~(4.22)) according to Hook’s law: 

1) Normal stress-strain relations in the x-direction: 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑚
(𝜎𝑥1 − 𝑣𝑚𝜎𝑦1 − 𝑣𝑚𝜎𝑧1) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑥1 − 𝑣𝑓𝜎𝑦2 − 𝑣𝑓𝜎𝑧2) = 𝜀𝑥 (4.7) 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑚
(𝜎𝑥2 − 𝑣𝑚𝜎𝑦3 − 𝑣𝑚𝜎𝑧1) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑥2 − 𝑣𝑓𝜎𝑦5 − 𝑣𝑓𝜎𝑧2) = 𝜀𝑥 (4.8) 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑚
(𝜎𝑥3 − 𝑣𝑚𝜎𝑦4 − 𝑣𝑚𝜎𝑧1) +

𝑑

𝑙𝑐𝐸𝑚
(𝜎𝑥3 − 𝑣𝑚𝜎𝑦6 − 𝑣𝑚𝜎𝑧2) = 𝜀𝑥 (4.9) 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑓
(𝜎𝑥4 − 𝑣𝑓𝜎𝑦3 − 𝑣𝑓𝜎𝑧3) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑥4 − 𝑣𝑓𝜎𝑦5 − 𝑣𝑓𝜎𝑧4) = 𝜀𝑥 (4.10) 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑓
(𝜎𝑥5 − 𝑣𝑓𝜎𝑦4 − 𝑣𝑓𝜎𝑧3) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑥5 − 𝑣𝑓𝜎𝑦6 − 𝑣𝑓𝜎𝑧4) = 𝜀𝑥 (4.11) 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑚
(𝜎𝑥6 − 𝑣𝑚𝜎𝑦1 − 𝑣𝑚𝜎𝑧3) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑥6 − 𝑣𝑓𝜎𝑦2 − 𝑣𝑓𝜎𝑧4) = 𝜀𝑥 (4.12) 

2) Normal stress-strain relations in the y-direction: 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑚
(𝜎𝑦1 − 𝑣𝑚𝜎𝑥1 − 𝑣𝑚𝜎𝑧1) +

𝑑

𝑙𝑐𝐸𝑚
(𝜎𝑦1 − 𝑣𝑚𝜎𝑥6 − 𝑣𝑚𝜎𝑧3) = 𝜀𝑦 (4.13) 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑓
(𝜎𝑦2 − 𝑣𝑓𝜎𝑥1 − 𝑣𝑓𝜎𝑧2) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑦2 − 𝑣𝑓𝜎𝑥6 − 𝑣𝑓𝜎𝑧4) = 𝜀𝑦 (4.14) 
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(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑚
(𝜎𝑦3 − 𝑣𝑚𝜎𝑥1 − 𝑣𝑚𝜎𝑧1) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑦3 − 𝑣𝑓𝜎𝑥4 − 𝑣𝑓𝜎𝑧3) = 𝜀𝑦 (4.15) 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑚
(𝜎𝑦4 − 𝑣𝑚𝜎𝑥3 − 𝑣𝑚𝜎𝑧1) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑦4 − 𝑣𝑓𝜎𝑥5 − 𝑣𝑓𝜎𝑧3) = 𝜀𝑦 (4.16) 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑓
(𝜎𝑦5 − 𝑣𝑓𝜎𝑥2 − 𝑣𝑓𝜎𝑧2) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑦5 − 𝑣𝑓𝜎𝑥4 − 𝑣𝑓𝜎𝑧4) = 𝜀𝑦 (4.17) 

(𝑙𝑐 − 𝑑)

𝑙𝑐𝐸𝑚
(𝜎𝑦6 − 𝑣𝑚𝜎𝑥3 − 𝑣𝑚𝜎𝑧2) +

𝑑

𝑙𝑐𝐸𝑓
(𝜎𝑦6 − 𝑣𝑓𝜎𝑥5 − 𝑣𝑓𝜎𝑧4) = 𝜀𝑦 (4.18) 

3) Normal stress-strain relations in the z-direction: 

1

𝐸𝑚
{2𝑑(1 − 𝑐)𝜎𝑧1 − (𝑑 − 2𝑐𝑑)𝑣𝑚𝜎𝑥1 − 2𝑐𝑑𝑣𝑚𝜎𝑥2 − (𝑑 − 2𝑐𝑑)𝑣𝑚𝜎𝑥3  

−(𝑑 − 2𝑐𝑑)𝑣𝑚𝜎𝑦1 − 2𝑐𝑑𝑣𝑚𝜎𝑦3 − (𝑑 − 2𝑐𝑑)𝑣𝑚𝜎𝑦4} = 2𝑑(1 − 𝑐)𝜀𝑧 (4.19) 

(
𝑑

𝐸𝑓
+
𝑑 − 2𝑐𝑑

𝐸𝑚
)𝜎𝑧2 − (𝑑 − 2𝑐𝑑)

𝑣𝑓𝜎𝑥1
𝐸𝑓

− 2𝑐𝑑
𝑣𝑓𝜎𝑥2
𝐸𝑓

− (𝑑 − 2𝑐𝑑)
𝑣𝑚𝜎𝑥3
𝐸𝑚

  

−(𝑑 − 2𝑐𝑑)
𝑣𝑓𝜎𝑦2
𝐸𝑓

− 2𝑐𝑑
𝑣𝑓𝜎𝑦5
𝐸𝑓

− (𝑑 − 2𝑐𝑑)
𝑣𝑚𝜎𝑦6
𝐸𝑚

= 2𝑑(1 − 𝑐)𝜀𝑧 (4.20) 

(
𝑑

𝐸𝑓
+
𝑑 − 2𝑐𝑑

𝐸𝑚
)𝜎𝑧3 − 2𝑐𝑑

𝑣𝑓𝜎𝑥4
𝐸𝑓

− (𝑑 − 2𝑐𝑑)
𝑣𝑓𝜎𝑥5
𝐸𝑓

− (𝑑 − 2𝑐𝑑)
𝑣𝑚𝜎𝑥6
𝐸𝑚

  

−(𝑑 − 2𝑐𝑑)
𝑣𝑚𝜎𝑦1
𝐸𝑚

− 2𝑐𝑑
𝑣𝑓𝜎𝑦3
𝐸𝑓

− (𝑑 − 2𝑐𝑑)
𝑣𝑓𝜎𝑦4
𝐸𝑓

= 2𝑑(1 − 𝑐)𝜀𝑧 
(4.21) 

1

2𝑑(1 − 𝑐)𝐸𝑓
{2𝑑(1 − 𝑐)𝜎𝑧4 − 2𝑐𝑑𝑣𝑓𝜎𝑥4 − (𝑑 − 2𝑐𝑑)𝑣𝑓𝜎𝑥5 − (𝑑 − 2𝑐𝑑)  

𝑣𝑓𝜎𝑥6 − (𝑑 − 2𝑐𝑑)𝑣𝑓𝜎𝑦2 − 2𝑐𝑑𝑣𝑓𝜎𝑦5 − (𝑑 − 2𝑐𝑑)𝑣𝑓𝜎𝑦6}  = 𝜀𝑧 (4.22) 

  

4.5.2 The Relationship between Young’s Modulus in the x-

direction and Volume Fraction 

In the case of strain loading in the x-direction, which means 𝜀𝑥 is given, the rest 18 

unknown normal stresses and strains need to be solved according to Eq. (4.7)-(4.22)  

In addition, since periodic boundary conditions are applied to the RVE, there will be 
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zero total force in the y and z directions. Thus, the normal stresses in the y and z 

directions, respectively, meets 

(𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑦1 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑦2 + 2𝑐𝑑(𝑙𝑐 − 𝑑)𝜎𝑦3  

+(𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑦4 + 2𝑐𝑑
2𝜎𝑦5 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑦6 = 0 (4.23) 

(𝑙𝑐 − 𝑑)
2𝜎𝑧1 + 𝑑(𝑙𝑐 − 𝑑)𝜎𝑧2 + 𝑑(𝑙𝑐 − 𝑑)𝜎𝑧3 + 𝑑

2𝜎𝑧4 = 0 (4.24) 

Thereby, the 18 unknown normal stresses and strains can be determined by 

combining Eq. (4.7)-(4.22), (4.23) and (4.24). Accordingly, Young’s modulus in the 

x-direction can be worked out through 

   𝐸𝑥 =
𝜎𝑥
𝜀𝑥

  

=
(𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑥1 + 2𝑐𝑑(𝑙𝑐 − 𝑑)𝜎𝑥2 + (𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑥3

2𝑑𝑙𝑐(1 − 𝑐)𝜀𝑥
  

+
2𝑐𝑑2𝜎𝑥4 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑥5 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑥6

2𝑑𝑙𝑐(1 − 𝑐)𝜀𝑥
                     (4.25) 

With the same group of parameters as Section 4.4.1, where 𝑑 = 1, 𝐸𝑓 𝐸𝑚⁄ = 100 

and 𝑣𝑓 = 𝑣𝑚 = 0.3, applied to the simplified geometry model, the Young’s modulus 

in the x direction in terms of volume fraction (ranging from 0 to 0.35) can be obtained 

as shown in Figure 4.12, where the effective Young’s modulus is normalised by 𝐸𝑚. 

The Young’s modulus has indicated a linear relation with the volume fraction. The 

trend is identical to the numerical results obtained from our designed geometric 

model with random fibres, which is the round dotted curve illustrated in Figure 4.12.  

 

4.5.3 The Relationship between Young’s Modulus in the z-

direction and Volume Fraction 

Similar to the case of loading in the x-direction, 𝜀𝑧 will be given when a strain load 
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is applied in the z direction. Then the rest 18 unknown normal stresses and strains 

need to be solved according to Eq. (4.7)-(4.22). In addition, there will be zero total 

force in the x and y directions, which respectively requires 

(𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑥1 + 2𝑐𝑑(𝑙𝑐 − 𝑑)𝜎𝑥2 + (𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑥3  

+2𝑐𝑑2𝜎𝑥4 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑥5 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑥6 = 0 
(4.26) 

(𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑦1 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑦2 + 2𝑐𝑑(𝑙𝑐 − 𝑑)𝜎𝑦3  

+(𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑦4 + 2𝑐𝑑
2𝜎𝑦5 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑦6 = 0 (4.27) 

Thereby, the 18 unknown normal stresses and strains can be determined by 

combining Eq. (4.7)-(4.22), (4.26) and (4.27). Accordingly, Young’s modulus in the 

z-direction can be worked out through 

𝐸𝑧 =
𝜎𝑧
𝜀𝑧
=
(𝑙𝑐 − 𝑑)

2𝜎𝑧1 + 𝑑(𝑙𝑐 − 𝑑)𝜎𝑧2 + 𝑑(𝑙𝑐 − 𝑑)𝜎𝑧3 + 𝑑
2𝜎𝑧4  

𝑙𝑐
2𝜀𝑧

  (4.28) 

The same group of parameters as Section 4.4.1, where 𝑑 = 1, 𝐸𝑓 𝐸𝑚⁄ = 100 and 

𝑣𝑓 = 𝑣𝑚 = 0.3, have been applied to the simplified geometry model and the Young’s 

modulus in the z direction in terms of volume fraction (ranging from 0 to 0.3) has 

been obtained as shown in Figure 4.13, where the effective Young’s modulus is 

normalised by 𝐸𝑚. The Young’s modulus has indicated a polynomial relation with 

the volume fraction. Comparing the analytical results (round dotted curve) with the 

numerical results of  𝐸33 in terms of the volume fraction in Figure 4.13 when the 

volume fraction is less than 0.3, both results demonstrate a similar tendency.  

In conclusion, the dependence of Young’s moduli in the x and z directions separately 

on volume fraction has highlighted the preponderance of this designed geometry. 

Specifically, the in-plane stiffness can be improved proportionally, in the meanwhile, 

the out-of-plane stiffness can be dramatically strengthened by increasing the volume 

fraction in the way of increasing the cross-linker density 𝑁𝑐 and overlap coefficient 
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𝑐 accordingly. 

 
Figure 4.12. The relationship between Young’s modulus in the x-direction and 

volume fraction of the simplified analytical model. 

 
Figure 4.13. The relationship between Young’s modulus in the z-direction and 

volume fraction of the simplified analytical model. 
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4.5.4 The Effect of Poisson’s Ratio on the Elastic Properties 

In this section, we also aim to take advantage of the simplified geometrical model to 

obtain the analytical results of the effect of Poisson’s ratio on the elastic properties 

so as to verify the numerical results in section 4.4.3. By applying the same 

combinations of Poisson’s ratios (i.e.𝑣𝑓 = 0.05 & 𝑣𝑚 = 0.495 ,𝑣𝑓 = 0.3 & 𝑣𝑚 =

0.3,𝑣𝑓 = 0.495 & 𝑣𝑚 = 0.05 and 𝑣𝑓 = 0.495 & 𝑣𝑚 = −0.8) and the same value of 

 𝐸𝑓 𝐸𝑚⁄ =100 to the model, we have obtained the relationships of 𝐸11, 𝑣12, 𝐸33 and 

𝑣31, respectively, with volume fraction in Figure 4.14(a)-(d). 

On the whole, the numerical results in Figure 4.5 agree well with the analytical results 

in Figure 4.14 in respect of the trend of each curve and the relative relation among 

curves under different combinations of Poisson’s ratios. For example, both 𝐸11 and 

𝐸33 , when 𝑣𝑓 = 0.3 & 𝑣𝑚 = 0.3  and 𝑣𝑓 = 0.495 & 𝑣𝑚 = 0.05  are applied 

separately, have shown almost identical values; both increase dramatically from 

negative values to nearly 0 or even positive values; 𝐸33  under the case of 𝑣𝑓 =

0.05 & 𝑣𝑚 = 0.495 indicates a smaller value than that of 𝑣𝑓 = 0.495 & 𝑣𝑚 = −0.8 

when the volume fraction is less than around 10% and then surpasses it as the volume 

fraction arises. However, we also have to point out that the numerical and analytical 

results do have some aspects of disagreement, especially for the relative relations 

when the volume fraction is very large (i.e. larger than around 25%) or very small 

(i.e. less than around 5%). Additionally, the analytical results in Figure 4.14(c) have 

revealed that E33  increases drastically as the volume fraction increases when the 

volume fraction is large enough whereas E33 in Figure 4.5(c) grows fast first and then 

tend to slow down when the volume fraction is large enough.  
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4.14. Analytical results of the effect of Poisson’s ratio on the elastic properties: 

(a) 𝐸11; (b) 𝑣12; (c) 𝐸33; (d) 𝑣31. 
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Generally speaking, the numerical results agree with the analytical results on 

condition that the volume fraction is neither too large nor too small and the numerical 

results can be reliable in predicting the trend and relation between the elastic 

properties and volume fraction under the influence of Poisson’s ratio. 

 

4.6 Conclusions 

The generated composite structure reinforced by beam fibre network with vertical 

cross-linkers are proven to be transversely isotropic according to the numerical 

results and only the five independent constants  𝐸11, 𝑣12,  𝐸33,  𝑣31  and  𝐺31 are 

needed for full elastic analysis for the transversely isotropic fibre network composite. 

To ensure the transverse isotropy of the generated RVEs, the quantity of fibres should 

be large enough. In addition, statistical treatment of the varying data by obtaining the 

mean values of the data is also enssential for the transverse isotropy of RVEs. The 

comparison of the independent constants of the same geometry models with solid 

fibre elements and beam fibre elements, respectively, indicates that the simplification 

of solid fibres with beam elements is acceptable.  

The in-plane stiffness has illustrated a much larger value than the out-of-plane 

stiffness which reflects the in-plane priority in stiffness of the designed fibre network. 

Moreover, the normalised in-plane stiffness has revealed a linear relation with 

volume fraction whereas the normalised out-of-plane stiffness has demonstrated a 

polynomial relation with volume fraction when the volume fraction is not too large, 

which indicates that the out-of-plane stiffness grows faster than the in-plane stiffness 

as the volume fraction increases. This is due to the increasing quantity of cross-

linkers in the out-of-plane direction as we raise the volume fraction, thus enhancing 
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the out-of-plane stiffness dramatically. Poisson’s ratio, especially negative Poisson’s 

ratio of the matrix, plays a crucial role in affecting the overall elastic modulus and 

Poisson’s ratio of the composite. The analytical exploration of the simplified model 

which is similar to the structure of the novel fibre network reinforced composites has 

also shown a good agreement with the numerical results under moderate volume 

fractions. 
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Chapter 5 Elastoplastic Properties of 

Transversely Isotropic Random Fibre Network 

Reinforced Composites 

 

The elastoplasticity of the proposed fibre network composites constructed in Chapter 

3 is explored in this chapter. The yield criterion corresponding to the transversely 

isotropic fibre network composite structure is discussed. Both the composite with 

ductile fibres and ductile matrix and the composite with ductile fibres and brittle 

matrix are employed in the fibre network composite structure to investigate the 

elastoplasticity response of the structure, more specifically, the yield strength of it. 

Uniaxial normal strain and biaxial normal strains, respectively, are applied to both of 

the composite systems so as to obtain the stress-strain curves, the yield surfaces and 

some yield points separately under uniaxial or biaxial loading conditions. 

Furthermore, the relationships between the yield strength and volume fraction under 

uniaxial tension or pure shearing are investigated to show the trends of the yield 

strengths as the volume fraction changes. The in-plane and out-of-plane yield 

strengths and yield shear strengths are compared to illustrate the directional yield 

strength difference of this structure. Moreover, an incremental method based 

analytical solution is raised in solving the elastoplastic response specific to a 

simplified geometry model and utilised to compare with the numerical results of the 

proposed transversely isotropic fibre network composite structure.  
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5.1 Introduction 

Due to the introduction of overlap among fibres, the newly constructed transversely 

isotropic geometry has been proven to exhibit an enhanced in-plane and out-of-plane 

stiffness of the fibre network composite in Chapter 4. It can also be predicted that the 

fibre network composite may possess extraordinary plastic properties compared to 

dispersed fibre reinforced composites. Therefore, it is necessary to investigate the 

plastic behaviour of the fibre network composite so as to obtain a better 

understanding of this structure. Apart from experimental methods, finite element 

method (FEM) also provides a convenient way in analysing the continuous 

mechanics of the fibre-network composite by easily altering the geometry parameters 

such as cross-linker density and volume fraction, especially when the fibre-network 

composite is relatively complex in structure due to the introduction of overlap among 

fibres.  

In this chapter, the fibre network is assumed to be composed of stainless steel fibres. 

The reason why we adopt steel fibres lies in that ductile materials exhibit the strain 

hardening stage thus making it possible to determine the yield strength, which will 

be the main objective in the elastoplastic analysis in this chapter. More specifically, 

the in-plane and out-of-plane yield strengths and yield surfaces under uniaxial and 

biaxial stress states will be investigated, respectively. Furthermore, both ductile and 

brittle matrix materials are adopted in the fibre network composites in order to also 

study the difference matrix materials may have caused to the composite. Moreover, 

an analytical solution specific to a simplified geometry model is proposed to simply 

model the elastoplastic stress-strain response. 
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5.2 Yield Criterion for Transversely Isotropic Fibre 

Network Reinforced Composites 

Hill [278] proposed a yield condition for anisotropic material which is a natural 

generalisation of the Mises condition: 

𝑓(𝜎𝑖𝑗) = 𝐹(𝜎22 − 𝜎33)
2 + 𝐺(𝜎33 − 𝜎11)

2 + 𝐻(𝜎11 − 𝜎22)
2 + 2𝐿𝜎23

2   

                   +2𝑀𝜎31
2 + 2𝑁𝜎12

2 = 1 (5.1) 

where 𝜎𝑖𝑗  are the stresses and F, G, H, L, M, N are constants that have to be 

determined experimentally. The Hill yield criterion depends only on the deviatoric 

stresses and predicts the same yield tensile/cmpression (hydrostatic pressure 

independent). When 𝐹 = 𝐺 = 𝐻 = 1  and 𝐿 = 𝑀 = 𝑁 = 3 , the yield criterion 

reduces to the von Mises yield criterion. 

For transversely isotropic solids, 𝐹 = 𝐺  and 𝐿 = 𝑀 . The uniaxial response of a 

transversely isotropic material (𝐸1  = 𝐸2) can be schematically represented by the 

stress-strain graphs in Figure 5.1.  

 

Figure 5.1. The elastoplastic response of transversely isotropic materials under 

uniaxial loading and pure shearing [279]. 

aa

aa
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In addition, under the uniaxial loading in the three directions, respectively, we can 

write 

 (𝐺 + 𝐻)𝑌11
2 = 1  

 (𝐹 + 𝐻)𝑌22
2 = 1  

 (𝐹 + 𝐺)𝑌33
2 = 1  

 2𝐿𝑌23
2 = 1  

 2𝑀𝑌31
2 = 1  

 2𝑁𝑌12
2 = 1 (5.2) 

where 𝑌𝑖𝑗 are the normal yield stresses and shear yield stresses with respect to the 

axes of anisotropy and can be obtained from the uniaxial loading or pure shearing 

test. Consequently we have  

 𝐹 = 𝐺 =
1

2𝑌33
2   

 𝐻 =
1

𝑌11
2 −

1

2𝑌33
2   

 𝐿 = 𝑀 =
1

2𝑌31
2   

 𝑁 =
1

2𝑌12
2  (5.3) 

Thus the yield criterion can be rewritten as  

𝑓(𝜎𝑖𝑗) =
1

2𝑌33
2 (𝜎22 − 𝜎33)

2 +
1

2𝑌33
2 (𝜎33 − 𝜎11)

2  

                  + (
1

𝑌11
2 −

1

2𝑌33
2 ) (𝜎11 − 𝜎22)

2 +
1

𝑌31
2 (𝜎23

2 + 𝜎31
2 ) +

1

𝑌12
2 𝜎12

2 = 1 (5.4) 

By conducting uniaxial loadings in the three principal directions and pure shearings, 

respectively, tensile and shear yield strengths ( 𝑌11, 𝑌33, 𝑌31  and  𝑌12 ) can be 

determined from the stress-strain responses, thus the exact expression for the yield 



Chapter 5. Elastoplasticity 

127 

 

criterion of transversely isotropic materials can be obtained. More specifically, 

Hooke’s law for transversely isotropic materials [103] can be expressed as 

[
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 (5.5) 

where the elastic properties of a transversely isotropic material (𝐸1  = 𝐸2) can be 

written in terms of the five independent elastic constants i.e. 𝐸1, 𝐸3, 𝐺31, 𝑣12 and 𝑣13. 

Thus, 
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 (5.6) 

 

5.3 Geometry and Material Properties  

In the study of the yield behaviours of the fibre network composites, both brittle 

material (Epikote 828LVEL) and ductile material (Polyamide 6 (PA-6)) are 

employed as the matrix to see the difference that matrix can cause to the yield 

behaviours. Stainless steel which possesses both high stiffness and good ductility as 

introduced in Section 2.1.1 and exhibits a certain yield point is adopted as the fibre 

materials. Details of the properties of fibre and matrix materials are listed in Table 

5.1 and the stress-strain curves are shown in Figure 5.2. 
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Table 5.1. Mechanical properties of fibre and matrix materials [40]. 

 Fibre Matrix 

 Stainless steel 
Polyamide 6 

(PA-6) 

Epikote 

828LVEL 

Young’s modulus, E(GPa) 193 0.7 2.9 

Poisson’s ratio, 𝑣 0.3 0.39 0.35 

Tensile strength, 𝜎 (MPa) 660 22 75 

Tensile strain, 𝜀 17% 250% 4% 

Yield strength (0.2%), 

𝜎𝑦(MPa) 
365 - - 

 

 
(a) 

 
(b) 

Figure 5.2. The stress-strain curve of stainless steel fibre (a) and matrix (PA-6: (b)-

black curve, Epoxy: (b)-red curve). 
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5.4 Comparison of the Models with Solid and Beam 

Fibre Elements 

Similar to the method of dealing with fibre element types, fibres will also be treated 

as beam elements (B31) instead of solid elements for the elastoplastic analysis of the 

geometry. Then, one necessary step that requires to be conducted before continuing 

with the in-depth analysis is to figure out the difference this simplification can give 

rise to for the elastoplastic results. The same geometry models that have already been 

generated for elasticity comparison in section 4.3.5 will be transplanted into this part 

for the continuing process of elastoplastic simulation.  

Those ten generated RVEs consist of 50 fibres each with cross-linker density 𝑁𝑐 =15, 

overlap coefficient c = 0.4 and aspect ratio 𝐿 𝑑 = ⁄ 30. Beam and solid elements were 

applied to the same model, respectively, while the other conditions remain the same. 

As for material properties, the plastic properties of stainless steel and PA-6 were 

applied to fibres and matrix, respectively. A uniaxial tensile/shearing strain of 5% 

which is supposed to be enough to obtain a complete elastic-plastic curve was applied 

to the models.  

 Figure 5.3 demonstrates the curves of uniaxial tensile and shear stresses 

(𝜎11 , 𝜎22 , 𝜎33 , 𝜎12 , 𝜎23 , 𝜎31) in terms of strain for the models with either beam 

elements or solid elements types. Firstly, it should be pointed out that the in-plane 

and out-of-plane tensile/shear stress curves (𝜎11 vs  𝜎22  and  𝜎23  vs  𝜎31 ) are not 

identical to each other which indicates that the average of these models is not 

completely transversely isotropic. This is principally caused by the generated models 

which only include far from enough number of fibres (i.e. 50 fibres) due to the 
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limitation of the solid element quantity of the models. This problem can be 

disregarded since the aim of this section is to compare the elastoplastic properties of 

the same models with solid and beam elements and the comparison of all the six 

stress states will be taken into consideration. When comparing the corresponding 

stress curves of models with beam and solid elements, we can see that 𝜎11 and 𝜎22 of 

the models with solid elements are dramatically larger than that of the models with 

beam elements while σ33 is nearly identical in the models with either fibre element 

type. In terms of shear stress, 𝜎12  is consistent when either fibre element type is 

adopted meanwhile both 𝜎23 and 𝜎31of the models with beam elements are much 

larger than that with solid elements. Therefore, we can conclude that there is a large 

difference in in-plane stresses (𝜎11 , 𝜎22 , 𝜎23  and 𝜎31), whereas no big difference 

exists in out-of-plane stresses (𝜎33 and 𝜎12). Further to the large difference in in-

plane stresses (𝜎11, 𝜎22, 𝜎23 and 𝜎31), Table 5.2 has listed the in-plane and out-of-

plane yield strains and strengths of the models with beam and solid fibre element 

types, respectively, according to the curves in Figure 5.3. Since there are no obvious 

yield points on those curves, the method described in 5.5.1 has been employed for 

the determination of yield points. From the results in Table 5.2, we can see that there 

is no significant difference (the largest error is within 5%) in yield strengths, no 

matter in tension or shearing, of the models with different fibre element types 

although there seems to be a large difference in yield strains. This indicates that the 

method of representing fibres with beams is dependable in the following study in 

yield behaviours. 
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Figure 5.3. Uniaxial tensile and shear stress (𝜎11 ,  𝜎22 ,  𝜎33 ,  𝜎12 ,  𝜎23 ,  𝜎31 )-strain 

curves of random fibre network reinforced composites with beam and solid fibre 

element types, respectively, under a strain of 5%. The volume fraction is 0.09. 

 

 

Table 5.2. Yield strength values (MPa) of stochastic fibre reinforced composites with 

beam and solid fibre element types, respectively, under uniaxial tension and shearing 

simulations with structure parameters fibre aspect ratio L/d = 30, number of fibres N 

= 50, cross-linker density Nc = 15 and overlap coefficient c = 0.4. The volume fraction 

is 0.09. 

Fibre Element Type 
𝑌11 𝑋11 𝑌22 𝑋22 𝑌33 

… 
Solid 11.0712 0.00519 11.7283 0.00297 14.452 

Beam 11.3109 0.00753 12.2741 0.00425 13.847 

 

𝑋33 𝑌12 𝑋12 𝑌23 𝑋23 𝑌31 𝑋31 

0.0176 7.5794 0.006625 5.7777 0.01569 5.2655 0.01838 

0.0142 7.5204 0.005063 5.8624 0.0065 5.5435 0.007688 
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5.5 Numerical Results 

5.5.1 Stress-strain Curve under Uniaxial Tensile/shearing 

To obtain the yield strength of the composites, a tensile/shear strain which is large 

enough for the structure to yield is applied to the RVE with cross-linker density 𝑁𝑐  = 

21 and aspect ratio L/d = 100. Figure 5.4 is the stress-strain curves of the steel/PA-6 

composite and the steel/828LVEL composite under uniaxial tension/shearing, which 

can be used to determine the yield points for materials. It is universally acknowledged 

that an offset yield strain of 0.2% is most frequently used when determining the yield 

points of materials without precise yield point, like aluminium and high strength 

steel. However, this definition does not work for this study since the stress-strain 

curves show very gentle gradient changes. To determine the yield strength of 

stochastic fibre network composites, several definitions have been testified and the 

apparent elastic limit proposed by Johnson [280] has been chosen as the yield point, 

in which the yield point is determined when the rate of deformation is 50 percent 

larger than that at the origin. In other words, the tangent modulus of the yield point 

on the stress-strain curve decreases to 2/3 of the initial value. For instance, in order 

to determine the yield point (𝑋11, 𝑌11) under uniaxial tension in the x direction, curve 

fitting and interpolation techniques are utilized so that the tangent gradient of the 

curve can be approximately represented by the gradient of the nearby two data points. 

Young’s modulus 𝐸11  is obtained first from the initial gradient which can be 

calculated according to the first several data points on the curve. Therefore, the yield 

point (𝑋11, 𝑌11) is determined when the gradient of the nearby two data points starts 

to be smaller than 2/3 of  𝐸11. That is 
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𝜎𝑖+1 − 𝜎𝑖
𝜀𝑖+1 − 𝜀𝑖

<
2

3
𝐸11 (5.7) 

   

Then (𝜀𝑖+1, 𝜎𝑖+1) can be regarded as the approximate (𝑋11, 𝑌11). The yield points 

have been roughly pointed out in Figure 5.4 by drawing a line according to the slope. 

Table 5.3 is the tensile and shear yield stresses and strains obtained by this method 

for the steel/PA-6 composite and the steel/828LVEL composite. When comparing 

both in-plane and out-of-plane uniaxial tensile and shear yield strengths, i.e., 𝑌11, 𝑌33, 

𝑌12 and 𝑌31, of the two composites, we can conclude that all those values of the 

steel/828LVEL composite are larger than those of the steel/PA-6 composite. This is 

attributed to the difference of matrix materials [40], due to the fact that the brittle 

828LVEL matrix can carry higher load than the ductile PA-6 matrix due to the higher 

stiffness and strength. 

 
(a) 
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(b) 

Figure 5.4. Stress-strain curves of the steel/PA-6 composite (a) and the steel/ 

828LVEL composite (b), with structure parameters fibre aspect ratio L/d = 100, 

number of fibres N = 200, cross-linker density Nc = 21 and overlap coefficient c = 

0.55, under uniaxial tension or shearing. The volume fraction is 0.24. 

 

 

Table 5.3. Yield strength values (MPa) of stochastic fibre reinforced composites 

under uniaxial tension and shearing simulations with structure parameters fibre 

aspect ratio L/d = 100, number of fibres N = 200, cross-linker density Nc = 21 and 

overlap coefficient c = 0.55. The volume fraction is 0.24. 

Composites 𝑌11 𝑋11 𝑌33 𝑋33 𝑌12 𝑋12 

… steel/PA-6 31.94 0.0022 57.358 0.0469 10.241 0.0021 

steel/828LVEL 40.481 0.0024 100.28 0.0251 13.708 0.0024 

 

𝑌31 𝑋31 𝐸11 𝐸33 

3.944 0.0012 16492.46 1608.76 

15.947 0.0014 19792.94 4830.13 



Chapter 5. Elastoplasticity 

135 

 

5.5.2 The Effect of the Stiffness of the Matrix on the Yield 

Strength 

There is an interesting point from the results of Table 5.3: the out-of-plane yield 

tensile strength (𝑌33) is even larger than the in-plane yield tensile strength (𝑌11) for 

both composites as explored, although the out-of-plane stiffness (𝐸33) is smaller than 

the in-plane stiffness (𝐸11). According to the outcomes achieved by other researchers  

[93, 94] on solid foams, both the stiffness and yield strength exhibit higher values in 

in-plane directions than in out-of-plane directions for geometries in which fibres are 

normally distributed along in-plane directions. Compared to the fibre network 

without matrix [260], the in-plane yield strength of which shows much larger value 

than the out-of-plane yield strength, the fibre network combined with matrix 

demonstrates larger out-of-plane yield strength than the in-plane yield strength 

instead. So we tend to assume that the import of matrix affects in-plane and out-of-

plane yield strength. In order to verify this hypothesis, the steel/PA-6 composite is 

applied with the stiffness of matrix varying from nearly zero to large enough (i.e. 35, 

175, 350, 700 and 7000MPa) while keeping the other parameters as they are. From 

the results in Figure 5.5, we can see that the geometry shows a smaller out-of-plane 

yield strength than the in-plane yield strength when the stiffness of the matrix is small 

enough, e.g. 35 MPa. Following this, the out-of-plane yield strength starts to surpass 

the in-plane yield strength at some point and then the stiffness of matrix continues 

increasing. This result verifies the hypothesis and we can conclude that the 

introduction of the matrix has tremendously improved the load bearing capacity, 

especially the out-of-plane yield strength. This finding showcases the complication 

of composites but also provides us with a choice to design composites with certain 



Chapter 5. Elastoplasticity 

136 

 

in-plane and out-of-plane yield strength. 

 

Figure 5.5. The effect of stiffness of matrix on in-plane and out-of-plane yield tensile 

strength with structure parameters fibre aspect ratio L/d = 100, number of fibres N = 

200, cross-linker density Nc = 21 and overlap coefficient c = 0.55, under uniaxial 

tension. The volume fraction is 0.24. 

 

5.5.3 Yield Surface under Biaxial Stress States 

By applying combined biaxial tension/compression to the two composite systems 

with structure parameters fibre aspect ratio L/d = 100, number of fibres N = 200, 

cross-linker density 𝑁𝑐 = 21 and overlap coefficient c = 0.55, the yield surfaces of 

the plane of isotropy (i.e. in-plane) and the plane of anisotropy (i.e. out-of-plane) 

have been obtained and shown in Figure 5.6 and Figure 5.7. The volume fraction is 

0.24. From the in-plane yield surface (Figure 5.6(a) and Figure 5.7(a)), we can see 

that the tilt is approximately 45 degrees which again indicates the transverse isotropy 

of the geometry. As a comparison, tilts larger than 45 degrees were observed for the 
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plane of anisotropy (Figure 5.6(b) and Figure 5.7(b)), which indicate larger out-of-

plane yield strengths than in-plane yield strengths. This is consistent with the results 

in 5.5.1 and discussions in 5.5.2. Extending the comparison within uniaxial tension 

(Figure 5.4) to biaxial tension (Figure 5.6 and Figure 5.7), likewise, both the in-plane 

and out-of-plane yield surfaces of the steel/828LVEL composite invariably overpass 

those of the steel/PA-6 composite. In addition, the out-of-plane yield surface of the 

steel/828LVEL composite illustrates a larger tilt than that of the steel/PA-6 

composite. 

 
(a) 
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(b) 

Figure 5.6. Yield surface in plane of isotropy (a) and plane of anisotropy (b) of the 

steel/ PA-6  composite, with structure parameters fibre aspect ratio L/d = 100, number 

of fibres N = 200, number of cross-linkers Nc = 21 and overlap coefficient c = 0.55, 

under biaxial tension/compression. The volume fraction is 0.24. 

 
(a) 
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(b) 

Figure 5.7. Yield surface in plane of isotropy (a) and plane of anisotropy (b) of the 

steel/828LVEL composite, with structure parameters fibre aspect ratio L/d = 100, 

number of fibres N = 200, number of cross-linkers Nc = 21 and overlap coefficient c 

= 0.55, under biaxial tension/compression. The volume fraction is 0.24. 

 

5.5.4 Dependence of Yield Strength on the Volume Fraction  

In this section, we aim to investigate the relation of yield strength with volume 

fraction. Figure 5.8 and Figure 5.10 are the results of the yield tensile/shearing 

strengths of the two composites, respectively, with respect to volume fraction. For 

the steel/PA-6 composite with the ductile matrix in Figure 5.8, both in-plane tensile 

and shearing strengths show a nearly linear relationship with volume fraction. The 

larger the volume fraction is, the larger the yield tensile/shearing strength is. The out-

of-plane tensile and shearing strengths also increase with volume fraction. However, 

they indicate nonlinear relationships with volume fraction. For example, the growth 
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rate of the out-of-plane tensile strength decreases as the out-of-plane tensile strength 

increases with volume fraction. The difference between in-plane and out-of-plane is 

even getting larger as volume fraction increases. One interesting result that 

commands our attention is that the out-of-plane yield strength is always larger than 

the in-plane yield strength for both composites under any volume fraction that we 

have researched. This is consistent with the discussion that we presented about Figure 

5.5 in section 5.5.2. For PA-6 and 828LVEL with Young’s moduli of 700 MPa and 

2.9 GPa, respectively, the values are both sufficient to give rise to a larger out-of-

plane yield tensile strength than the in-plane one. Besides, both in-plane and out-of-

plane tensile and shearing strengths exhibit a nearly linear relation with volume 

fraction and the steel/828LVEL composite possess a larger difference in in-plane and 

out-of-plane yield tensile strengths than the steel/PA-6 composite. In contrast, for the 

yield shear strength, the two composites show different tendencies. The in-plane 

shear strength is always larger than the out-of-plane shear strength for the steel/PA-

6 composite with the ductile matrix. For the steel/828LVEL composite with the 

brittle matrix, the out-of-plane shear strength arises slowly while the in-plane shear 

strength increases dramatically and exceeds the out-of-plane shear strength when 

volume fraction is getting larger. 

In order to demonstrate the yield surface evolution with volume fraction, the in-plane 

and out-of-plane yield surfaces under biaxial stress states in terms of volume fraction 

for both composites are shown in Figure 5.9 and Figure 5.11. There is no doubt that 

the sizes of both in-plane and out-of-plane yield surfaces increase, since the 

corresponding in-plane and out-of-plane yield strengths rise as the volume fraction 

increases. The angle of tilt for the in-plane yield surface is 45° due to the transversely 

isotropic nature of the structure. As for the out-of-plane yield surface, the angle of 
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tilt for the yield surface of the steel/PA-6 composite indicates no large difference (the 

angle of tilt 𝜃1is around 80°) for different volume fractions except when the volume 

fraction is as large as 0.42 (the angle of tilt 𝜃2is around 65°). As a comparison, the 

angle of tilt for the out-of-plane yield surface of the steel/828LVEL composite 

decreases as volume fraction increases which indicates that the extent of anisotropy 

of the composite is weakened by the increasing of the volume fraction. The angle of 

tilt of the out-of-plane yield surface in terms of volume fraction for the steel/PA-6 

composite and steel/828LVEL composite, respectively, can also be compared in 

Figure 5.12. 

 
(a) 
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(b) 

Figure 5.8. The relationship between (a) yield tensile strength and (b) yield shear 

strength of the steel/PA-6 composite (in-plane yield strength: Y12 and out-of-plane 

yield strength: Y31) and volume fraction of fibres.  

 
(a) 
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(b) 

Figure 5.9. In-plane (a) and out-of-plane (b) yield surfaces in terms of different 

volume fractions of fibres for the steel/PA-6 composite. 

 
(a) 
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(b) 

Figure 5.10. The relationship between (a) yield tensile strength and (b) yield shear 

strength of the steel/828LVEL composite (in-plane yield strength: Y12 and out-of-

plane yield strength: Y31) and volume fraction of fibres. 

 
(a) 
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(b) 

Figure 5.11. In-plane (a) and out-of-plane (b) yield surfaces in terms of different 

volume fractions of fibres for the steel/828LVEL composite. 

 

 

  

(a) (b) 

Figure 5.12. The angle of tilt of the out-of-plane yield surface in terms of volume 

fraction for the steel/PA-6 composite (a) and steel/828LVEL composite (b), 

respectively. 
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5.5.5 The Effect of the Combined Axial Loading and 

Shearing on the Yield Strength 

In the previous sections, yield strengths under uniaxial and biaxial tension or shearing 

have been investigated. However, real engineering conditions are extremely complex 

and may involve the combination of tension/compression and shearing. Therefore, 

taking the steel/PA-6 composite for investigation, the combined axial tension and 

shearing are applied to the steel/PA-6 composite. With uniaxial tension and various 

pure shearing (with shear strain 𝜀31 of 0.001, 0.002, 0.003 and 0.004) applied, the 

relationships between in-plane and out-of-plane yield strength and shearing have 

been obtained in Figure 5.13. The results indicate that both in-plane and out-of-plane 

yield strengths decrease as shear loading increases, which means that the imposition 

of shearing will reduce the in-plane and out-of-plane yield strengths. Further to this, 

when combined biaxial tension and shearing are applied to the steel/PA-6 composite, 

in-plane and out-of-plane yield surfaces can be derived from Eq.(5.4) which is based 

on the Hill criterion. The in-plane and out-of-plane yield surfaces under various 

certain shearing stresses, i.e. 0, 1MPa, 2MPa, 3MPa and 3.5MPa, are shown in Figure 

5.14 (a) and (b). The results also illustrate that the addition of shear can dramatically 

weaken the in-plane and out-of-plane yield surfaces while retaining the angle of tilt 

unaffected for different shearing stresses. Therefore, the composite is more likely to 

fail under multi stress states.  
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Figure 5.13. The effect of combined axial loading and shearing on in-plane and out-

of-plane yield strength of the steel/PA-6 composite. 

 
(a)
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(b) 

Figure 5.14. In-plane and out-of-plane yield surfaces under combined biaxial tension 

and shearing for the steel/PA-6 composite. Various shear stresses (𝜎31=0, 1, 2, 3 and 

3.5MPa) are applied. 

 

5.6 Analytical Solution 

As FE analysis provides a direct method for obtaining the elastoplastic stress-strain 

relations of the materials in the macroscale, some theoretical methods, such as the 

self-consistent method[141, 142], secant method [148, 150-155] and variational 

method [150, 158, 162] etc., have also been of great interest in the elastoplastic 

investigations. In this section, we aim to conduct the theoretical investigation of the 

elastoplastic response specific to the proposed fibre network composite so as to give 

a prediction of the elastoplasticity to the specific microstructure and provide 

comparisons with the numerical results.  
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Due to the random distribution of fibres and connections among fibres, the 

microstructure of the fibre network composite is considerably complicated and 

variational. To ensure the feasibility of theoretical analysis, the microstructure needs 

to be simplified by re-employing the RVE with cross-aligned fibres as shown in 

Figure 4.11 of Section 4.5.1 and as reproduced here in Figure 5.15 for convenient 

reference. The homogenisation method of the microstructure treatment is inherited 

to the elastoplastic deformation stage by dividing the RVE into 20 homogenised sub-

cells and the incremental approach is applied for the non-linear stress-strain response 

by calculating the stress-strain relations of each sub-cells step-by-step. Feng et al. 

[281] also adopt these similar methods to conduct the theoretical calculation of the 

elastoplastic response of the interpenetrating composites, which shows good 

agreement with experimental results.  

 
Figure 5.15. A representative volume element (RVE) of the simplified geometry 

model of the fibre network composite. 
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The procedure of calculating the stress-strain response can be introduced by the 

following steps: 

1) The linear elastic stress-strain response of each sub-cell is calculated with the same 

equations as Eq. (4.7-22) adopted in Section 4.5.1 at the early small-deformation 

stage for each time-step; 

2) The obtained stress of each sub-cell is compared to the stress-strain relation of the 

constituent to check whether the sub-cell reaches the strain-hardening stage. If it 

reaches the strain-hardening stage, the original linear elastic relation will be replaced 

by the nonlinear stress-strain relation of the constituent and the corresponding 

equations are updated for the further calculations; If does not, that sub-cell waits for 

the next step of calculation without any changes; 

3) The stress-strain relations of all the sub-cells are updated to Eq. (4.7-22) and 

adopted for the next-step calculation. Then it goes back to Step 2. Thus, Step 2 and 

Step 3 are repeated until all the sub-cells shows the plastic deformation. 

As for the updating procedure of equations mentioned in Step 2, more descriptions 

are provided hereby. Taking the steel/PA-6 composite as an example, the stress-strain 

relations of the steel fibre and PA-6 matrix are shown in Figure 5.2 (a) and (b), 

respectively. By curve fitting, the approximate expressions of stress in terms of strain 

for the strain-hardening stage can be given as 𝜎𝑓 = 855.3621𝜀𝑓
0.1587  and 𝜎𝑚 =

21.7194 − 23.9𝑒−48.0583𝜀𝑚. Thus, the stress-strain relations of the fibre and matrix 

follows: 

 𝜎𝑓 = {
𝐸𝑓𝜀𝑓

855.3621𝜀𝑓
0.1587 

     
𝑖𝑓 𝜎𝑓 < 𝜎𝑓

𝑠

𝑖𝑓 𝜎𝑓 ≥ 𝜎𝑓
𝑠                       

𝜎𝑚 = {
𝐸𝑚𝜀𝑚

21.7194 − 23.9𝑒−48.0583𝜀𝑚

     𝑖𝑓 𝜎𝑚 < 𝜎𝑚
𝑠

     𝑖𝑓 𝜎𝑚 ≥ 𝜎𝑚
𝑠  (5.8) 
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where 𝐸𝑓 and 𝐸𝑚 are Young’s moduli of the stainless steel fibre and PA-6 matrix, 

respectively, and 𝜎𝑟
𝑠 and 𝜎𝑚

𝑠  are the yield strengths of the fibre and matrix. Thus, the 

stress states of all the sub-cells can be updated as the strain loading increases. It is 

noted that the fibres and matrix are assumed to be perfectly bonded and there is no 

element failure even when the composite undergoes the plastic deformation. 

By applying a uniaxial loading in the x-direction, the incremental stress-strain 

relation calculated by the combination of Eq. (4.7-24) and Eq. (5.8) can be given as  

   𝜎11 =
(𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑥1 + 2𝑐𝑑(𝑙𝑐 − 𝑑)𝜎𝑥2 + (𝑙𝑐 − 𝑑)(𝑑 − 2𝑐𝑑)𝜎𝑥3

2𝑑𝑙𝑐(1 − 𝑐)
 

+
2𝑐𝑑2𝜎𝑥4 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑥5 + 𝑑(𝑑 − 2𝑐𝑑)𝜎𝑥6

2𝑑𝑙𝑐(1 − 𝑐)
      (5.9) 

where 𝜎𝑥1-𝜎𝑥6 are all dependent on the incremental strains according to Eq. (5.8). 

Similarly, the incremental stress-strain relation in the z-direction can be calculated 

by the combination of Eq. (4.7-24) and Eq. (5.8) as  

𝜎33 =
(𝑙𝑐 − 𝑑)

2𝜎𝑧1 + 𝑑(𝑙𝑐 − 𝑑)𝜎𝑧2 + 𝑑(𝑙𝑐 − 𝑑)𝜎𝑧3 + 𝑑
2𝜎𝑧4  

𝑙𝑐
2   (5.10) 

where 𝜎𝑧1-𝜎𝑧4 are all dependent on the incremental strains according to Eq. (5.8). 

Figure 5.16 has illustrated the elastoplastic stress-strain response of the analytical 

solution (the dash-dot curve) of the simplified RVE (Figure 5.15) with a volume 

fraction of 0.24 when a uniaxial tension strain of 0.05 is applied. In order to verify 

the reliability of the analytical results, the FE analysis of the simplified RVE has also 

been carried out in Abaqus/standard. The interface is assumed to be perfectly bonded. 

We can see from Figure 5.16 that the analytical and FEM stress-strain responses 

demonstrate a good agreement in the linear elastic stage and the early strain-

hardening stage and tend to expand the errors as the strain-hardening stage 
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progresses. This indicates that our analytical results are reliable in predicting the 

stiffness and yield strength of the simplified RVE although the analytical solution 

tends to underestimate the tensile strength, which may be due to the reason that the 

shear stresses are ignored in the calculation of the stress-strain responses of the sub-

cells. However, this imperfect analytical model can still meet our requirement, since 

we only consider the yielding behaviours for relatively small strains in this section.  

 
Figure 5.16. Comparison of the analytical and FEM stress(𝜎11)-strain relations of the 

simplified RVE and the FEM results of the proposed fibre network composite 

(steel/PA-6) with a volume fraction of 0.24. 

 

With the stress-strain curve (the solid curve) of the fibre network composite of 

volume fraction 0.24 also presented in Figure 5.16, the elastoplastic behaviours of 

the fibre network composite and the simplified RVE are compared. We can see from 

the curves that the random fibre network composite exhibits a slightly smaller elastic 

modulus and requires a larger strength to yield than the simplified RVE. This can be 
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related to the microstructure difference between the two models. Since all the fibres 

are distributed aligned in the x and y directions in the simplified RVE, the stiffness is 

enhanced compared to the randomly distributed fibre network composite. However, 

the aligned fibres only undergo tension while the random fibres withstand both 

tension and bending. Thus, the simplified RVE is easier to yield than the random 

fibre network composite. The main mechanical properties of the analytical results of 

the simplified RVE and the FEM results of the fibre network composite obtained 

from Figure 5.16 are tabulated in Table 5.4. The yield strength and strain are 

determined by Johnson’s apparent elastic limit [280]. Consistent with the above 

discussions about the yield strength of the two models, the proposed fibre network 

composite exhibits a larger yield strength than the simplified RVE.  

Moreover, further yield strength data of the fibre network composite and simplified 

RVE under the uniaxial tension in the x-direction is shown in Figure 5.17 for 

comparison. Generally speaking, the yield strengths of both models demonstrate a 

consistent trend as the volume fraction increases and the fibre network composite 

possesses a relatively larger value than the simplified RVE from the analytical 

solution. This proves the advantage of the composite reinforced by a random fibre 

network in the aspect of strength improvement compared to the simplified RVE 

which can be regarded as an interpenetrating two-phase composite.  

 

Table 5.4. Mechanical properties of the simplified RVE and the proposed fibre 

network composite (steel/PA-6) with the volume fraction of 0.24. 

 Young’s modulus 

𝐸11 (MPa) 

Yield strain 

𝑋11 

Yield strength, 

𝑌11 (MPa) 

Analytical results 18709.1 0.0018 29.73 

Fibre network composites 14592.4 0.0022 31.94 
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Figure 5.17. Yield tensile strengths (𝑌11) of both the fibre network composite and the 

simplified RVE with respect to volume fraction. The fibres are stainless steel and the 

matrix is PA-6 for both models. 

 

5.7 Discussions 

As discussed in Section 5.6, the proposed fibre network composite has shown a 

superior yield strength than the composite reinforced by the cross-aligned fibre 

network, which has demonstrated the advantage of the fibre network structure with a 

random distribution of curved fibres in the proposed composite. In order to 

investigate further the elastoplastic behaviours − more specifically, the yield strength 

of the proposed fibre network composite − more comparisons will be carried out with 

other composites reinforced by either continuous or interpenetrating inclusions. In 

this respect, some relevant experimental data regarding yield strength has been 

presented in Figure 5.18. It is noted that each comparison between the proposed fibre 
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network composite and other composite structures corresponds to a certain volume 

fraction and the yield strengths under different volume fractions are actually not 

relevant in this figure, since the constituents in each comparison are different with 

different material properties. 

When compared to the Al/In601 fibre network composite [282], marked in square 

symbol in Figure 5.18, which is in a very close microstructure to the proposed fibre 

network composite, the proposed fibre network composite exhibits a comparative yet 

slightly larger yield strength (the volume fraction is 0.2). This has proved the 

reliability of the numerical results in this research and shown the improvement of the 

fibre network in this research. 

Furthermore, the proposed composite has also been compared to the cross-ply 

composite [40] with a volume fraction of around 0.4. It is apparent that there are two 

numerical data (down-triangle symbol when the volume fraction is about 0.4) 

corresponding to only one data (Red dot) of the cross-ply composite. The two 

numerical data are actually the in-plane and out-of-plane yield strengths, 

respectively, with the data lower than that of the cross-py composite representing the 

in-plane data and the larger data representing the out-of-plane data. Thus, the yield 

strength of the cross-ply composite is larger than the in-plane yield strength and 

smaller than the out-of-plane yield strength of the proposed fibre network composite. 

In addition, we have also compared the proposed composite structure with the 

interpenetrating phase composites [281, 283, 284]. Both experimental [283] and 

analytical [281] results have been obtained towards the interpenetrating steel/bronze 

composite with volume fractions of 0.6 and 0.8. Due to the limitation of the geometry 

construction algorithm, it is not easy to generate a fibre network composite with a 
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volume fraction as large as 0.6. Thus we have used the simplified RVE as instructed 

in Section 5.6 instead to compare with the interpenetrating steel/bronze composite. 

The yield strengths of the simplified RVE with both volume fractions have indicated 

larger yield strengths than the interpenetrating steel/bronze composite (marked in up-

triangle symbol). Since the actual fibre network composite possesses much larger 

yield strengths than the simplified RVE. Therefore, we can imagine that the proposed 

fibre network composite structure exhibits higher yield strengths than the 

interpenetrating phase composite. 

In conclusion, the proposed fibre network possesses a relatively high yield strength 

with the in-plane random distribution of fibres, inclined fibre segments along the out-

of-plane directions and network generated by the intersections fibres. 

 
Figure 5.18. Comparisons of the proposed fibre network composite with other 

composites.  

*: The simplified RVE is adopted to replace the proposed fibre network composite 

for comparison. 
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5.8 Conclusions 

The in-plane and out-of-plane yield surfaces under biaxial stress states indicate that 

the yield strengths meet the Hill yield criterion. The transversely isotropic fibre 

network composite structure exhibits larger out-of-plane yield strength than in-plane 

yield strength, although the out-of-plane stiffness is smaller than the in-plane 

stiffness. This is related to the matrix properties. The introduction of the matrix into 

the fibre network has increased the out-of-plane yield strength more drastically 

compared to the in-plane yield strength. Furthermore, the rise of volume fraction can 

enhance both in-plane and out-of-plane tensile and shearing yield strengths. As 

volume fraction increases, both in-plane and out-of-plane yield surfaces are 

expanded. However, the out-of-plane angle of tilt of the steel/PA-6 composite shows 

no major difference, excluding when the volume fraction is as large as 0.42. As a 

comparison, the out-of-plane angle of tilt of the steel/828LVEL composite keeps 

decreasing as volume fraction increases. Moreover, the addition of shear loading 

reduces the yield strength or yield surface, both in-plane and out-of-plane. The 

proposed transversely isotropic fibre network composite possesses comparative yield 

strength compared to other composites with similar microstructure. 
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Chapter 6 Viscoelastic Properties of Aerogel 

and Hydrogel with Transversely Isotropic 

Random Fibre Network 

 

In this chapter, the research is focused on the viscoelastic properties of tissues based 

on the transversely isotropic fibre network. Both collagen aerogel and hydrogel with 

transversely isotropic collagen fibre networks are investigated in terms of the 

viscoelastic behaviours that they possess in biological tissues. Thus the common 

viscoelastic behaviours, such as stress relaxation and creep, are explored with respect 

to component mechanical properties as well as network structures. A Maxwell-

Weichert model consisting of two Maxwell elements are adopted to characterise the 

viscoelastic behaviours of collagen fibres. For collagen aerogel, the fibre network is 

composed of collagen fibres while the pore is left a void. Thus, the in-plane and out-

of-plane stress relaxation behaviours of the porous alike transversely isotropic 

collagen aerogel in terms of relative density are explored. Furthermore, a simplified 

geometrical model is proposed, and the analytical results have been deduced and 

compared with the numerical results. As for collagen hydrogel, the fibre network is 

composed of collagen fibres while the pore is filled with water and other nonfibrillar 

proteins etc., which is also recognised as the ground substance. Then, both the stress 

relaxation and creep behaviours of collagen hydrogel in terms of volume fraction are 

investigated. 
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6.1 Introduction 

Various materials, such as wood, polymers, mammal tissue and solid rocket 

propellants etc., exhibit viscoelastic behaviour, where the deformation is dependent 

on load, time and temperature [85]. In the past several decades, soft biological tissue 

has become one of the most attractive research fields. Collagen fibre network, such 

as the cytoskeleton and extracellular matrix, which acts as the skeleton in cells or 

tissues is a common structure in biological tissues. The structure of the network can 

be isotropic, transversely isotropic, orthotropic or anisotropic. The novel 3D 

transversely isotropic fibre network shows a relatively similar structure as observed 

in some cytoskeletons, e.g. the neurofilament gel in Figure 2.8, and cornea. Thus the 

investigation of the viscoelastic behaviours of our designated fibre network is 

meaningful and helpful in understanding the behaviours of soft tissues with similar 

structures. Two categories of structures can be studied based on the generated 

geometric model, that is the aerogel which is composed of the porous collagen fibre 

network alone and the hydrogel which is also composed of the porous collagen fibre 

network but surrounded with fluid ground substance. Due to the viscoelastic 

behaviours of collagen fibres, the aerogel and hydrogel are also supposed to exhibit 

viscoelastic properties in response to external loads. A variety of analytical models, 

such as microstructural, phenomenological/rheological, and continuum models [89, 

178, 179], have been proposed for the theoretical investigation of the viscoelasticity 

of soft tissue. A Maxwell-Weichert model based on the rheological model is widely 

used in exploring the viscoelastic properties of soft tissues in the FE analysis. 

Therefore, both aerogel and hydrogel with the collagen fibre network will be 

investigated based on the Maxwell-Weichert model. More specifically, the stress 
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relaxation and creep behaviours in terms of volume fraction will be the focus of the 

analysis. 

6.2 Viscoelastic Properties of Collagen Network 

Aerogel 

Rubber and most tissues possess viscoelastic properties and undergo stress relaxation 

when applied to a constant strain. We aim to study the viscoelastic properties of the 

fibre network first, which can also be regarded as an aerogel, in order to investigate 

the viscoelastic effect that brought about by the designated structure of the fibre 

network alone. Therefore the generated fibre network without matrix will be 

employed in section 6.2 for its viscoelastic response study of aerogel, of which stress 

relaxation behaviours will be focused on in this investigation. 

6.2.1 Geometry and Material Properties 

6.2.1.1 The Geometry of the RVE 

Since only the fibre network will be studied in this section, the 3D transversely 

isotropic beam fibre networks, but without matrix, are constructed in the same 

procedure as shown in Chapter 3. Still, curved beam fibres are cross-linked by the 

added fibres at the intersection points so as to generate a network among fibres. An 

example of a similar RVE beam model is illustrated in Figure 6.1. Eventually, several 

groups of fibre networks with relative densities ranging from 0.06 to 0.36 are 

prepared for the following analysis. It should be noted that all the data shown in the 

figures from now on are the mean value of 10 RVEs for each corresponding relative 

density/volume fraction. 
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Figure 6.1. The RVE geometric beam model of the fibre network with cross-linkers. 

 

6.2.1.2 Mechanical Model and Material Properties 

For simplification, the viscoelastic behaviour of the fibre network is characterised by 

a Maxwell-Weichert model consisting of two Maxwell elements (one nonlinear 

spring (with constant modulus  𝐸1 ) in series with a dashpot (with damping 

coefficient 𝜂1) and another nonlinear spring (with constant modulus 𝐸2) in series with 

a dashpot (with damping coefficient 𝜂2), parallel to a linear spring (with constant 

modulus 𝐸∞) as shown in Figure 6.2. The reason why the Maxwell model with two 

elements is adopted lies in that a single relaxation time is not sufficient to accurately 

fit the experimental results [205]. According to the Maxwell-Weichert model, the 

equation of relaxation modulus as a function of time can be expressed as: 

 𝐸(𝑡) = 𝐸∞ + 𝐸1𝑒
−
𝑡

𝜏1 + 𝐸2𝑒
−
𝑡

𝜏2 (6.1) 

where 𝐸∞  is the time-independent elastic modulus and  𝜏𝑖 = 𝜂𝑖 𝐸𝑖⁄ . Under the 
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condition of t = 0s, 𝐸(0) is the instantaneous elastic modulus. Thus, the relaxation 

response can be characterised by the three linear springs with elastic moduli (𝐸∞, 𝐸1 

and 𝐸2) and two dashpots with relaxation times (𝜏1 and 𝜏2). 

In Abaqus, viscoelasticity is implemented by employing Prony series. Both shear and 

volumetric responses have been considered separately. For homogenous elastic 

materials, the relationships between shear modulus G and bulk modulus K are well 

known as: 

 𝐺 =
𝐸

2(1 + 𝑣)
 (6.2) 

 
𝐾 =

𝐸

3(1 − 2𝑣)
 

(6.3) 

where E is the elastic modulus and 𝑣  is the Poisson’s ratio of elastic materials. 

Similarly, in viscoelasticity, 𝐺(𝑡) and 𝐾(𝑡) are expressed as: 

 𝐺(𝑡) = 𝐺0 (𝛼∞
𝐺 + 𝛼1

𝐺𝑒
−
𝑡

𝜏1 + 𝛼2
𝐺𝑒

−
𝑡

𝜏2) (6.4) 

 
𝐾(𝑡) = 𝐾0 (𝛼∞

𝐾 + 𝛼1
𝐾𝑒

−
𝑡

𝜏1 + 𝛼2
𝐾𝑒

−
𝑡

𝜏2) 
(6.5) 

When t = 0s with the full stiffness, 

 𝐺(0) = 𝐺0(𝛼∞
𝐺 + 𝛼1

𝐺 + 𝛼2
𝐺) (6.6) 

 𝐾(0) = 𝐾0(𝛼∞
𝐾 + 𝛼1

𝐾 + 𝛼2
𝐾) (6.7) 

where 𝐺(0) and 𝐾(0) are the instantaneous shear modulus and volumetric modulus.  

Type I collagen, which is the most abundant protein in animal tissues such as tendon, 

skin, bone and cornea etc., has been adopted as the material of the fibre network. 

Viscoelastic parameters used in Maxwell-Weichert model for the collagen fibre 

network have been listed in Table 6.1. It is noted that the stress relaxation parameters 

are obtained from a MEMS-based technique [205] towards the Type I collagen fibrils 
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isolated from the dermis of sea cucumber. 

 

Figure 6.2. Schematic representation of Maxwell-Weichert model with two Maxwell 

elements.  

 

Table 6.1. Viscoelastic parameters used in Maxwell-Weichert model for Type I 

collagen fibrils [205]. 

Parameters 𝐸∞ (MPa) 𝐸1 (MPa) 𝐸2 (MPa) 𝜏1 (s) 𝜏2 (s) 

Mean Value 123±46 13±6 16±7 7±2 102±5 

 

6.2.2 Stress Relaxation under Different Strain 

In this section, the influence of applied constant strain to stress relaxation has been 

investigated by stretching the fibre network along the x-direction to different extents 

with strains 𝜀 = 0.02, 0.04, 0.06, 0.1, 0.2, 0.5 and 1. To simplify the comparison 

among different relaxation results, all relaxation stresses are normalised by the initial 

elastic stress. For a time period of over 100s, all relaxation stresses completely 

coincide (see Figure 6.3), which indicates that the amount of strain value that applied 

shows no effect in the relaxation process by adopting this stress relaxation model. 

Besides, the following analysis will only be focused on a quasi-static state. Therefore, 

the strain-enhanced stress relaxation effect is not considered in this research and an 
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arbitrary strain of 0.02 is selected for the following stress relaxation analysis. 

 
Figure 6.3. Normalised stress relaxation of collagen fibre network at various strains. 

 

6.2.3  Stress Relaxation over Time 

In order to fulfil the process of stress relaxation with time, the tensile/shearing test 

was imposed on the RVEs by stretching them with a strain of 0.02 at a constant speed. 

Then the strain was held for a period of 200s. The restoring reaction force with time 

(𝐹(𝑡)) was recorded. The restoring stress (i.e. engineering stress) can be solved by 

𝜎(𝑡) = 𝐹(𝑡) 𝐴⁄ , where A is the initial cross sectional area. In this way, the relaxation 

stresses (normalised by 𝜎(0)), 𝜎11, 𝜎33, 𝜎12 and 𝜎31, as a function of time has been 

demonstrated in Figure 6.4 for the fibre network with a relative density of 0.15. All 

the data of the stresses in Figure 6.4 are normalised by the instantaneous stresses, 

which are the stresses when t = 0s. We can see from Figure 6.4 that the decay of the 

stresses from initial stresses down to the long-term stresses depending on the two 
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relaxation times 𝜏1  and 𝜏2  of two dashpots employed as above. Thus, the further 

characterisation of the stress relaxation behaviours in terms of the network structure 

will conducted according to the same method. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6.4. Normalised relaxation stress ((a) 𝜎11, (b) 𝜎33, (c) 𝜎12 and (d) 𝜎31) of the 

collagen fibre network with the relative density of 0.15. 
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6.2.4 Dependence of Relaxation Modulus on Relative 

Density 

6.2.4.1 Numerical Results 

Since relative density in fibre network is the dominated parameter in influencing the 

elastic properties of the network, it is also very necessary to investigate the effect of 

relative density on the viscoelastic properties of the network, specifically, relaxation 

stress/modulus in this study. As shown in Figure 6.5, relaxation tensile and shear 

stress (i.e. 𝜎11, 𝜎33, 𝜎12 and 𝜎31) of the fibre networks with various relative densities 

ranging from 0.06 to 0.36 have been explored as time progressing while the imposed 

strain (𝜀 = 2%) was kept constant for 200s. Generally speaking, 𝜎11, 𝜎33, 𝜎12 and 

𝜎31 all arise as the increase of relative density. Moreover, the in-plane stresses, both 

tensile stress (𝜎11) and shear stress (𝜎12), indicate much larger values than the out-

of-plane stresses (𝜎33 and 𝜎31) under the same relaxation time and relative density. 

This is consistent with the relative in-plane and out-of-plane elastic behaviours of 

this transversely isotropic structure [260], which also indicates that the relative in-

plane and out-of-plane elastic behaviours are not fundamentally altered although 

there exists stress relaxation of the collagen fibre network. 



Chapter 6. Viscoelasticity 

168 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6.5. Relaxation stress ((a) 𝜎11, (b) 𝜎33, (c) 𝜎12 and (d) 𝜎31) of  fibre networks 

with different relative densities (0.06-0.36) under constant strain 𝜀 = 2%. 
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In order to understand better the influence of relative density on the stress, the 

relationships between relaxation modulus (𝐸11(𝑡), 𝐸33(𝑡), 𝐺12(𝑡) and 𝐺31(𝑡)) and 

relative density were investigated and the specific results of 𝐸11(𝑡), 𝐸33(𝑡), 𝐺12(𝑡) 

and 𝐺31(𝑡)  against relative density when t = 0s (i.e. Instantaneous relaxation 

modulus) and t = 200s (regarded as a long-term stage) have been shown in Figure 

6.6. Figure 6.6 (a), the relationships between  𝐸11(0)  and 𝐸11(200)  and relative 

density, demonstrates that both 𝐸11(0) and 𝐸11(200) possess linear increases with 

relative density and it can be estimated that 𝐸11(𝑡) is proportional to the relative 

density at any given time t. This indicates the stretching dominated deformation 

mechanism of the in-plane deformation of the collagen aerogel. By curve fitting, both 

linear expressions can be approximately obtained as shown in the figure. Since 𝐺12 =

 𝐸 2(1 + 𝑣)⁄  for transversely isotropic structures, there is no doubt that 𝐺12(0) and 

𝐺12(200) show similar linear relationships with relative density (see Figure 6.6 (c)). 

As for the out-of-plane relaxation moduli, 𝐸33(𝑡) and 𝐺31(𝑡), they exhibit an entirely 

different trend as the relative density increases as shown in Figure 6.6 (b), 𝐸33(0) 

and 𝐸33(200)  against relative density, and Figure 6.6 (d), 𝐺31(0)  and 𝐺31(200) 

against relative density. From Figure 6.6 (b) we can see that 𝐸33(0) and 𝐸33(200) 

indicate polynomial relationships with relative density and can be roughly fitted with 

the cubic polynomials as shown in the figure. Different from the in-plane 

deformation, the out-of-plane deformation mechanism is bending mechanism. As the 

the volume fraction increases, which means that the cross-linker density 𝑁𝑐  is 

increasing and there are more intersections among fibres, the fibre segment length 𝑙𝑐 

is reduced. Thus, the fibre network demonstrates a polynomial rise with respect to 

volume fraction. 
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(a) 

(b) 
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(c) 

 
(d) 

Figure 6.6. Instantaneous relaxation modulus (i.e. 𝐸(0)  or 𝐺(0) ) and relaxation 

modulus at t = 200s (i.e. 𝐸(200) or 𝐺(200)) of fibre networks with different relative 

densities (0.06-0.36): (a) 𝐸11, (b) 𝐸33, (c) 𝐺12 and (d) 𝐺31. 
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6.2.4.2 Analytical Model 

 
Figure 6.7. A simplified model of cross-linked fibre network with aligned fibres 

along x and y directions, respectively. (a) In-plane view; (b) Out-of-plane view. 

 

Now that the numerical results of the dependence of relaxation modulus on relative 

density have been achieved, we also aim to explore the solution to the relationships 

of both in-plane and out-of-plane relaxation moduli with relative density from the 

theoretical point of view. To this end, a simplified schematic structure was proposed 

in Figure 6.7 where all fibres along the x-direction and y-direction, respectively, are 

well aligned (see Figure 6.7 (a)) and intersected with the overlap coefficient 𝑐 =

0.025(𝑁𝑐 + 1) (see Figure 6.7 (b)). The whole length of a fibre is L and each segment 

of it is 𝑙𝑐 in length and d in diameter. Then the cross-linker density will be 𝑁𝑐 = 𝐿 𝑙𝑐⁄ . 

In addition, the value of 𝐿 𝑑⁄  is fixed. 

Firstly, the instantaneous relaxation modulus in the x-direction (i.e. 𝐸11(0)) will be 

studied. Taking one fibre segment into consideration, it can be treated as a simply-

supported beam [260] and a concentrated transverse load w along the x-direction is 

applied in the middle. Then the deflection can be given as,  
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 ∆𝑥 =  
𝑤𝑙𝑐

3

48𝐸(0)𝐼
 (6.8) 

where 𝐸(0) is the instantaneous relaxation modulus and 𝐼 = 𝜋𝑑4 64⁄  is the second 

moment of the circular cross-section of the fibre.  

The stress and strain in the x-direction are given as,  

 𝜎11(0) =
𝑤

𝑙𝑐𝑑
 (6.9) 

  𝜀11 =
∆𝑥

𝑙𝑐
=

𝑤𝑙𝑐
2

48𝐸(0)𝐼
 (6.10) 

Therefore, the instantaneous relaxation modulus in the x-direction can be obtained as 

follows:  

  𝐸11(0) =
 𝜎11(0)

 𝜀11
=
3𝜋𝐸(0)

4
 (
𝑑

𝑙𝑐
)
3

 (6.11) 

Since the value of 𝐿 𝑑⁄  is constant, it indicates that 𝑑 𝑙𝑐⁄  is identical to 𝐿 𝑙𝑐⁄ , the 

instantaneous relaxation modulus in the x-direction of the simplified model takes the 

form,  

 
 𝐸11(0)

𝐸(0)
= 𝛼 (

𝐿

𝑙𝑐
)
3

= 𝛼𝑁𝑐
3 (6.12) 

where 𝛼 is a coefficient.  

Eq. (6.12) has indicated an approximate cubic polynomial relation between 𝐸11(0) 

and  𝑁𝑐  since 𝐸(0)  is a constant. As already obtained in Figure 6.6 (a) of the 

numerical results of  𝐸11(0)  in terms of  𝜌 ,  𝐸11(0)  can be fitted as a linear 

relationship with 𝜌. Since the relative density of the fibre network possesses a similar 

cubic polynomial relation with 𝑁𝑐 as shown in Eq. (4.1), the numerical results also 

demonstrate an approximate cubic polynomial relation between  𝐸11(0)  and  𝑁𝑐 . 

Thus the numerical results in Figure 6.6 (a) is consistent with the form in Eq. (6.12). 
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Similarly, the relaxation modulus in the x-direction in terms of cross-linker density 

can be expressed as  

 
 𝐸11(𝑡)

𝐸(𝑡)
= 𝛼 (

𝐿

𝑙𝑐
)
3

= 𝛼𝑁𝑐
3 (6.13) 

where 𝛼 is the same coefficient as that in Eq. (6.12). 𝐸(𝑡) has been expressed in Eq. 

(6.1). Therefore,  𝐸11(𝑡) always indicates a linear relation with relative density. For 

instance,  𝐸11(200) in terms of relative density has also been plotted in Figure 6.6 

(a) and it also demonstrates a linear growth as relative density increases. However, 

the growth rate tends to slow down as t progressing. This is because, the larger t is, 

the smaller 𝐸(𝑡) is, compared to 𝐸(0). Comparing Eq. (6.12) with Eq.(6.13), it can 

be seen that  𝐸11(𝑡) with a certain relative density is getting smaller and smaller as t 

progressing. Furthermore, it can also be concluded that the modulus change (i.e. 

 𝐸11(0) − 𝐸11(𝑡)) is becoming larger as the relative density increases under the same 

relaxation time, in other words, the fibre network loses more modulus when relative 

density increases. 

In terms of the instantaneous relaxation modulus in the z-direction (i.e. 𝐸33(0)), each 

fibre segment which is regarded as a simply-supported beam, is subjected to a 

concentrated transverse load w along the z-direction in the middle. Then the central 

deflection of the beam is also expressed as  

 ∆𝑧 =  
𝑤𝑙𝑐

3

48𝐸(0)𝐼
 (6.14) 

where 𝐸(0) is the instantaneous relaxation modulus and 𝐼 = 𝜋𝑑4 64⁄  is the second 

moment of the circular cross-section of the fibre. 

As there is an overlap with the coefficient of c between the intersected fibres in the x 

and y directions, respectively, the thickness of the simplified model is (2𝑑 − 𝑐𝑑) 
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instead of 2𝑑. Then the strain in the z direction can be given as 

  𝜀33 =
∆𝑧

𝑑(2 − 𝑐)
 (6.15) 

With regards to the stress in the z-direction, the applied concentrated force w is 

undertaken by 𝑁𝑐× 𝑁𝑐units in considering an area of 𝐿×𝐿 in the x-y plane for analysis. 

Thus, the stress in the z-direction is given by  

 
 𝜎33(0) =

𝑤

𝐿2
𝑁𝑐

2⁄
=
𝑤

𝑙𝑐
2 

(6.16) 

Combining Eq. (6.15) and Eq. (6.16) the instantaneous relaxation modulus in the z-

direction can be obtained as  

  𝐸33(0) =
 𝜎33(0)

 𝜀33
=
3𝜋(2 − 𝑐)𝐸(0)

4
 (
𝑑

𝑙𝑐
)
5

 (6.17) 

As the value of 𝐿 𝑑⁄  is constant, it indicates that 𝑑 𝑙𝑐⁄  is identical to 𝐿 𝑙𝑐⁄ . Moreover, 

the overlap coefficient 𝑐  takes the form 𝑐 = 0.025(𝑁𝑐 + 1) . Therefore, the 

instantaneous relaxation modulus in the z-direction of the simplified model takes the 

form,  

 
 𝐸33(0)

𝐸(0)
=
3𝜋(2 − 𝑐)

4
(
𝑑

𝑙𝑐
)
5

= 𝑝𝑁𝑐
6 + 𝑞𝑁𝑐

5 (6.18) 

where 𝑝 and 𝑞 are coefficients, which could be determined by data fitting.  

Eq. (6.18) has indicated an approximate polynomial of degree six for the relationship 

between 𝐸33(0) and 𝑁𝑐. The numerical results of the fibre network in Figure 6.6 (c) 

have revealed that 𝐸33(0) can be fitted as a cubic polynomial relationship with the 

relative density 𝜌 whereas the relative density 𝜌 of the fibre network possesses a 

cubic polynomial relation with 𝑁𝑐  as shown in Eq. (4.1). Therefore  𝐸33(0)  also 

demonstrates a polynomial relationship of degree six with 𝑁𝑐  from the numerical 
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analysis, which corresponds to Eq. (6.18) that is derived from theoretical analysis. 

Not surprisingly, 𝐸33(𝑡)  also illustrates a similar polynomial trend with relative 

density as  𝐸33(0) and the difference between  𝐸33(0) and  𝐸33(𝑡) is getting larger 

with relaxation time t increasing. 

 

6.3 Viscoelastic Properties of Collagen Fibre 

Network Hydrogel 

In section 6.2, the stress relaxation of the collagen fibre network alone has been 

investigated. However, in most tissues, collagen fibrils are generally immersed in a 

ground substance composed of proteoglycans, water, cells and other nonfibrillar 

proteins [285] which also react to the collagen’s support and the hybrid structure can 

be similar to hydrogels. Therefore, the viscoelastic properties, i.e. stress relaxation 

and creep, of the fibre network collagen hydrogel is to be studied in this section. 

6.3.1 Geometry and Material Properties 

The fibre network composite structure constructed according to the procedure in 

Chapter 3 can be directly adopted for the viscoelasticity analysis of collagen 

hydrogels. The beam fibre network serves as the collagen fibril network, such as the 

cytoskeleton, and the matrix is regarded as cytosol. Since the matrix is characterised 

by solid elements in the geometrical model while the ground substance in tissues is 

fluid which exhibits fluidity, there is an assumption that analysis is focused on quasi-

static state and the fluidity is small enough to be neglected due to the intramolecular 

interactions among fibres [286]. Therefore, the matrix in collagen hydrogels is 
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simplified as an incompressible fluid and the collagen hydrogel is assumed to possess 

no volume loss when subjected to load [285]. Thus, the isotropic and incompressible 

ground substance can be represented by the Neo-Hookean hyperelastic model as 

[212] 

𝑊𝑚 =
𝜇

2
(𝐼1 − 3) −

𝜇

2𝛾
(𝐼3

−𝛾 − 1) (6.19) 

where 𝑊𝑚 is the Neo-Hookean strain energy potential and, 𝐼1 = tr𝑪 and 𝐼3 = det𝑪 

are the first and third invariants of the right Cauchy-Green deformation tensor 𝑪. 𝜇 =

26KPa for the shear modulus of the ground substance [287]. 𝛾 = 0.49 [212].  

Furthermore, the same Maxwell-Weichert model as given in Section 6.2.1.2 is 

applied to the type I collagen fibril. Then the total strain energy density of the 

collagen hydrogel is assumed to be the sum of the strain energy density of the 

collagen network and that of the ground substance. In this way, the viscoelastic 

behaviours of the collagen fibril hydrogel are evaluated through the FEA method. 

6.3.2 Creep 

6.3.2.1 Creep under Constant Stress 

Collagen gels exhibit the creep characteristic, more specifically, strain rises with time 

gradually, when undergoing a constant stress. Therefore, in order to study the creep 

of the collagen gel with the novel transversely isotropic fibre network, a constant 

normal tensile stress of 1MPa has been applied to the fibre network collagen gels 

with different volume fractions from t = 0s until t = 200s, followed by a strain release 

process, which means that the applied stress has been dismissed, for another 200s 

from t = 200s to t = 400s.  
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The constant stress has been applied to the x-direction and z-direction, respectively, 

and both the in-plane and out-of-plane strain changes with time have been obtained 

and shown in Figure 6.8 (a) and (b). It can be seen from the figures that it indicates a 

continuous increase of the strain over time but with reducing strain rates when the 

collagen gels are imposed the constant stress for t =0-200s. It can be seen that the 

strain tends to reach the limit at the infinite time and is determined by the applied 

constant stress and, the combination of the time-independent elastic modulus of the 

fibre network and elastic modulus of the matrix. We can see from Figure 6.8 (b) that 

the maximum strain when t = 200s approaches nearly 0.2 and this can be much larger 

when the constant stress is applied for longer time according to the strain rate at t = 

200s.  

 
(a) 
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(b) 

Figure 6.8. Time-dependent in-plane (a) and out-of-plane (b) strain changes of 

collagen gels with different volume fractions (0.02-0.42) under the constant stress 𝜎 

= 1MPa. The constant stress is imposed on the collagen gels from t = 0s to t = 200s 

and then released from t = 200s. 

 

When the constant stress is removed from t = 200s, the strain drops off gradually and 

there still exists a residual strain after 200s relaxation, which implies that the fibre 

network collagen gel takes a longer time to release the strain compared to the loading 

procedure. Furthermore, fibre network collagen gels with smaller volume fractions 

indicate larger strains, both after the loading and the releasing. This will be discussed 

in detail in the next section 6.3.2.2. 

 

6.3.2.2 Dependence of strain on the volume fraction 

As volume fraction is a crucial parameter in determining the mechanical properties, 
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including viscoelasticity, of the fibre network collagen gels, the dependences of the 

strains after loading for 200s (t = 200s) and the strains after load removed for 200s (t 

= 400s) have been shown in Figure 6.9. Both the in-plane and out-of-plane strains 

(i.e. 𝜀11 and 𝜀33) have also been displayed in Figure 6.9 for comparison.  

 

Figure 6.9. Dependence of in-plane strain (𝜀11) and out-of-plane strain (𝜀33) of 

collagen gels on volume fractions. Both the strains when a constant stress has been 

applied for 200s (t = 200s) and the strains after the constant stress has been removed 

for 200s (t = 400s) have been shown in this figure. 

 

When t = 200s after the constant stress has been applied for 200s, both in-plane strain 

(square dotted curve) and out-of-plane strain (circle dotted curve) decrease as the 

volume fraction increases. The same trend has also happened to the in-plane strain 

(upwards triangle dotted curve) and out-of-plane strain (downwards triangle dotted 

curve) when t = 400s after the constant stress has been removed for 200s. This is 

mainly due to the increased stiffness of the fibre network as volume fraction increases 
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which leads to more effort to deform under load and less time to restore after the load 

is released. Moreover, the in-plane strains are smaller than the out-of-plane strains 

for all the different volume fractions when t = 200s and t = 400s, on account of the 

larger stiffness in the in-plane direction than that in the out-of-plane direction. 

 

6.3.3 Stress Relaxation 

6.3.3.1 Stress Relaxation over Time 

A tensile/shear strain of 2% is applied to the fibre network collagen gels and has been 

held constantly over time to study the stress relaxation. Figure 6.10 (a)-(d) are the in-

plane and out-of-plane tensile and shear stresses relaxation over time separately. All 

the relaxation stresses, either in tensile or in shear states, have indicated dramatic 

drops at the very early stage and then tend to reach a balance after a long period of 

relaxation. In addition, the relaxation stresses of fibre network collagen gels with 

different volume fractions have also been illustrated in the same figures in Figure 

6.10. Generally speaking, the larger the volume fraction of fibre network collagen 

gel is, the larger the relaxation stress is under the same relaxation time. In other 

words, relaxation stress increases as volume fraction increases and the relationship 

between relaxation stress/modulus and volume fraction will be discussed in details 

in the following sections (see 6.3.3.2). 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6.10. Relaxation stress ((a) 𝜎11, (b) 𝜎33, (c) 𝜎12 and (d) 𝜎31) of  collagen gels 

with different volume fractions (0.02-0.42) under constant strain 𝜀 = 2%. 
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6.3.3.2 Dependence of Relaxation Modulus on the Volume Fraction 

In this section, following the results of stress relaxation over time in 6.3.3.1, we aim 

to investigate the relationship between relaxation modulus and volume fraction 

regarding the designed fibre network collagen gel. As shown in Figure 6.11 (a) and 

(b), the in-plane and out-of-plane relaxation moduli under tension and shearing strain 

constant of 2%, respectively, have been illustrated for comparison. Furthermore, both 

the instantaneous relaxation moduli 𝐸(0) and 𝐺(0) (i.e. relaxation moduli when t = 

0s) and 𝐸(200) and 𝐺(200)) (i.e. the relaxation moduli at t = 200s) in terms of 

volume fraction have been demonstrated in Figure 6.11. We can see that both the in-

plane and out-of-plane relaxation moduli under tension exhibit a nearly proportional 

relation with volume fraction and this trend is not affected by time. Furthermore, it 

is not surprising that the in-plane relaxation modulus is much larger than the out-of-

plane relaxation modulus. 

 
(a) 



Chapter 6. Viscoelasticity 

186 

 

 
(b) 

Figure 6.11. Comparison of in-plane and out-of-plane relaxation moduli of collagen 

gels with different volume fractions (0.02-0.42) under constant tension (a) or hearing 

(b) strain 𝜀 = 2%. 𝐸(0) and 𝐺(0) are the instantaneous relaxation moduli, i.e. the 

relaxation moduli when t = 0s. 𝐸(200) and 𝐺(200)) are the relaxation moduli at t = 

200s under constant strain 𝜀 = 2%. 

 

6.4 Discussions 

As both the fibre network alone and the fibre network surrounded by ground 

substances are investigated regarding the viscoelastic behaviours, the difference of 

the corresponding results can only be owing to the effect that the ground substance 

brings about to the collagen gel. In tissues, the role of the ground substance cannot 

be neglected in terms of the overall mechanical properties of the tissues [258]. By 

comparing the relaxation moduli of the fibre network alone (see Figure 6.6) and the 

fibre network surrounded by ground substances (see Figure 6.11), we can see that the 
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corresponding moduli have been dramatically enhanced for the fibre network model 

with ground substances. Thus, the ground substance exhibits a non-negligible effect 

in supporting the fibre network and restraining the deformation of the fibre network. 

In addition, if we compare the out-of-plane relaxation moduli of the aerogel and the 

hydrogel, we can see that there is a polynomial increase in 𝐸33 for the aerogel (see 

Figure 6.6(a)) while there is a linear increase in 𝐸33 for the hydrogel (see Figure 

6.11(a)). This is expected to be attributed to the constraint of ground substance to the 

fibre deformation. Due to the introduction of the ground substance, the bending 

deformation is largely constrained and, instead, stretching becomes the dominated 

deformation mode. Therefore, the out-of-plane deformation becomes linear in terms 

of volume fraction. Moreover, the ground substance is modelled as incompressible 

and there is no volume loss in this research. However, the fluid flow and exudation 

are the key features in the real situations of tissues, which may weaken the modulus. 

Thus, the simplified model in this research may have overestimated the modulus. 

Some analytical models have been studied towards the fluid flow in tissues [250, 254, 

258, 259, 288], which, however, is not the focus of this research. The research only 

considers the small-scale motion case of the ground substance. 

In order to evaluate the improvement of the viscoelastic behaviours introduced by 

the fibre network to the composites, we also compare relaxation modulus of the 

proposed fibre network composite with that of the randomly dispersed short-fibre 

composites with glass fibres and polymer matrix [289]. Obaid et al. [289, 290] have 

proposed an analytical model of stress relaxation corresponding to the randomly 

distributed short-fibre composites and conducted the FE simulations for comparison. 

With the fibres defined as linear elastic and the matrix defined as a viscoelastic 

material, both the analytical (see the red curve in Figure 6.12) and FEA (see the 
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square dots in Figure 6.12) results of the instantaneous modulus of the random short-

fibre composites during the stress relaxation are presented in Figure 6.12. Meanwhile, 

the instantaneous modulus results of our proposed geometry model are also shown 

as up-triangle dots in Figure 6.12 for various volume fractions.  

 
Figure 6.12. Comparison of the instantaneous moduli of the fibre network composites 

and random short fibre composites. 

 

We can see from the figure that the proposed fibre network composites overweigh 

the dispersed short-fibre composites in the instantaneous modulus and the difference 

is expanded as the volume fraction increases. This has indicated the advantage of the 

fibre network over the dispersed fibres in enhancing the viscoelastic behaviours and 

the effect is getting more remarkable as the volume fraction increases due to the 

reason that more cross-linkers are introduced according to the relation of volume 

fraction with cross-linker density as shown in Eq. (4.1) and the enhancement by the 

cross-linkers is dramatically highlighted for larger volume fraction. Furthermore, it 
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can also be boldly estimated that the long-term modulus also exerts the similar 

relationship between the two types of composite structures since the stress will be 

relaxed at the same pace accordingly. 

 

6.5 Conclusions 

Fibre-network structure has been widely observed in biomaterials. Thus the 

viscoelastic properties of collagen aerogel and hydrogel have been investigated with 

respect to the transversely isotropic fibre network geometry. 

For the collagen aerogel, the in-plane relaxation modulus indicates a linear 

relationship with relative density while the out-of-plane relaxation modulus 

demonstrates a cubic polynomial relation with relative density. These relations have 

been verified by a simplified analytical model. These results also indicate that the 

out-of-plane modulus grows faster than the in-plane modulus as the relative density 

rises.  

For the collagen hydrogel, it illustrates a larger in-plane strain than the out-of-plane 

strain under constant stress. Moreover, the in-plane and out-of-plane strains decrease 

as volume fraction increases. When applied a constant tensile strain, both the in-plane 

and out-of-plane relaxation moduli exhibit a nearly proportional relation with volume 

fraction and the in-plane relaxation modulus is larger than the out-of-plane relaxation 

modulus. 

 

 

 



Chapter 7. Conclusions 

190 

 

Chapter 7 Conclusions and Further 

Research 

7.1 Conclusions 

This research has proposed a novel fibre network composite model in which fibres 

are divided into continuous segments and intersected to generate a network. It is 

worth noting that the fibre network composite structure is transversely isotropic 

instead of commonly isotropic. This structure exists in various areas, for instance, 

biology and industry, and is expected to exhibit a wide range of promising 

applications when there is load-orientation preference.  

In order to fully study the elasticity of the proposed fibre network composite, all the 

five independent constants required in characterising a transversely isotropic 

structure have been investigated through the geometrical model. Due to the 

orientation priority of fibre segments in the in-plane directions, the in-plane stiffness 

is superior to the out-of-plane stiffness. Moreover, the normalised in-plane stiffness 

has revealed a linear relation with volume fraction whereas the normalised out-of-

plane stiffness has demonstrated a polynomial relation with volume fraction when 

the volume fraction remians not too large, which indicates that the out-of-plane 

stiffness grows faster than the in-plane stiffness as the volume fraction increases. 

This is due to the increasing quantity of cross-linkers in the out-of-plane direction as 

we raise the volume fraction, thus enhancing the out-of-plane stiffness dramatically. 

The fibre network composite is found to have improved elastic properties compared 

to other types of fibre composites. Another advantage of this fibre network composite 



Chapter 7. Conclusions 

191 

 

lies in that the fibre network, as a whole single ply, can dramatically improve the 

problem of delamination among fibres and prevent crack generation and progressing. 

As a plate structure, the thickness of the fibre network composite plate is adjustable 

and can be tailored as demand in the industry according to the combined requirements 

of plate thickness and mechanical behaviours. This can simplify the manufacturing 

process while maintaining improved mechanical behaviours, especially in the 

through-thickness direction. These results have met the intention of designing this 

transversely isotropic fibre network composite geometry with vertical cross-linkers. 

In terms of the elastoplastic properties of the fibre network composite, the steel fibre 

composite with brittle and ductile matrices, respectively, have been investigated. The 

axial yield strengths and strains are determined by Johnson’s apparent elastic limit 

method due to the lack of exact yield points through the axial stress-strain responses. 

There is an interesting finding that the fibre network composite structure exhibits a 

larger out-of-plane yield strength than the in-plane yield strength although the out-

of-plane stiffness is smaller than the in-plane stiffness. This is related to the matrix 

properties. The introduction of the matrix into the fibre network has increased the 

out-of-plane yield strength more drastically compared to the in-plane yield strength. 

Further exploration of the in-plane and out-of-plane yield surfaces under biaxial 

stress states indicate that the yield strengths meet the Hill yield criterion. As a key 

parameter of the fibre network composite, volume fraction also affects the yield 

behaviours. It is found that the rise of volume fraction can enhance both in-plane and 

out-of-plane tensile and shearing yield strengths. As volume fraction increases, both 

in-plane and out-of-plane yield surfaces are expanded. However, the out-of-plane 

angle of tilt of the steel/PA-6 composite shows no major difference, except when the 

volume fraction is as large as 0.42. As a comparison, the out-of-plane angle of tilt of 
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the steel/828LVEL composite decreases as volume fraction increases. Furthermore, 

the addition of shear loading reduces the yield strength or yield surface, both in-plane 

and out-of-plane. An analytical model based on the incremental method has been 

proposed and has successfully predicted the yield point of the simplified RVE. 

The application of fibre network structure in biomaterials has been investigated by 

studying the stress relaxation and creep behaviours of both collagen aerogel and 

hydrogel. For the collagen aerogel, the in-plane relaxation modulus exhibits a linear 

relationship with relative density while the out-of-plane relaxation modulus 

demonstrates a cubic polynomial relation with relative density, which indicates that 

the out-of-plane modulus grows faster than the in-plane modulus as relative density 

rises. These relations have been verified by a simplified analytical model. The 

collagen hydrogel illustrates a larger in-plane strain than the out-of-plane strain under 

constant stress. Furthermore, the in-plane and out-of-plane strains decrease as 

volume fraction increases. When applied a constant tensile strain, both the in-plane 

and out-of-plane relaxation moduli exhibit a nearly proportional relation with volume 

fraction and the in-plane relaxation modulus is much larger than the out-of-plane 

relaxation modulus. The comparison of stress relaxation results between the aerogel 

and hydrogel indicates that the ground substance exhibits a non-negligible effect in 

supporting the fibre network and restraining the deformation of the fibre network. 

Due to the introduction of the ground substance, the bending deformation is largely 

constrained and, instead, stretching becomes the dominated deformation mode. 

 

7.2 Further Research 

Explorations of the elasticity, elastoplasticity and viscoelasticity have been 
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conducted on the designed transversely isotropic fibre network composite in this 

research. Yet there is more to be done mainly in terms of the fibre-network structure. 

Firstly, only overlap (with overlap coefficient c=0-0.7) is considered for the 

connection among the fibres in the current work. However, there also exists situations 

that fibres are connected by extra cross-linkers which are comprised of a certain 

collagen in biomaterials. In this situation, there is no overlap among fibres but still 

connected, or in other words, the overlap coefficient will be negative and the length 

of the added beam should be larger than the sum of the radii of the connected fibres. 

In this way, the model can be extended to also include structures in which individual 

fibres are connected with extra cross-linkers. 

Secondly, the individual generated fibres are initially straight in this geometry. 

However, the generated fibres, such as the ones from the electrospinning technique 

[291], are usually curved along the in-plane direction. Thus, this improvement can 

be considered in the further study. 

Thirdly, in the investigation of viscoelasticity of collagen hydrogel, the fluid matrix 

is assumed to introduce very limited motion around the fibre-network. Further 

exploration might be conducted to consider the situation with the large-scale motion 

of fluid matrix inside the fibre network.  

Moreover, more mechanical properties based on this designed fibre-network 

composite can be investigated to better understand the properties of this structure and 

find more promising applications of it. Lastly, since this structure can also be 

promising in thermal or electric conduction application, these areas can also be 

further explored. 

 



References 

194 

 

References 

[1] Pernice, M. F. and De Carvalho, N. V. and Ratcliffe, J. G. et al. 2015. 

Experimental study on delamination migration in composite laminates. 

Composites Part A: Applied Science and Manufacturing. 73, pp. 20-34. 

[2] Lu, Z. and Yuan, Z. and Liu, Q. 2014. 3D numerical simulation for the 

elastic properties of random fiber composites with a wide range of fiber 

aspect ratios. Computational Materials Science. 90, pp. 123-129. 

[3] Pan, Y. and Lorga, L. and Pelegri, A. A. 2008. Analysis of 3D random 

chopped fiber reinforced composites using FEM and random sequential 

adsorption. Computational Materials Science. 43(3), pp. 450-461. 

[4] Lau, K.-t. and Hung, P.-y. and Zhu, M.-H. et al. 2018. Properties of natural 

fibre composites for structural engineering applications. Composites Part B: 

Engineering. 136, pp. 222-233. 

[5] Zhu, H. X. and Hobdell, J. R. and Windle, A. H. 2000. Effects of cell 

irregularity on the elastic properties of open-cell foams. Acta Materialia. 

48(20), pp. 4893-4900. 

[6] Zhu, H. X. and Mills, N. 2000. The in-plane non-linear compression of 

regular honeycombs. International Journal of Solids and Structures. 37(13), 

pp. 1931-1949. 

[7] Hirokawa, N. and Glicksman, M. A. and Willard, M. B. 1984. Organization 

of mammalian neurofilament polypeptides within the neuronal cytoskeleton. 

The Journal of Cell Biology. 98(4), p. 1523. 

[8] Nam, S. and Hu, K. H. and Butte, M. J. et al. 2016. Strain-enhanced stress 

relaxation impacts nonlinear elasticity in collagen gels. Proceedings of the 

National Academy of Sciences. 113(20), pp. 5492-5497. 

[9] Jin, T. and Stanciulescu, I. 2016. Numerical simulation of fibrous 

biomaterials with randomly distributed fiber network structure. 

Biomechanics and Modeling in Mechanobiology. 15(4), pp. 817-830. 

[10] Zhao, T. F. and Chen, C. Q. and Deng, Z. C. 2016. Elastoplastic properties 

of transversely isotropic sintered metal fiber sheets. Materials Science and 

Engineering: A. 662, pp. 308-319. 

[11] Zhou, W. and Wang, Q. H. and Ling, W. S. et al. 2014. Characterization of 

three- and four-point bending properties of porous metal fiber sintered sheet. 

Materials & Design. 56, pp. 522-527. 

[12] Zhao, T. F. and Jin, M. Z. and Chen, C. Q. 2013. A phenomenological 

elastoplastic model for porous metal fiber sintered sheets. Materials Science 

and Engineering: A. 582, pp. 188-193. 

[13] Liu, Q. and Lu, Z. and Zhu, M. et al. 2014. Experimental and FEM analysis 

of the compressive behavior of 3D random fibrous materials with bonded 

networks. Journal of materials science. 49(3), pp. 1386–1398. 



References 

195 

 

[14] Zhou, W. and Tang, Y. and Pan, M. Q. et al. 2009. Experimental 

investigation on uniaxial tensile properties of high-porosity metal fiber 

sintered sheet. Materials Science and Engineering: A. 525(1-2), pp. 133-137. 

[15] Zhou, W. and Tang, Y. and Liu, B. et al. 2012. Compressive properties of 

porous metal fiber sintered sheet produced by solid-state sintering process. 

Materials & Design. 35, pp. 414-418. 

[16] Jayanty, S. and Crowe, J. and Berhan, L. 2011. Auxetic fibre networks and 

their composites. physica status solidi (b). 248(1), pp. 73-81. 

[17] Zhang, Y. and Lu, Z. and Yang, Z. et al. 2017. Compression behaviors of 

carbon-bonded carbon fiber composites: Experimental and numerical 

investigations. Carbon. 116, pp. 398-408. 

[18] Tatlier, M. and Berhan, L. 2009. Modelling the negative Poisson's ratio of 

compressed fused fibre networks. physica status solidi (b). 246(9), pp. 2018-

2024. 

[19] Zhu, H. and Fan, T. and Zhang, D. 2016. Composite Materials with 

Enhanced Conductivities. Advanced Engineering Materials. 18(7), pp. 

1174-1180. 

[20] Yu, H. and Heider, D. and Advani, S. 2015. A 3D microstructure based 

resistor network model for the electrical resistivity of unidirectional carbon 

composites. Composite Structures. 134, pp. 740-749. 

[21] Ray, D. and Sarkar, B. K. and Rana, A. K. et al. 2001. The mechanical 

properties of vinylester resin matrix composites reinforced with alkali-

treated jute fibres. Composites Part A: Applied Science and Manufacturing. 

32(1), pp. 119-127. 

[22] Akil, H. M. and Omar, M. F. and Mazuki, A. A. M. et al. 2011. Kenaf fiber 

reinforced composites: A review. Materials & Design. 32(8-9), pp. 4107-

4121. 

[23] Babu, K. M. 2015. Chapter 3 - Natural Textile Fibres: Animal and Silk 

Fibres A2 - Sinclair, Rose.Textiles and Fashion.  Woodhead Publishing, pp. 

57-78. 

[24] Fratzl, P. 2008. Collagen: Structure and Mechanics, an Introduction. In: 

Fratzl, P. ed. Collagen: Structure and Mechanics.  Boston, MA: Springer 

US, pp. 1-13. 

[25] Perevozchikova, B. V. and Pisciotta, A. and Osovetsky, B. M. et al. 2014. 

Quality Evaluation of the Kuluevskaya Basalt Outcrop for the Production of 

Mineral Fiber, Southern Urals, Russia. Energy Procedia. 59, pp. 309-314. 

[26] Dunne, R. and Desai, D. and Sadiku, R. et al. 2016. A review of natural 

fibres, their sustainability and automotive applications. Journal of 

Reinforced Plastics and Composites. 35(13), pp. 1041-1050. 

[27] Meola, C. and Boccardi, S. and Carlomagno, G. M. 2016. Infrared 

Thermography in the Evaluation of Aerospace Composite Materials: 

Infrared Thermography to Composites. Woodhead Publishing. 

[28] Lin, J.-S. 2002. Effect of surface modification by bromination and 

metalation on Kevlar fibre-epoxy adhesion. European Polymer Journal. 



References 

196 

 

38(1), pp. 79-86. 

[29] Lee-Sullivan, P. and Chian, K. S. and Yue, C. Y. et al. 1994. Effects of 

bromination and hydrolysis treatments on the morphology and tensile 

properties of Kevlar-29 fibres. Journal of Materials Science Letters. 13(5), 

pp. 305-309. 

[30] Wang, Y. and Xia, Y. M. 1999. Experimental and theoretical study on the 

strain rate and temperature dependence of mechanical behaviour of Kevlar 

fibre. Composites Part A: Applied Science and Manufacturing. 30(11), pp. 

1251-1257. 

[31] Yue, C. Y. and Sui, G. X. and Looi, H. C. 2000. Effects of heat treatment on 

the mechanical properties of Kevlar-29 fibre. Composites Science and 

Technology. 60(3), pp. 421-427. 

[32] Monteiro, P. and Mehta, P. 2006. Concrete: Microstructure, Properties and 

Materials. McGraw-Hill Education. 

[33] Hassanpour, M. and Shafigh, P. and Mahmud, H. B. 2012. Lightweight 

aggregate concrete fiber reinforcement – A review. Construction and 

Building Materials. 37, pp. 452-461. 

[34] Imperatore, S. and Rinaldi, Z. and Drago, C. 2017. Degradation 

relationships for the mechanical properties of corroded steel rebars. 

Construction and Building Materials. 148, pp. 219-230. 

[35] Inman, M. and Thorhallsson, E. R. and Azrague, K. 2017. A Mechanical and 

Environmental Assessment and Comparison of Basalt Fibre Reinforced 

Polymer (BFRP) Rebar and Steel Rebar in Concrete Beams. Energy 

Procedia. 111, pp. 31-40. 

[36] Shield, C. K. and Costello, G. A. 1994. The Effect of Wire Rope Mechanics 

on the Material Properties of Cord Composites: An Elasticity Approach. 

Journal of Applied Mechanics. 61(1), pp. 1-8. 

[37] Vanooij, W. J. and Harakuni, P. B. and Buytaert, G. 2009. Adhesion of Steel 

Tire Cord to Rubber. Rubber Chemistry and Technology. 82(3), pp. 315-339. 

[38] Shah, S. P. and Weiss, W. J. and Yang, W. 1998. Shrinkage cracking - can 

it be prevented? Concrete International. 20(4), pp. 51-55. 

[39] Callens, M. 2014. Development of ductile stainless steel fibre composites. 

PhD thesis, KU Leuven university.  

[40] Callens, M. and Gorbatikh, L. and Verpoest, I. 2014. Ductile steel fibre 

composites with brittle and ductile matrices. Composites Part A: Applied 

Science and Manufacturing. 61, pp. 235-244. 

[41] Rouison, D. and Sain, M. and Couturier, M. 2004. Resin transfer molding 

of natural fiber reinforced composites: cure simulation. Composites Science 

and Technology. 64(5), pp. 629-644. 

[42] Gutowski, W. 1990. Effect of fibre-matrix adhesion on mechanical 

properties of composites.Controlled Interphases in Composite Materials.  

Springer, pp. 505-520. 

[43] Zweben, C. 2014. Composite Materials.Mechanical Engineers' Handbook.  

John Wiley & Sons, Inc. 



References 

197 

 

[44] Vinyl Ester Resin. [Online].  Available at: 

https://www.seahawkpaints.com/wp-content/uploads/2015/08/Vinyl-Ester-

Resin-TDS-August-2015.pdf. [Accessed: 2018.02.07].  

[45] DUPONT™ KAPTON® SUMMARY OF PROPERTIES. [Online].  

Available at: http://www.dupont.com/content/dam/dupont/products-and-

services/membranes-and-films/polyimde-films/documents/DEC-Kapton-

summary-of-properties.pdf. [Accessed: 2018.02.07].  

[46] Callister, W. D. and Rethwisch, D. G. 2007. Materials Science and 

Engineering-- An Introduction. New York: Wiley, pp. 577-611. 

[47] Silberberg, M. S. 2007. Principles of general chemistry. McGraw-Hill 

Higher Education. 

[48] Voigt, W. 1928. Lehrbuch der kristallphysik (mit ausschluss der 

kristalloptik), edited by bg teubner and jw edwards, leipzig berlin. Ann 

Arbor, Mich. 

[49] Reuss, A. 1929. Berechnung der fließgrenze von mischkristallen auf grund 

der plastizitätsbedingung fü r einkristalle. ZAMM‐ Journal of Applied 

Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und 

Mechanik. 9(1), pp. 49-58. 

[50] Cai, D. a. and Zhou, G. and Wang, X. et al. 2017. Experimental investigation 

on mechanical properties of unidirectional and woven fabric glass/epoxy 

composites under off-axis tensile loading. Polymer Testing. 58, pp. 142-152. 

[51] Kueh, A. B. H. 2013. Buckling of sandwich columns reinforced by triaxial 

weave fabric composite skin-sheets. International Journal of Mechanical 

Sciences. 66, pp. 45-54. 

[52] Santiago, R. C. and Cantwell, W. J. and Jones, N. et al. 2018. The modelling 

of impact loading on thermoplastic fibre-metal laminates. Composite 

Structures. 189, pp. 228-238. 

[53] Reyes V, G. and Cantwell, W. J. 2000. The mechanical properties of fibre-

metal laminates based on glass fibre reinforced polypropylene. Composites 

Science and Technology. 60(7), pp. 1085-1094. 

[54] Sinmazçelik, T. and Avcu, E. and Bora, M. Ö. et al. 2011. A review: Fibre 

metal laminates, background, bonding types and applied test methods. 

Materials & Design. 32(7), pp. 3671-3685. 

[55] Al-Khudairi, O. and Hadavinia, H. and Waggott, A. et al. 2015. 

Characterising mode I/mode II fatigue delamination growth in 

unidirectional fibre reinforced polymer laminates. Materials & Design 

(1980-2015). 66, pp. 93-102. 

[56] Chakraborty, D. 2007. Delamination of laminated fiber reinforced plastic 

composites under multiple cylindrical impact. Materials & Design. 28(4), 

pp. 1142-1153. 

[57] Carvalho, A. and Silva, T. and Loja, M. 2018. Assessing Static and Dynamic 

Response Variability due to Parametric Uncertainty on Fibre-Reinforced 

Composites. Journal of Composites Science. 2(1), p. 6. 

[58] Shahsavari, A. S. and Picu, R. C. 2013. Size effect on mechanical behavior 

https://www.seahawkpaints.com/wp-content/uploads/2015/08/Vinyl-Ester-Resin-TDS-August-2015.pdf
https://www.seahawkpaints.com/wp-content/uploads/2015/08/Vinyl-Ester-Resin-TDS-August-2015.pdf
http://www.dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-summary-of-properties.pdf
http://www.dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-summary-of-properties.pdf
http://www.dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-summary-of-properties.pdf


References 

198 

 

of random fiber networks. International Journal of Solids and Structures. 

50(20), pp. 3332-3338. 

[59] Leclerc, W. and Karamian-Surville, P. and Vivet, A. 2015. An efficient and 

automated 3D FE approach to evaluate effective elastic properties of 

overlapping random fibre composites. Computational Materials Science. 99, 

pp. 1-15. 

[60] El-Rahman, A. I. A. and Tucker, C. L. 2013. Mechanics of Random 

Discontinuous Long-Fiber Thermoplastics—Part I: Generation and 

Characterization of Initial Geometry. Journal of Applied Mechanics. 80(5), 

p. 051007. 

[61] Abd El-Rahman, A. and Tucker III, C. 2013. Mechanics of random 

discontinuous long-fiber thermoplastics. Part II: Direct simulation of 

uniaxial compression. Journal of Rheology. 57(5), pp. 1463-1489. 

[62] Sukiman, M. S. and Kanit, T. and N'Guyen, F. et al. 2017. Effective thermal 

and mechanical properties of randomly oriented short and long fiber 

composites. Mechanics of Materials. 107, pp. 56-70. 

[63] Williams, S. R. and Philipse, A. P. 2003. Random packings of spheres and 

spherocylinders simulated by mechanical contraction. Physical Review E. 

67(5), p. 051301. 

[64] Song, W. and Liu, G. and Wang, J. et al. 2017. The effects of high 

temperature and fiber diameter on the quasi static compressive behavior of 

metal fiber sintered sheets. Materials Science and Engineering: A. 690, pp. 

71-79. 

[65] van Wyk, C. M. 1946. Note on the compressibility of wool. Journal of the 

Textile Institute Transactions. 37(12), pp. T285-T292. 

[66] Kallmes, O. and Corte, H. 1960. The structure of paper, I. The statistical 

geometry of an ideal two dimensional fiber network. Tappi J. 43(9), pp. 737-

752. 

[67] Kallmes, O. and Corte, H. and Bernier, G. 1961. The structure of paper II: 

the statistical geometry of a multiplanar fiber network. Tappi Journal. 44(7), 

pp. 519-528. 

[68] Dent, R. W. 2001. Inter-fiber Distances in Paper and Nonwovens. The 

Journal of The Textile Institute. 92(1), pp. 63-74. 

[69] Komori, T. and Makishima, K. 1977. Numbers of Fiber-to-Fiber Contacts 

in General Fiber Assemblies. Textile Research Journal. 47(1), pp. 13-17. 

[70] Komori, T. and Itoh, M. 1994. A modified theory of fiber contact in general 

fiber assemblies. Textile research journal. 64(9), pp. 519-528. 

[71] Toll, S. and Manson, J. A. E. 1995. Elastic Compression of a Fiber Network. 

Journal of Applied Mechanics. 62(1), pp. 223-226. 

[72] Toll, S. 2004. Packing mechanics of fiber reinforcements. Polymer 

Engineering & Science. 38(8), pp. 1337-1350. 

[73] Heyden, S. 2000. Network Modelling for Evaluation of Mechanical 

Properties of Cellulose Fibre Fluff. PhD thesis, Lund University.  



References 

199 

 

[74] Sampson, W. W. 2008. Modelling Stochastic Fibrous Materials with 

Mathematica®. Springer Science & Business Media. 

[75] Liu, W. and Canfield, N. 2012. Development of thin porous metal sheet as 

micro-filtration membrane and inorganic membrane support. Journal of 

Membrane Science. 409-410, pp. 113-126. 

[76] Bo, Z. and Tianning, C. 2009. Calculation of sound absorption 

characteristics of porous sintered fiber metal. Applied Acoustics. 70(2), pp. 

337-346. 

[77] Yuranov, I. and Kiwi-Minsker, L. and Renken, A. 2003. Structured 

combustion catalysts based on sintered metal fibre filters. Applied Catalysis 

B: Environmental. 43(3), pp. 217-227. 

[78] Lu, W. and Zhao, C. Y. and Tassou, S. A. 2006. Thermal analysis on metal-

foam filled heat exchangers. Part I: Metal-foam filled pipes. International 

Journal of Heat and Mass Transfer. 49(15), pp. 2751-2761. 

[79] Tang, Y. and Zhou, W. and Xiang, J. et al. 2010. An Innovative Fabrication 

Process of Porous Metal Fiber Sintered Felts with Three-Dimensional 

Reticulated Structure. Materials and Manufacturing Processes. 25(7), pp. 

565-571. 

[80] Ducheyne, P. and Aernoudt, E. and De Meester, P. 1978. The mechanical 

behaviour of porous austenitic stainless steel fibre structures. Journal of 

Materials Science. 13(12), pp. 2650-2658. 

[81] Zhou, B. and Yuan, W. and Hu, J. Y. et al. 2015. Uniaxial tensile behavior 

of porous metal fiber sintered sheet. Transactions of Nonferrous Metals 

Society of China. 25(6), pp. 2003-2008. 

[82] Zhao, T. F. and Chen, C. Q. 2014. The shear properties and deformation 

mechanisms of porous metal fiber sintered sheets. Mechanics of Materials. 

70, pp. 33-40. 

[83] Fletcher, D. A. and Mullins, R. D. 2010. Cell mechanics and the 

cytoskeleton. Nature. 463(7280), pp. 485-492. 

[84] Wickstead, B. and Gull, K. 2011. The evolution of the cytoskeleton. The 

Journal of Cell Biology. 194(4), pp. 513-525. 

[85] Imaoka, S. 2008. Analyzing viscoelastic materials. ANSYS Advantage. 2(4). 

[86] Leterrier, J. F. and Kas, J. and Hartwig, J. et al. 1996. Mechanical effects of 

neurofilament cross-bridges modulation by phosphorylation, lipids, and 

interactions with f-actin. Journal of Biological Chemistry. 271(26), pp. 

15687-15694. 

[87] Stein, A. M. and Vader, D. A. and Weitz, D. A. et al. 2011. The 

micromechanics of three‐dimensional collagen‐I gels. Complexity. 16(4), 

pp. 22-28. 

[88] Münster, S. and Jawerth, L. M. and Leslie, B. A. et al. 2013. Strain history 

dependence of the nonlinear stress response of fibrin and collagen networks. 

Proceedings of the National Academy of Sciences. 110(30), pp. 12197-

12202. 



References 

200 

 

[89] Weiss, J. A. and Gardiner, J. C. 2001. Computational modeling of ligament 

mechanics. Crit Rev Biomed Eng. 29(3), pp. 303-371. 

[90] Zhao, C. Y. 2012. Review on thermal transport in high porosity cellular 

metal foams with open cells. International Journal of Heat and Mass 

Transfer. 55(13), pp. 3618-3632. 

[91] Vijay, D. and Goetze, P. and Wulf, R. et al. 2018. Homogenized and pore-

scale analyses of forced convection through open cell foams. International 

Journal of Heat and Mass Transfer. 123, pp. 787-804. 

[92] Fanelli, P. and Evangelisti, A. and Salvini, P. et al. 2017. Modelling and 

characterization of structural behaviour of Al open-cell foams. Materials & 

Design. 114, pp. 167-175. 

[93] Shafiq, M. and Ayyagari, R. S. and Ehaab, M. et al. 2015. Multiaxial yield 

surface of transversely isotropic foams: Part II—Experimental. Journal of 

the Mechanics and Physics of Solids. 76(Supplement C), pp. 224-236. 

[94] Ayyagari, R. S. and Vural, M. 2015. Multiaxial yield surface of transversely 

isotropic foams: Part I—Modeling. Journal of the Mechanics and Physics 

of Solids. 74, pp. 49-67. 

[95] Zhu, H. X. and Knott, J. F. and Mills, N. J. 1997. Analysis of the elastic 

properties of open-cell foams with tetrakaidecahedral cells. Journal of the 

Mechanics and Physics of Solids. 45(3), pp. 319-343. 

[96] Shunmugasamy, V. C. and Mansoor, B. 2018. Compressive behavior of a 

rolled open-cell aluminum foam. Materials Science and Engineering: A. 715, 

pp. 281-294. 

[97] Zhu, W. and Blal, N. and Cunsolo, S. et al. 2018. Effective elastic properties 

of periodic irregular open-cell foams. International Journal of Solids and 

Structures. 143, pp. 155-166. 

[98] Shunmugasamy, V. C. and Mansoor, B. 2018. Aluminum foam sandwich 

with density-graded open-cell core: Compressive and flexural response. 

Materials Science and Engineering: A. 731, pp. 220-230. 

[99] Kaya, A. C. and Fleck, C. 2014. Deformation behavior of open-cell stainless 

steel foams. Materials Science and Engineering: A. 615, pp. 447-456. 

[100] Zhu, H. X. and Hobdell, J. R. and Windle, A. H. 2001. Effects of cell 

irregularity on the elastic properties of 2D Voronoi honeycombs. Journal of 

the Mechanics and Physics of Solids. 49(4), pp. 857-870. 

[101] Zhu, H. and Thorpe, S. and Windle, A. 2006. The effect of cell irregularity 

on the high strain compression of 2D Voronoi honeycombs. International 

journal of solids and structures. 43(5), pp. 1061-1078. 

[102] Zhu, H. and Yan, L. and Zhang, R. et al. 2012. Size-dependent and tunable 

elastic properties of hierarchical honeycombs with regular square and 

equilateral triangular cells. Acta Materialia. 60(12), pp. 4927-4939. 

[103] Zhu, H. X. 2010. Size-dependent elastic properties of micro- and nano-

honeycombs. Journal of the Mechanics and Physics of Solids. 58, pp. 696-

709. 

[104] Bower, A. F. 2011. Applied Mechanics of Solids. CRC press. 



References 

201 

 

[105] Hashin, Z. and Shtrikman, S. 1962. On some variational principles in 

anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and 

Physics of Solids. 10(4), pp. 335-342. 

[106] Hashin, Z. and Shtrikman, S. 1963. A variational approach to the theory of 

the elastic behaviour of multiphase materials. Journal of the Mechanics and 

Physics of Solids. 11(2), pp. 127-140. 

[107] Kalaprasad, G. and Joseph, K. and Thomas, S. et al. 1997. Theoretical 

modelling of tensile properties of short sisal fibre-reinforced low-density 

polyethylene composites. Journal of Materials Science. 32(16), pp. 4261-

4267. 

[108] Bowyer, W. H. and Bader, M. G. 1972. On the re-inforcement of 

thermoplastics by imperfectly aligned discontinuous fibres. Journal of 

Materials Science. 7(11), pp. 1315-1321. 

[109] Munde, Y. S. and Ingle, R. B. 2015. Theoretical Modeling and Experimental 

Verification of Mechanical Properties of Natural Fiber Reinforced 

Thermoplastics. Procedia Technology. 19, pp. 320-326. 

[110] Curtis, P. T. and Bader, M. G. and Bailey, J. E. 1978. The stiffness and 

strength of a polyamide thermoplastic reinforced with glass and carbon 

fibres. Journal of Materials Science. 13(2), pp. 377-390. 

[111] Cox, H. L. 1952. The elasticity and strength of paper and other fibrous 

materials. British Journal of Applied Physics. 3(3), p. 72. 

[112] Nielsen, L. and Chen, P. 1968. Young's modulus of composites filled with 

randomly oriented fibers. Journal of Materials. 3(2), pp. 352-358. 

[113] Vannan, E. and Vizhian, P. 2014. Prediction of the Elastic Properties of 

Short Basalt Fiber Reinforced Al Alloy Metal Matrix Composites. Journal 

of Minerals and Materials Characterization and Engineering. 2(01), p. 61. 

[114] Okabe, T. and Takeda, N. 2002. Elastoplastic shear-lag analysis of single-

fiber composites and strength prediction of unidirectional multi-fiber 

composites. Composites Part A: Applied Science and Manufacturing. 

33(10), pp. 1327-1335. 

[115] Krstic, V. D. and Vlajic, M. D. 1983. Conditions for spontaneous cracking 

of a brittle matrix due to the presence of thermoelastic stresses. Acta 

Metallurgica. 31(1), pp. 139-144. 

[116] Kelly, A. and Tyson, W. R. 1965. Tensile properties of fibre-reinforced 

metals: Copper/tungsten and copper/molybdenum. Journal of the 

Mechanics and Physics of Solids. 13(6), pp. 329-350. 

[117] Tucker Iii, C. L. and Liang, E. 1999. Stiffness predictions for unidirectional 

short-fiber composites: Review and evaluation. Composites Science and 

Technology. 59(5), pp. 655-671. 

[118] Fukuda, H. and Kawata, K. 1974. On Young's modulus of short fibre 

composites. Fibre Science and Technology. 7(3), pp. 207-222. 

[119] Eshelby, J. D. 1957. The Determination of the Elastic Field of an Ellipsoidal 

Inclusion, and Related Problems. Proceedings of the Royal Society of 

London. Series A, Mathematical and Physical Sciences. 241(1226), pp. 376-



References 

202 

 

396. 

[120] Eshelby, J. D. 1961. Elastic inclusions and inhomogeneities. Progress in 

Solid Mechanics. 2, pp. 89-140. 

[121] Eshelby, J. 1959. The elastic field outside an ellipsoidal inclusion. Proc. R. 

Soc. Lond. A. The Royal Society. 252(1271), pp. 561-569. 

[122] Taya, M. and Mura, T. 1981. On Stiffness and Strength of an Aligned Short-

Fiber Reinforced Composite Containing Fiber-End Cracks Under Uniaxial 

Applied Stress. Journal of Applied Mechanics. 48(2), pp. 361-367. 

[123] Ni, L. and Markenscoff, X. 2016. The self-similarly expanding Eshelby 

ellipsoidal inclusion: II. The Dynamic Eshelby Tensor for the expanding 

sphere. Journal of the Mechanics and Physics of Solids. 96, pp. 696-714. 

[124] Russel, W. B. 1973. On the effective moduli of composite materials: Effect 

of fiber length and geometry at dilute concentrations. Zeitschrift für 

angewandte Mathematik und Physik ZAMP. 24(4), pp. 581-600. 

[125] Kerner, E. 1956. The elastic and thermo-elastic properties of composite 

media. Proceedings of the physical society. Section B. 69(8), p. 808. 

[126] Hill, R. 1965. A self-consistent mechanics of composite materials. Journal 

of the Mechanics and Physics of Solids. 13(4), pp. 213-222. 

[127] Mori, T. and Tanaka, K. 1973. Average stress in matrix and average elastic 

energy of materials with misfitting inclusions. Acta Metallurgica. 21(5), pp. 

571-574. 

[128] Wakashima, K. and Otsuka, M. and Umekawa, S. 1974. Thermal expansions 

of heterogeneous solids containing aligned ellipsoidal inclusions. Journal of 

Composite Materials. 8(4), pp. 391-404. 

[129] Abaimov, S. G. and Khudyakova, A. A. and Lomov, S. V. 2016. On the 

closed form expression of the Mori–Tanaka theory prediction for the 

engineering constants of a unidirectional fiber-reinforced ply. Composite 

Structures. 142, pp. 1-6. 

[130] Tandon, G. P. and Weng, G. J. 1984. The effect of aspect ratio of inclusions 

on the elastic properties of unidirectionally aligned composites. Polymer 

Composites. 5(4), pp. 327-333. 

[131] Benveniste, Y. 1987. A new approach to the application of Mori-Tanaka's 

theory in composite materials. Mechanics of Materials. 6(2), pp. 147-157. 

[132] Hashin, Z. 1983. Analysis of Composite Materials—A Survey. Journal of 

Applied Mechanics. 50(3), pp. 481-505. 

[133] Halpin, J. C. 1969. Stiffness and Expansion Estimates for Oriented Short 

Fiber Composites. Journal of Composite Materials. 3(4), pp. 732-734. 

[134] Hewitt, R. L. and De Malherbe, M. C. 1970. An Approximation for the 

Longitudinal Shear Modulus of Continuous Fibre Composites. Journal of 

Composite Materials. 4(2), pp. 280-282. 

[135] Lewis, T. and Nielsen, L. 1970. Dynamic mechanical properties of 

particulate‐filled composites. Journal of Applied Polymer Science. 14(6), 

pp. 1449-1471. 



References 

203 

 

[136] Hill, R. 1964. Theory of mechanical properties of fibre-strengthened 

materials: I. Elastic behaviour. Journal of the Mechanics and Physics of 

Solids. 12(4), pp. 199-212. 

[137] Chu, T. and Hashin, Z. 1971. Plastic behavior of composites and porous 

media under isotropic stress. International Journal of Engineering Science. 

9(10), pp. 971-994. 

[138] Hill, R. 1964. Theory of mechanical properties of fibre-strengthened 

materials: II. Inelastic behaviour. Journal of the Mechanics and Physics of 

Solids. 12(4), pp. 213-218. 

[139] Hill, R. 1967. The essential structure of constitutive laws for metal 

composites and polycrystals. Journal of the Mechanics and Physics of Solids. 

15(2), pp. 79-95. 

[140] Miwa, M. and Nakayama, A. and Ohsawa, T. et al. 1979. Temperature 

dependence of the tensile strength of glass fiber–epoxy and glass fiber–

unsaturated polyester composites. 23(10), pp. 2957-2966. 

[141] Hershey, A. 1954. The elasticity of an isotropic aggregate of anisotropic 

cubic crystals. Journal of Applied mechanics-transactions of the ASME. 

21(3), pp. 236-240. 

[142] Kröner, E. 1958. Berechnung der elastischen Konstanten des Vielkristalls 

aus den Konstanten des Einskristalls. Z. Phys. 

[143] Hill, R. 1965. Continuum micro-mechanics of elastoplastic polycrystals. 

Journal of the Mechanics and Physics of Solids. 13(2), pp. 89-101. 

[144] Hutchinson, J. 1970. Elastic-plastic behaviour of polycrystalline metals and 

composites. Proc. R. Soc. Lond. A. The Royal Society. 319(1537), pp. 247-

272. 

[145] Dvorak, G. J. and Bahei-El-Din, Y. A. 1979. Elastic-plastic behavior of 

fibrous composites. Journal of the Mechanics and Physics of Solids. 27(1), 

pp. 51-72. 

[146] Budiansky, B. and Wu, T. T. 1961. Theoretical prediction of plastic strains 

of polycrystals. Cambridge, Mass.: Division of Engineering and Applied 

Physics, Harvard University. 

[147] Kroner, E. 1961. On the plastic deformation of polycrystals. Acta 

Metallurgica. 9(2), pp. 155-161. 

[148] Berveiller, M. and Zaoui, A. 1978. An extension of the self-consistent 

scheme to plastically-flowing polycrystals. Journal of the Mechanics and 

Physics of Solids. 26(5-6), pp. 325-344. 

[149] Hutchinson, J. 1976. Bounds and self-consistent estimates for creep of 

polycrystalline materials. Proc. R. Soc. Lond. A. The Royal Society. 

348(1652), pp. 101-127. 

[150] Castañeda, P. P. 1991. The effective mechanical properties of nonlinear 

isotropic composites. Journal of the Mechanics and Physics of Solids. 39(1), 

pp. 45-71. 

[151] Rekik, A. and Allaoui, S. and Gasser, A. et al. 2015. Experiments and 

nonlinear homogenization sustaining mean-field theories for refractory 



References 

204 

 

mortarless masonry: The classical secant procedure and its improved 

variants. European Journal of Mechanics - A/Solids. 49, pp. 67-81. 

[152] Bardella, L. 2003. An extension of the Secant Method for the 

homogenization of the nonlinear behavior of composite materials. 

International Journal of Engineering Science. 41(7), pp. 741-768. 

[153] Hu, G. 1996. A method of plasticity for general aligned spheroidal void or 

fiber-reinforced composites. International Journal of Plasticity. 12(4), pp. 

439-449. 

[154] Suquet, P. 2001. Nonlinear composites: Secant methods and variational 

bounds.Lemaitre Handbook of Materials Behaviour Models, Section 10.3.  

Academic Press, pp. 968-983. 

[155] Suquet, P. 1995. Overall properties of nonlinear composites: a modified 

secant moduli theory and its link with Ponte Castañeda's nonlinear 

variational procedure. Comptes rendus de l'Académie des sciences. Série II, 

Mécanique, physique, chimie, astronomie. 320(11), pp. 563-571. 

[156] Suquet, P. 1997. Effective Properties of Nonlinear Composites. In: Suquet, 

P. ed. Continuum Micromechanics.  Vienna: Springer Vienna, pp. 197-264. 

[157] Qiu, Y. and Weng, G. 1992. A theory of plasticity for porous materials and 

particle-reinforced composites. Journal of Applied Mechanics. 59(2), pp. 

261-268. 

[158] Ortiz, M. and Stainier, L. 1999. The variational formulation of viscoplastic 

constitutive updates. Computer Methods in Applied Mechanics and 

Engineering. 171(3), pp. 419-444. 

[159] Hashin, Z. and Shtrikman, S. 1962. A variational approach to the theory of 

the elastic behaviour of polycrystals. Journal of the Mechanics and Physics 

of Solids. 10(4), pp. 343-352. 

[160] Hashin, Z. and Shtrikman, S. 1961. Note on a variational approach to the 

theory of composite elastic materials. Journal of the Franklin Institute. 

271(4), pp. 336-341. 

[161] Hashin, Z. and Shtrikman, S. 1961. Note on the effective constants of 

composite materials. Journal of the Franklin Institute. 271(5), pp. 423-426. 

[162] Lahellec, N. and Suquet, P. 2007. On the effective behavior of nonlinear 

inelastic composites: I. Incremental variational principles. Journal of the 

Mechanics and Physics of Solids. 55(9), pp. 1932-1963. 

[163] Petit, P. and Waddoups, M. E. 1969. A method of predicting the nonlinear 

behavior of laminated composites. Journal of Composite Materials. 3(1), pp. 

2-19. 

[164] Hahn, H. T. and Tsai, S. W. 1973. Nonlinear elastic behavior of 

unidirectional composite laminae. Journal of Composite Materials. 7(1), pp. 

102-118. 

[165] Chow, C. and Yang, F. 1992. A simple model for brittle composite lamina 

with damage. Journal of reinforced Plastics and Composites. 11(3), pp. 222-

242. 

[166] Lin, W.-P. and Hu, H.-T. 2002. Nonlinear analysis of fiber-reinforced 



References 

205 

 

composite laminates subjected to uniaxial tensile load. Journal of Composite 

Materials. 36(12), pp. 1429-1450. 

[167] Kenaga, D. and Doyle, J. F. and Sun, C. 1987. The characterization of 

boron/aluminum composite in the nonlinear range as an orthotropic elastic-

plastic material. Journal of Composite Materials. 21(6), pp. 516-531. 

[168] Xie, M. and Adams, D. F. 1995. A plasticity model for unidirectional 

composite materials and its applications in modeling composites testing. 

Composites science and technology. 54(1), pp. 11-21. 

[169] Jansson, S. 1995. Non-linear constitutive equations for strongly bonded 

fibre-reinforced metal matrix composites. Composites. 26(6), pp. 415-424. 

[170] Sun, C. and Chen, J. 1989. A simple flow rule for characterizing nonlinear 

behavior of fiber composites. Journal of Composite Materials. 23(10), pp. 

1009-1020. 

[171] Selezneva, M. and Swolfs, Y. and Katalagarianakis, A. et al. 2018. The 

brittle-to-ductile transition in tensile and impact behavior of hybrid carbon 

fibre/self-reinforced polypropylene composites. Composites Part A: 

Applied Science and Manufacturing. 109, pp. 20-30. 

[172] Cahoon, J. and Broughton, W. and Kutzak, A. 1971. The determination of 

yield strength from hardness measurements. Metallurgical transactions. 

2(7), pp. 1979-1983. 

[173] Huang, M. and Liu, Y. and Sheng, D. 2011. Simulation of yielding and 

stress–stain behavior of shanghai soft clay. 38(3), pp. 341-353. 

[174] Witt, F. J. 1972. The equivalent energy method for calculating elastic-

plastic fracture. Report, Oak Ridge, Tennessee  

[175] Witt, F. J. 1981. The equivalent energy method: An engineering approach 

to fracture. Engineering Fracture Mechanics. 14(1), pp. 171-187. 

[176] Ju, Y. K. and Kim, Y. C. and Ryu, J. 2013. Finite element analysis of 

concrete filled tube column to flat plate slab joint. Journal of Constructional 

Steel Research. 90, pp. 297-307. 

[177] Feng, P. and Cheng, S. and Bai, Y. et al. 2015. Mechanical behavior of 

concrete-filled square steel tube with FRP-confined concrete core subjected 

to axial compression. Composite Structures. 123, pp. 312-324. 

[178] Woo, S. L. and Johnson, G. A. and Smith, B. A. 1993. Mathematical 

modeling of ligaments and tendons. J Biomech Eng. 115(4B), pp. 468-473. 

[179] Fung, Y. C. 1972. Stress-strain-history relations of soft tissues in simple 

elongation. Biomechanics: Its Foundations and Objectives. pp. 181-208. 

[180] Lanir, Y. 1979. The rheological behavior of the skin: experimental results 

and a structural model. Biorheology. 16(3), pp. 191-202. 

[181] Lanir, Y. 1983. Constitutive equations for fibrous connective tissues. 

Journal of Biomechanics. 16(1), pp. 1-12. 

[182] Egan, J. M. 1987. A constitutive model for the mechanical behaviour of soft 

connective tissues. Journal of biomechanics. 20(7), pp. 681-692. 

[183] Woo, S. and Rajagopal, K. 1996. A single integral finite strain viscoelastic 



References 

206 

 

model of ligaments and tendons. Journal of biomechanical engineering. 118, 

p. 221. 

[184] Decraemer, W. F. and Maes, M. A. and Vanhuyse, V. J. et al. 1980. A non-

linear viscoelastic constitutive equation for soft biological tissues, based 

upon a structural model. Journal of Biomechanics. 13(7), pp. 559-564. 

[185] Pond, D. and McBride, A. T. and Davids, L. M. et al. 2018. 

Microstructurally-based constitutive modelling of the skin – Linking 

intrinsic ageing to microstructural parameters. Journal of Theoretical 

Biology. 444, pp. 108-123. 

[186] Garikipati, K. and Arruda, E. M. and Grosh, K. et al. 2004. A continuum 

treatment of growth in biological tissue: the coupling of mass transport and 

mechanics. Journal of the Mechanics and Physics of Solids. 52(7), pp. 1595-

1625. 

[187] Viidik, A. 1968. A rheological model for uncalcified parallel-fibred 

collagenous tissue. Journal of Biomechanics. 1(1), pp. 3-11. 

[188] Frisén, M. and Mägi, M. and Sonnerup, L. et al. 1969. Rheological analysis 

of soft collagenous tissue: Part I: Theoretical considerations. Journal of 

Biomechanics. 2(1), pp. 13-20. 

[189] Sanjeevi, R. and Somanathan, N. and Ramaswamy, D. 1982. A viscoelastic 

model for collagen fibres. Journal of biomechanics. 15(3), pp. 181-183. 

[190] Jamison, C. and Marangoni, R. and Glaser, A. 1968. Viscoelastic properties 

of soft tissue by discrete model characterization. Journal of Engineering for 

Industry. 90(2), pp. 239-247. 

[191] Fung, Y. 1967. Elasticity of soft tissues in simple elongation. American 

Journal of Physiology--Legacy Content. 213(6), pp. 1532-1544. 

[192] Fung, Y. C. 1968. Biomechanics:Its scope history and some problems of 

continuum mechanics in physiology. Appl Mech Rev. 21, pp. 1-20. 

[193] Abramowitz, M. 1974. Handbook of Mathematical Functions, With 

Formulas, Graphs, and Mathematical Tables. Dover Publications, 

Incorporated. 

[194] Huyghe, J. M. and van Campen, D. H. and Arts, T. et al. 1991. The 

constitutive behaviour of passive heart muscle tissue: a quasi-linear 

viscoelastic formulation. J Biomech. 24(9), pp. 841-849. 

[195] Myers, B. S. and McElhaney, J. H. and Doherty, B. J. 1991. The viscoelastic 

responses of the human cervical spine in torsion: Experimental limitations 

of quasi-linear theory, and a method for reducing these effects. Journal of 

Biomechanics. 24(9), pp. 811-817. 

[196] Pinto, J. G. and Patitucci, P. J. 1980. Visco-elasticity of passive cardiac 

muscle. J Biomech Eng. 102(1), pp. 57-61. 

[197] Simon, B. and Coats, R. and Woo, S.-Y. 1984. Relaxation and creep 

quasilinear viscoelastic models for normal articular cartilage. Journal of 

Biomechanical Engineering. 106(2), pp. 159-164. 

[198] Haut, R. C. and Little, R. W. 1972. A constitutive equation for collagen 

fibers. Journal of biomechanics. 5(5), pp. 423-430. 



References 

207 

 

[199] Woo, S. 1982. Mechanical properties of tendons and ligaments. I. Quasi-

static and nonlinear viscoelastic properties. Biorheology. 19(3), p. 385. 

[200] Pioletti, D. P. and Rakotomanana, L. R. 2000. On the independence of time 

and strain effects in the stress relaxation of ligaments and tendons. Journal 

of biomechanics. 33(12), pp. 1729-1732. 

[201] Woo, S. L. Y. and Gomez, M. A. and Akeson, W. H. 1981. The Time and 

History-Dependent Viscoelastic Properties of the Canine Medial Collateral 

Ligament. Journal of Biomechanical Engineering. 103(4), pp. 293-298. 

[202] Dortmans, L. and Sauren, A. and Rousseau, E. 1984. Parameter estimation 

using the quasi-linear viscoelastic model proposed by Fung. Journal of 

biomechanical engineering. 106(3), pp. 198-203. 

[203] Nekouzadeh, A. and Pryse, K. M. and Elson, E. L. et al. 2007. A simplified 

approach to quasi-linear viscoelastic modeling. Journal of biomechanics. 

40(14), pp. 3070-3078. 

[204] Sarver, J. J. and Robinson, P. S. and Elliott, D. M. 2003. Methods for quasi-

linear viscoelastic modeling of soft tissue: application to incremental stress-

relaxation experiments. Journal of biomechanical engineering. 125(5), pp. 

754-758. 

[205] Shen, Z. L. and Kahn, H. and Ballarini, R. et al. 2011. Viscoelastic properties 

of isolated collagen fibrils. Biophysical journal. 100(12), pp. 3008-3015. 

[206] Lianis, G. 1963. Constitutive equations of viscoelastic solids under finite 

deformation. LOCKHEED PROPULSION CO REDLANDS CALIF. 

[207] Bingham, D. and DeHoff, P. 1979. A constitutive equation for the canine 

anterior cruciate ligament. Journal of Biomechanical Engineering. 101(1), 

pp. 15-22. 

[208] Bernstein, B. and Kearsley, E. and Zapas, L. 1963. A study of stress 

relaxation with finite strain. Transactions of the Society of Rheology. 7(1), 

pp. 391-410. 

[209] Dehoff, P. 1978. On the nonlinear viscoelastic behavior of soft biological 

tissues. Journal of Biomechanics. 11(1), pp. 35-40. 

[210] Coleman, B. D. and Noll, W. 1961. Foundations of linear viscoelasticity. 

Reviews of modern physics. 33(2), p. 239. 

[211] Kastelic, J. and Galeski, A. and Baer, E. 1978. The Multicomposite 

Structure of Tendon. Connective Tissue Research. 6(1), pp. 11-23. 

[212] Boyce, B. and Jones, R. and Nguyen, T. et al. 2007. Stress-controlled 

viscoelastic tensile response of bovine cornea. Journal of biomechanics. 

40(11), pp. 2367-2376. 

[213] Jue, B. and Maurice, D. M. 1986. The mechanical properties of the rabbit 

and human cornea. Journal of Biomechanics. 19(10), pp. 847-853. 

[214] Marchi, B. C. and Luetkemeyer, C. M. and Arruda, E. M. 2018. Evaluating 

continuum level descriptions of the medial collateral ligament. International 

Journal of Solids and Structures. 138, pp. 245-263. 

[215] Sasaki, N. and Shukunami, N. and Matsushima, N. et al. 1999. Time-



References 

208 

 

resolved X-ray diffraction from tendon collagen during creep using 

synchrotron radiation. Journal of Biomechanics. 32(3), pp. 285-292. 

[216] Johnson, G. A. and Tramaglini, D. M. and Levine, R. E. et al. 1994. Tensile 

and viscoelastic properties of human patellar tendon. Journal of 

Orthopaedic Research. 12(6), pp. 796-803. 

[217] Abramowitch, S. D. and Woo, S. L.-Y. 2004. An improved method to 

analyze the stress relaxation of ligaments following a finite ramp time based 

on the quasi-linear viscoelastic theory. Journal of biomechanical 

engineering. 126(1), pp. 92-97. 

[218] Castile, R. M. and Skelley, N. W. and Babaei, B. et al. 2016. Microstructural 

properties and mechanics vary between bundles of the human anterior 

cruciate ligament during stress-relaxation. Journal of Biomechanics. 49(1), 

pp. 87-93. 

[219] Komatsu, K. and Sanctuary, C. and Shibata, T. et al. 2007. Stress–relaxation 

and microscopic dynamics of rabbit periodontal ligament. Journal of 

Biomechanics. 40(3), pp. 634-644. 

[220] Liao, J. and Yang, L. and Grashow, J. et al. 2007. The relation between 

collagen fibril kinematics and mechanical properties in the mitral valve 

anterior leaflet. Journal of biomechanical engineering. 129(1), pp. 78-87. 

[221] Remache, D. and Caliez, M. and Gratton, M. et al. 2018. The effects of 

cyclic tensile and stress-relaxation tests on porcine skin. Journal of the 

Mechanical Behavior of Biomedical Materials. 77, pp. 242-249. 

[222] Quaglini, V. and Russa, V. L. and Corneo, S. 2009. Nonlinear stress 

relaxation of trabecular bone. Mechanics Research Communications. 36(3), 

pp. 275-283. 

[223] Tonsomboon, K. and Koh, C. T. and Oyen, M. L. 2014. Time-dependent 

fracture toughness of cornea. Journal of the Mechanical Behavior of 

Biomedical Materials. 34, pp. 116-123. 

[224] Marchi, G. and Baier, V. and Alberton, P. et al. 2017. Microindentation 

sensor system based on an optical fiber Bragg grating for the mechanical 

characterization of articular cartilage by stress-relaxation. Sensors and 

Actuators B: Chemical. 252, pp. 440-449. 

[225] Liu, X. and Dean, M. N. and Youssefpour, H. et al. 2014. Stress relaxation 

behavior of tessellated cartilage from the jaws of blue sharks. Journal of the 

Mechanical Behavior of Biomedical Materials. 29, pp. 68-80. 

[226] Zeng, X. and Ye, L. and Sun, R. et al. 2015. Observation of viscoelasticity 

in boron nitride nanosheet aerogel. Physical Chemistry Chemical Physics. 

17(26), pp. 16709-16714. 

[227] Chaudhuri, O. and Gu, L. and Klumpers, D. et al. 2015. Hydrogels with 

tunable stress relaxation regulate stem cell fate and activity. Nature 

materials. 15(3), pp. 326-334. 

[228] Janmey, P. A. and Euteneuer, U. and Traub, P. et al. 1991. Viscoelastic 

properties of vimentin compared with other filamentous biopolymer 

networks. The Journal of Cell Biology. 113(1), pp. 155-160. 



References 

209 

 

[229] Janmey, P. A. 1991. A torsion pendulum for measurement of the 

viscoelasticity of biopolymers and its application to actin networks. Journal 

of biochemical and biophysical methods. 22(1), pp. 41-53. 

[230] Wren, T. A. and Lindsey, D. P. and Beaupré, G. S. et al. 2003. Effects of 

creep and cyclic loading on the mechanical properties and failure of human 

Achilles tendons. Annals of biomedical engineering. 31(6), pp. 710-717. 

[231] Hasan, A. and Ragaert, K. and Swieszkowski, W. et al. 2014. Biomechanical 

properties of native and tissue engineered heart valve constructs. Journal of 

Biomechanics. 47(9), pp. 1949-1963. 

[232] Chen, G. and Cui, S. and You, L. et al. 2015. Experimental study on multi-

step creep properties of rat skins. Journal of the Mechanical Behavior of 

Biomedical Materials. 46, pp. 49-58. 

[233] Rok, K. and Michael, G. and Ana, G. et al. 2017. Viscoelastic behaviour of 

hydrogel-based composites for tissue engineering under mechanical load. 

Biomedical Materials. 12(2), p. 025004. 

[234] Morris, V. J. and Kirby, A. R. and Gunning, A. P. 2010. Atomic force 

microscopy for biologists. Imperial College Press. 

[235] Wang, J. and Nie, S. 2018. Application of atomic force microscopy in 

microscopic analysis of polysaccharide. Trends in Food Science & 

Technology. 

[236] Xing, Y. and Xu, M. and Gui, X. et al. 2018. The application of atomic force 

microscopy in mineral flotation. Advances in Colloid and Interface Science. 

[237] Beckwitt, E. C. and Kong, M. and Van Houten, B. 2018. Studying protein-

DNA interactions using atomic force microscopy. Seminars in Cell & 

Developmental Biology. 73, pp. 220-230. 

[238] Binnig, G. and Quate, C. F. and Gerber, C. 1986. Atomic force microscope. 

Physical review letters. 56(9), p. 930. 

[239] Ridgley, D. M. and Ebanks, K. C. and Barone, J. R. 2011. Peptide Mixtures 

Can Self-Assemble into Large Amyloid Fibers of Varying Size and 

Morphology. Biomacromolecules. 12(10), pp. 3770-3779. 

[240] Sweers, K. and van der Werf, K. and Bennink, M. et al. 2011. 

Nanomechanical properties of α-synuclein amyloid fibrils: a comparative 

study by nanoindentation, harmonic force microscopy, and Peakforce QNM. 

Nanoscale Research Letters. 6(1), p. 270. 

[241] Andriotis, O. G. and Manuyakorn, W. and Zekonyte, J. et al. 2014. 

Nanomechanical assessment of human and murine collagen fibrils via 

atomic force microscopy cantilever-based nanoindentation. Journal of the 

Mechanical Behavior of Biomedical Materials. 39, pp. 9-26. 

[242] Yang, P.-F. and Nie, X.-T. and Zhao, D.-D. et al. 2018. Deformation regimes 

of collagen fibrils in cortical bone revealed by in situ morphology and elastic 

modulus observations under mechanical loading. Journal of the Mechanical 

Behavior of Biomedical Materials. 79, pp. 115-121. 

[243] Cohen, S. R. and Bitler, A. 2008. Use of AFM in bio-related systems. 

Current Opinion in Colloid & Interface Science. 13(5), pp. 316-325. 



References 

210 

 

[244] Butt, H.-J. and Cappella, B. and Kappl, M. 2005. Force measurements with 

the atomic force microscope: Technique, interpretation and applications. 

Surface Science Reports. 59(1), pp. 1-152. 

[245] Cheng, Q. and Wang, S. and Harper, D. P. 2009. Effects of process and 

source on elastic modulus of single cellulose fibrils evaluated by atomic 

force microscopy. Composites Part A: Applied Science and Manufacturing. 

40(5), pp. 583-588. 

[246] Svensson, R. B. and Hassenkam, T. and Hansen, P. et al. 2010. Viscoelastic 

behavior of discrete human collagen fibrils. Journal of the Mechanical 

Behavior of Biomedical Materials. 3(1), pp. 112-115. 

[247] Shen, Z. L. and Dodge, M. R. and Kahn, H. et al. 2008. Stress-strain 

experiments on individual collagen fibrils. Biophysical Journal. 95(8), pp. 

3956-3963. 

[248] Shen, Z. L. and Dodge, M. R. and Kahn, H. et al. 2010. In vitro fracture 

testing of submicron diameter collagen fibril specimens. Biophysical journal. 

99(6), pp. 1986-1995. 

[249] Eppell, S. and Smith, B. and Kahn, H. et al. 2006. Nano measurements with 

micro-devices: mechanical properties of hydrated collagen fibrils. Journal 

of the Royal Society Interface. 3(6), pp. 117-121. 

[250] Hong, W. and Zhao, X. and Zhou, J. et al. 2008. A theory of coupled 

diffusion and large deformation in polymeric gels. Journal of the Mechanics 

and Physics of Solids. 56(5), pp. 1779-1793. 

[251] Hvidberg, E. 1960. Investigations into the Effect of Mechanical Pressure on 

the Water Content of Isolated Skin. Acta Pharmacologica et Toxicologica. 

16(3), pp. 245-249. 

[252] Wilson, W. and Van Donkelaar, C. and Van Rietbergen, B. et al. 2005. A 

fibril-reinforced poroviscoelastic swelling model for articular cartilage. 

Journal of biomechanics. 38(6), pp. 1195-1204. 

[253] Wilson, W. and van Donkelaar, C. and Huyghe, J. 2005. A comparison 

between mechano-electrochemical and biphasic swelling theories for soft 

hydrated tissues. Journal of biomechanical engineering. 127(1), pp. 158-

165. 

[254] Lanir, Y. 1987. Biorheology and fluid flux in swelling tissues. I. 

Bicomponent theory for small deformations, including concentration effects. 

Biorheology. 24(2), pp. 173-187. 

[255] Hannafin, J. A. and Arnoczky, S. P. 1994. Effect of cyclic and static tensile 

loading on water content and solute diffusion in canine flexor tendons: an in 

vitro study. Journal of Orthopaedic Research. 12(3), pp. 350-356. 

[256] J. Thielke, R. and Phd, R. and Grood, E. 1995. Volumetric changes in 

ligaments under tension. In:  American Society of Mechanical Engineers, 

Bioengineering Division (Publication) BED. Beever Creek. 

[257] Weiss, J. and Lai, A. and Loui, S. et al. 2000. Behavior of human medial 

collateral ligament in unconfined compression. In:  46th Annual Meeting, 

Orthopaedic Research Society. Orlando, Florida. 



References 

211 

 

[258] Butler, S. L. and Kohles, S. S. and Thielke, R. J. et al. 1997. Interstitial fluid 

flow in tendons or ligaments: A porous medium finite element simulation. 

Medical and Biological Engineering and Computing. 35(6), pp. 742-746. 

[259] Chen, C. T. and Malkus, D. S. and Vanderby, R., Jr. 1998. A fiber matrix 

model for interstitial fluid flow and permeability in ligaments and tendons. 

Biorheology. 35(2), pp. 103-118. 

[260] Ma, Y. 2016. The mechanical properties of a three-dimensional stochastic 

fibrous network with cross-linking. PhD thesis, Cardiff University.  

[261] Zhang, C. and Xu, X. and Yan, X. 2013. General periodic boundary 

conditions and their application to micromechanical finite element analysis 

of textile composites. Acta Aeronautica et Astronautica Sinica. 34(7), pp. 

1636-1645. 

[262] Deogekar, S. and Picu, R. C. 2018. On the strength of random fiber networks. 

Journal of the Mechanics and Physics of Solids. 116, pp. 1-16. 

[263] Chen, N. and Silberstein, M. N. 2018. Determination of Bond Strengths in 

Non-woven Fabrics: a Combined Experimental and Computational 

Approach. Experimental Mechanics. 58(2), pp. 343-355. 

[264] Popov, V. L. 2010. Contact mechanics and friction. Berlin, Germany: 

Springer. 

[265] Yuan, Z. and Lu, Z. 2014. Numerical analysis of elastic–plastic properties 

of polymer composite reinforced by wavy and random CNTs. 

Computational Materials Science. 95, pp. 610-619. 

[266] Qian, C. and Harper, L. and Turner, T. et al. 2011. Determination of the size 

of representative volume elements for discontinuous fibre composites. 18th 

International conference on composite materials. 

[267] Chen, N. and Koker, M. K. A. and Uzun, S. et al. 2016. In-situ X-ray study 

of the deformation mechanisms of non-woven polypropylene. International 

Journal of Solids and Structures. 97-98, pp. 200-208. 

[268] Markaki, A. E. and Clyne, T. W. 2005. Magneto-mechanical actuation of 

bonded ferromagnetic fibre arrays. Acta Materialia. 53(3), pp. 877-889. 

[269] Clyne, T. W. and Markaki, A. E. and Tan, J. C. 2005. Mechanical and 

magnetic properties of metal fibre networks, with and without a polymeric 

matrix. Composites Science and Technology. 65(15), pp. 2492-2499. 

[270] Zhu, H. and Fan, T. and Zhang, D. 2015. Composite materials with enhanced 

dimensionless Young’s modulus and desired Poisson’s ratio. Scientific 

reports. 5, p. 14103. 

[271] Zhu, H. and Fan, T. and Xu, C. et al. 2016. Nano-structured interpenetrating 

composites with enhanced Young’s modulus and desired Poisson’s ratio. 

Composites Part A: Applied Science and Manufacturing. 91, pp. 195-202. 

[272] Thomason, J. L. and Vlug, M. A. 1996. Influence of fibre length and 

concentration on the properties of glass fibre-reinforced polypropylene: 1. 

Tensile and flexural modulus. Composites Part A: Applied Science and 

Manufacturing. 27(6), pp. 477-484. 

[273] Rousseau, C. E. and Tippur, H. V. 2000. Compositionally graded materials 



References 

212 

 

with cracks normal to the elastic gradient. Acta Materialia. 48(16), pp. 4021-

4033. 

[274] Mi, C. and Jiang, Y. and Shi, D. et al. 2014. Mechanical property test of 

ceramic fiber reinforced silica aerogel composites. Fuhe Cailiao 

Xuebao/Acta Materiae Compositae Sinica. 31(3), pp. 635-643. 

[275] Pan, Y. and Iorga, L. and Pelegri, A. A. 2008. Numerical generation of a 

random chopped fiber composite RVE and its elastic properties. Composites 

Science and Technology. 68(13), pp. 2792-2798. 

[276] Kari, S. and Berger, H. and Rodriguez-Ramos, R. et al. 2007. Computational 

evaluation of effective material properties of composites reinforced by 

randomly distributed spherical particles. Composite Structures. 77(2), pp. 

223-231. 

[277] Lu, Z. and Yuan, Z. and Liu, Q. et al. 2015. Multi-scale simulation of the 

tensile properties of fiber-reinforced silica aerogel composites. Materials 

Science and Engineering: A. 625, pp. 278-287. 

[278] Hill, R. 1948. A theory of the yielding and plastic flow of anisotropic metals. 

Proc. R. Soc. Lond. A. The Royal Society. 193(1033), pp. 281-297. 

[279] Ma, Y. H. and Zhu, H. X. and Su, B. et al. 2018. The elasto-plastic behaviour 

of three-dimensional stochastic fibre networks with cross-linkers. Journal 

of the Mechanics and Physics of Solids. 110, pp. 155-172. 

[280] Johnson, J. B. 1918. Johnson's Materials of construction. John Wiley & sons, 

Incorporated. 

[281] Feng, X.-Q. and Tian, Z. and Liu, Y.-H. et al. 2004. Effective Elastic and 

Plastic Properties of Interpenetrating Multiphase Composites. Applied 

Composite Materials. 11(1), pp. 33-55. 

[282] Salmon, C. and Boland, F. and Colin, C. et al. 1998. Mechanical properties 

of aluminium/Inconel 601 composite wires formed by swaging. Journal of 

Materials Science. 33(23), pp. 5509-5516. 

[283] Wegner, L. and Gibson, L. 2000. The mechanical behaviour of 

interpenetrating phase composites–II: a case study of a three-dimensionally 

printed material. International journal of mechanical sciences. 42(5), pp. 

943-964. 

[284] Cheng, F. and Kim, S.-M. and Reddy, J. N. et al. 2014. Modeling of 

elastoplastic behavior of stainless-steel/bronze interpenetrating phase 

composites with damage evolution. International Journal of Plasticity. 61, 

pp. 94-111. 

[285] Tonge, Theresa K. and Ruberti, Jeffrey W. and Nguyen, Thao D. 2015. 

Micromechanical Modeling Study of Mechanical Inhibition of Enzymatic 

Degradation of Collagen Tissues. Biophysical Journal. 109(12), pp. 2689-

2700. 

[286] Voorhaar, L. and Hoogenboom, R. 2016. Supramolecular polymer networks: 

hydrogels and bulk materials. Chemical Society Reviews. 45(14), pp. 4013-

4031. 

[287] Nguyen, T. D. and Boyce, B. L. 2011. An inverse finite element method for 



References 

213 

 

determining the anisotropic properties of the cornea. Biomechanics and 

Modeling in Mechanobiology. 10(3), pp. 323-337. 

[288] Urayama, K. and Takigawa, T. 2012. Volume of polymer gels coupled to 

deformation. Soft Matter. 8(31), pp. 8017-8029. 

[289] Obaid, N. and Kortschot, T. M. and Sain, M. 2017. Modeling and Predicting 

the Stress Relaxation of Composites with Short and Randomly Oriented 

Fibers. Materials. 10(10). 

[290] Obaid, N. and Kortschot, M. and Sain, M. 2017. Understanding the Stress 

Relaxation Behavior of Polymers Reinforced with Short Elastic Fibers. 

Materials. 10(5), p. 472. 

[291] Lannutti, J. and Reneker, D. and Ma, T. et al. 2007. Electrospinning for 

tissue engineering scaffolds. Materials Science and Engineering: C. 27(3), 

pp. 504-509. 

 



Publications 

214 

 

Publications 

Journal papers 

 

Lin, X. and Zhu, H. and Yuan, X. et al. 2019. The elastic properties of composites 

reinforced by a transversely isotropic random fibre-network. Composite Structures. 

208, pp. 33-44. 

Xiude Lin, Hanxing Zhu. Enhanced elastic properties of honeycomb reinforced 

composites. In preparation. 

Xiude Lin, Hanxing Zhu. The Elastoplastic Behaviours of Composites Reinforced by 

a Transversely Isotropic Random Fibre-Network. In preparation. 

 

 

Conference papers/proceedings 
 

 

 

Lin, Xiude, Ma, YanHui and Zhu, Hanxing. Viscoelastic properties of fibre-network 

materials. Presented at: 6TH European Conferences on Computational Mechanics, 

Glasgow, UK, 10-15 June 2018. 

Lin, Xiude and Zhu, Hanxing. Numerical simulation for the yield behaviour of 

stochastic fibre reinforced composites with overlap. Presented at: The 3rd 

International Conference on Mechanics of Composites, Bologna, Italy, 4-7, July 

2017. 

 


