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KU Leuven

sebastijan.dumancic@cs.kuleuven.be

Angelika Kimmig
Cardiff University

KimmigA@cardiff.ac.uk

Thomas Demeester∗
Ghent University - imec

thomas.demeester@ugent.be

Luc De Raedt*

KU Leuven
luc.deraedt@cs.kuleuven.be

Abstract

We introduce DeepProbLog, a probabilistic logic programming language that in-
corporates deep learning by means of neural predicates. We show how exist-
ing inference and learning techniques can be adapted for the new language. Our
experiments demonstrate that DeepProbLog supports (i) both symbolic and sub-
symbolic representations and inference, (ii) program induction, (iii) probabilistic
(logic) programming, and (iv) (deep) learning from examples. To the best of our
knowledge, this work is the first to propose a framework where general-purpose
neural networks and expressive probabilistic-logical modeling and reasoning are
integrated in a way that exploits the full expressiveness and strengths of both
worlds and can be trained end-to-end based on examples.

1 Introduction

The integration of low-level perception with high-level reasoning is one of the oldest, and yet most
current open challenges in the field of artificial intelligence. Today, low-level perception is typically
handled by neural networks and deep learning, whereas high-level reasoning is typically addressed
using logical and probabilistic representations and inference. While it is clear that there have been
breakthroughs in deep learning, there has also been a lot of progress in the area of high-level reason-
ing. Indeed, today there exist approaches that tightly integrate logical and probabilistic reasoning
with statistical learning; cf. the areas of statistical relational artificial intelligence [De Raedt et al.,
2016, Getoor and Taskar, 2007] and probabilistic logic programming [De Raedt and Kimmig, 2015].
Recently, a number of researchers have revisited and modernized older ideas originating from the
field of neural-symbolic integration [Garcez et al., 2012], searching for ways to combine the best of
both worlds [Bošnjak et al., 2017, Rocktäschel and Riedel, 2017, Cohen et al., 2018, Santoro et al.,
2017], for example, by designing neural architectures representing differentiable counterparts of
symbolic operations in classical reasoning tools. Yet, joining the full flexibility of high-level proba-
bilistic reasoning with the representational power of deep neural networks is still an open problem.
This paper tackles this challenge from a different perspective. Instead of integrating reasoning ca-
pabilities into a complex neural network architecture, we proceed the other way round. We start
∗ joint last authors
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from an existing probabilistic logic programming language, ProbLog [De Raedt et al., 2007], and
extend it with the capability to process neural predicates. The idea is simple: in a probabilistic logic,
atomic expressions of the form q(t1, ..., tn) (aka tuples in a relational database) have a probability p.
Consequently, the output of neural network components can be encapsulated in the form of “neural”
predicates as long as the output of the neural network on an atomic expression can be interpreted as
a probability. This simple idea is appealing as it allows us to retain all the essential components of
the ProbLog language: the semantics, the inference mechanism, as well as the implementation. The
main challenge is in training the model based on examples. The input data consists of feature vectors
at the input of the neural network components (e.g., images) together with other probabilistic facts
and clauses in the logic program, whereas targets are only given at the output side of the probabilistic
reasoner. However, the algebraic extension of ProbLog (based on semirings) [Kimmig et al., 2011]
already supports automatic differentiation. As a result, we can back-propagate the gradient from the
loss at the output through the neural predicates into the neural networks, which allows training the
whole model through gradient-descent based optimization. We call the new language DeepProbLog.

Before going into further detail, the following example illustrates the possibilities of this approach
(also see Section 6). Consider the predicate addition(X, Y, Z), where X and Y are images of digits
and Z is the natural number corresponding to the sum of these digits. After training, DeepProbLog
allows us to make a probabilistic estimate on the validity of, e.g., the example addition( , , 8).
While such a predicate can be directly learned by a standard neural classifier, such a method would
have a hard time taking into account background knowledge such as the definition of the addition
of two natural numbers. In DeepProbLog such knowledge can easily be encoded in rules such as
addition(IX, IY, NZ) :− digit(IX, NX), digit(IY, NY), NZ is NX + NY (with is the standard opera-
tor of logic programming to evaluate arithmetic expressions). All that needs to be learned in this case
is the neural predicate digit which maps an image of a digit ID to the corresponding natural number
ND. The learned network can then be reused for arbitrary tasks involving digits. Our experiments
show that this leads not only to new capabilities but also to significant performance improvements.
An important advantage of this approach compared to standard image classification settings is that
it can be extended to multi-digit numbers without additional training. We note that the single digit
classifier (i.e., the neural predicate) is not explicitly trained by itself: its output can be considered a
latent representation, as we only use training data with pairwise sums of digits.

To summarize, we introduce DeepProbLog which has a unique set of features: (i) it is a program-
ming language that supports neural networks and machine learning, and it has a well-defined seman-
tics (as an extension of Prolog, it is Turing equivalent); (ii) it integrates logical reasoning with neural
networks; so both symbolic and subsymbolic representations and inference; (iii) it integrates prob-
abilistic modeling, programming and reasoning with neural networks (as DeepProbLog extends the
probabilistic programming language ProbLog, which can be regarded as a very expressive directed
graphical modeling language [De Raedt et al., 2016]); (iv) it can be used to learn a wide range of
probabilistic logical neural models from examples, including inductive programming. The code is
available at https://bitbucket.org/problog/deepproblog.

2 Logic programming concepts

We briefly summarize basic logic programming concepts. Atoms are expressions of the form
q(t1, ..., tn) where q is a predicate (of arity n) and the ti are terms. A literal is an atom or the
negation ¬q(t1, ..., tn) of an atom. A term t is either a constant c, a variable V , or a structured
term of the form f(u1, ..., uk) where f is a functor. We will follow the Prolog convention and
let constants start with a lower case character and variables with an upper case. A substitution
θ = {V1 = t1, ..., Vn = tn} is an assignment of terms ti to variables Vi. When applying a sub-
stitution θ to an expression e we simultaneously replace all occurrences of Vi by ti and denote the
resulting expression as eθ. Expressions that do not contain any variables are called ground. A rule
is an expression of the form h :− b1, ..., bn where h is an atom and the bi are literals. The meaning
of such a rule is that h holds whenever the conjunction of the bi holds. Thus :− represents logical
implication (←), and the comma (,) represents conjunction (∧). Rules with an empty body n = 0
are called facts.
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3 Introducing DeepProbLog

We now recall the basics of probabilistic logic programming using ProbLog, illustrate it using the
well-known burglary alarm example, and then introduce our new language DeepProbLog.

A ProbLog program consists of (i) a set of ground probabilistic facts F of the form p :: f where p
is a probability and f a ground atom and (ii) a set of rules R. For instance, the following ProbLog
program models a variant of the well-known alarm Bayesian network:

0.1 : :burglary. 0.5 : :hears alarm(mary).

0.2 : :earthquake. 0.4 : :hears alarm(john).

alarm :−earthquake.
alarm :−burglary. (1)

calls(X) :−alarm, hears alarm(X).
Each probabilistic fact corresponds to an independent Boolean random variable that is true with
probability p and false with probability 1 − p. Every subset F ⊆ F defines a possible world wF =
F ∪ {fθ|R∪F |= fθ and fθ is ground}. So wF contains F and all ground atoms that are logically
entailed by F and the set of rulesR, e.g.,

w{burglary,hears alarm(mary)} = {burglary, hears alarm(mary)} ∪ {alarm, calls(mary)}

The probability P (wF ) of such a possible world wF is given by the product of the probabilities of
the truth values of the probabilistic facts, P (wF ) =

∏
fi∈F pi

∏
fi∈F\F (1− pi). For instance,

P (w{burglary,hears alarm(mary)}) = 0.1× 0.5× (1− 0.2)× (1− 0.4) = 0.024

The probability of a ground fact q, also called success probability of q, is then defined as the sum of
the probabilities of all worlds containing q, i.e., P (q) =

∑
F⊆F :q∈wF

P (wF ).

One convenient extension that is nothing else than syntactic sugar are the annotated disjunctions. An
annotated disjunction (AD) is an expression of the form p1 :: h1; ...; pn :: hn :− b1, ..., bm. where
the pi are probabilities so that

∑
pi = 1, and hi and bj are atoms. The meaning of an AD is that

whenever all bi hold, hj will be true with probability pj , with all other hi false (unless other parts
of the program make them true). This is convenient to model choices between different categorical
variables, e.g. different severities of the earthquake:

0.4 :: earthquake(none); 0.4 :: earthquake(mild); 0.2 :: earthquake(severe).

ProbLog programs with annotated disjunctions can be transformed into equivalent ProbLog pro-
grams without annotated disjunctions (cf. De Raedt and Kimmig [2015]).

A DeepProbLog program is a ProbLog program that is extended with (iii) a set of ground neural
ADs (nADs) of the form

nn(mq,~t, ~u) :: q(~t, u1); ...; q(~t, un) :− b1, ..., bm

where the bi are atoms, ~t = t1, . . . , tk is a vector of ground terms representing the inputs of the
neural network for predicate q, u1 to un are the possible output values of the neural network. We
use the notation nn for ‘neural network’ to indicate that this is a nAD. mq is the identifier of a
neural network model that specifies a probability distribution over its output values ~u, given input ~t.
That is, from the perspective of the probabilistic logic program, an nAD realizes a regular AD
p1 :: q(~t, u1); ...; pn :: q(~t, un) :− b1, ..., bm, and DeepProbLog thus directly inherits its semantics,
and to a large extent also its inference, from ProbLog. For instance, in the MNIST addition example,
we would specify the nAD

nn(mdigit, , [0, . . . , 9]) :: digit( , 0); . . . ; digit( , 9).

where mdigit is a network that probabilistically classifies MNIST digits. The neural network could
take any shape, e.g., a convolutional network for image encoding, a recurrent network for sequence
encoding, etc. However, its output layer, which feeds the corresponding neural predicate, needs to
be normalized. In neural networks for multiclass classification, this is typically done by applying a
softmax layer to real-valued output scores, a choice we also adopt in our experiments.
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4 DeepProbLog Inference

This section explains how a DeepProbLog model is used for a given query at prediction time.

ProbLog Inference As inference in DeepProbLog closely follows that in ProbLog, we now sum-
marize ProbLog inference using the burglary example explained before. For full details, we refer
to Fierens et al. [2015]. The program describing the example is explained in Section 3, Equation
(1). We can query the program for the probabilities of given query atoms, say, the single query
calls(mary). ProbLog inference proceeds in four steps. (i) The first step grounds the logic pro-
gram with respect to the query, that is, it generates all ground instances of clauses in the program the
query depends on. The grounded program for query calls(mary) is shown in Figure 1a. (ii) The
second step rewrites the ground logic program into a formula in propositional logic that defines the
truth value of the query in terms of the truth values of probabilistic facts. In our example, the re-
sulting formula is calls(mary) ↔ hears alarm(mary) ∧ (burglary ∨ earthquake). (iii) The
third step compiles the logic formula into a Sentential Decision Diagram (SDD, Darwiche [2011]),
a form that allows for efficient evaluation of the query, using knowledge compilation technology
[Darwiche and Marquis, 2002]. The SDD for our example is shown in Figure 1b, where rounded
grey rectangles depict variables corresponding to probabilistic facts, and the rounded red rectangle
denotes the query atom defined by the formula. The white rectangles correspond to logical operators
applied to their children. (iv) The fourth and final step evaluates the SDD bottom-up to calculate the
success probability of the given query, starting with the probability labels of the leaves as given by
the program and performing addition in every or-node and multiplication in every and-node. The
intermediate results are shown next to the nodes in Figure 1b, ignoring the blue numbers for now.

0 . 2 : : e a r t h q u a k e .
0 . 1 : : b u r g l a r y .
a l a rm :− e a r t h q u a k e .
a l a rm :− b u r g l a r y .
0 . 5 : : h e a r s a l a r m ( mary ) .
c a l l s ( mary ):− alarm , h e a r s a l a r m ( mary ) .

(a) The ground program.

AND AND

AND

OR

calls(mary)

￢earthquake

0.8
-1,0

0.08
-0.1,0.8

burglary

0.1
0,1

hears_alarm(mary)

0.5
0,0

earthquake
0.2
1,0

0.1
0.5,0

0.04
-0.05,0.4

0.14
0.45,0.4

(b) SDD for query calls(mary).

Figure 1: Inference in ProbLog.

DeepProbLog Inference Inference in DeepProbLog works exactly as described above, except
that a forward pass on the neural network components is performed every time we encounter a
neural predicate during grounding. When this occurs, the required inputs (e.g., images) are fed into
the neural network, after which the resulting scores of their softmax output layer are used as the
probabilities of the ground AD.

5 Learning in DeepProbLog

We now introduce our approach to jointly train the parameters of probabilistic facts and neural
networks in DeepProbLog programs. We use the learning from entailment setting [De Raedt et al.,
2016] , that is, given a DeepProbLog program with parameters X , a set Q of pairs (q, p) with q a
query and p its desired success probability, and a loss function L, compute:

argmin
~x

1

|Q|
∑

(q,p)∈Q

L(PX=~x(q), p)

In contrast to the earlier approach for ProbLog parameter learning in this setting by Gutmann et al.
[2008], we use gradient descent rather than EM, as this allows for seamless integration with neural
network training. An overview of the approach is shown in Figure 2a. Given a DeepProbLog
program, its neural network models, and a query used as training example, we first ground the
program with respect to the query, getting the current parameters of nADs from the external models,
then use the ProbLog machinery to compute the loss and its gradient, and finally use these to update
the parameters in the neural networks and the probabilistic program.
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side(coin1,S1)

side(coin2,S2)

Ground
Program

Program
flip(coin1).
 ...
win :- heads.
win :- \+heads, red.

Loss
L,∇L

grounding rewrite / 
compilation

p,∇p

S
oftm

ax

Query
win

side(coin1,heads)

side(coin2,tails)

(a) The learning pipeline.

f l i p ( c o i n 1 ) . f l i p ( c o i n 2 ) .
nn ( m side , C , [ heads , t a i l s ] ) : : s i d e (C , heads ) ; s i d e (C , t a i l s ) .
t ( 0 . 5 ) : : r e d ; t ( 0 . 5 ) : : b l u e .
heads :− f l i p (X) , s i d e (X, heads ) .
win :− heads .
win :− \+heads , r e d .
que ry ( win ) .

(b) The DeepProbLog program.

⨂

side(coin1,heads)

0.9
1,0,0,0,0,0

⨂

⨁

0.1
-1,0,0,0,0,0

0.2
0,0,1,0,0,0

0.8
0,0,-1,0,0,0

0.4
0,0,-0.5,0,0.8,0

win

￢side(coin1,heads)

side(coin2,heads) ￢side(coin2,heads) red

⨁

0.5
0,0,0,0,1,0

0.6
0,0,0.5,0,0.8,0

0.06
-0.6,0,0.05,0,0.08,0

0.96
0.4,0,0.05,0,0.08,0

(c) SDD for query win.

Figure 2: Parameter learning in DeepProbLog.

More specifically, to compute the gradient with respect to the probabilistic logic program part, we
rely on Algebraic ProbLog (aProbLog, [Kimmig et al., 2011]), a generalization of the ProbLog
language and inference to arbitrary commutative semirings, including the gradient semiring [Eisner,
2002]. In the following, we provide the necessary background on aProbLog, discuss how to use it to
compute gradients with respect to ProbLog parameters and extend the approach to DeepProbLog.

aProbLog and the gradient semiring ProbLog annotates each probabilistic fact f with the
probability that f is true, which implicitly also defines the probability that f is false, and thus its
negation ¬f is true. It then uses the probability semiring with regular addition and multiplication as
operators to compute the probability of a query on the SDD constructed for this query, cf. Figure 1b.
This idea is generalized in aProbLog to compute such values based on arbitrary commutative
semirings. Instead of probability labels on facts, aProbLog uses a labeling function that explicitly
associates values from the chosen semiring with both facts and their negations, and combines these
using semiring addition ⊕ and multiplication ⊗ on the SDD. We use the gradient semiring, whose
elements are tuples (p, ∂p∂x ), where p is a probability (as in ProbLog), and ∂p

∂x is the partial derivative
of that probability with respect to a parameter x, that is, the probability pi of a probabilistic fact
with learnable probability, written as t(pi) :: fi. This is easily extended to a vector of parameters
~x = [x1, . . . , xN ]T , the concatenation of all N parameters in the ground program. Semiring
addition ⊕, multiplication ⊗ and the neutral elements with respect to these operations are defined
as follows:

(a1, ~a2)⊕ (b1, ~b2) = (a1 + b1, ~a2 + ~b2) (2)

(a1, ~a2)⊗ (b1, ~b2) = (a1b1, b1 ~a2 + a1 ~b2) (3)

e⊕ = (0,~0) (4)

e⊗ = (1,~0) (5)
Note that the first element of the tuple mimics ProbLog’s probability computation, whereas the
second simply computes gradients of these probabilities using derivative rules.

Gradient descent for ProbLog To use the gradient semiring for gradient descent parameter learn-
ing in ProbLog, we first transform the ProbLog program into an aProbLog program by extending
the label of each probabilistic fact p :: f to include the probability p as well as the gradient vector
of p with respect to the probabilities of all probabilistic facts in the program, i.e.,

L(f) = (p,~0) for p :: f with fixed p (6)
L(fi) = (pi, ei) for t(pi) :: fi with learnable pi (7)
L(¬f) = (1− p,−∇p) with L(f) = (p,∇p) (8)

where the vector ei has a 1 in the ith position and 0 in all others. For fixed probabilities, the
gradient does not depend on any parameters and thus is 0. For the other cases, we use the semiring
labels as introduced above. For instance, assume we want to learn the probabilities of earthquake

5



and burglary in the example of Figure 1, while keeping those of the other facts fixed. Then, in
Figure 1b, the nodes in the SDD now also contain the gradient (below, in blue). The result shows that
the partial derivative of the proof query is 0.45 and 0.4 w.r.t. the earthquake and burglary parameters
respectively. To ensure that ADs are always well defined, i.e., the probabilities of the facts in the
same AD sum to one, we re-normalize these after every gradient descent update.

Gradient descent for DeepProbLog In contrast to probabilistic facts and ADs, whose parameters
are updated based on the gradients computed by aProbLog, the probabilities of the neural predicates
are a function of the neural network parameters. The neural predicates serve as an interface between
the logic and the neural side, with both sides treating the other as a black box. The logic side can
calculate the gradient of the loss w.r.t. the output of the neural network, but is unaware of the internal
parameters. However, the gradient w.r.t. the output is sufficient to start backpropagation, which
calculates the gradient for the internal parameters. Then, standard gradient-based optimizers (e.g.
SGD, Adam, ...) are used to update the parameters of the network. During gradient computation with
aProbLog, the probabilities of neural ADs are kept constant. Furthermore, updates on neural ADs
come from the neural network part of the model, where the use of a softmax output layer ensures
they always represent a normalized distribution, hence not requiring the additional normalization as
for non-neural ADs. The labeling function for facts in nADs is

L(fj) = (mq(~t)j , ej) for nn(mq,~t, ~u) :: fi; . . . ; fk a nAD (9)

Example We will demonstrate the learning pipeline (shown in Figure 2a) using the following
game. We have two coins and an urn containing red and blue balls. We flip both coins and take a
ball out of the urn. We win if the ball is red, or at least one coin comes up heads. However, we need
to learn to recognize heads and tails using a neural network, while only observing examples of wins
or losses instead of explicitly learning from coin examples labeled with the correct side. We also
learn the distribution of the red and blue balls in the urn. We show the program in Figure 2b. There
are 6 parameters in this program: the first four originate from the neural predicates (heads and tails
for the first and second coin). The last two are the logic parameters that model the chance of picking
out a red or blue ball. During grounding, the neural network classifies coin1 and coin2. According
to the neural network, the first coin is most likely heads (p = 0.9), and the second one most likely
tails (p = 0.2). Figure 2c shows the corresponding SDD with the AND/OR nodes replaced with
the respective semiring operations. The top number is the probability, and the numbers below are
the gradient. On the top node, we can see that we have a 0.96 probability of winning, but also that
the gradient of this probability is 0.4 and 0.05 w.r.t the probability of being heads for the first and
second coin respectively, and 0.08 for the chance of the ball being red.

6 Experimental Evaluation

We perform three sets of experiments to demonstrate that DeepProbLog supports (i) symbolic and
subsymbolic reasoning and learning, that is, both logical reasoning and deep learning; (ii) program
induction; and (iii) both probabilistic logic programming and deep learning.

We provide implementation details at the end of this section and list all programs in Appendix A.

Logical reasoning and deep learning To show that DeepProbLog supports both logical reasoning
and deep learning, we extend the classic learning task on the MNIST dataset (Lecun et al. [1998])
to two more complex problems that require reasoning:

T1: addition( , , 8): Instead of using labeled single digits, we train on pairs of images, la-
beled with the sum of the individual labels. The DeepProbLog program consists of the clause
addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2), Z is X2+Y2. and a neural AD for
the digit/2 predicate (this is shorthand notation for of arity 2), which classifies an MNIST
image. We compare to a CNN baseline classifying the concatenation of the two images into
the 19 possible sums.

T2: addition([ , ], [ , ], 63): the input consists of two lists of images, each element be-
ing a digit. This task demonstrates that DeepProbLog generalizes well beyond training data.
Learning the new predicate requires only a small change in the logic program. We train the
model on single digit numbers, and evaluate on three digit numbers.
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The learning curves of both models on T1 (Figure 3a) show the benefit of combined symbolic and
subsymbolic reasoning: the DeepProbLog model uses the encoded knowledge to reach a higher F1
score than the CNN, and does so after a few thousand iterations, while the CNN converges much
slower. We also tested an alternative for the neural network baseline. It evaluates convolutional
layers with shared parameters on each image separately, instead of a single set of convolutional
layers on the concatenation of both images. It converges quicker and achieves a higher final accuracy
than the other baseline, but is still slower and less accurate than the DeepProbLog model. Figure 3b
shows the learning curve for T2. DeepProbLog achieves a somewhat lower accuracy compared to
the single digit problem due to the compounding effect of the error, but the model generalizes well.
The CNN does not generalize to this variable-length problem setting.

Program Induction The second set of problems demonstrates that DeepProbLog can perform
program induction. We follow the program sketch setting of differentiable Forth [Bošnjak et al.,
2017], where holes in given programs need to be filled by neural networks trained on input-output
examples for the entire program. As in their work, we consider three tasks: addition, sorting [Reed
and de Freitas, 2016] and word algebra problems (WAPs) [Roy and Roth, 2015].

T3: forth addition/4: where the input consists of two numbers and a carry, with the output
being the sum of the numbers and the new carry. The program specifies the basic addition
algorithm in which we go from right to left over all digits, calculating the sum of two digits
and taking the carry over to the next pair. The hole in this program corresponds to calculating
the resulting digit (result/4) and carry (carry/4), given two digits and the previous carry.

T4: sort/2: The input consists of a list of numbers, and the output is the sorted list. The program
implements bubble sort, but leaves open what to do on each step in a bubble (i.e. whether to
swap or not, swap/2).

T5: wap/2: The input to the WAPs consists of a natural language sentence describing a sim-
ple mathematical problem, and the output is the solution to this question. These WAPs al-
ways contain three numbers and are solved by chaining 4 steps: permuting the three numbers
(permute/2), applying an operation on the first two numbers (addition, subtraction or product
operation 1/2), potentially swapping the intermediate result and the last digit (swap/2), and
performing a last operation (operation 2/2). The hole in the program is in deciding which
of the alternatives should happen on each step.

DeepProbLog achieves 100% on the Forth addition (T3) and sorting (T4) problems (Table 1a). The
sorting problem yields a more interesting comparison: differentiable Forth achieves a 100% accu-
racy with a training length of 2 and 3, but performs poorly on a training length of 4; DeepProbLog
generalizes well to larger lengths. As shown in Table 1b, DeepProbLog runs faster and scales better
with increasing training length, while differentiable Forth has issues due to computational complex-
ity with larger lengths, as mentioned in the paper.

On the WAPs (T5), DeepProbLog reaches an accuracy between 96% and 97%, similar to Bošnjak
et al. [2017] (96%).

Probabilistic programming and deep learning The coin-ball problem is a standard example in
the probabilistic programming community [De Raedt and Kimmig, 2014]. It describes a game in
which we have a potentially biased coin and two urns. The first urn contains a mixture of red and
blue balls, and the second urn a mixture of red, blue and green balls. To play the game, we toss the
coin and take a ball out of each urn. We win if both balls have the same colour, or if the coin came
up heads and we have at least one red ball. We want to learn the bias of the coin (the probability of
heads), and the ratio of the coloured balls in each urn. We simultaneously train one neural network
to classify an image of the coin as being heads or tails (coin/2), and a neural network to classify
the colour of the ball as being either red, blue or green (colour/4). These are given as RGB triples.
Task T6 is thus to learn the game/4 predicate, requiring a combination of subsymbolic reasoning,
learning and probabilistic reasoning. The input consists of an image, two RGB pairs and the output
is the outcome of the game. The coin-ball problem uses a very simple neural network component.
Training on a set of 256 instances converges after 5 epochs, leading to 100% accuracy on the test
set (64 instances). At this point, both networks correctly classify the colours and the coins, and the
probabilistic parameters reflect the distributions in the training set.
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(a) Single digit (T1)
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Figure 3: MNIST Addition problems: displaying training loss (red for CNN, orange for Deep-
ProbLog) and F1 score on the test set (green for CNN, blue for DeepProbLog).

Sorting (T4): Training length Addition (T3): training length
Test Length 2 3 4 5 6 2 4 8

∂4 [Bošnjak et al., 2017] 8 100.0 100.0 49.22 – – 100.0 100.0 100.0
64 100.0 100.0 20.65 – – 100.0 100.0 100.0

DeepProbLog 8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
64 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(a) Accuracy on the addition (T3) and sorting (T4) problems (results for ∂4 reported by Bošnjak et al. [2017]).

Training length−→ 2 3 4 5 6
∂4 on GPU 42 s 160 s – – –
∂4 on CPU 61 s 390 s – – –
DeepProbLog on CPU 11 s 14 s 32 s 114 s 245 s

(b) Time until 100% accurate on test length 8 for the sorting (T4) problem.

Table 1: Results on the Differentiable Forth experiments

Implementation details In all experiments we optimize the cross-entropy loss between the pre-
dicted and desired query probabilities. The network used to classify MNIST images is a basic ar-
chitecture based on the PyTorch tutorial. It consists of 2 convolutional layers with kernel size 5, and
respectively 6 and 16 filters, each followed by a maxpool layer of size 2, stride 2. After this come 3
fully connected layers of sizes 120, 84 and 10 (19 for the CNN baseline). It has a total of 44k pa-
rameters. The last layer is followed by a softmax layer, all others are followed by a ReLu layer. The
colour network consists of a single fully connected layer of size 3. For all experiments we use Adam
[Kingma and Ba, 2015] optimization for the neural networks, and SGD for the logic parameters.
The learning rate is 0.001 for the MNIST network, and 1 for the colour network. For robustness in
optimization, we use a warm-up of the learning rate of the logic parameters for the coin-ball experi-
ments, starting at 0.0001 and raising it linearly to 0.01 over four epochs. For the Forth experiments,
the architecture of the neural networks and other hyper-parameters are as described in Bošnjak et al.
[2017]. For the Coin-Urn experiment, we generate the RGB pairs by adding Gaussian noise (σ =
0.03) to the base colours in the HSV domain. The coins are MNIST images, where we use even
numbers as heads, and odd for tails. For the implementation we integrated ProbLog2 [Dries et al.,
2015] with PyTorch [Paszke et al., 2017]. We do not perform actual mini-batching, but instead use
gradient accumulation. All programs are listed in the appendix.

7 Related Work

Most of the work on combining neural networks and logical reasoning comes from the neuro-
symbolic reasoning literature [Garcez et al., 2012, Hammer and Hitzler, 2007]. These approaches
typically focus on approximating logical reasoning with neural networks by encoding logical terms
in Euclidean space. However, they neither support probabilistic reasoning nor perception, and are
often limited to non-recursive and acyclic logic programs [Hölldobler et al., 1999]. DeepProbLog
takes a different approach and integrates neural networks into a probabilistic logic framework, re-
taining the full power of both logical and probabilistic reasoning and deep learning.
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The most prominent recent line of related work focuses on developing differentiable frameworks for
logical reasoning. Rocktäschel and Riedel (2017) introduce a differentiable framework for theorem
proving. They re-implemented Prolog’s theorem proving procedure in a differentiable manner and
enhanced it with learning subsymbolic representation of the existing symbols, which are used to
handle noise in data. Whereas Rocktäschel and Riedel (2017) use logic only to construct a neural
network and focus on learning subsymbolic representations, DeepProblog focuses on tight interac-
tions between the two and parameter learning for both the neural and the logic components. In this
way, DeepProbLog retains the best of both worlds. While the approach of Rocktäschel and Riedel
could in principle be applied to tasks T1 and T5, the other tasks seem to be out of scope. Cohen
et al. (2018) introduce a framework to compile a tractable subset of logic programs into differen-
tiable functions and to execute it with neural networks. It provides an alternative probabilistic logic
but it has a different and less developed semantics. Furthermore, to the best of our knowledge it
has not been applied to the kind of tasks tackled in the present paper. The approach most similar to
ours is that of Bošnjak et al. [2017], where neural networks are used to fill in holes in a partially de-
fined Forth program. DeepProblog differs in that it uses ProbLog as the host language which results
in native support for both logical and probabilistic reasoning, something that has to be manually
implemented in differentiable Forth. Differentiable Forth has been applied to tasks T3-5, but it is
unclear whether it could be applied to the remaining ones. Finally, Evans and Grefenstette (2018)
introduce a differentiable framework for rule induction, that does not focus on the integration of the
two approaches like DeepProblog.

A different line of work centers around including background knowledge as a regularizer during
training. Diligenti et al. [2017] and Donadello et al. [2017] use FOL to specify constraints on the
output of the neural network. They use fuzzy logic to create a differentiable way of measuring how
much the output of the neural networks violates these constraints. This is then added as an additional
loss term that acts as a regularizer. More recent work by Xu et al. [2018] introduces a similar method
that uses probabilistic logic instead of fuzzy logic, and is thus more similar to DeepProbLog. They
also compile the formulas to an SDD for efficiency. However, whereas DeepProbLog can be used to
specify probabilistic logic programs, these methods allow you to specify FOL constraints instead.

Dai et al. [2018] show a different way to combine perception with reasoning. Just as in Deep-
ProbLog, they combine domain knowledge specified as purely logical Prolog rules with the output
of neural networks. The main difference is that DeepProbLog deals with the uncertainty of the neu-
ral network’s output with probabilistic reasoning, while Dai et al. do this by revising the hypothesis,
iteratively replacing the output of the neural network with anonymous variables until a consistent
hypothesis can be formed.

An idea similar in spirit to ours is that of Andreas et al. (2016), who introduce a neural network for
visual question answering composed out of smaller modules responsible for individual tasks, such
as object detection. Whereas the composition of modules is determined by the linguistic structure of
the questions, DeepProbLog uses logic programs to connect the neural networks. These successes
have inspired a number of works developing (probabilistic) logic formulations of basic deep learning
primitives [Šourek et al., 2018, Dumančić and Blockeel, 2017, Kazemi and Poole, 2018].

8 Conclusion

We introduced DeepProbLog, a framework where neural networks and probabilistic logic program-
ming are integrated in a way that exploits the full expressiveness and strengths of both worlds and
can be trained end-to-end based on examples. This was accomplished by extending an existing prob-
abilistic logic programming language, ProbLog, with neural predicates. Learning is performed by
using aProbLog to calculate the gradient of the loss which is then used in standard gradient-descent
based methods to optimize parameters in both the probabilistic logic program and the neural net-
works. We evaluated our framework on experiments that demonstrate its capabilities in combined
symbolic and subsymbolic reasoning, program induction, and probabilistic logic programming.
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Lifted relational neural networks: Efficient learning of latent relational structures. Journal of
Artificial Intelligence Research, to appear, 2018.

11



A DeepProbLog Programs

nn ( m d i g i t , X, [ 0 , . . . , 9 ] ) : : d i g i t (X , 0 ) ; . . . ; d i g i t (X , 9 ) .

a d d i t i o n (X, Y, Z ) :− d i g i t (X, X2 ) , d i g i t (Y, Y2 ) , Z i s X2+Y2 .

Listing 1: Single-digit MNIST addition (T1)

In Listing 1, digit/2 is the neural predicate that classifies an MNIST image into the integers 0 to
9. The addition/3 predicate’s first two arguments are MNIST digits, and the last is the sum. It
classifies both images using and calculates the sum of the two results.

nn ( m d i g i t , X, [ 0 , . . . , 9 ] ) : : d i g i t (X , 0 ) ; . . . ; d i g i t (X , 9 ) .

number ( [ ] , R e s u l t , R e s u l t ) .
number ( [H |T ] , Acc , R e s u l t ) :−

d i g i t (H, Nr ) ,
Acc2 i s Nr+10*Acc ,
number ( T , Acc2 , R e s u l t ) .

number (X,Y) :− number (X, 0 ,Y ) .

m u l t i a d d i t i o n (X, Y, Z ) :− number (X, X2 ) , number (Y, Y2 ) , Z i s X2+Y2 .

Listing 2: Multi-digit MNIST addition (T2)

In Listing 2, the only difference with Listing 1 is that the multi addition/3 predicate now uses
the number/2 predicate instead of the digit/2 predicate. The number/3 predicate’s first argu-
ment is a list of MNIST images. It uses the digit/2 neural predicate on each image in the list,
summing and multiplying by ten to calculate the number represented by the list of images (e.g.
number([ , ],38)).

nn ( m r e s u l t , D1 , D2 , Carry , [ 0 , . . . , 9 ] ) : : r e s u l t ( D1 , D2 , Carry , 0 ) ;
. . . ; r e s u l t ( D1 , D2 , Carry , 9 ) .

nn ( m car ry , D1 , D2 , Carry , [ 0 , 1 ] ) : : c a r r y ( D1 , D2 , Carry , 0 ) ; c a r r y ( D1 , D2 , Carry , 1 ) .

s l o t ( I1 , I2 , Carry , NewCarry , R e s u l t ) :−
r e s u l t ( I1 , I2 , Carry , R e s u l t ) ,
c a r r y ( I1 , I2 , Carry , NewCarry ) .

add ( [ ] , [ ] , [ C] , C , [ ] ) .

add ( [ H1 | T1 ] , [ H2 | T2 ] , C , Carry , [ D i g i t | Res ] ) :−
add ( T1 , T2 , C , NewCarry , Res ) ,
s l o t ( H1 , H2 , NewCarry , Carry , D i g i t ) .

Listing 3: Forth addition sketch (T3)

In Listing 3, there are two neural predicates: result/4 and carry/4. These are used in the slot/4
predicate that corresponds to the slot in the Forth program. The first three arguments are the two
digits and the previous carry to be summed. The next two arguments are the new carry and the new
resulting digit. The add/5 predicate’s arguments are: the two list of input digits, the input carry,
the resulting carry and the resulting sum. It recursively calls itself to loop over both lists, calling the
slot/5 predicate on each position, using the carry from the previous step.

In Listing 4, there’s a single neural predicate: swap/3. It’s first two arguments are the numbers that
are compared, the last argument is an indicator whether to swap or not. The bubble/3 predicate
performs a single step of bubble sort on its first argument using the hole/4 predicate. The second
argument is the resulting list after the bubble step, but without its last element, which is the third
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nn ( m swap , X, [ 0 , 1 ] ) : : swap (X, Y, 0 ) ; swap (X, Y , 1 ) .

h o l e (X, Y, X,Y):−
swap (X, Y , 0 ) .

h o l e (X, Y, Y,X):−
swap (X, Y , 1 ) .

bu bb l e ( [X ] , [ ] , X ) .
bu bb l e ( [ H1 , H2 |T ] , [ X1 | T1 ] ,X):−

h o l e ( H1 , H2 , X1 , X2 ) ,
bu bb l e ( [ X2 |T ] , T1 ,X ) .

b u b b l e s o r t ( [ ] , L , L ) .

b u b b l e s o r t ( L , L3 , S o r t e d ) :−
bu bb l e ( L , L2 ,X) ,
b u b b l e s o r t ( L2 , [ X | L3 ] , S o r t e d ) .

s o r t ( L , L2 ) :− b u b b l e s o r t ( L , [ ] , L2 ) .

Listing 4: Forth sorting sketch (T4)

argument. The bubblesort/3 predicate uses the bubble/3 predicate, and recursively calls itself
on the remaining list, adding the last element on each step to the front of the sorted list.

permute ( 0 ,A, B , C , A, B , C ) .
pe rmute ( 1 ,A, B , C , A, C , B ) .
pe rmute ( 2 ,A, B , C , B , A, C ) .
pe rmute ( 3 ,A, B , C , B , C ,A ) .
pe rmute ( 4 ,A, B , C , C , A, B ) .
pe rmute ( 5 ,A, B , C , C , B ,A ) .

swap ( 0 ,X, Y, X,Y ) .
swap ( 1 ,X, Y, Y,X ) .

o p e r a t o r ( 0 ,X, Y, Z ) :− Z i s X+Y.
o p e r a t o r ( 1 ,X, Y, Z ) :− Z i s X−Y.
o p e r a t o r ( 2 ,X, Y, Z ) :− Z i s X*Y.
o p e r a t o r ( 3 ,X, Y, Z ) :− Y > 0 , 0 =:= X mod Y, Z i s X / / Y.

nn ( m net1 , Repr , [ 0 , . . . , 6 ] ) : : n e t 1 ( Repr , 0 ) ; . . . ; n e t 1 ( Repr , 6 ) .
nn ( m net2 , Repr , [ 0 , . . . , 3 ] ) : : n e t 2 ( Repr , 0 ) ; . . . ; n e t 2 ( Repr , 3 ) .
nn ( m net3 , Repr , [ 0 , 1 ] ) : : n e t 3 ( Repr , 0 ) ; n e t 3 ( Repr , 1 ) .
nn ( m net4 , Repr , [ 0 , . . . , 3 ] ) : : n e t 4 ( Repr , 0 ) ; . . . ; n e t 4 ( Repr , 3 ) .

wap ( Text , X1 , X2 , X3 , Out ) :−
n e t 1 ( Text , Perm ) ,
pe rmute ( Perm , X1 , X2 , X3 , N1 , N2 , N3 ) ,
n e t 2 ( Text , Op1 ) ,
o p e r a t o r ( Op1 , N1 , N2 , Res1 ) ,
n e t 3 ( Text , Swap ) ,
swap ( Swap , Res1 , N3 , X,Y) ,
n e t 4 ( Text , Op2 ) ,
o p e r a t o r ( Op2 , X, Y, Out ) .

Listing 5: Forth WAP sketch (T5)

In Listing 5, there are four neural predicates: net1/2 to net4/2. Their first argument is the input
question, and the second argument are indicator variables for the choice of respectively: one of six
permutations, one of 4 operations, swapping and one of 4 operations. These are implemented in the
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permute/7, swap/5 and operator/4 predicates. The wap/5 predicate then sequences these steps
to calculate the result.

nn ( m colour , R , G, B , [ red , green , b l u e ] ) : : c o l o u r (R , G, B , r e d ) ;
c o l o u r (R , G, B , g r e e n ) ; c o l o u r (R , G, B , b l u e ) .

nn ( m coin , Coin , [ heads , t a i l s ] ) : : c o i n ( Coin , heads ) ; c o i n ( Coin , t a i l s ) .

t ( 0 . 5 ) : : c o l ( 1 , r e d ) ; t ( 0 . 5 ) : : c o l ( 1 , b l u e ) .
t ( 0 . 3 3 3 ) : : c o l ( 2 , r e d ) ; t ( 0 . 3 3 3 ) : : c o l ( 2 , g r e e n ) ; t ( 0 . 3 3 3 ) : : c o l ( 2 , b l u e ) .
t ( 0 . 5 ) : : i s h e a d s .

outcome ( heads , red , , win ) .
outcome ( heads , , red , win ) .
outcome ( , C , C , win ) .
outcome ( Coin , Colour1 , Colour2 , l o s s ) :− \+ outcome ( Coin , Colour1 , Colour2 , win ) .

game ( Coin , Urn1 , Urn2 , R e s u l t ) :−
c o i n ( Coin , S ide ) ,
u rn ( 1 , Urn1 , C1 ) ,
u rn ( 2 , Urn2 , C2 ) ,
outcome ( Side , C1 , C2 , R e s u l t ) .

u rn ( ID , Colour , C) :−
c o l ( ID , C) ,
c o l o u r ( Colour , C ) .

c o i n ( Coin , heads ) :−
c o i n ( Coin , heads ) ,
i s h e a d s .

c o i n ( Coin , t a i l s ) :−
c o i n ( Coin , t a i l s ) ,
\+ i s h e a d s .

Listing 6: The coin-ball problem (T6)

In Listing 6, there are two neural predicates: colour/4 and coin/2. There are also 6 learnable
parameters: 2 for the first urn, 3 for the second and one for the coin. The outcome/4 defines the
winning conditions based on the coin and the two urns. The urn/3 and coin/2 predicates tie the
parameters to the detections of the neural predicates. The game predicate is the high-level predicate
that plays the game.
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