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Abstract 

Photodetection at short- and mid-wavelength infrared (SWIR and MWIR) enables various sensing systems 

used in heat seeking, night vision, and spectroscopy. As a result, uncooled photodetection at these 

wavelengths is in high demand. However, these SWIR and MWIR photodetectors often suffer from high 

dark current, causing them to require bulky cooling accessories for operation. In this study, we argue for 

the feasibility of improving the room-temperature detectivity by significantly suppressing dark current. To 

realize this, we propose using (1) a nanowire-based platform to reduce the photoabsorber volume, which in 

turn reduces trap state population and hence G-R current, and (2) p-n heterojunctions to prevent minority 

carrier diffusion from the large bandgap substrate into the nanowire absorber. We prove these concepts by 

demonstrating a comprehensive 3-D photoresponse model to explore the level of detectivity offered by 

vertical InAs(Sb) nanowire photodetector arrays with self-assembled plasmonic gratings. The resultant 

electrical simulations show that the dark current can be reduced by three to four orders at room temperature, 

leading to a peak detectivity greater than 3.5×1010 cm Hz1/2W-1 within the wavelength regime of 2.0 – 3.4 

µm, making it comparable to the best commercial and research InAs p-i-n homojunction photodiodes. In 

addition, we show that the plasmonic resonance peaks can be easily tuned by simply varying the exposed 

nanowire height. Finally, we investigate the impact of nanowire material properties, such as carrier mobility 

and carrier lifetime, on the nanowire photodetector detectivity. This work provides a roadmap for the 

electrical design of nanowire optoelectronic devices and stimulates further experimental validation for 

uncooled photodetectors at SWIR and MWIR. 
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1. Introduction 

 III-V semiconductor photodetectors operating at short- and mid-wavelength infrared (SWIR and 

MWIR at 1.4 – 3 µm and 3 – 5 µm wavelengths, respectively) are the technology of choice for a broad 

range of imaging applications, such as heat seeking, night vision, remote sensing, and spectroscopy. 

Achieving uncooled and high-detectivity photodetectors in these wavelength regimes is highly desirable. 

Uncooled microbolometer focal plane arrays (FPAs) have been commercialized; however, it is more 

advantageous to develop imagers based on semiconductor-based monolithic and hybrid structures, since 

they allow for high-speed, compact, and fully integrated sensing platforms. Several examples of 

commercially available or well-developed uncooled semiconductor detectors (in photovoltaic mode) at 

SWIR and MWIR include: (1) extended InGaAs p-i-n homojunction photodiodes with a peak detectivity 

between 4.0 – 5.0×1010 cm·Hz1/2/W and cutoff wavelength of 2.6 µm [1]; (2) InAs p-i-n homojunction 

photodiodes with detection wavelength up to 3.4 µm and detectivity between 4.0 – 5.0×109 cm·Hz1/2/W 

[2,3]; and (3) InAsSb nBn detectors offering a cutoff wavelength at 4.5 µm with detectivity between 1.0 – 

2.0×109 cm·Hz1/2/W [4]. Clearly, the detectivity decreases with increasing wavelength, resulting from 

higher dark current from generation-recombination (G-R) process and minority carrier diffusion in small 

bandgap materials. Although considerable progress has been made in the past decade, there still exists a 

fundamental limit to achieving higher detectivity due the trade-off between high responsivity and low dark 

current, as interpreted by a well-known equation (in the quantum regime): 

𝐷∗ = √𝐴𝐵𝑁𝐸𝑃 ≈ 𝑅√2𝑞𝐽𝑑𝑎𝑟𝑘 (1) 

where D* is the detectivity, A is the area of detector, B is the bandwidth, NEP is the noise-equivalent power, 

R is the responsivity, Jdark is the dark current density, and q is the elementary charge. Based on eq.1, an 

obvious solution to increase D* is by decreasing Jdark. However, in practice, this usually involves reducing 

the absorption layer thickness (reduces trap state population leading a decrease in G-R current), which in 

turn decreases optical absorption leading to a decrease in R. Thus, the task of overcoming the trade-off 
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between high responsivity and low dark current to yield higher D* for SWIR/MWIR photodetectors remains 

a critical challenge. 

 To break the trade-off, we must suppress Jdark by largely reducing absorption volume, while still 

maintaining optical absorption within the same order of magnitude. This can be achieved by implementing 

a plasmonically-enhanced nanowire-based photodetection platform with small fill factor, as shown in figure 

1. The nanowire photodetectors are composed of vertically-oriented nanowire arrays with n-InAs(Sb) 

absorber and contact layers grown on large bandgap p+-InP substrates, along with self-assembled plasmonic 

gratings (or light couplers). The small fill factor of the nanowire arrays results in a reduced absorber volume, 

which in turn decreases the contribution of the G-R current and minority carrier diffusion current from the 

nanowire to the overall device leakage current (Jdark). Concurrently, the loss of the optical absorber volume 

is compensated by using efficient plasmonic light couplers. These couplers strongly couple and confine 

incident light to surface plasmonic modes in the nanowire top segments and are independent of the nanowire 

substrate optical property [5,6]. This is advantageous as the overall vertical nanowire height can be as short 

as possible provided that the exposed nanowire height allows surface plasmonic resonance absorption at 

the target wavelength. In addition, the InAs(Sb) nanowire-based platform is designed on larger bandgap 

InP substrates to form p-n heterojunctions [7,8], consequently minimizing the contribution of minority 

carrier diffusion current from the substrate to the saturation current (J0). If the drop in Jdark is more 

significant than the loss of optical absorption in the nanowire array with a small fill factor, a dramatic 

enhancement in D* can be expected. Note that the material system used here cannot be implemented in thin-

film growth techniques since the large junction area and lattice mismatch would inevitably cause point and 

threading dislocations. 

 To date, several pioneering studies on InAs(Sb) vertical nanowire-based photodetectors at SWIR and 

MWIR have been reported. These include InAs(Sb) nanowire photodectectors up to ~3.5 µm [9-11] and 

InAsSb nanowire photodetectors at MWIR [6,12]. More recently, uncooled InAs(Sb) nanowire 

photodetector arrays with n-InAs(Sb)/p-InP heterojunctions showed photodetection signatures at both 

SWIR and MWIR [13,14]. Concurrently, several promising nanowire-based photonic schemes have also 
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been explored for photodetection at MWIR, including the optimization of HE11 waveguide modes for 

optical absorption in InAs(Sb) nanowires [15-17] and coupled optical modes in InAsSb nanowire clusters 

[18]. Despite these advances, the true potential of InAs(Sb) nanowire photodetectors as uncooled 

photodetection platforms has not yet been quantitatively analyzed, and the true limit of their figure-of-

merits (R and D*), remains unclear. In this work, we take a simulation approach to numerically investigate 

the spectral response of the proposed InAs(Sb) photodetectors with plasmonic metal gratings. Of the various 

photonic device schemes investigated thus far, nanowire-plasmonic structures offer the unique balance 

between good electrical contact (ohmic) and enhanced absorption through surface plasmon resonance in 

the small nanowire volume at SWIR and MWIR. We develop a three-dimensional (3-D) photoresponse 

model to computationally calculate the photocurrent of the nanowire photodetectors by incorporating 

simulated optical generation profiles into the electrical models. Then, the simulated dark current and 

spectral response are compared with the best commercial and research InAs p-i-n photodiodes in 

photovoltaic mode. We show that the dark current can be reduced by three to four orders of magnitude, 

leading to a peak D* (on surface plasmonic resonance) greater than 3.5×1010 cm Hz1/2W-1 within the 

wavelength regime of 2.0 – 3.4 µm. In addition, we show that the absorption peaks can be freely tuned by 

varying the exposed nanowire height. Finally, we take the nanowire material quality into account, and 

analyze the impact of doping level, carrier mobility, and carrier lifetime on peak D*. Our work provides a 

solid foundation to inspire further experimental validation efforts in realizing InAs(Sb) nanowire-plasmonic 

photodetector arrays that accomplish room-temperature photodetection with high D* at SWIR and MWIR. 

2. Modeling and simulation section 

2.1. Model setup 

A square unit cell with a single InAs(Sb) nanowire at the center was used to a simulate an infinitely 

extending nanowire array. The nanowire device was then constructed by specifying the passivation shell 

(Al2O3), a dielectric growth mask (SiO2), a growth substrate (InP), a bisbenzocyclobutene (BCB) layer, a 

plasmonic grating, and ambient air. BCB is an insulating filler medium that structurally supports the 
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nanowire top contact and isolates it from the bottom contact. A reference cell for the planar InAs p-i-n 

photodiode was also simulated to test our model. We included a contact layer (n-type, 3×1017 cm-3) atop of 

InAs(Sb) nanowire segment (n-type, 1×1017 cm-3) to induce a local electric field for higher internal quantum 

efficiency (IQE). More details about the unit cell schematics are presented in the Supplementary 

Information (SI.1). It is noteworthy to mention that the plasmonic gratings can be easily fabricated by 

angled metal deposition, as discussed in many earlier studies [5,6]. 

A diagram of the simulation process, composed of three major steps, is shown in figure 2. First, the 

electric field profile and optical absorption were solved in Lumerical FDTD. A 2.0 – 3.5 µm wavelength 

spectrum was selected for analysis, and the values for the refractive index n and the extinction coefficient 

k of InAs(Sb) were obtained from a previously reported study for input into the optical simulator [19]. 

Periodic boundary conditions were set on the x and y directions (simulating the nanowire array), while 

perfectly matched layer (PML) boundary conditions were applied above and below the nanowire array (z-

direction) to simulate the infinitely extending air medium (above) and the substrate. The nanowire diameter 

was set as 200 nm, while the nanowire pitch Px and Py were both set to 1300 nm, a value which was obtained 

by optimization in a previous simulation study [20]. The thickness of the Al2O3 passivation layer was 60 

nm. To simulate the absorption of unpolarized light, we took note of the asymmetry of the nanowire 

photodetector in the x and y directions and set the incident light source to 45°-polarization, which contained 

both x-polarized and y-polarized components. Note that the electric field profiles solved by the optical 

simulator for each wavelength were based on a unique and consistent optical input power (in arbitrary 

units). Then, the simulated electric field and optical generation profiles from 2.0 – 3.5 µm in finite-

difference time-domain (FDTD) mesh grids were interpolated into the finite-element mesh (FEM) grids so 

that it could be imported into the electrical simulator (Synopsys Sentaurus TCAD). Since the electrical 

simulator does not allow computation of current at 0 V applied bias, we used 0.0001 V to represent 

photovoltaic operation mode. Then, the imported electric field profiles are converted to optical generation 

profiles and the electrical simulator solves the drift-diffusion and continuity equations to output the dark 

and light current. A schematic diagram of the modeling process is given in SI.2. 
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2.2. Parameter settings 

All the simulations were performed at 300 K. To study the theoretical, or ideal, spectral response (R 

and D*) of the nanowire photodetectors, we used the electrical material properties of thin-film InAs for 

nanowires [21]. Note that the bandgap of InAs nanowires grown by catalyst-free selective-area mode is 

between 0.477 – 0.496 eV, much different from the zinc-blende InAs bandgap of 0.364 eV at 300 K [22]. 

This is mainly due to a high density of rotational twins, i.e., crystal phase switches between zinc-blende 

and wurtzite, which is commonly observed in InAs nanowires grown by selective-area growth mode 

[22,23]. Therefore, we intentionally added antimony into InAs during growth to form InAs0.95Sb0.05 and 

achieve the same bandgap as that of thin-film InAs [8,23,24]. When exploring the impact of nanowire 

material quality on spectral response, we varied carrier (electron and hole) mobility (µe and µh) and 

Shockley-Read-Hall (SRH) bulk carrier lifetime (τSRH). We have previously shown in several studies that 

the carrier dynamics in 3-D nanowires are highly dependent on material properties [25,26]. To make the 

photoresponse modeling more valid, we accounted for nonradiative recombination at surfaces when 

simulating nanowire photodetectors. Note that we used Al2O3 layers instead of standard in-situ large 

bandgap III-V materials as passivation shells. It has been recently demonstrated that by using ex-situ Al2O3 

passivation the surface recombination velocity (vS) of InAsSb nanowires can be significantly suppressed by 

two orders from a level of 105 cm/s to a level of 103 cm/s or less [14]. The passivation shells were 

conformally formed by atomic-layer deposition (ALD) at 200°C. Here, we kept vS of InAsSb/Al2O3 

interface fixed at 1×103 cm/s. Table S1 in SI.3 shows a list of material parameters applied in the model 

related to doping levels, mobilities, nonradiative recombination, and more. Some parameters such as carrier 

mobility and carrier lifetime were obtained by fitting the dark current of the InAs p-i-n diode with a mesa size 

of 400 µm [3], and those values were reasonably comparable to the results from other references [21,27]. 

All other material parameters were taken from the material database of the TCAD simulator. 

2.3. Spectral response of nanowire photodetectors 

The responsivity is given by  
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𝜎(𝜆) = 𝐼𝑝ℎ(𝜆)𝑃(𝜆) = 𝐼𝑝ℎ(𝜆)∫𝐺(𝑥, 𝑦, 𝑧, 𝜆)𝑑𝑉 𝐴(𝜆)⁄  (2) 

where Iph is the output photocurrent (Iph = Itotal – Idark), P is the input power, G is the optical generation rate 

for a specific incident light wavelength in units of cm-3 s-1, and A is wavelength dependent optical 

absorptance. To obtain the total input power at a certain wavelength, we integrated G over the InAsSb 

nanowire segment and then divided the integral sum by A(λ). In this case, we only needed to calculate the 

input power once, because the power was kept fixed in the optical simulations by FDTD for the entire 

wavelength regime. Finally, we normalized Idark by the nanowire junction area to get Jdark and then calculated 

D* by eq. 1. Here, we assume that the detectors work in the quantum regime (not limited by Johnson or 

thermal noise). 

2.4. Model validation 

To demonstrate the validity of the 3-D photoresponse model, we also simulated the spectral 

response of a reference planar InAs p-i-n photodiode in photovoltaic mode [3]. As detailed in SI.3, the InAs 

p-i-n photodiode was composed of a n+-InAs top contact layer (1×1018 cm-3, 2 µm), a i-InAs layer (7×1014 

cm-3, 2 µm), and a p+-InAs bottom contact layer (1×1018 cm-3, 2 µm). The reported responsivity at 2 µm 

was about 0.75 A/W for (mesa size of 400 µm), where the effect of surface recombination on mesa sidewalls 

was minimal (hence the surface was assumed ideal in the simulation). Similarly, with the simulation process 

that we used above, the calculated photocurrent (at an input power of 2×10-10 W) was 1.69×10-10 A at 2 µm, 

yielding a responsivity of 0.85 A/W, very close to the experimentally measured value of 0.75 A/W (the 

value was calibrated by a 2 µm laser). More simulation results are presented in SI.4. 

3. Results and discussion 

We first investigate the ideal spectral response of the InAsSb-InP nanowire-plasmonic heterojunction 

photodiode, as shown in figure 3. We also show the simulation result of an InAsSb-InAs nanowire 

heterojunction photodiode, i.e., on InAs substrate, as reference. Here, the exposed nanowire height is kept 

fixed at 800 nm. Figure 3a illustrates the x-polarized and y-polarized electric profiles at 3 µm. Since the 

surface plasmon mode is tightly confined at the nanowire tip, the photocarriers (electrons) can be quickly 
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swept to the 3-D contacts. Furthermore, these photocarriers are entirely isolated from the interface with 

ambient air due to the Al2O3 passivation layer, and thus the impact of surface recombination on 

photocurrent, or responsivity, is much lower. Note that the Al2O3 passivation layers fully cover the nanowire 

sidewalls, and only the top facets are exposed to form the contacts. This is advantageous because: (1) the 

high bandgap oxide passivation layers can completely prevent depletion of top nanowire segments by the 

metal contacts under applied bias; (2) the ex-situ Al2O3 deposition by ALD is more robust and controllable 

than the in-situ passivation technique; thus the thickness of Al2O3 layer can be accurately controlled by 

deposition time, making it much easier to grow a thicker shell without formation of dislocations at the 

nanowire-oxide interfaces; and (3) the “effective” thickness of nanowire can be enhanced by forming a 

thick Al2O3 shell, resulting in greater modal field confinement in the nanowire core and hence less overlap 

in the metallic grating, which leads to higher optical absorption. Although it is common to embed nanowire 

arrays in the BCB layer and use indium tin oxide (ITO) as the top contact layer (instead of plasmonic light 

couplers), ITO is not transparent over 2.5 µm wavelength and the contact resistance is high. Therefore, it 

is still advantageous to use plasmonic gratings, despite the absorption loss in the gold layers. 

Figure 3b displays a comparison of optical absorption between the InAsSb-InP nanowire photodiode 

array and the planar InAs photodiode. Clearly, the planar device offers a much higher optical absorption 

(~70%) across the entire spectrum (except the regime close to the bandgap cutoff) due to their thicker 

absorbers (thickness ~14 µm). In contrast, the absorption of nanowires mostly relies on the excited surface 

plasmon wave on the exposed nanowire top segments (~1 µm). At the plasmonic peaks, the nanowire 

detector absorption can reach up to ~15% (at 3 μm wavelength), roughly 4 – 5 times less than that of thin-

film devices. By assuming the same IQE for both types of photodiodes, we estimate that the responsivities 

of nanowire devices will be lower. The absorption peak at 3 µm results from the fundamental surface 

plasmon mode (SP01) resonance. 

We move on to compute the spectral response by incorporating the 3-D optical profile into the 3-D 

electrical model (figure 2), Again, to solve the photocurrent in photovoltaic mode, we apply 0.0001 V to 

the detectors, which to some extent represents a random fluctuation of “zero” voltage in measurement 
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setups. Figure 3c presents the simulated responsivity spectra of the nanowire photodiodes (on both InP and 

InAs substrates) and planar InAs p-i-n photodiode. The calculated external quantum efficiency (EQE) is 

shown in SI.5. The responsivities of nanowire photodiodes on InP and InAs substrate are the same, 

confirming that the substrate optical property has very little impact of surface plasmonic resonance and 

hence resultant photocurrent is mostly determined by the properties of nanowire segments. It is immediately 

apparent that the responsivity of the nanowire photodiodes is lower than that of the planar device. The 

reasons are obvious: (1) the optical absorption of nanowire photodetectors is more than 4 – 5 times lower, 

as discussed earlier, and (2) the IQE of the nanowire devices is lower. A lower IQE of nanowire photodiodes 

results from a much thinner depletion region due to their high unintentional doping (n-type). As for typical 

planar InAs p-i-n photodiodes the doping of the intrinsic layer can be precisely controlled to low levels 

(~1014 – 1015 cm-3). While for bottom-up nanowire photodetectors, it is impractical to achieve such low 

doping level, which is mostly limited by the epitaxial capability. Thus, it is reasonable for InAsSb-InP 

nanowire photodiodes to have a lower responsivity and IQE than planar photodiodes. 

We also calculate the nanowire photodiode D* at 0.0001V (photovoltaic mode, figure 3d). A 

comparison of dark current used to calculate D* is listed in Table 1. Remarkably, the room-temperature D* 

of InAsSb-InP nanowire heterojunction photodiode can achieve over 3.5×1010 cm Hz1/2 W-1 at plasmonic 

mode (SP01) resonance peak wavelength of 3.0 µm. This D* value outperforms that of commercial uncooled 

InAs p-i-n photodiodes and approaches that of the cryogenically cooled (77 K) InSb p-i-n photodiodes. 

Furthermore, we observe that the D* of InAsSb-InAs nanowire photodiode is lower than that of InAsSb-

InP nanowire photodiode. This is due to InAsSb-InAs nanowire photodiode having one-order higher dark 

current than that of the InAsSb-InP nanowire photodiode, which results from the higher minority carrier 

diffusion current stemming from the lower bandgap InAs substrate compared to that of InP substrate. 

Nevertheless, the D* of InAsSb-InAs nanowire photodiode is higher than that of planar InAs photodiode at 

wavelengths spanning 2.5 – 3.1 µm. Such results clearly demonstrate the potential of InAsSb-based 

nanowire photodetectors in breaking the trade-off between high responsivity and low dark current as the 

reduction in dark current is much greater than that of responsivity. Further device structure optimization of 
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InAsSb-based nanowire photodetector can lead to a higher D* that spans the entire MWIR spectrum 

between 3 – 5 µm. 

Furthermore, as shown in figure 4, the detection peaks can be tuned simply by varying the exposed 

nanowire height. Note that this design is compatible with the practical fabrication process of nanowire 

devices, since the height of the individual nanowire array can be lithographically controlled during the BCB 

etch-back process. Clearly, the D* peaks of surface plasmon resonance (SP01) red-shift with increasing 

nanowire exposed height from 600 nm to 1200 nm.  Also, all plasmonic peaks show over one-order higher 

D* than the peak D* of the uncooled planar InAs p-i-n photodiodes. Thus, it is possible to efficiently design 

a focal plane array comprised of InAs(Sb) nanowire arrays with different exposed heights to achieve high 

detectivity spanning 2.0 – 3. 5 µm. This further opens the possibility of developing nanowire-plasmonic 

multichannel detectors for multispectral and hyperspectral imaging applications. Also note that the cutoff 

wavelength can be extended beyond 3.5 µm by using InAsSb nanowires with higher antimony compositions.  

Finally, we take the nanowire material quality into account and analyze the impact of carrier 

mobility and carrier lifetime on peak D*. It is known that the quality of nanowire materials might not be as 

good as bulk materials. For instance, due to the rotational twins and local defects formed during epitaxy, 

the carrier mobility (µe) and SRH nonradiative recombination lifetime (τSRH) are degraded, respectively. 

Here, we keep the nanowire exposed height fixed at 800 nm and compute D* with different combinations 

of mobility and lifetime: µe – 11000 cm2 V-1s-1 and 5000 cm2 V-1s-1; τSRH – 1 µs, 0.1 µs, 0.01 µs, and 0.001 

µs. Figure 5a shows the impact of τSRH on D* with µe fixed at 11000 cm2 V-1s-1. The difference between the 

D* spectra is almost negligible when τSRH is greater than 0.01 µs. The relation between the peak D* (at 3 

µm) with µe and τSRH is further shown in figure 5b. We observe that when τSRH is greater than 0.01 µs, µe 

has negligible effect on peak D*. In contrast, the peak D* becomes more sensitive to the change of material 

properties when τSRH becomes smaller, within the scale of a few nanoseconds and lower. This is because 

most of the photogenerated carriers are tightly confined within nanoscale distance away from the 3-D 

contacts. Thus, the mean path to the contacts is much shorter than the carrier diffusion length defined by µe 
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and τSRH, and hence carriers diffuse to the contacts before being recombined in nanowire bulk or at the 

surface. Thus, the D* becomes less sensitive to larger τSRH (greater than 0.01 µs) and variation in µe. 

4. Conclusion 

We demonstrated the feasibility of achieving high room-temperature D* at SWIR and MWIR by 

using InAs(Sb)-InP nanowire-plasmonic heterojunction photodiodes. This device platform significantly 

suppressed the leakage current from G-R process and minority carrier diffusion. Meanwhile, the loss of 

optical absorber volume was compensated by using efficient 3-D plasmonic gratings for light coupling, 

thus breaking the trade-off between high responsivity and low dark current. We proved this concept by 

developing a 3-D computational model to numerically investigate the responsivity and D* of InAs(Sb)-InP 

nanowire heterojunction photodiodes and compared the device performance with planar uncooled InAs p-

i-n photodiodes and cryogenically cooled InSb p-i-n photodiodes. The resultant simulations showed that 

the plasmonic mode (SP01) resonance peak D* of 3.5×1010 cm Hz1/2W-1 at wavelength of 3.0 µm was about 

one-order higher than that of planar InAs photodiodes. Furthermore, we tuned the plasmonic peak D* by 

simply varying the exposed height of the nanowire top segments, thus demonstrating multispectral 

capability. Finally, we investigated the impact of nanowire material quality on D*. Our work shows that, 

through sophisticated optical and electrical design, nanowire-based photodetectors can demonstrate better 

performance than their planar device counterparts for photodetection at SWIR and MWIR. 
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Figure 1. Schematic diagrams of (a) a planar InAs p-i-n photodiode with a cylindrical mesa as 

photoabsorber and (b) a nanowire-based InAs(Sb)-InP heterojunction photodiode with a InAs(Sb) nanowire 

array as photoabsorber. The nanowire segments and the substrate form p-n heterojunctions. Here, InAs(Sb) 

nanowires are n-type and InP substrate is p-type. The exposed height of the nanowire top segment is 

labelled. 
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Figure 2. Schematic diagram of simulation process, which is composed of three major steps: (1) optical 

simulation by FDTD, (2) conversion of optical profile from FDTD mesh to FEM mesh, and (3) electrical 

simulation by FEM. 
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Figure 3. Simulated spectral response of InAs(Sb) nanowire photodiodes. (a) Optical generation: x-

polarized and y-polarized electric profiles at 3 µm. (b) Optical absorption of InAsSb nanowire photodiodes 

and planar InAs photodiodes. (c) Responsivity of nanowire photodiodes on InP and InAs substrates. (d) D* 

of nanowire photodiodes on InP and InAs substrates, where D* from reference cells of commercial uncooled 

InAs photodiodes and cryogenically cooled (77 K) InSb photodiodes are also presented. 
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Figure 4. D* as a function of the exposed nanowire height from 600 nm to 1200 nm for nanowire core 

diameter and array pitch of 200 nm and 1300 nm respectively. The diameter and array pitch were optimized 

in a previous simulation study. A 60 nm thick Al2O3 passivation layer was further used to passivate the 

nanowire. 
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Figure 5. Impact of nanowire material quality on D*. (a) Spectra of D* as a function of τSRH (1 µs, 0.1 µs, 

0.01 µs, and 0.001 µs). µe is kept fixed at 11000 cm2 V-1s-1. (b) Peak D* (at 3 µm) as a function of µe (11000 

cm2 V-1s-1 and 5000 cm2 V-1s-1) and τSRH (1 µs, 0.1 µs, 0.01 µs, and 0.001 µs). 
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Table 1. Comparison of the simulated dark current density Jdark at 0.0001 V (photovoltaic mode). 

Devices Absorber thickness (µm) Jdark (A cm-2) 

InAs(Sb)-InP nanowire heterojunction 

photodiodes 

2 ~2.7×10-6 

InAs(Sb)-InAs nanowire  

heterojunction photodiodes 

2 ~1.1×10-4 

InAs p-i-n homojunction photodiodes 

(references) 

             4 – 8 [2,3,27] ~2.0×10-1 

 


