
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/116367/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Jones, Simon A. and Jenkins, Brendan J. 2018. Recent insights into targeting the IL-6 cytokine family in
inflammatory diseases and cancer. Nature Reviews Immunology 18 , pp. 773-789. 10.1038/s41577-018-

0066-7 

Publishers page: http://dx.doi.org/10.1038/s41577-018-0066-7 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



 

Recent insights into targeting the IL-6 cytokine family in inflammatory 

diseases and cancer  

Simon A. Jones1,2 & Brendan J. Jenkins3,4 

 

Affiliations 

1. Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, 

Wales, UK 

2. Systems Immunity, University Research Institute, School of Medicine, Cardiff University, 

Cardiff, CF14 4XN, Wales, UK 

3. Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 

Clayton, Victoria 3168, Australia 

4. Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health 

Sciences, Monash University, Clayton, Victoria 3800, Australia 

 

Correspondence 

Professor Brendan J Jenkins (brendan.jenkins@hudson.org.au) 

Professor Simon A Jones (JonesSA@cardiff.ac.uk) 

 



 

Abstract  

The interleukin-6 (IL-6) family of cytokines consists of IL-6, IL-11, IL-27, IL-31, oncostatin M 

(OSM), leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin-1 

(CT-1), and cardiotrophin-like cytokine factor 1 (CLCF1). Membership of this cytokine family is 

defined by usage of common β-receptor signalling subunits, which activate various intracellular 

signalling pathways. Each IL-6 family member elicits responses essential to the physiological 

control of immune homeostasis, haematopoiesis, inflammation, development and metabolism. 

Accordingly, distortion of these cytokine activities often promotes chronic disease and cancer; 

the pathological significance of this is exemplified by the successful treatment of certain 

autoimmune conditions with drugs that target the IL-6 pathway. Here, we discuss the emerging 

roles for IL-6 family members in infection, chronic inflammation, autoimmunity and cancer, and 

review therapeutic strategies designed to manipulate these cytokines in disease.  
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[H1] Introduction 

Cytokines contribute to all aspects of human biology and have evolved to enable the sensing 

and interpretation of environmental cues relevant to the maintenance of normal host 

physiology1. Although these secretory proteins are best known for their role as custodians of 

immune homeostasis and the inflammatory response to infection, trauma or injury, their 

diverse functions also affect embryonic development, cognitive function and behaviour, tissue 

integrity, and ageing. In this regard, cytokines often display pleiotropic or overlapping functional 

properties1. 

The interleukin-6 (IL-6) cytokine family comprises IL-6, IL-11, IL-27, IL-31, oncostatin M 

(OSM), leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1)  

and cardiotrophin-like cytokine factor 1 (CLCF1), and among all cytokine families it arguably 

displays the highest degree of functional pleiotropy and redundancy in eliciting responses 

relevant to health and disease2. Members of this family play prominent roles in chronic 

inflammation, autoimmunity, infectious disease and cancer (BOX 1), where they often act as 

diagnostic or prognostic indicators of disease activity and response to therapy1,3-6. Moreover, 

IL-6 family cytokines are now viewed as major therapeutic targets for clinical intervention3-9. 

This is epitomized by the treatment of chronic immune-related conditions, such as inflammatory 

arthritis, giant cell arteritis and Castleman’s disease, with drugs that target IL-65,10-12. In this 

Review, we will draw on recent advances to provide a timely update on the biology of IL-6 

family cytokines and their clinical potential as therapeutic targets or disease modifiers in 

autoimmunity, inflammation, infection and cancer. 

 

[H1] What constitutes IL-6 family membership? 

IL-6 remains the archetypal member of the IL-6 cytokine family, and regulates a diverse array of 

functions relevant to haematopoiesis, tissue homeostasis, metabolism and immunity (BOX 1 & 
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BOX 2)5,13. Since the discovery of IL-6, subsequent investigations have revealed a high degree of 

functional redundancy amongst IL-6 family cytokines14. As a consequence, cytokines within this 

family are often described with activities attributed to lymphokines [G], adipokines [G] or 

myokines [G], which reflect their broad expression and cellular distribution among all major cell 

types within the body. This redundancy is characterized by a precise hierarchical involvement in 

inflammation, metabolism, development, tissue regeneration, neurogenesis and oncogenesis 

(BOX 1 & BOX 2)15.  

A defining feature of this cytokine family is its usage of common cytokine receptor 

subunits. These receptor complexes comprise the shared signal-transducing receptor β-subunit, 

glycoprotein 130kDa (gp130), together with either a ligand-binding non-signalling receptor 

α-subunit or a signalling receptor β-subunit that resembles gp1302,15,16 (FIG. 1). The receptor 

signalling complexes for IL-6 and IL-11 contain a gp130 homodimer, whereas other family 

members signal via a heterodimeric receptor complex containing gp130 and an alternative 

signalling β-subunit (FIG. 1). The exception to this ‘gp130 rule’ is IL-31, which binds a cytokine 

receptor complex containing the OSM receptor β-subunit (OSMR) and a cognate IL-31-binding 

receptor termed cytokine-binding gp130-like protein (GPL, also known as IL-31RA)17-19.  

Phylogenetic analysis of cytokine families reveals that members of the IL-6 family share a 

close relationship with IL-12 family cytokines20-22. This link is illustrated by the heterodimeric 

composition of IL-27 (comprising IL-27p28 (also termed IL-30) and Epstein-Barr virus-induced 

protein-3; EBI3), which is structurally related to the IL-12 (IL-12p40–IL-12p35), IL-23 (IL-23p19–

IL-12p40), IL-35 (IL-12p40–EBI3), and IL-39 (IL-23p19–EBI3) heterodimers23-25. Interestingly, both 

IL-27p28 and IL-35 can also signal via gp13026,27, although the biological significance of this 

engagement with gp130 requires further substantiation, and thus their membership to the IL-6 

family of cytokine is premature. 
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The functional diversity and redundancy associated with IL-6 family cytokines is partially 

explained by the presence of the ubiquitously expressed common gp130 signal-transducing 

receptor (FIG. 1). Use of the common gp130 receptor subunit contributes to the regulation of a 

wide range of overlapping activities that are controlled by IL-6 family cytokines. As a 

consequence, these cytokines play key roles in many physiological processes, including 

development, as evidenced by the embryonic lethality of gp130-deficient mice28. In contrast to 

gp130, the receptor subunits specific to individual family members display a more restricted 

cellular expression profile, and the phenotype of mice lacking individual cytokine family 

members or their associated receptor subunits is often less severe than their apparent 

pleiotropic properties would suggest28,30,76,91.  

While the tissue distribution of these receptors offers some distinction as to how 

individual family members act in defined cellular compartments, certain cytokines within the 

family have evolved several mechanisms that amplify or broaden their cellular activities. For 

example, human OSM can signal via gp130–LIFR or gp130–OSMR receptor complexes to 

mediate responses typically associated with LIF (for example, haematopoiesis)17. Receptor 

promiscuity can also elicit defined forms of cytokine receptor crosstalk. For instance, CNTF 

displays a low affinity interaction with IL-6Rα that can lead to the formation and activation of an 

IL-6Rα–gp130–LIFR signalling receptor complex2,31. Such cross-regulation may afford CNTF the 

capacity to control IL-6-related processes not normally associated with its primary involvement 

in the nervous system (for example, metabolism, bone remodelling, immune regulation) (BOX 1 

& BOX 2)32,33. The complexities of IL-6Rα usage also extend to cytokines beyond the IL-6 

cytokine family, with a recent example being IL-27p28, which moderates inflammatory activities 

through engagement of an IL-6Rα–gp130 receptor system27,34,35.  

In addition to these ‘classical’ mechanisms of cytokine receptor signalling, several 

members of the IL-6 family employ alternative modes of gp130 activation termed ‘cytokine 
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trans-signalling’ (relevant to IL-6, IL-11, CNTF) and ‘trans-presentation’ (relevant to IL-6) (BOX 3). 

These alternative modes of cytokine signalling are best epitomized by the action of IL-6, and we 

refer the reader to several recent articles that review the regulation and biological properties of 

classical IL-6 receptor signalling and IL-6 trans-signalling in health and disease5,15,17,29,36-38. 

Briefly, classical IL-6 receptor signalling describes activities mediated via the membrane-bound 

IL-6 receptor complex, and is restricted to cells that express both IL-6Rα and gp13029. In 

contrast, IL-6 trans-signalling denotes a process that involves IL-6 binding to a soluble form of 

IL-6Rα (sIL-6R), which maintains the circulating half-life of IL-6, and enhances its 

bioavailability39,40. Interestingly, sIL-6R shares sequence identity with both IL-12p40 and EBI3, 

and once bound with IL-6 resembles a heterodimeric cytokine similar to IL-12-related 

cytokines5,20,41. In this regard, the IL-6:sIL-6R complex is able to directly engage and activate 

membrane-bound gp130 to facilitate IL-6 signalling in cell types that would not normally 

respond to IL-629. Thus, trans-signalling serves to broaden the target cell repertoire of IL-6, and 

is considered the primary mechanism for IL-6 involvement in numerous chronic diseases and 

cancers5,29,37. Intriguingly, similar cytokine trans-signalling mechanisms have been described for 

IL-11 and CNTF, and recent in vitro observations infer that both IL-27p28 and EBI3 can also 

induce sIL-6R-mediated forms of trans-signalling (BOX 3)2,15,35,42-44. While the in vivo 

consequences of these latter signalling modes require further evaluation, the identification of 

soluble variants of gp130 (sgp130) in human serum, urine and inflammatory exudates that 

antagonize both IL-6 and IL-11 trans-signalling emphasizes the biological significance of these 

alternative signalling mechanisms17,29,38,44.  

 

[H1] Regulation of intracellular signalling  

All IL-6-related cytokine receptor complexes transduce intracellular signals via the Janus kinase 

(JAK) – signal transducer and activator of transcription (STAT) pathway [G], where receptor-
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associated JAKs (namely, JAK1, JAK2 and TYK2) activate the latent transcription factors STAT1, 

STAT3 and (to a lesser extent) STAT5 (BOX 1)6,9,16. Other signalling intermediates activated in 

response to IL-6 family cytokines include: first, the protein tyrosine phosphatase SHP2 (also 

known as PTPN11), which promotes activation of the RAS–RAF–extracellular signal-regulated 

kinase 1 (ERK1)/ERK2 mitogen-activated protein kinase (MAPK) and phosphotidylinositol-3-

kinase (PI3K)–protein kinase B (PKB, also known as AKT) pathways; and second, the 

transcription factor CAAT-enhancer binding protein β (C/EBPβ, also known as NF-IL-6) (BOX 1)16. 

Recently, IL-6- and IL-11-induced activation of PI3K was shown to regulate the mTOR complex 1 

(mTORC1) system, which controls telomerase activity and protein synthesis, and influences 

various cellular processes including metabolism and redox stress (BOX 1)45,46. The diverse 

signalling networks activated by IL-6 also extend to Notch and Yes-associated protein (YAP), 

which upon gp130–SRC kinase-dependent activation facilitate epithelial cell proliferation and 

tissue remodelling or regeneration (BOX 1)47. 

The pathophysiological consequences of dysregulated gp130 activation on immune 

homeostasis and susceptibility to infection, autoimmunity or cancer have been widely reported, 

thus highlighting the importance of restricting the magnitude or duration of IL-6 cytokine family 

signalling in disease48-52. In this respect, multiple negative-regulatory mechanisms have evolved 

to curtail gp130-dependent signalling. These include receptor internalization, deactivation of 

receptors and signalling intermediates by protein tyrosine phosphatases, microRNA (miR)-

mediated translational repression and degradation of target mRNAs encoding cytokines or their 

receptors, and the STAT-driven induction of protein inhibitors of activated STAT (PIAS) and 

suppressor of cytokine signalling (SOCS) factors9,16,53,54. Among these, SOCS3 plays the 

predominant negative regulatory role via inhibition of JAK-STAT3 activation, and targeting 

cytokine receptor complexes for proteasome degradation53. 
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Considering the global cellular processes activated by the above signalling cascades, it is 

not surprising that IL-6 family cytokines display widespread functional pleiotropy (BOX 1). So, 

how do individual family members acquire unique biological specificity? Early investigations of 

STAT factors and their interaction with the genome provided evidence of cooperative 

mechanisms with other transcription factors, competition for overlapping transcription factor 

binding sites in gene promoter regions, and interaction with other transcriptional co-activators 

or co-repressors9,53,55. For example, the STAT3-mediated transcriptional output of IL-6 family 

cytokines can be influenced by the interaction of STAT3 with co-activators (such as p300–CBP) 

and other transcription factors, including nuclear factor-κB (NF-κB). NF-κB complexes with 

STAT3 in an unphosphorylated state to drive a distinct transcriptional signature enriched for 

genes involved in oncogenic and immune responses56-59. Interestingly, there is also an 

alternative mode of transcriptional control employed by STAT3. This occurs downstream of IL-6 

and IL-11 and involves the induction of specific miRs implicated in tumourigenesis and 

epithelial–mesenchymal transition (for example, miR-21 and miR-200 family members)60,61. 

Another mechanism by which individual IL-6 family members achieve biological specificity 

involves cross-regulation between individual STAT proteins9,62-65. For example, in cells lacking 

STAT1, STAT1-activating cytokines (for instance IFNγ) show enhanced STAT3-type responses, 

such as increased cell survival, proliferation and induction of immune tolerance. Conversely, in 

STAT3-deficient cells, IL-6 induces STAT1-associated cellular effects, such as inhibition of cell 

proliferation, induction of apoptosis and promotion of anti-tumour immunity9,63,65. Notably, a 

series of studies investigating the differential transcriptional responsiveness of T cells to IL-6 and 

IL-27 has uncovered novel insights into how cross-regulation between STAT1, STAT3 and STAT5 

can determine the effector characteristics of CD4+ T helper cells9,66,67. Specifically, while both 

cytokines transcriptionally regulate a comparable number of genes, a small number of 

immunoregulatory genes were differentially expressed (for example, Ifng, Ccl5 and Rorc), which 
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reflect the opposing pro-inflammatory and immunosuppressive functions assigned to IL-6 and 

IL-2767. In this setting, STAT3 provided the bulk of the overall transcriptional responsiveness to 

each cytokine, while STAT1 shaped the transcriptional programme specific to either IL-6 or 

IL-27.  

 

[H1] Critical modulators of innate immunity 

During inflammation, IL-6 family cytokines regulate innate immunity through direct effects on 

innate immune cells, and indirectly via activation of stromal tissue cells resident to the site of 

inflammation (BOX 1). These activities influence changes in leukocyte recruitment, their 

functional activation, differentiation and survival, and the development of a more sustained 

adaptive immune response5,15,17,68. Importantly, such roles illustrate why therapeutic targeting 

of IL-6 family members has been often associated with clinical benefit in inflammatory diseases, 

where these processes are distorted or skewed.  

The capacity of IL-6 family cytokines to regulate almost every aspect of the innate immune 

system is facilitated, at least in part, by their signalling interplay with the complement system 

and pattern recognition receptors [G]69,70. For example, IL-6 receptor, complement component 

C5a receptor and Toll-like receptor 4 (TLR4) signalling share a complex interaction that is 

relevant to the control of bacteraemia and sepsis71-73. Such interactions may include the 

collaborative crosstalk that exists between STAT3 and NF-κB74,75. Thus, IL-6 and other IL-6-

related cytokines often work in association with innate sensing systems to link innate and 

adaptive immunity, and to control anti-microbial defense. 

Studies on IL-6, IL-27, OSM and LIF highlight important roles for these cytokines in anti-

microbial and anti-viral immunity, where they provide tissue protection from infection-related 

injury68,71,76-79. These cytokines often control the recruitment, adhesion, survival and effector 

activities of neutrophils, tissue-resident and inflammatory monocytes, and innate lymphoid cell 
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populations (for example, natural killer (NK) cells). Specifically, these activities include the 

regulation of neutrophil-activating chemokines (for example, CXC-chemokine ligand 1 (CXCL1), 

CXCL5, CXCL6 and CXCL8), adhesion molecules (for example, intracellular adhesion molecule 1 

(ICAM1), vascular cell adhesion molecule 1 (VCAM1) and L-selectin) and apoptotic regulators 

(for example, B cell lymphoma 2 (BCL-2) and BCL-XL)37,80. In this regard, several in vivo studies 

have shown that IL-6 family cytokines affect the accumulation of specific immune cell subsets 

within inflamed tissues81-84. For instance, IL-6 deficiency leads to prolonged neutrophil 

infiltration at sites of infection85. Neutrophil function is, however, impaired in Il6-/- mice infected 

with Candida albicans, which may account for the loss of infection control and enhanced 

dissemination of the pathogen in these mice86. Interestingly, these activities are not directly 

governed by IL-6 acting on the neutrophil infiltrate. Instead, neutrophil phagocytosis and killing 

is controlled by inflammatory mediators released by stromal tissue cells, such as endothelial, 

smooth muscle, epithelial and mesothelial cells and fibroblasts, in response to IL-6 trans-

signalling37. In this scenario, the local regulation of IL-6 trans-signalling is reliant on the initial 

neutrophil infiltrate, which secretes sIL-6R within the inflamed tissue as a response to specific 

stimuli (for example, C-reactive protein, inflammatory chemokines, complement components, 

bioactive lipids, N-formyl peptides)5,37. Thus, sIL-6R is an alarmin that affects innate and 

adaptive immune outcomes29,37. The importance of this form of IL-6 regulation is exemplified by 

individuals carrying a specific IL6R polymorphic mutation (rs2228145)5,29,87,88. These individuals 

display heightened levels of circulating sIL-6R and this is associated with reduced markers of 

systemic inflammation and lower risk of coronary heart disease89,90. While these findings appear 

counterintuitive given the proposed importance of IL-6 trans-signalling in chronic and 

autoimmune disease, one must consider the wider properties of a soluble cytokine 

receptor17,29,38. These include maintaining the circulating half-life of the cytokine. In this context, 

the heightened sIL-6R levels complex with IL-6 and increase the bioavailability of the IL-6–sIL-6R 
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complex for antagonism by sgp130 to impair IL-6 signalling capacity17,29,38. 

What of the other IL-6-related cytokines? While the phenotypic characteristics of mice 

lacking IL-6, IL-11, LIF or CNTF reveal a degree of functional redundancy28,30,76,91, individual 

cytokines sit within a defined hierarchy. For example, in models of autoimmunity (such as 

inflammatory arthritis), Il6-/- and Il6ra-/- mice are protected, whereas Il11ra-/- and Osmrb-/- mice 

develop a disease severity comparable to wild-type mice92. Instead, Il11ra-/- and Osmrb-/- mice 

display other aspects of pathology, including impaired hepatocyte proliferation, altered bone 

turnover and monocytic cell trafficking, thymic hyperplasia and glomerulonephritis93-96. These 

studies illustrate the involvement of IL-6-related cytokines in immune homeostasis and innate 

immune activation, and emphasize the context-dependent nature of their activities. 

Understanding these subtle differences and their biology is essential when considering the 

design or clinical application of therapeutic interventions that target members of the IL-6-

related family.  

 

[H1] Orchestrators of adaptive immunity 

The regulatory capacity of IL-6-related cytokines in adaptive immunity is defined by their effects 

on the maturation of B cells into antibody-secreting cells, the survival and maintenance of long-

lived plasma cells, and the generation of lymphocytes with defined phenotypic or effector 

characteristics. While these activities often rely on the prior activation of innate immune 

responses in monocytes and specialized antigen-presenting cells, several IL-6 family cytokines 

(for example, IL-6 and IL-27) also act as lymphokines of adaptive immunity (BOX 1). For instance, 

IL-6 controls the effector characteristics of various CD4+ T helper (Th) cell populations, with 

initial investigations showed that IL-27 instructs Th1 cell development and promotes expression 

of IFNγ, the Th1 cell transcriptional regulator T-bet, STAT1 and IL-12Rβ25,23,68,97. The role of IL-27 

has since been broadened to include negative regulation of IL-2 signalling and restricting the 
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development of immune responses through the expansion of T-bet+CXCR3+ regulatory T (Treg) 

cell populations in Th1-cell mediated models of inflammation (such as acute Listeria 

monocytogenes infection)98-104. Thus, IL-27 is often protective in mouse models of chronic 

infection (for example, leishmaniasis and toxoplasmosis) and autoimmunity (for example, 

inflammatory arthritis, chronic inflammation of the central nervous system), and Il27ra-/- mice 

typically develop heightened or adverse T cell-mediated disease23,68. In contrast, IL-6 drives 

tissue-specific pathology and fibrosis through the expansion of IFNγ-secreting Th1 cells105. 

Interestingly, IL-6 does not directly promote the differentiation of Th1 or Th2 cells from naive 

CD4+ T cells, but instead controls the survival of these cells by supporting the action of other 

lymphokines5. Moreover, IL-6 acts as a cytokine commitment signal for the expansion of 

effector T cell populations, including Th17 and Th22 cells5. Regarding the former, IL-6 together 

with IL-1β, transforming growth factor β (TGFβ), IL-21 and IL-23 controls the expression of Th17 

cell-associated gene signatures (for example, genes encoding IL-17A, IL-17F, IL-22, RORγt and 

the aryl hydrocarbon receptor; AhR)5. Th17 cells play vital roles in maintaining mucosal barrier 

integrity and immunity, protection against fungal infections, and in the development of 

inflammation-associated tissue damage, and may reflect the contribution of IL-6 in maintaining 

tissue integrity and immune homeostasis at barrier surfaces106-108. Conversely, IL-27 acts as a 

negative regulator of certain effector characteristics and inhibits the generation of Th17 cells 

through the actions of STAT168,103,109. A similar interaction may also apply to IL-11 and OSM, 

which have been reported to drive or inhibit Th17 development, respectively110,111. However, it 

is unclear whether these alternative roles of IL-11 and OSM control the expansion of Th17 cell 

populations in draining lymph nodes or affect the maintenance of pathogenic effector T cells in 

inflamed tissues. 

 As discussed earlier, the contrasting lymphokine properties of IL-6 and IL-27 are primarily 

controlled by subtleties in the regulation of STAT1 and STAT3112. Among IL-6 family cytokines, 
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only IL-27 preferentially activates STAT1, and this IL-27–STAT1 axis often inhibits the IL-6-

mediated control of STAT3 to alter the effector or regulatory characteristics of T cell subsets97. 

This is exemplified by the ability of IL-27 to block the commitment towards Th17 cells through 

STAT1 control of STAT3 signalling67,113-116. This inhibitory signal is lost in STAT1-deficient T-cells, 

where IL-27 switches to promote expansion of Th17 cell populations via STAT367,113. Thus, 

alterations in the balance of cytokine-driven STAT1 and STAT3 signalling may yield distinct 

biological outcomes, which will shape the pattern of adaptive immunity controlled by IL-6-

related cytokines. For example, while IL-6 inhibits Treg cell function and prevents the conversion 

of Th17 cells into Treg cells, IL-27 stimulates suppressive Treg cell activities that regulate the 

expression of cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 

(PD1)117-121. The challenge now is to understand how IL-6-related cytokines influence the 

pathogenesis and clinical management of disease through activation of these immunological 

outcomes.  

 

[H1] Determinants of chronic autoimmune diseases 

With impacts on stromal tissue cells, tissue-resident monocytes and activated inflammatory 

leukocytes, IL-6 family cytokines play vital roles in the initiation, maintenance and resolution of 

local and systemic inflammatory outcomes that promote tissue damage, activation of the acute 

phase response, development of autoimmune reactions, and metabolism (BOX 1 & BOX 

2)5,15,17,122-126,. As a consequence, IL-6 family cytokines play a central role in the progression of 

chronic disease and autoimmunity (BOX 1). 

 Early investigations revealed that Il6-/- mice display various immunological defects, 

including impaired humoral immunity (for example, mucosal IgA antibody responses), an 

inability to mount an effective anti-microbial host defense against bacterial, fungal and viral 

infections, and a reduced capacity for wound healing76,127,128. In experimental models of 
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autoimmune or inflammatory diseases, including inflammatory arthritis, multiple sclerosis, renal 

injury and scarring, multicentric Castlemans’s disease and plasmacytoma, Il6-/- mice display a 

highly protective phenotype, and show limited histological evidence of pathology5,129. The 

administration of blocking anti-IL-6 or anti-IL-6R antibodies, or sgp130 to wild-type mice often 

recapitulates these findings, and has supported the development of biological drugs against 

IL-65,15,29.  

 At sites of disease, members of the IL-6 cytokine family drive inflammation-induced tissue 

damage. These activities are highly context-dependent, but invariably distort the physiological 

turnover of extracellular matrix and tissue remodelling. This is particularly evident in episodes of 

fibrosis, where IL-6, IL-11, IL-31 and OSM contribute to fibrotic lesions in the liver, lung, heart, 

skin, kidney and peritoneal cavity81,105,130-134. The development of these fibrotic events typically 

involves a loss of immune homeostasis and the physiological maintenance of tissue integrity. In 

particular, fibrosis and scarring often arise from an altered expression of matrix 

metalloproteases and tissue inhibitors of matrix metalloproteases, and the regulation of 

angiogenesis and vasculopathy. Several of these outcomes involve partnerships with other pro-

fibrotic cytokines (for example, IL-4, IL-13, TGFβ, CNTF and IFNγ), and the expansion of effector 

CD4+ T cell populations that shape inflammatory activities within the stromal tissue 

compartment81,105,133,135-138. Such alterations in tissue architecture invariably lead to loss of 

tissue or organ function. For example, elevated levels of IL-6 in the urine of patients with acute 

kidney injury or mesangial proliferative glomerulonephritis is often associated with poor clinical 

outcomes139,140. These observations reflect findings from animal models where IL-6 drives renal 

inflammation, tissue damage, and increased proteinuria87. However, the role of IL-6 in kidney 

disease may also relate to a breakdown in the homeostatic contribution of IL-6 to normal kidney 

function. For example, in tubular epithelial cells, IL-6 acts to preserve renal function and prevent 

damage of the epithelial lining141. Similar scenarios are also seen in the lung and gut where IL-6 
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(via trans-signalling) juggles the balance between homeostatic control of epithelial function and 

barrier integrity, and the onset of pulmonary airway or colitis-like inflammation47,142,143.  

 In inflammatory or degenerative forms of arthritis, members of the IL-6 cytokine family 

promote synovial hyperplasia, maintenance of joint inflammation, and damage to the 

underlying cartilage and bone. These hallmarks of disease are primarily regulated by STAT3, 

whose activity is largely confined to the synovial lining and clusters of CD3+ T cells within the 

inflamed synovium7,144-147. For example, gp130 knock-in mice, which display exaggerated JAK–

STAT signalling, show worse joint pathology and heightened synovial inflammation in a model of 

arthritis114,147,148,. Indeed, a monoallelic deletion of Stat3 in these mice reduces the recruitment 

and retention of inflammatory leukocytes, improves joint pathology and decreases disease 

activity147-150. In this regard, IL-6, IL-11, IL-27, OSM and LIF have significant effects on both 

cartilage and bone erosion via their regulatory actions on bone turnover and RANKL-mediated 

osteoclastogenesis151-156. Clinical correlates and experimental studies emphasize that IL-6 trans-

signalling coordinates many of these outcomes and is an important determinant of leukocyte 

infiltration and the severity of joint destruction33,147,157-161. Consequently, IL-6 trans-signalling is 

now considered the main protagonist of local IL-6-driven pathology, and therapeutic targeting 

of this mode of IL-6 signalling in animal models of inflammatory disease frequently leads to 

improved disease outcomes5,29.  

 While STAT3 activation by IL-6 family cytokines promotes disease processes, the 

contribution of cytokine signalling through STAT1 often appears to dampen disease 

activity3,29,162-166. This is illustrated by studies in Il27ra-/- mice, which display severe tissue 

pathology in models of infection and autoimmunity97,167. Although some of these effects relate 

to the impact of IL-27 on effector T cell populations, IL-27 also directs various tissue-specific 

responses in antigen-presenting cells, innate immune cells and B cells, as well as other stromal 

cells68,97,167. One interesting feature of the tissue pathology seen in Il27ra-/- mice is the 
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development of ectopic lymphoid-like structures (ELS) at sites of inflammation. These organized 

lymphoid aggregates are often seen in infection, autoimmunity and cancer, and their presence 

determines clinical outcome or response to therapy168. In synovial biopsies from rheumatoid 

arthritis patients with early or established disease, inverse correlations exist between IL-27p28 

and the development of highly organized lymphoid-rich aggregates and autoantibody 

production169. Patients with this form of lymphoid-rich synovitis typically display severe or 

rapidly progressing disease and show poor response to standard biological drugs168,170. 

Consistent with IL-27 being a negative regulator of ectopic lymphoneogenesis, this inverse 

relationship is also evident in Il27ra-/- mice where the experimental onset of inflammatory 

arthritis is associated with elevated synovial expression of various mediators implicated in 

lymphoid neogenesis, including homeostatic chemokines (for example, CXCL13, CC_chemokine 

ligand 21 (CCL21) and CCL19), pro-inflammatory cytokines (for example, IL-17 and IL-21), 

follicular dendritic cell markers (for example, CD21) and transcriptional regulators (for example, 

BCL-6)169. Although the precise mechanism of ELS inhibition by IL-27 requires further 

investigation, these clinical and experimental studies suggest a role for T follicular helper (Tfh) 

cells or specialized Th17 cells, the latter of which can promote ELS formation in inflamed tissues 

from mice with pulmonary inflammation or experimental autoimmune encephalomyelitis171,172. 

Indeed, several of the genes associated with ectopic lymphoneogenesis are regulated by STAT3 

(for example, IL21, CXCL13, Bcl6), and the action of IL-27 in this setting may influence the 

transcriptional control of Th17-like and Tfh-like cells by inflammatory cytokines such as IL-6 and 

IL-21173. 

 In summary, IL-6-related cytokines play crucial roles in the orchestration of inflammatory 

processes relevant to the initiation, progression and diversity of disease activities seen in 

autoimmune and inflammatory diseases (BOX 1). As discussed in the next section, many of 

these responses are relevant to cancer, and influence both the pattern of tumour-associated 
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inflammation and the proliferative expansion or tissue invasion of cancerous cells. 

 

[H1] Contrasting roles in cancer  

Dysregulated IL-6 family cytokine expression or downstream receptor signalling are frequent 

events in cancer and are often associated with poor clinical outcomes4,174-177. In this regard, the 

pro-tumourigenic actions of IL-6 cytokine family members are elicited by both direct intrinsic 

effects on cancer cell activities (for example, cell proliferation, survival, migration, invasion and 

metastasis), and indirect effects on the stromal cell compartment, such as modulation of 

inflammation, immunosuppression and angiogenesis, which shape the local tumour 

microenvironment [G] (FIG. 2)4,174-178. Furthermore, the link between these cytokines and 

cancer extends to the recent evidence that some family members (for example, IL-6) are 

important regulators of energy metabolism (BOX 2), which is considered a hallmark feature of 

the initiation and progression of tumour growth122,123,126. Paradoxically, accumulating evidence 

suggests that some IL-6 family cytokines can also mount anti-tumour responses. The challenge, 

therefore, is to discern how the dynamic interplay between pro- and anti-tumourigenic 

activities arises in different tissue compartments, and how this interplay influences responses to 

biological drugs or immunotherapies that modulate cytokine activity. 

 

[H2] Tumour cell-intrinsic effects. Interleukin-6 is the prototypical pro-tumourigenic cytokine 

within the IL-6 cytokine family and regulates various STAT3-mediated oncogenic processes (FIG. 

2)6,50,69,176. For example, IL-6 potentiates the transcriptional induction of numerous molecular 

targets essential for cell cycle progression and survival (for example, cyclin D1, MYC, BCL-XL, 

survivin, miR-21), angiogenesis, and tumour invasion and metastasis (for example, hypoxia-

inducible factor 1α (HIF-1α), matrix metalloproteinase 2 (MMP-2), MMP-7, MMP-9, vascular 

endothelial growth factor (VEGF))60,61,149,174. Thus, IL-6 contributes to both the initiation and 
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rapid progression of tumourigenesis. In late stage disease, IL-6 also propagates the metastatic 

spread of invasive cancer cells by inducing transcriptional activators of epithelial–mesenchymal 

transition (EMT), such as SNAIL and TWIST179. Importantly, the growth-potentiating effects of 

IL-6 on cancer cells also extend to cancer stem cells, whose self-renewal and population 

expansion requires STAT3 in concert with stem cell transcription factors such as NANOG180. 

These interactions ultimately contribute to the progression of several multidrug resistant 

epithelial and haematologic malignancies180.  

Interleukin-11, LIF and OSM also display cancer-cell-autonomous pro-tumourigenic 

activities, many of which overlap with IL-6. For example, in cancers of the gastrointestinal tract 

and breast, IL-11 directly fuels tumour growth by inducing STAT3-regulated gene and miR 

networks that promote cell cycle progression, anti-apoptotic activities and 

angiogenesis4,177,178,181. In gastric cancer, the IL-11–STAT3 axis can promote expression of a TLR2 

innate sensing mechanism essential for gastric tumour cell proliferation and survival177. In 

addition, IL-11, LIF and OSM utilize JAK–STAT3 and PI3K–AKT–mTOR pathways to promote EMT-

associated cancer cell invasion and metastasis (including that of bone), and the self-renewal and 

expansion of cancer stem cell populations182-185. Indeed, the activation of these pathways by 

OSM and LIF often propagates resistance to targeted therapies and is relevant to both breast 

and lung cancer186,187. Although the cancer cell-intrinsic actions of CLCF1, CNTF, CT-1, IL-27 and 

IL-31 family members are less defined, emerging evidence suggests that IL-31 maybe pro-

tumourigenic in some lymphomas18. 

Despite the use of shared receptor signalling pathways, some cytokines within the IL-6 

family display opposing anti-tumour effects on cancer cells. For instance, in a PTEN-deficient 

prostate cancer model, IL-6–STAT3 signalling in tumour cells protects against tumour 

progression by maintaining an intact senescence-inducing ARF–MDM2–p53 tumour suppressor 

axis188. The anti-tumour effects of this family are also illustrated by comparing the properties of 
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IL-27 and OSM in various epithelial and haematological malignancies. Here, a regulatory 

interplay exists between STAT1 and STAT3, whereby IL-27 and OSM (via STAT1) counteract 

various STAT3-driven processes linked with tumour cell survival, proliferation, metastatic 

invasion and angiogenesis189,190. This differential switch in shared signalling pathways provides 

an attractive molecular explanation for the opposing pro- and anti-tumourigenic activities of the 

broader IL-6 cytokine family. More investigations are required, however, to establish how the 

balance of STAT1 and STAT3 signalling shapes the transcriptional landscape in different stages of 

neoplastic progression, and within the tumour microenvironment.  

 

[H2] Tumour cell-extrinsic effects. The tumour microenvironment of most cancers is immune 

cell-rich and immunosuppressive, and often under the influence of the complex 

immunomodulatory actions of the IL-6 family cytokines. The nature of this milieu has placed a 

heavy emphasis on research that aims to understand how these cytokines influence cancer 

inflammation and tissue remodelling in and around the tumour site, as well as the access and 

bioactivities of anti-cancer immunotherapies. Among IL-6 family cytokines, IL-6 elicits the most 

defined impact on the tumour microenvironment by promoting chronic inflammation that 

supports tumour angiogenesis and the outgrowth of transformed cells, whilst suppressing Th1 

cell-mediated anti-tumour immunity (FIG. 2)191. These pro-tumourigenic activities impact on the 

recruitment, retention and activity of tumour-infiltrating leukocytes, and are equally diverse as 

the pleiotropic innate and adaptive immune responses mediated by IL-6 in autoimmune and 

chronic inflammatory diseases. Specifically, the pro-tumourigenic effects of IL-6 include the 

generation of pathogenic Th17 cells and myeloid-derived suppressor cells (MDSCs), the 

suppression of antigen-presenting dendritic cells and anti-tumour cytotoxic CD8+ T cells and 

Treg cell activity, and the phenotypic switching of tumour-associated macrophages from a 

tumouricidal ‘M1-type’ phenotype to an immunosuppressive ‘M2-type’ macrophage 
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phenotype191. While further research is required in this area, we expect that other members of 

the IL-6 cytokine family may elicit similar outcomes. For example, IL-11 promotes inflammation-

associated tumourigenesis in the gastrointestinal tract and shares the capacity with IL-6 to 

polarize T cells and macrophages towards a more immunosuppressive phenotype4,178,181,192. 

In addition to its effects on tumour-associated immune cells, the activities of IL-6 on 

cancer-associated fibroblasts and adipocytes have attracted considerable interest for their 

indirect tumour-promoting effects. Since the interplay between IL-6 and fibroblasts in cancer 

has been covered elsewhere193, we will summarize here the recent evidence for IL-6 being an 

adipocyte-secreted cytokine (‘adipokine’) with the potential to modulate interactions between 

inflammatory and metabolic processes intrinsic to carcinogenesis. This idea is extremely 

relevant, given the increased risk of cancer in obese individuals with metabolic disorders, which 

are associated with heightened systemic inflammation. The activities of IL-6 as an adipokine, 

however, have been largely explored in the context of the paraneoplastic syndrome of cachexia 

[G], typified by wasting of adipose and muscle tissue125. For example, in murine models of lung 

and pancreatic cancer-associated cachexia, IL-6 promotes an increase in the proportion of 

brown fat within inflamed adipose tissue. These changes lead to enhanced mitochondrial 

activity and associated systemic metabolic responses that increase energy expenditure and 

wasting125. Furthermore, the intricate interplay between IL-6-mediated suppression of tumour 

immunity and dysregulated metabolism is also observed in colorectal and pancreatic cancer 

cachexia models126. Here, tumour-derived IL-6 acts as a pivotal molecular switch between pre- 

and active cachectic states by impairing hepatic ketogenesis, which upon restricted caloric 

intake triggers a metabolic-driven cachexia that negates anti-tumour immunity126. Despite the 

functional redundancy among IL-6 family cytokines, the preponderance of evidence that IL-6 is 

the primary mediator of hepatic function, metabolism and immunity (BOX 1 & BOX 2) suggests 

that the pathologic actions of this family in cancer-associated cachexia may be restricted to IL-6.  
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In contrast to IL-6, IL-27 displays potent anti-tumour activities in the tumour 

microenvironment, which reflect the opposing actions described for these cytokines in 

autoimmune and inflammatory conditions. Studies in either Il27p28-/- or Il27ra-/- mice, or mice 

treated with recombinant protein show that IL-27 potentiates anti-tumour responses through 

effects on innate and adaptive immune cells194. These include IL-27-mediated control of anti-

tumourigenic M1-type macrophages, the suppression of MDSCs, activation of cytotoxic CD8+ T 

cells and the production of IFNγ and perforin by cytolytic NK cells and natural killer T (NKT) 

cells194. Collectively, this powerhouse of anti-tumour activity has set the stage for IL-27 to be 

developed further for potential clinical application as an anti-cancer agent. 

 

[H1] Therapeutic strategies 

Drug strategies that target IL-6 cytokine family members fall into various categories: i), blocking 

monoclonal antibodies that directly act on either the cytokine or the cytokine receptor; ii), 

recombinant cytokine regimes; iii), small molecule therapies that interfere with cytokine 

receptor signalling through gp130 and the JAK–STAT pathway (FIG. 3). While some of these 

modalities are in routine clinical practice, others remain in various stages of trial development. 

The challenge facing pharmaceutical companies is to understand the types of clinical indications 

that may benefit from these therapies, and to evaluate the best approach to target these 

inflammatory cytokines. For example, does inhibition of a cytokine, its corresponding receptor 

or mode of cytokine receptor signalling provide optimal therapeutic opportunities or clinical 

outcomes? These considerations are most pertinent considering that, as discussed previously, 

certain cytokine receptors (for example, IL-6Rα) bind to more than one cytokine2,27,31,35. Thus, 

therapeutic targeting of these receptor complexes may have wider consequences than 

inhibiting an individual cytokine. In this regard, Il6-/- and Il6ra-/- mice display phenotypic 

differences in wound healing, colitis severity, and control of glucose metabolism5. 
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The rationale for therapeutic strategies based on blocking monoclonal antibodies is best 

described for IL-6195. These originate from studies of multiple myeloma where levels of IL-6 and 

sIL-6R are indicative of tumour severity, and treatment with an anti-IL-6 monoclonal antibody 

halted tumour expansion196. Although the pharmacodynamics associated with IL-6 blockade led 

to a worrying elevation in systemic IL-6 levels197, the success of this intervention study 

nonetheless informed the design of several alternative IL-6-directed therapies. These include 

the anti-IL-6R blocking monoclonal antibodies tocilizumab and sarilumab, which are 

recommended for the treatment of inflammatory arthritis, juvenile idiopathic arthritis, adult 

onset Still’s disease, multicentric Castleman’s disease, cytokine release syndrome (including that 

associated with chimeric antigen receptor (CAR) T cell therapy) and giant cell arteritis10-12,198-202. 

In rheumatoid arthritis, tocilizumab and sarilumab are also prescribed as monotherapies for 

patients displaying an inadequate or adverse response to methotrexate3,203. 

Structure–function studies have identified amino acid motifs essential for IL-6 

engagement with IL-6R and their interaction with gp1305,204, leading to the rationale design of 

tocilizumab and sarilumab which target IL-6R, and sirukumab, siltuximab and clazakizumab that 

target IL-6 (FIG. 3)5,186. Additional biological drugs including olokizumab and EBI-031 prevent IL-6 

interaction with gp130, while olamkicept (an engineered chimeric sgp130 protein that may 

target cytokine trans-signalling by IL-6 and IL-11)44, NI-1201 (an anti-IL-6R monoclonal antibody), 

and VHH6 (junctional epitope nanobody [G] that recognizes the IL-6–IL-6R complex) selectively 

inhibit IL-6 trans-signalling5,27,44,205-207. These drugs show considerable promise in pre-clinical 

studies, early clinical trials and routine clinical practice (FIG. 3), although we note that the FDA 

has recently rejected approval of sirukumab due to safety concerns. 

Another major challenge facing pharmaceutical companies is to differentiate these drugs 

in terms of their efficacy and safety3,8. For example, clinical experience with tocilizumab therapy 

shows that patients often develop neutropenia and adverse effects, such as increased 
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infections. Although therapeutic blockade of IL-6 promotes neutropaenia, tocilizumab does not 

promote neutrophil cell death or an increase in nonphlogistic phagocytosis by monocytic 

cells208. Instead, the development of neutropaenia may reflect the role of IL-6 in controlling 

granulopoiesis209. In this regard, the incidence and type of infections associated with 

tocilizumab intervention are similar to those seen with other biological drugs. Here, infections 

typically occur at epithelial surfaces and mucosal barriers (for example, upper and lower 

respiratory tract, urinary and gastrointestinal tracts) where IL-6 ensures the maintenance of 

immune homeostasis3,8,210,211. This is reflected by the incidence of adverse bacterial infections of 

the skin that arise in response to tocilizumab treatment of atopic dermatitis210. As a 

consequence, tocilizumab therapy appears less effective in diseases where IL-6 contributes to 

epithelial homeostasis or barrier integrity5. Thus, a prior incidence of gastric perforations or 

associated diverticulitis are considered contraindications for the use of tocilizumab5,29. 

In hindsight, infections on barrier surfaces may have been predicted based on the known 

biology of IL-6 and its predominant usage of the JAK–STAT3 pathway. For example, patients 

possessing inhibitory autoantibodies against IL-6 or displaying genetic mutations within the JAK–

STAT signalling cassette frequently develop recurrent staphylococcal cellulitis and subcutaneous 

abscesses48,49,51,212. Indeed, patients with autosomal dominant hyper-immunoglobulin E 

syndrome (Job’s syndrome) that is associated with STAT3 deficiency experience recurrent 

bacterial infections of the skin and lungs, and typically suffer from eczema51. These observations 

highlight the need to predict the involvement of IL-6 in the underlining pathology using 

stratification criteria that maximize patient response rates. This is epitomized for rheumatoid 

arthritis, where despite IL-6 or IL-6R inhibition being highly efficacious, some patients still 

display an inadequate response to therapy3,7,8,203.  

Other effects associated with IL-6 blocking interventions include alterations in serum 

lipid profiles and liver transaminases213,214. With respect to the former, tocilizumab leads to 
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augmented levels of low-density and high-density lipoprotein C, as well as changes to the 

composition of cholesterol214. Furthermore, tocilizumab suppresses levels of cholesterol-

associated clinical biomarkers of cardiovascular risk, namely high-density lipoprotein-associated 

serum amyloid A, secretory phospholipase A2 and lipoprotein A215. Thus, targeting IL-6 may be 

of clinical benefit in treating cardiovascular conditions, including pulmonary arterial 

hypertension216. In this regard, the risk of cardiovascular events associated with tocilizumab is 

comparable to that seen with other agents (for example, tumour necrosis factor (TNF) 

inhibitors)217. However, tempering this notion is the recent observation that tocilizumab 

treatment of individuals with systemic vasculitis (Kawazaki’s disease) may cause increased risk 

of cardiovascular complications, such as coronary-artery aneurysms218. In addition, serious 

adverse infections (such as those associated with tocilizumab and other classes of biological 

drug therapies) can predispose individuals to myocardial infarction or stroke219. Notably, 

systemic inflammation is also commonly associated with increased risk of cardiovascular 

disease214, suggesting that biological drugs that preferentially control inflammation over lipid 

profiles may afford greater protection against cardiovascular events. For example, therapeutic 

targeting of the pro-inflammatory cytokine IL-1β with canakinumab significantly lowers the rate 

of recurrent cardiovascular events (myocardial infarction, stroke), but has a negligible effect on 

circulating lipids220. Therefore, biological drugs that preferentially target systemic inflammation 

(for example, anti-IL-1 therapy), rather than circulating lipids (for example, anti-IL-6 therapy), 

may provide a more effective cardio-protective intervention. 

As discussed earlier, IL-6 has a major influence on the proliferation, survival and 

metastatic properties of cancerous cells, and studies using preclinical mouse models indicate 

that treatments targeting IL-6 or its receptor display therapeutic efficacy as anti-cancer agents6. 

As a consequence, several phase I/II clinical trials have evaluated the therapeutic application of 

tocilizumab, clazakizumab and siltuximab in prostate, lung and breast cancer, multiple 
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myeloma, and cancer cachexia221-223. While patients have shown a poor clinical response to 

these therapies, current trials have been restricted to non-stratified patient cohorts and 

highlight the need to identify predictive biomarkers for precision medicine approaches 

incorporating IL-6-directed therapies. Despite these poor clinical outcomes, such therapies can 

be exploited in cancer to counteract adverse symptoms associated with cancer immunotherapy, 

such as hypotension, fatigue, nausea, shivering, enhanced acute phase activity. This is 

particularly evident in CAR T cell therapy, where severe fever responses, hypercytokinemia and 

life-threatening forms of ‘cytokine storm’ are controlled by treatment with tocilizumab224,225.  

In addition to IL-6, the association between OSM activity and various disease states has 

led to the development of a humanized anti-OSM monoclonal antibody (GSK315234). However, 

a phase II trial designed to examine the safety, tolerability and efficacy of GSK315234 in patients 

with active rheumatoid arthritis showed no significant improvement in disease activity226. 

Interestingly, this lack of efficacy was attributed to an inferior binding affinity and off-rate 

kinetics of GSK315234 as compared to the high-affinity interaction of OSM with its receptor. 

Therefore, future clinical trials with high-affinity anti-OSM antibodies are anticipated not only in 

rheumatoid arthritis, but also in inflammatory bowel disease patients where high OSM and 

OSMRβ expression in intestinal tissues correlate with a lack of response to anti-TNF agents227.  

The anti-inflammatory properties of IL-6 family members in numerous in vivo disease 

models have led to the design of cytokine therapies that promote the action of CNTF, LIF, IL-11 

and IL-27. For example, clinical trials have attempted to exploit the neurotrophic properties of 

CNTF in the treatment of degenerative diseases associated with the brain (for example, 

Huntington disease) and eye (for example, retinitis pigmentosa and age-related macular 

degeneration)228-230. However, adverse events including severe weight loss, hyperalgesia, 

coughing, muscle fatigue and pain have led to the suspension of these studies. Similarly, a trial 

with recombinant IL-11 in rheumatoid arthritis patients was also ineffective231. Nonetheless, 
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therapeutic strategies based on the neuroprotective properties of LIF and the anti-inflammatory 

characteristics of IL-27 may offer more promising applications in the treatment of multiple 

sclerosis, rheumatoid arthritis and other autoimmune or inflammatory diseases155,232-234.  

Several small molecule designer drugs have been developed to mimic cytokine–cytokine 

receptor engagement or to moderate gp130 receptor signalling (FIG. 3)235-238. For example, 

regulator of cartilage growth and differentiation (RCGD)-423 promotes a transient activation of 

gp130 dimerisation and signalling235. With applications in the treatment of osteoarthritis, RCGD-

423 prevents chondrocyte hypertrophy and cartilage destruction in rat models of disease and 

promotes chondrocyte proliferation and survival235. Other modalities that interfere with gp130 

signalling include madindoline-A, the small molecule inhibitor SC144, and the synthetic 

oxazolidinone derivative LMT-28236-238. While the clinical utility of these drugs requires further 

investigation, SC144 has been touted as a small molecule gp130 inhibitor for the treatment for 

ovarian cancer236.  

Another class of drug intervention, which is not selective for gp130 cytokine receptor 

signalling but has generated substantial attention over recent years, is based on blockade of the 

JAK–STAT3 axis6,9. The most advanced drugs of this type include tofacitinib, ruxolitinib, 

oclacitinib and baricitinib, which target JAK1, JAK2 or JAK3239. These JAK inhibitors are potent 

disease modifying agents and are approved or in clinical trials for the treatment of rheumatoid 

arthritis, psoriasis, myelofibrosis and other forms of autoimmune disease and cancer239. 

Similarly, various anti-sense oligonucleotide inhibitors (for example, AZD9150, which targets 

STAT3), modulators of inhibitory SOCS3 activity, natural chemical blockers of STAT3 activity (for 

example, curcumin and capsaicin) and inhibitors of STAT3 binding to DNA (for example, CPA-1, 

CPA-7) are also considered promising therapies for these diseases (FIG. 3)240-244.  

 

[H1] Concluding remarks 
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The IL-6 cytokine family is arguably the most complex group of related cytokines and affects all 

major biological systems within the body. In this respect, IL-6 family members are essential for 

development, reproduction, tissue regeneration, immune homeostasis, and defense and repair 

from infection, trauma or injury. However, their involvement in chronic disease and cancer 

identify them as diagnostic indicators, markers of disease activity, and targets of therapeutic 

intervention. With such widespread and often overlapping properties, the challenge remains to 

establish how the individual characteristics of these cytokines contribute to disease progression 

and the co-morbidities presented by patients with complex chronic and malignant illnesses. This 

is especially pertinent to drug discovery, the development of combination-type interventions, 

and investigations that differentiate drug action. Despite much preclinical promise, very few 

efficacious therapies against members of this cytokine family have reached the clinic since the 

approval of tocilizumab in 2009. Although small molecule interventions (for example, JAK 

inhibitors) offer opportunities to target intracellular components of the gp130 cytokine receptor 

cassette, they also act on other cytokines that use common or alternative JAK–STAT signalling 

mechanisms. However, an improved understanding of the molecular interactions which 

underpin ligand–receptor assembly and cytokine receptor signalling has seen a rapidly 

expanding number of next-generation agonists and antagonists for gp130 or specific family 

members, including IL-6, IL-11, IL-27, LIF and OSM. As we acquire new insights into the 

mechanisms driving local pathology, and the contribution of the immune system to mental 

health, and physical and psychological wellbeing, the challenge is to establish whether these 

agents not only decrease disease activity, but also improve the overall quality of life of patients 

with chronic or debilitating disease. The coming decade therefore holds considerable promise, 

and offers exciting opportunities to explore the therapeutic application of cytokine-directed 

drugs in the clinical management of autoimmune, infectious and inflammatory diseases, as well 

as cancers.  
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Glossary terms 

Janus kinase (JAK) – signal transducer and activator of transcription (STAT) pathway 

A cytokine receptor signalling mechanism used by certain cytokines to sense and interpret 

environmental cues during inflammation and immune homeostasis. 

 

Lymphokines 

A subset of cytokines that are released by lymphocytes.  

 

Adipokines 

A subset of cytokines secreted by adipose tissue, which are sometimes called adipocytokines. 

 

Myokines 

Cytokines produced and released by myocytes in response to muscle contraction. 

 

Pattern recognition receptors 

Innate sensors that detect bacteria, viruses, fungi and other endogenous ligands generally 

associated with tissue damage. 

 

Tumour microenvironment 

Cellular and non-cellular compartment associated with a tumour, comprising the extracellular 

matrix, surrounding blood and lymphatic vessels, immune (inflammatory) cells, fibroblasts, 

neuroendocrine cells and adipocytes.  

 

Cachexia 
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A wasting or weakening of the body due to chronic illness or cancer. 

 

Nanobody 

An engineered single-domain antibody. 

 



 

Box Legends 

BOX 1: Signalling mechanisms for IL-6 family cytokines and links with physiological and 

disease processes  

Intracellular signalling mechanisms linked to the gp130 receptor system are triggered via 

activation of receptor-associated cytoplasmic tyrosine kinases (JAK1, JAK2 and TYK2). Activation 

of these proteins leads to distinct patterns of tyrosine phosphorylation and subsequent 

activation of the latent transcription factors signal transducer and activator of transcription 1 

(STAT1), STAT3 and, to a lesser extent, STAT5. Additional signalling mechanisms associated with 

cytokine activation of the gp130 receptor system include processes controlled through the 

tyrosine-protein phosphatase SHP2. The activation of this protein promotes signalling through 

the RAS–RAF pathway and the SRC–YAP–Notch pathway. Activation of the RAS–RAF cascade 

also regulates several downstream modifiers that include the phosphorylation of MAP kinases 

and the AKT and mTORC1 pathways, and activities associated with the transcription factors NF-

IL-6 (a C/EBP family member) and AP-1 (c-JUN and FOS). Other kinases with less defined 

involvements with this receptor system include SAK, HCK, FES, BTK and TEC16. Each of these 

signal transduction mechanisms control various biological processes as indicated. The heatmap 

depicted in the right-hand panel details how individual IL-6 cytokine family members contribute 

to specific physiological and immunological processes, and emphasizes their relative importance 

in certain disease settings (depicted below the blue line). 
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BOX 2: IL-6 family cytokines as regulators of metabolic processes  

Members of the IL-6 cytokine family perform integral roles in health and disease, and their 

capacity to influence the maintenance of immune homeostasis and wellbeing can occur via 

regulation of various metabolic processes. The depicted heatmap summarizes the relative 

contribution of individual members of the IL-6 cytokine family to metabolism, and emphasizes 

the types of metabolic processes they affect. Certain family members, such as IL-6 and OSM, 

elicit these effects in various stromal tissue compartments (for example, muscle, liver, bone, 

brain) and inflammatory cells (for example, lymphocytes, macrophages)246-248. On the other 

hand, IL-27 displays a more restricted activity profile on select immune cell types, where it 

controls the expression of enzymes responsible for oxysterol generation in effector and 

regulatory CD4+ T cells249. Importantly, several of these associations with metabolism have been 

identified through clinical observations in patients receiving biological drugs. For example, 

hypoferremia is a common response to systemic infection, and patients with autoimmune 

conditions, such as rheumatoid arthritis, frequently suffer from inflammatory anaemia250. Here, 

biological drugs against IL-6 (for example, tocilizumab) combat the development of anaemia and 

inhibit the hepatic-derived generation of hepcidin and haptoglobin251,252. These latter responses 

are also associated with OSM and LIF253. Further roles for IL-6 in metabolic processes have been 

identified from Il6-/- mice which develop mature onset obesity, hypertriglyceridemia and glucose 

intolerance, and patients on tocilizumab experience changes in serum cholesterol and 

triglyceride levels, along with increases in body weight254-256. The control of adipogenesis and 

lipolysis is also attributed to other IL-6 family cytokines, and these are reviewed elsewhere257-259. 

For instance, CNTF treatment in mice reduced adiposity and body weight, and improved various 

parameters of diabetes and hepatic steatosis, a finding that led to the development of 

recombinant CNTF therapy (axokine), which suppressed appetite, increased energy expenditure 
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and caused sustained weight loss in humans260-262. Consistent with a role for IL-6 family 

cytokines in regulating energy and glucose metabolism, acute infusion of IL-6 in mice enhanced 

glucose uptake and fatty acid oxidation in skeletal muscle associated with improved insulin 

sensitivity, and protection from diet-induced obesity263. Here, IL-6 released from contracting 

muscle drives the production of glucagon-like peptide-1 (GLP-1) within the gut and pancreas, 

and contributes to the maintenance of glucose homeostasis through the GLP-1 control of insulin 

secretion264. An important aspect of these metabolic-associated outcomes regulated by IL-6 

family members is their link with alterations in mitochondrial activity. Here, IL-6, OSM, CT1, 

CNTF, and other family members influence several aspects of mitochondrial biology including 

changes in mitochondrial re-modelling because of cachexia, alterations in mitochondrial calcium 

mobilization and membrane potential, and the regulation of thermogenesis through regulation 

of uncoupling protein-1265-271.  

 

BOX 3: Cartoon depicting alternate forms of cytokine receptor signalling by the IL-6 family of 

cytokines  

Several members of the IL-6 family adopt alternative modes of cellular activation via gp130. For 

example, IL-6 classical cytokine receptor signalling transduced via a gp130 homodimer is 

facilitated by membrane-bound forms of IL-6Rα and gp130 (for schematic purposes, only one 

gp130 molecule is shown). Soluble forms of the cognate non-signalling receptor-α subunits for 

IL-6, IL-11 and CNTF are readily detected in serum. These soluble receptors retain cytokine-

binding kinetics and form receptor-ligand complexes that activate cells through binding 

interactions with cell-associated gp130. Cytokine binding to soluble receptors also enhances the 

circulating half-life of the cytokine and offers protection from proteolytic degradation38. These 

forms of cellular activation are termed cytokine trans-signalling, and provide a mechanism to 
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broaden the types of cells that are responsive to IL-6, IL-11 or CNTF2. Recent evidence has 

identified another form of receptor engagement termed IL-6 trans-presentation272. Here, IL-6 

bound to membrane-bound IL-6Rα is displayed on the surface of cells (for example, specialized 

dendritic cells) and presented to gp130 expressed on a nearby cell type (for example, a 

lymphocyte) to elicit signalling via a gp130 homodimer (for schematic purposes, only one gp130 

molecule is shown). These additional forms of cytokine receptor signalling contribute to the 

regulation of innate and adaptive immunity, and direct responses in target cells that lack 

specific receptors for these cytokines. Also shown are the numerous cellular processes 

associated with each of these signalling modes.  

 

 

 



 

Figure Legends 

Figure 1: Cytokine receptor usage by the IL-6 family of cytokines  

(a) Members of the IL-6 cytokine family share a common ancestral link to an innate immune 

sensing mechanism found in Drosophila melanogaster. This system consists of unpaired-3 (IL-6-

like), domeless (gp130-like), hopscotch (Drosophila homolog of mammalian JAK) and stat92E 

marelle (Drosophila homolog of STAT, also referred to as marelle). (b, c) In mammals, all 

cytokines within the family activate cells through receptor complexes that contain the signal 

transducing receptor β subunit gp130. Three distinct forms of cytokine receptor arrangements 

are utilized by these cytokines. In (b), receptor complexes for IL-6 and IL-11 contain a cognate 

non-signalling receptor-α subunit and gp130 (termed a gp130 homodimer receptor complex), 

with gp130 existing as a homodimer to elicit signalling. Based on the proposed structural 

arrangement of the IL-6 receptor, a functioning receptor is composed of an IL-6–IL-6R–gp130 

complex that is clustered into a dimer structure16,245. In contrast, in (c) receptor complexes for 

LIF, CT-1, OSM and IL-27 comprise gp130 and a second receptor subunit, which contain 

structural features similar to gp130 (termed a gp130 heterodimer receptor complex). These 

include the LIF receptor-β (LIFRβ), OSM receptor-β (OSMRβ) and IL-27Rα (also referred to as 

WSX-1 or TCCR). The receptor for CNTF and CLCF1 is comprised of three individual receptor 

subunits formed between CNTF receptor-α (CNTFR), LIFRβ and gp130. Currently, IL-31 remains 

the only exception to this ‘gp130 rule’ and the IL-31 receptor consists of IL-31Rα and OSMRβ. 

These alternate receptors provide cytokine specificity and couple directly to signal transduction 

pathways required for cellular activation (BOX 1).  
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Figure 2: The intrinsic and extrinsic properties of IL-6 family cytokines in cancer  

The figure provides an overview of the cellular processes that are regulated by members of the 

IL-6 cytokine family, along with the predominant activation of STAT3, during tumorigenesis, 

tumour metastasis, and in the control of the tumour microenvironment and cancer 

inflammation. Cytokines with specific links to the control of these activities are shown. Note 

that processes associated with tumour metastasis can also contribute to the overall architecture 

of the tumour microenvironment and support activities linked with the development of cancer 

inflammation.  

 

Figure 3: The IL-6 cytokine family as therapeutic targets  
 
Members of the IL-6 cytokine family are drug targets for the treatment of infection, 

inflammation, autoimmunity and cancer. Classes of drugs include monoclonal antibodies and 

recombinant protein modalities for specific cytokines or cytokine receptors (shown in top 

target), and small molecule interventions that modulate receptor signalling activity or 

intracellular mechanisms linked to gp130 or JAK–STAT signalling (shown in bottom target). A 

cartoon depicting a representative cytokine–cytokine receptor complex of the IL-6 cytokine 

family is shown. Examples of these drug classes are depicted on the zoned targets. Each target is 

colour coded to reflect the stage of clinical development (as indicated in the key, bottom left), 

and the current status of an individual drug within this pipeline is represented by an annotated 

dot (right-hand keys). Drugs displaying related modes-of-action or common targets are 

accordingly coloured. Abbreviations for cytokine-cytokine receptor therapies: ciliary 

neurotrophic factor (CNTF), clazakizumab (CLZ), VHH6 (VHH), EBI-031 (EBI), GSK315234 (GSK), 

interleukin-11 (IL11), interleukin-27 (IL27), p28 subunit of interleukin-27 (p28), leukemia 

inhibitory factor (LIF), NI-1201 (NI), olamkicept (OLM), olokizumab (OKZ), sarilumab (SAR), 
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sirukumab (SIR), siltuximab (STX), tocilizumab (TCZ), vobarilizumab (VOB). Abbreviations for 

small molecule interventions: AZD9150 (AZD), baricitinib (BAR), capsaicin (CAP), cisplatin 

derivatives (CPA-1, CPA-7), CpG-Stat3-siRNA (CpG-STAT3), curcumin (CUR), dasatinib (DAS), 

filgotinib (FLG), LMT-28 (LMT), madindoline-A (MAD), oclacitinib (OCL), regulator of cartilage 

growth and differentiation-423 (RCGD), ruxolitinib (RUX), SC144 (SC), tofacitinib (TOF). 

 

 

 

 


