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Abstract

The interplay between lattice topology, frustration, and spin quantum number, s, is explored for

the Heisenberg antiferromagnet (HAFM) on the eleven two-dimensional Archimedean lattices

(square, honeycomb, CaVO, SHD, SrCuBO, triangle, bounce, trellis, maple-leaf, star, and

kagome). We show the CCM provides consistently accurate results when compared to the results

of other approximate methods. The CCM also provides valuable information relating to the

selection of ground states and we find that this depends on spin quantum number for the kagome

and star lattices. Specifically, the
√
3 ×

√
3 model state provides lower ground-state energies

than those of the q = 0 model state for the kagome and star lattices for most values of s. The

q = 0 model state provides lower ground-state energies only for s = 1/2 for the kagome lattice

and s = 1/2 and s = 1 for the star lattice. The kagome and star lattices demonstrate the

least amount of magnetic ordering and the unfrustrated lattices (square, honeycomb, SHD, and

CaVO) demonstrate the most magnetic ordering for all values of s. The SrCuBO and triangular

lattices also demonstrate high levels of magnetic ordering, while the remaining lattices (bounce,

maple-leaf, and trellis) tend to lie between these extremes, again for all values of s. These results

also clearly reflect the strong increase in magnetic order with increasing spin quantum number s

for all lattices. The ground-state energy, Eg/(NJs2), scales with s−1 to first order, as expected

from spin-wave theory, although the order parameter, M/s, scales with s−1 for most of the lattices

only. Self-consistent spin-wave theory calculations indicated previously that M/s scales with s−2/3

for the kagome lattice HAFM, whereas previous CCM results (replicated here also) suggested

that M/s scales with s−1/2. It is probable therefore that different scaling for M/s than with s−1

does indeed occur for the kagome lattice. By using similar arguments, we find here also that M/s

scales with s−1/3 on the star lattice and with s−2/3 on the SrCuBO lattice.

Keywords: Archimedean Lattices; Heisenberg Antiferromagnets; High-Order Coupled Cluster

Method (CCM)
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I. INTRODUCTION

Archimedes was one of the first people to describe regular tilings in two spatial dimensions.

Archimedean lattices [1–4] are infinite and they are composed of two-dimensional arrangements

of regular polygons with every site equivalent. As shown in Fig. 1, there are eleven

uniform two-dimensional Archimedean lattices. Such Archimedean “bodies” were gradually

rediscovered in the Renaissance period by Piero della Fransceca, Luca Pacioli, Leonardo da

Vinci, Albrecht Duerer, Daniele Barbaro, and Johannes Kepler [6]. Archimedean lattices are

instantly appealing and they are seen in paintings and architecture. Indeed, these uniform

Archimedean lattices are all around us: from patterns of household ceramic tiles, the weave

in baskets (“kagomé” means “weave pattern” in Japanese), and on to the atomic structures

of materials.

Quantummagnetic materials often demonstrate such regular patterns in the crystallographic

structure of their magnetic atoms, which may interact via nearest-neighbour (NN) Heisenberg

antiferromagnetic exchange interactions [2–4]. Even the more exotic Archimedean lattices

have been realized, see, e.g., CaV4O9 (CaVO) [7], SrCu2(BO3)2 (SrCuBO) [8], a polymeric

iron(III) acetate (star) [9] or Mx[Fe(O2CCH2)2NCH2PO3]6nH2O and Cu6Al(SO4)(OH)12Cl3H2O

(maple-leaf) [10]. Many of the Heisenberg antiferromagnets (HAFMs) on the Archimedean

lattices are strongly “frustrated,” where frustration occurs when bonds compete with each

other. For the systems studied here, this is due to an intrinsic incompatibility between

the exchange interaction and the underlying lattice geometry. Most of the Archimedean

lattices contain triangles and are hence geometrically frustrated in the sense that not all

pairs of NN spins can be simultaneously antiparallel, as is otherwise favored by the HAFM

exchange interaction between pairs of spins. Indeed, the only unfrustrated cases here are

for the square, honeycomb, SHD and CaVO lattices. Strong levels of such frustration can

lead to novel states of quantum order or to states of magnetic disorder [5]. Such new

physics that is driven by quantum mechanics is of immense interest to both theoreticians

and experimentalists. Finally, the HAFM on the kagome lattice is of special importance in

the field of quantum magnetism because it provides an example of novel topological state

of matter [11–13], which might be realized by the material herbertsmithite [14]. The star

lattice has much in common with the kagome lattice, including an infinitely degenerate

ground state classically, although it has not been studied extensively. Although all sites on
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FIG. 1. The eleven Archimedean lattices: square (44), honeycomb (63), CaVO (4.82), SHD (4.6.12),

SrCuBO (32.4.3.4), triangle (36), bounce (3.4.6.4), trellis (33.42), maple-leaf (34.6), star (3.122),

and kagome (3.6.3.6). The mathematical description (in brackets) given by numbers ni separated

by dots (i.e., n1.n2 · · ·nr) corresponds to the number of vertices of the polygons arranged around

a vertex for each lattice.
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the Archimedean lattices are equivalent, not all NN bonds on these lattices necessarily have

to be equivalent for all lattices. For example, bonds on the CaVO lattice in Fig. 1 that lie

on the squares are inequivalent to those bonds that connect these squares. This property

gives us another criterion for dividing the Archimedean lattices into those lattices into which

NN bonds are all equivalent (i.e., square, honeycomb, triangle, and kagome) and the rest of

the lattices where not all NN bonds are equivalent. However, frustration is undoubtedly the

stronger influence on the behavior of these systems.

Previous studies [1, 2] considered the properties of the Heisenberg antiferromagnet on the

Archimedean lattices by using a method of quantum many-body theory called the coupled

cluster method (CCM), although this was for the spin-half systems only. These analyses

predicted (broadly) that three types of behavior occurs for the spin-half models: magnetically

disordered systems (kagome and star); weakly ordered or possibly even disordered (maple-

leaf, bounce, and trellis); and, magnetically ordered systems (square, honeycomb, CaVO,

SHD, SrCuBO, and triangle). Here we obtain accurate results for the ground-state energy

and the order parameter for all Archimedean lattices and for spin quantum numbers, s ≤ 4.

We provide results for scaling relations for both the ground-state energy and the order

parameter as a function of the spin quantum number s, for each of the eleven lattices.

II. METHOD

The Hamiltonian of the HAFM is given by

H = J
∑

⟨i,j⟩
si · sj , (1)

where s is the spin operator on the lattice site i, s2 = s(s+1), and J > 0. The symbol ⟨i, j⟩

indicates those bonds connecting adjacent sites (counting each bond once only). We consider

this model here on all of the Archimedean lattices. The energy scale is set by putting J = 1

and the set of spin quantum numbers that we investigate here is s ∈ {1
2 , 1,

3
2 , · · · , 4}.

The coupled cluster method (CCM) [15–24] is one of the most powerful and most versatile

modern techniques available to us in quantum many-body theory. It has previously been

applied very successfully to various quantum magnetic systems. Details relating to the

practical application of the CCM to these systems have been discussed extensively elsewhere

(see e.g., [24–30]). We remark that the CCM performs well also for those systems that are
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strongly frustrated. The main alternative approximate methods either cannot be applied or

are sometimes of limited usefulness only in such cases. For example, QMC techniques may

demonstrate the sign problem for such systems and the ED method is limited in practice

by computational power, especially for s > 1/2, such that only very small lattices may

be considered. Calculations for the density matrix renormalization (DMRG) method (and

tensor-product methods) have generally been applied systems with lower spin quantum

number as yet only in two spatial dimensions, although this method may also be applied in

presence of strong frustration, in principle.

We present a brief overview of CCM formalism before going on to describe the some of

the details only of the computational implementation of the CCM when it is applied to high-

orders of approximation. Such computational methods are crucial to the accurate simulation

of two-dimensional quantum magnetic systems. The highest level of approximation possible

is limited only by the amount of computational resources available, as is described in an

appendix for all of the Archimedean lattices and for spin quantum number s ≤ 4. We

begin any CCM calculation by choosing an appropriate model (or “vacuum”) state that is

denoted by |Φ⟩. The model state is the starting point for a CCM calculation and we build

in any additional quantum effects with respect to this state. A complete set of basis states

may be obtained by applying creation operators, {(C+
L )}, to the model state. These creation

operators are all mutually commuting. A detailed description of the possible choices of model

state and associated choices of creation operators is given below for all of the Archimedean

lattices. The corresponding Hermitian adjoints of {(C+
L )} are denoted by {(CL)}. These

sets of operators have the properties

⟨Φ|C+
L = 0 = CL|Φ⟩ ∀L ̸= 0, C+

0 ≡ 1 , (2)

and

[C+
L , C

+
J ]− = 0 = [CL, CJ ]− . (3)

These operators are products of single-spin operators (see below) and so the index L indicates

a set of single-spin indices simultaneously. For the set {|Φ⟩, C+
L } one defines that

⟨Φ|CLC
+
J |Φ⟩ = δLJ , (4)

and
∑

L

C+
L |Φ⟩⟨Φ|CL = 1 = |Φ⟩⟨Φ|+

∑

L≠0

C+
L |Φ⟩⟨Φ|CL (5)
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which correspond to orthonormality and completeness, respectively. Again, the operators

C+
L act upon the model state |Φ⟩, which can be understood as a generalized vacuum state,

and this approach allows for the construction of all possible states of the spin system. The

CCM model states are often (though not always) given by the classical ground states of

the lattice-spin systems under consideration. Thus, given a suitable model state and set

of operators, {|Φ⟩, C+
L }, the CCM parametrization of the exact ket and bra ground-state

eigenvectors are given by

|Ψ⟩ = eS|Φ⟩, S =
∑

L≠0

aLC
+
L (6)

and

⟨Ψ̃| = ⟨Φ|S̃e−S, S̃ = 1 +
∑

L≠0

ãLCL , (7)

for the ket and bra states, respectively. The operators S and S̃ are correlation operators for

the ket and bra state, where {aL} and {ãL} are the corresponding correlation coefficients.

The summation includes all possible configurations of the system. Note that the following

normalizations are fulfilled also:

⟨Φ|Ψ⟩ = ⟨Ψ̃|Ψ⟩ = ⟨Φ|Φ⟩ = 1 . (8)

The ground-state energy equation is found by multiplying the Schrödinger equation H|Ψ⟩ =

E|Ψ⟩ (H is the Hamiltonian of the system) from the left with ⟨Φ|e−S, and by using Eq. (6),

to give

e ≡ E

N
=

1

N
⟨Φ|e−SHeS|Φ⟩ . (9)

The ground-state energy per spin e depends on the ket-state correlation coefficients {aL}

only. Furthermore, the similarity transformation in Eq. (9) can be written as the usual

nested commutator expansion,

e−SHeS = H + [H,S]− +
1

2
[[H,S]−, S]− + · · · . (10)

Note also that this expression terminates after a finite set of terms if H contains only a finite

number of single-spin operators, as here. The ket- and bra-state coefficients {aL} and {ãL}

can be determined by requiring that H̄ = ⟨Ψ̃|H|Ψ⟩ is stationary with respect to {ãL} and

{aL}, respectively, which leads to the following equations

∂H̄

∂ãL
= 0 ⇔ ⟨Φ|CLe

−SHeS|Φ⟩ = 0, ∀L ̸= 0, (11)
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and
∂H̄

∂aL
= 0 ⇔ ⟨Φ|S̃e−S[H,C+

L ]−e
S|Φ⟩ = 0, ∀L ̸= 0 . (12)

The ground state is specified completely once the coefficients {aL} and {ãL} have been

found. Note that Eq. (11) is a nonlinear equation system in terms of the coefficients

{aL} (ket equation system) and that Eq. (12) is a linear equation system in terms of the

coefficients {ãL} (bra equation system). For every observable, it follows therefore that

Ā = ⟨Ψ̃|A|Ψ⟩ = Ā({aL, ãL}) . (13)

Here we use the order parameter M/s, which is defined by

M

s
= − 1

sN

N∑

i=1

⟨Ψ̃|ŝzi |Ψ⟩, (14)

where we note that ŝzi is defined with respect to the local spin axes at site i (after rotation

of the local spin axes) so that (notationally only) the spins in the model state appear to

align in the negative z-direction (see also further below) at each site. If we set (trivially) all

coefficients in S and S̃ to zero then the ground-state wave function |Ψ⟩ is given by the model

state |Φ⟩, and so the order parameter, M/s, is equal to 1 for all lattices in this classical limit.

The effect of quantum fluctuations is to reduce to the amount of magnetic order and so we

expect M/s < 1 for all lattices. (We expect that M/s = 1 is true only in the “classical”

limit, i.e., s → ∞.)

A discussion of the choice of model state for each lattice is given below, although we note

again that a transformation of the local spin axes is used in all cases such that all spins

point in the negative z-direction after “rotation.” This process allows us to treat all spins

equivalently and it simplifies the mathematical solution of the CCM problem considerably.

The corresponding operators are used therefore with respect to the CCM model state, such

that

|Φ⟩ =
N⊗

i=1

| ↓⟩i, C+
I = s+i1, s

+
i1s

+
i2 , s

+
i1s

+
i2s

+
i3, · · · . (15)

where i1,i2 and i3 denote arbitrary lattice sites. The CCM formalism would be exact if

all possible multi-spin cluster correlations could be included in S and S̃, although this

is normally impossible to achieve practically. In most cases, the following approximation

schemes within S and S̃ are used, namely:
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• The SUBn scheme: all correlations involving only n or fewer spins are retained,

although no further restriction is made concerning their spatial separation on the

lattice;

• The SUBn-m scheme: all SUBn correlations spanning a range of no more than m

adjacent lattice sites are retained; and

• The localized LSUBn scheme: all multi-spin correlations over all distinct locales on

the lattice defined by n or fewer contiguous sites are retained.

Note that the LSUBn and SUBm-m schemes are identical for the limiting case when s = 1/2

and n = m. For higher spins s, the LSUBn scheme is equivalent to the SUBn-m scheme

if and only if n = 2 · s · m. Note that we always use the SUBm-m scheme in this article.

We see that these approximation schemes allow us to increase the level of approximation in

a systemic and well-controlled manner. Furthermore, we can also attempt to extrapolate

our “raw” SUBn, SUBn-m, and LSUBn results in the limits n,m → ∞ in order to obtain

even more accurate results. Although there is no general theory for the scaling behavior

m → ∞, there is nevertheless much empirical evidence relating to how to extrapolate the

raw SUBm-m data [27–30]. For example, the following scheme is generally used for the

ground-state energy per spin e,

e(m) = a0+ a1m
−2 + a2m

−4 . (16)

By contrast, two commonly used extrapolation schemes for the order parameter M are given

by

MI(m) = b0+ b1m
−1 + b2m

−2 (17)

and

MII(m) = c0+ c1m
−0.5+ c2m

−1.5 , (18)

referred to as schemes I and II, respectively. Extrapolation scheme II is arguably more

favorable for those systems that exhibit a magnetically disordered ground state and / or

an order to disorder transition. The quality of the extrapolation is generally improved by

omitting the lowest level of approximation, typically LSUB2 or SUB2-2, which is carried

out only if enough data points for extrapolation are available. Furthermore, note that we

extrapolate results for even values of m for the lattices: square, SHD, honeycomb, SrCuBO,
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and CaVO. By contrast, we use both results from both odd and even values of m for all

other lattices because the “odd/even” staggering effect [31] is much less pronounced for these

frustrated systems, especially at higher orders of SUBm-m approximation.

The model states used here are the classical ground states (i.e., products of independent

single-spin states) for all lattices. For example, the model state for all of the bipartite

(unfrustrated) Archimedean lattices is the collinear (Néel) classical ground state in which

nearest neighbor spins are antiparallel. The bipartite lattices are given by: square (z = 4)

[27, 29, 30], honeycomb (z = 3) [32], CaVO (z = 3) [33], and SHD (z = 3) [1]. (z is

the coordination number of the lattice.) The frustrated SrCuBO lattice (z = 5) uses a

model state in which nearest-neighbor spins are antiparallel on the squares only for this

lattice shown in Fig. 1. [34]. An explicit restriction is imposed on the creation operators

{C+
I } in S for these model states, namely, that relationship szT =

∑
i s

z
i = 0 in the original

(unrotated) spin coordinates is preserved. This restriction guarantees that the approximate

CCM ground-state wave function lies in the correct (szT = 0) subspace for these lattices. The

classical ground-state energy per bond for the HAFM on the square, honeycomb, CaVO,

and SHD lattices is given by − s2, whereas the classical ground-state energy per bond on

the SrCuBO lattice is given by − 0.6s2. The model state for the triangular lattice (z = 6)

[27] is given by spins on nearest-neighboring sites that form angles of 120◦ to each other.

There is no restriction on szT in this case and the classical ground-state energy per bond is

given by − 0.5s2. The model states for the maple-leaf (z = 5) [35], trellis (z = 5) [1], and

bounce (z = 4) [35] lattices are the classical ground states, and again there is no restriction

on szT . For both the maple-leaf and bounce lattices, the classical ground state comprises

a six-sublattice struture with a specified pitch angle. By contrast, for the trellis lattice

the classical ground state comprises incommensurate spirals along a chain direction. In all

three cases, we take into account that quantum fluctuations can lead to a characteristic

spiral or pitch angle that is different from its classical counterpart. Hence, in these three

cases the characteristic angle is taken as a free parameter, which is selected in practice to

minimize the respective ground-state energy obtained separately at level of SUBm-m level of

approximation. The classical ground-state energy per bond is now given by − s2(1 +
√
3)/5

(maple-leaf) [35], − 0.65s2 (trellis) [2], and − 0.75s2 (bounce) [35]. Finally, the case for the

kagome (z = 4) [36–38] and star (z = 3) [1, 2, 39] lattices is slightly more complicated because

there are an infinite number of possible classical ground states to choose from potentially,
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where each potential classical ground state has nearest-neighboring spins on the “triangles”

of these lattices that form angles of 120◦ to each other. (The relative angles of those spins

connecting triangles on the star lattice is 180◦.) Here we consider the “
√
3×

√
3” and “q = 0”

states only. No restriction on szT is imposed for either the kagome or star lattices and the

classical ground-state energy per bond is given by − 0.5s2 and − 2s2/3 for the HAFM on

the kagome and star lattices, respectively. The number of fundamental clusters that are

distinct under the translational and point-group symmetries of the lattice and Hamiltonian

(after rotation of local spin axes) and also that preserves szT (as appropriate) is denoted

Nf = Nf (m) at a given level of SUBm-m approximation. The size of the CCM equations

(measured in terms of the number of terms and also memory usage in bytes) at a given level

of SUBm-m approximation is denoted Nt = Nt(m).

CCM equations may be derived and solved analytically at low orders of approximation.

A full explanation of how this is carried out for the SUB2-2 approximation for the spin-

half XXZ model on the square lattice, for example, is given on pages 117 to 122 of Ref.

[26]. However, highly intensive computational methods [27–30] rapidly become essential

at higher orders of SUBm-m approximation because the number of fundamental clusters

(and so therefore also the computational resources necessary to store and solve them) scales

approximately exponentially with m. There are four distinct steps to carrying out high-order

CCM calculations for the ground state and an efficient computer code has been developed

[40]. The first step is to enumerate all (Nf) fundamental clusters that are distinct under the

lattice and Hamiltonian symmetries (and perhaps that also satisfy szT = 0) at a specific level

of SUBm-m approximation and for a given lattice and spin quantum number s. The second

step involves finding and storing the basic CCM ground- and excited-state equations. The

third step involves solving both the ground- and excited-state equations and to obtain the

macroscopic quantities for these states. A minimal ground-state energy solution as fnction

of some explicit “angle” might be necessary if a “spiral” or “canted” model state [41] is

used, as mentioned above. The fourth step is to create and input a basic script that defines

completely the problem to be solved by the CCM code. Separate scripts were written for

all eleven lattices considered here. The computational resources necessary to carry out

high-order CCM calculations are considered in an Appendix.
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III. RESULTS

Extrapolated results for the ground-state energy Eg/(NJs2) of the spin-half Heisenberg

model on all of the lattices and for all values of spin quantum number, s, are given in Table

I. Inspection of the extrapolated ground-state energy indicates that the
√
3 ×

√
3 state is

favored over the q = 0 state to form the ground state (i.e., it has lower ground-state energy)

for the kagome and star lattices for most values of the spin quantum number, s. However,

we find that the q = 0 state is favored over the
√
3 ×

√
3 state for the kagome lattice for

the specific case of s = 1/2 and it is favored over the
√
3×

√
3 state for the star lattice for

s = 1/2 and s = 1. As seen previously [1], CCM results for the ground-state energy per

bond (in units of J) for the spin-half HAFM (i.e., Eg/(JNb): square, − 0.3348; honeycomb,

− 0.3631; CaVO, − 0.3689; SHD, − 0.3702; SrCuBO, − 0.2312; triangle, − 0.1843; bounce,

− 0.2824; trellis, − 0.2416; maple-leaf, − 0.2124; star, − 0.3110; kagome, − 0.2179) compare

well to those results of other approximate methods (i.e., Eg/(JNb): square, − 0.3347 [42];

honeycomb, − 0.3630 [43]; CaVO, − 0.3691 [44]; SHD, − 0.3688 [45]; SrCuBO, − 0.23 to − 0.24

[46]; triangle, − 0.1823 [47]; bounce, − 0.2837 [2]; trellis, − 0.2471 [2, 39]; maple-leaf, − 0.2171

[2]; star, − 0.316 to − 0.318 [48]; kagome, − 0.21876 to − 0.2193 [11–13, 49]). (Nb is the

number of lattice bonds.)

Isolated results exist only for certain Archimedean lattices when we set s > 1/2. CCM

results for the ground-state energy of the spin-one, square-lattice HAFM of Eg/(NJs2) =

− 2.32856 compare well to results of second-order spin-wave theory [50] of − 2.3284, third-

order spin-wave theory [51] of − 2.32815, and series expansions [50] of − 2.3279(3). CCM

results for the ground-state energy of the spin-one, honeycomb-lattice HAFM ofEg/(NJs2) =

− 1.83061 are in good agreement with results of spin-wave theory [53, 54] of − 1.8313 and

results of series expansions [54] of − 1.8278(8). CCM results for the ground-state energy for

the spin-one, kagome-lattice HAFM of Eg/(NJs2) = − 1.40315 correspond well to results of

Ref. [55] of − 1.410(2), Ref. [56] of − 1.4109(2), and Ref. [57] of − 1.41095. CCM results for

the ground-state energy for the s = 3/2, kagome-lattice HAFM of Eg/(NJs2) = − 1.26798

compare well to results of Ref. [58] of − 1.265(2). (Note that results for the scaling of the

ground-state energy with spin quantum number s are also compared to results of spin-wave

theory below, where they exist for the Archimedean lattices.)

Extrapolated results for the order parameter, M/s, for the HAFM on all of the lattices
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and for all values of spin quantum number, s, are given in Table II. We see that the

unfrustrated models (i.e.: square, honeycomb, SHD, and CaVO) and two frustrated lattices

(i.e.: triangle and SrCuBO) are magnetically ordered for all values of the spin quantum

number, s, including the limiting case of the spin-half systems. The HAFM on the trellis,

bounce, and maple-leaf lattices is either disordered or very weakly magnetically ordered [1]

for the spin-half system, and so results of both extrapolation schemes I and II of Eqs. (17)

and (18) are given in Table II for s = 1/2 and for these lattices. By contrast, the HAFM

is magnetically ordered for s > 1/2 for these lattices and so the extrapolation scheme I of

Eq. (17) is used for s > 1/2. Results of both extrapolation schemes I and II of Eqs. (17)

and (18) are given in Table II for the kagome and star lattices. Differences between the two

extrapolation schemes I and II are seen in Table II for both the star lattice and (as noted

previously in Ref. [38]) also for the kagome lattice. However, it is clear that the kagome

and star lattices are predicted to be disordered (i.e., M/s = 0) by using both extrapolation

schemes of Eqs. (17) and (18) for s = 1/2 [1]. By contrast, the kagome and star lattices

are magnetically disordered (or weakly magnetically ordered) for s = 1. The kagome lattice

is either weakly ordered or magnetically ordered for s = 3/2. Furthermore, it is clear also

that all other results for higher s for the star (s > 1) and kagome (s > 3/2) lattices are

magnetically ordered from both extrapolation schemes I and II.

As seen previously [1], CCM results for the order parameter M/s for the spin-half HAFM

(i.e.: square, 0.619; honeycomb, 0.547; CaVO, 0.431; SHD, 0.366; SrCuBO, 0.404; triangle,

0.373; bounce, 0 to 0.122; trellis, 0.0 to 0.040; maple-leaf, 0 to 0.178; star, 0; kagome, 0) are

again found to compare well to results of other approximate methods (i.e.: square, 0.614

[42]; honeycomb, 0.535 [59]; CaVO, 0.356 [60]; SHD, 0.509 [45]; SrCuBO, 0.42 [46]; triangle,

0.410 [61]; bounce, 0.268 [2]; trellis, 0.222 [2]; maple-leaf [2], 0.218; star, 0.094 to 0.15 [48];

kagome, 0 [11–13, 49]).

Again, isolated results exist only for the order parameter for certain Archimedean lattices

with s > 1/2. CCM results for the order parameter of the spin-one, square-lattice HAFM

of M/s =0.79942 compare well to spin-wave theory [50] of 0.8034, third-order spin-wave

theory of [51] of 0.80427, and series expansions [50] of 0.8039(4), as well as recent results

from infinite projected entangled pair states (iPEPS) [52] ofM/s =0.802(7). CCM results for

the order parameter of the spin-one, honeycomb-lattice HAFM of M/s =0.74123 are in good

agreement with results of spin-wave theory of [53, 54] of M/s =0.7418 and results of series
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expansions [54] of 0.748(3). Results of other approximate methods for the spin-one, kagome-

lattice HAFM suggest that there is no magnetic long-range order [55–57, 62], although Ref.

[63] indicated
√
3 ×

√
3 ground-state long-range order for integer spin quantum numbers,

including s = 1. Previous CCM calculations [64] for general spin quantum number concluded

that CCM results were consistent with magnetic disorder for the spin-one, kagome-lattice

HAFM. Series expansion calculations [62] indicated that M/s = 0.14 ± 0.03 for the s = 3/2

kagome-lattice HAFM and recent tensor network calculations [58] also indicate that the

s = 3/2 system is
√
3 ×

√
3 long-range ordered. Indeed, the consensus from approximate

methods [38, 63–65] is that the kagome-lattice HAFM demonstrates
√
3×

√
3 ground-state

long-range order for s ≥3/2. (Note that results for the scaling of the order parameter with

spin quantum number s are also compared to results of spin-wave theory below, where they

exist for the Archimedean lattices.)

The scaling laws of the ground-state energy and the order parameter are shown in Table

III and they are illustrated by Figs. 2 and 3, respectively. By allowing the index ν to vary

as an explicit parameter for the ground-state energy in

Eg

NJs2
=

Ecl

NJs2
+ αsν , (19)

we found that Eg/(NJs2) was found to scale with s−1 to leading order for all lattices. The

classical result Ecl/(NJs2) is known to be correct in the asymptotic limit s → ∞ and so this

expression is used explicitly in the scaling relations. As in Ref. [38], the extreme (quantum)

cases of s = 1/2 and s = 1 are not used in fitting the data in Table I to the scaling relations

(i.e., s = {3/2, 2, 5/2, 3, 7/2, 4} are used here). The asymptotic relation for the ground-state

energy to second order in s is therefore given by

Eg

NJs2
=

Ecl

NJs2
+ αs−1 + βs−2 , (20)

and the coefficients α and β are presented in this Table III for all lattices. Results for

Eg/(NJs2) plotted as a function of s−1 are shown in Figs. 2. Associated line fits to the data

using the values for α and β in Table III are shown also.

The index µ was allowed to vary as an explicit parameter for the order parameter in

M

s
= 1 + γsµ . (21)

Note that the classical result M/s = 1 in the limit s → ∞ is assumed explicitly in this

equation (as in Ref. [38]) and that the extreme (quantum) cases of s = 1/2 and s = 1 are
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TABLE I. Extrapolated SUBm-m results for the ground-state energy Eg/(NJs2) for the HAFM

on all Archimedean lattices and with s ∈ {1/2, 1, 3/2, · · · , 4}. (The extrapolation scheme of Eq.

(16) is used with (a) only even approximations with SUB4-4 or higher or (b) all data with SUB4-4

or higher. Results for the kagome and star lattices are shown for the
√
3×

√
3 model state, except

for s = 1/2 for the kagome lattice and s = 1/2, 1 for the star lattice where the results for the q = 0

state are shown.)

s = 1/2 s = 1 s = 3/2 s = 2 s = 5/2 s = 3 s = 7/2 s = 4

Square(a) − 2.67857 − 2.32856 − 2.21633 − 2.16119 − 2.12844 − 2.10675 − 2.09135 − 2.07981

Honeycomb(a) − 2.17885 − 1.83061 − 1.71721 − 1.66159 − 1.62862 − 1.60681 − 1.59133 − 1.57976

CaVO(a) − 2.21307 − 1.84297 − 1.72497 − 1.66724 − 1.63306 − 1.61048 − 1.59444 − 1.58249

SHD(a) − 2.22133 − 1.84592 − 1.72697 − 1.66871 − 1.63421 − 1.61142 − 1.59524 − 1.58317

SrCuBO(a) − 2.31212 − 1.90314 − 1.76867 − 1.70159 − 1.66135 − 1.63452 − 1.61535 − 1.60097

Triangle(b) − 2.21117 − 1.84097 − 1.72421 − 1.66697 − 1.63303 − 1.61057 − 1.59461 − 1.58268

Bounce(b) − 2.25904 − 1.85797 − 1.73423 − 1.67405 − 1.63845 − 1.61493 − 1.59823 − 1.58578

Maple-Leaf(b) − 2.12376 − 1.72481 − 1.60159 − 1.54135 − 1.50619 − 1.48246 − 1.46559 − 1.45300

Trellis(b) − 2.41580 − 1.98823 − 1.86186 − 1.80073 − 1.76467 − 1.74142 − 1.72447 − 1.71183

Kagome(b) − 1.74345 − 1.40315 − 1.26798 − 1.20260 − 1.16272 − 1.13598 − 1.11680 − 1.10237

Star(b) − 1.86622 − 1.39597 − 1.26002 − 1.19494 − 1.15595 − 1.13002 − 1.11152 − 1.09766

not used in fitting the data to this scaling relation (i.e., s = {3/2, 2, 5/2, 3, 7/2, 4} are used

here). M/s was found to scale with s−1 to leading order for most lattices. However, it was

found that M/s scales with s−1/2 to first order for the kagome lattice (as seen previously in

Ref. [38]), s−1/3 to first order for the star lattice, and s−2/3 to first order for the SrCuBO

lattice. The results for the exponent of the star lattice are the least reliable here, which also

shows the difficulty of simulating this system. For example, results for such line fits for the

star lattice using data for s = {2, 5/2, 3, 7/2, 4}, s = {5/2, 3, 7/2, 4}, and s = {3, 7/2, 4},

respectively, suggest that the exponent for the order parameter might even have a magnitude

that is less than 1/3. It is clear though that M/s does not scale with s−1 for the star lattice

and that it is the most extreme case studied here. The asymptotic relation for the order
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TABLE II. Extrapolated SUBm-m results for the order parameter M/s for the Heisenberg

antiferromagnet on all Archimedean lattices and with s ∈ {1/2, 1, 3/2, · · · , 4}. (The extrapolation

scheme I of Eq. (17) is used with (c) only even approximations with SUB4-4 or higher or (d) all

data with SUB4-4 or higher; (e) extrapolation scheme II of Eq. (18) is used with all data with

SUB4-4 or higher. Results for the kagome and star lattices are shown for the
√
3×

√
3 model state,

except for s = 1/2 for the kagome lattice and s = 1/2, 1 for the star lattice where the results for

the q = 0 state are shown.)

s = 1/2 s = 1 s = 3/2 s = 2 s = 5/2 s = 3 s = 7/2 s = 4

Square(c) 0.61862 0.79942 0.86634 0.90026 0.92053 0.93396 0.94340 0.95056

Honeycomb(c) 0.54730 0.74123 0.82492 0.86894 0.89552 0.91319 0.92576 0.93514

CaVO(c) 0.43058 0.70738 0.80302 0.85292 0.88297 0.90292 0.91708 0.92744

SHD(c) 0.36647 0.68631 0.78847 0.84139 0.87356 0.89504 0.91033 0.92174

SrCuBO(c) 0.40354 0.64239 0.72799 0.77385 0.80378 0.82563 0.84264 0.85642

Triangle(d) 0.37251 0.68850 0.79845 0.85318 0.88487 0.90528 0.91946 0.92988

Bounce(d) 0.12208 (0(e)) 0.60091 0.73566 0.80221 0.84257 0.86956 0.88877 0.90310

Maple-leaf(d) 0.17816 (0(e)) 0.60681 0.73121 0.79685 0.82569 0.85387 0.87436 0.88988

Trellis(d) 0.03980 (0(e)) 0.61876 0.75301 0.81817 0.85670 0.87450 0.89304 0.90710

Kagome(d) 0 0.15933 0.41742 0.49975 0.55729 0.59860 0.63018 0.65536

Kagome(e) 0 0 0.07439 0.20290 0.29425 0.35825 0.40623 0.44397

Star(d) 0 0.19158 0.42553 0.50031 0.54444 0.57197 0.58997 0.60233

Star(e) 0 0 0.22317 0.35883 0.45135 0.51725 0.56665 0.60521

parameter M/s to second order with s is therefore given by

M

s
= 1 + γs−1 + δs−2 , (22)

for most lattices. (Appropriate relations to second order were used for the kagome, star and

SrCuBO lattices, as described in Table III.) Results for γ and δ are shown in Table III.

Results for M/s plotted as a function of s−1 are shown in Fig. 3. Associated line fits to the

data using the values for γ and δ in Table III are shown also. For the sake of clarity, only
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results for the order parameter obtained via extrapolation scheme I of Eq. (17) are included

in Fig. 3 for the kagome and star lattices.

CCM results on the square lattice of α = − 0.3161 and γ = − 0.1961 for the ground-

state energy and order parameter, respectively, compare well to first order with results

of spin-wave theory (SWT) [51] of α = − 0.315895 and γ = − 0.1966019. CCM results

on the honeycomb lattice of α = − 0.3151 and γ = − 0.2583 for the ground-state energy

and order parameter, respectively, also compare generally well to first order with results of

SWT [53] of α = − 0.31476 and γ = − 0.2582, respectively. CCM results on the triangular

lattice of α = − 0.3272 and − 0.2666 for the ground-state energy and order parameter,

respectively, yet again compare well to first order with results of SWT [47] of α = − 0.32762

and γ = − 0.261303 (see also Ref. [66]). Scaling results for the honeycomb lattice agree well

with previous CCM results [67], although higher orders of approximation have been achieved

here. Results for the kagome lattice from self-consistent spin-wave theory [68] state that the

order parameter scales with s−2/3. CCM results for M/s for kagome lattice for the q = 0

model state were found previously [38] to scale with s−2/3. CCM results for M/s for the

star lattice for the q = 0 model state are also found to scale with s−2/3. Note again that the
√
3×

√
3 model state has lower energy than the q = 0 state for s ≥1 for the kagome lattice

and s ≥3/2 for the star lattice. In accordance with previous work [38] we remember again

that M/s for the
√
3×

√
3 ground state scales with s−1/2 for the kagome lattice, rather than

s−2/3 as for the q = 0 state. It is this form of scaling that is shown in in Table III and in

Fig. 3 for the kagome lattice. No scaling information with s exists from other approximate

methods for the CaVO, SHD, SrCuBO, maple-leaf, bounce, trellis, or star lattices, as far as

we are aware.

IV. CONCLUSIONS

We have explored the interplay between lattice topology and spin quantum number s

on the magnetic ordering of the HAFM on Archimedean lattices in this article. High-

order CCM calculations were carried out for all eleven Archimedean lattices by using highly

intensive computational resources implemented on a parallel computing platform. It was

shown in an appendix that the number of fundamental CCM clusters for the SUBm-m

approximation and the memory resources scale approximately exponentially with increasing

17



TABLE III. Scaling of the ground-state energy in Table I and the order parameter in Table II with

respect to s. (Scaling for the ground-state energy uses the relation: Eg/(NJs2) = Ecl/(NJs2) +

αs−1+βs−2. Scaling for the order parameter use the relations: scheme (1) uses M/s = 1+ γs−1+

δs−2; scheme (2) uses M/s = 1 + γs−2/3 + δs−4/3; scheme (3) uses M/s = 1 + γs−1/2 + δs−1; and

scheme (4) uses M/s = 1 + γs−1/3 + δs−2/3. All fits of the data to these relations were carried

out using s ≥ 1.5 (i.e., s = {3/2, 2, 5/2, 3, 7/2, 4} are used here. Results are shown for the two

extrapolation schemes I (d) and II (e) in Table II for the kagome and star lattices.)

Eg/(NJs2) M/s

Ecl/(NJs2) α β γ δ

Square − 2 − 0.3161 − 0.0126 − 0.1961(1) − 0.0066(1)

Honeycomb − 1.5 − 0.3151 − 0.0162 − 0.2583(1) − 0.0067(1)

CaVO − 1.5 − 0.3254 − 0.0181 − 0.2873(1) − 0.0125(1)

SHD − 1.5 − 0.3281 − 0.0186 − 0.3123(1) − 0.0080(1)

SrCuBO − 1.5 − 0.4042 0.0018 − 0.3708(2) 0.0186(2)

Triangle − 1.5 − 0.3272 − 0.0137 − 0.2666(1) − 0.0536(1)

Bounce − 1.5 − 0.3382 − 0.0197 − 0.3857(1) − 0.0171(1)

Maple-leaf − 1.36603 − 0.3450 − 0.0124 − 0.4679(1) 0.1008(1)

Trellis − 1.625 − 0.3421 − 0.0195 − 0.3678(1) − 0.0006(1)

Kagome − 1 − 0.4140 0.0180 − 0.6507(3)(d) − 0.0779(3)(d)

− 1.0676(3)(e) − 0.0810(3)(e)

Star − 1 − 0.3903 0.0005 − 0.5293(4)(d) − 0.1366(4)(d)

− 1.0576(4)(e) − 0.0980(4)(e)

level of approximation level, m. Despite this, we have shown that the CCM can provide

accurate results for the HAFM in all eleven Archimedean lattice, firstly by considering the

limiting case of s = 1/2. Excellent correspondence with those results of other approximate

methods was observed for both the ground-state energy and order parameter for the HAFM

on all eleven Archimedean lattices, where they exist for s ≤ 4. Accurate values for the

ground-state energy are useful both experimentally and theoretically, where for example
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FIG. 2. (Color online) Results for the ground-state energy per site, Eg/(NJs2) plotted as a function

of s−1 for s ≥3/2. (Associated line fits to the data using the relations outlined in Table III are

shown also.)

they are useful in thermodynamic studies at finite temperature [69–71]. See also Ref. [72] for

a QMC treatment of the thermodynamic properties of the spin-one Heisenberg model on the

square lattice and Ref. [73] for higher values of the spin quantum number. Ref. [74] details

calculations using the Green function technique for the thermodynamics of the kagome-

lattice Heisenberg antiferromagnet with arbitrary spin quantum number, and CCM results

for the ground-state energy and the order parameter are more accurate than results presented

in this paper. The ground-state energy and the order parameter are two fundamental

parameters (among others) that define the behavior of quantum magnetic systems. Our

results in Tables I and II therefore constitute an essentially quantitative reference for the

Archimedean-lattice HAFMs with spin quantum number, s ≤ 4.

Scaling relations for the ground-state energy and order parameter as a function of s

were also presented for all of the Archimedean-lattice HAFMs. The scaling behavior for the

ground-state energy was found to be the same as SWT, namely, that Eg/(NJs2) scaled with

s−1 to first order. The scaling behavior for the order parameter was also found to be the
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FIG. 3. (Color online) Results for the order parameter, M/s, plotted as a function of s−1 for

s ≥3/2. (Associated line fits to the data using the relations outlined in Table III are shown also.

For the sake of clarity, results for the order parameter obtained via extrapolation scheme I of Eq.

(17) are included here only for the kagome and star lattices for the
√
3×

√
3 model state.)

same as that expected from linear SWT for most of the lattices, namely, that M/s scaled

with s−1 to first order. Importantly, we remark again that self-consistent spin-wave theory

calculations [68] showed that M/s scales with s−2/3 for the kagome lattice HAFM, whereas

previous CCM results [38] (found again here also) suggested that M/s scales with s−1/2. We

find also here that M/s scales with s−1/3 on the star lattice and with s−2/3 on the SrCuBO

lattice. It would be interesting to see if self-consistent spin-wave theory might also detect

this anomalous behavior for the star and SrCuBO lattices also, which has not been noticed

before for these two lattices, as far as we are aware.

High-order SUBm-m calculations for large values of s suffer the double jeopardy of high

computational demand and slow convergence with m. Thus, we assume the classical result

M/s → 1 in the limit s → ∞ and we use CCM results for s ≤ 4 only when evaluating the

scaling behaviour. This is a limitation of these analyses, although it is particularly important

only for the most extreme case of the star lattice. Despite this problem, expansion coefficients
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for the ground-state and order parameter with s presented in Table III were found to compare

well to first order to the results of other approximate methods, for those cases where they

are known. Furthermore, CCM results for M/s for the kagome and star lattices for the q = 0

model state were found to scale with s−2/3. These results give us confidence that anomalous

scaling behavior to first order for the order parameter does indeed occur for the kagome,

star, and SrCuBO lattices. The SrCUBO-lattice HAFM is a special case (J2 = 1) of the

Shastry-Sutherland antiferromagnet [75] that contains antiferromagnetic nearest-neighbor

bonds J1 on the square lattice and with one antiferromagnetic diagonal bond J2 in each

second square. It is known (e.g.) from Ref. [34] that a transition from Néel to plaquette order

occurs at J2/J1 = 1.477 for the spin-half system. (Series expansions [76] place this point at

J2/J1 = 1.447 and recent results of iPEPS [46] place it at J2/J1 = 1.481.) Furthermore, Néel

order was found to disappear in the range J2/J1 = 1.14 to J2/J1 = 1.39 for this spin-half

system in Ref. [34]. (Results of iPEPS [46] place this boundary at J2/J1 = 1.307.) The

spin-half SrCuBO system might therefore be “close” (in some sense) to a disordered regime.

However, it is still interesting and unexpected that the order parameter demonstrates such

anomalous scaling with s for the SrCuBO-lattice HAFM. Both the star and kagome lattices

have an infinite number of ground states classically, and so unusual behavior is perhaps less

unexpected.
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Appendix A: Computational Resources For High-Order CCM

We now wish to consider the computational resources that are necessary in order to

carry out high-order CCM calculations for the Archimedean lattices for all values of the

spin quantum number, s. Note that Nt is a measure of the number of terms and / or the

memory usage of the CCM ket-state equation system; memory usage is a limiting factor of

carrying out such large-scale CCM calculations. An additional complication for the bounce,

trellis, and maple-leaf lattices is that we must carry out a dynamic search for the angle that
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yields the lowest ground-state energy. Thus for example, SUB8-8 for s < 3 and SUB7-7 for

s ≥3 was achievable only for the trellis lattice. The highest SUBm-m level of approximation

achieved by high-order CCM is shown in Table IV for all of the Archimedean lattices and

for s ∈ {1/2, 1, 3/2, · · · , 4}. The maple-leaf and bounce lattices both have large unit cells

that contain six sites and so the number of fundamental clusters Nf increases strongly

with increasing SUBm-m approximation level. Generally the computational effort [Nf ,

Nt] increases with the spin quantum number s and this is also shown in Table IV. For

example, it was found previously [67] that Nf = 103097 for s = 1/2 at the SUB12-12 level

of approximation on the honeycomb lattice, and Nf = 538570 for s = 9/2 at the SUB10-10

level of approximation for this lattice. Results for Nf and Nt (measured in terms of memory

usage) on the square and kagome lattices and for s = 1/2 and s = 4 are plotted as a

function of SUBm-m approximation level in Fig. 4. We see that the number of fundamental

configurations and the memory usage both grow approximately exponentially with increasing

level of SUBm-m approximation level (for a specific value of s). However, Table IV also

shows that the number of fundamental configurations (and so also computer memory usage)

saturates with increasing values of s for the SUBm-m scheme for a specific value of m. (Note

thatNt refers to the number of terms contributing to the CCM equations rather than memory

usage in this table, although clearly the two measures are linked.) The limiting factor here

is the amount of computer resources available, thereby constraining the maximum value of

m that is possible. Furthermore, the SUBm-m approximation constrains both the spatial

separation of sites on the lattice (i.e., m contiguous sites) and also the maximum number of

spin-flips (i.e., no more than m spin-flips). However, the maximum number of spin-flips per

site is given by 2 for s = 1 systems generally, whereas the maximum number of spin-flips

per site is given by 8 for s = 4 generally. It is the constraint on the maximum number

of spin-flips for the SUBm-m approximation that leads to “saturation” with increasing s

(keeping m constant). However, we remark that the SUB7-7 approximation (and certainly

higher orders of approximation) ought to provide reasonable results for s <∼4. By contrast,

the LSUBn approximation does not restrict the number of spin-flips in any way and so we

would not expect to observe a similar “saturation” with increasing s for this approximation

scheme (keeping n constant). However, the LSUBn scheme is far more intensive in terms

of computer resources than the SUBm-m scheme if we set n = m. Lower orders of LSUBn

approximation scheme are possible only compared to the SUBm-m scheme, especially for
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larger values of the spin quantum number. Note also that higher orders of approximation

can be reached for some cases only via highly intensive computational methods that have

been implemented for the CCM code using MPI. This approach “shares” out the cost (in

terms of both the CPU time and memory usage) of finding and solving the CCM equations

across all of processors that are used in parallel.
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FIG. 4. (Color online) Illustration of the number of fundamental configurations Nf (top) and the

number of terms Nt (measured in terms of memory usage here) of the ket equation system (bottom)

plotted as a function of the approximation m. The square and the kagome lattices with s = 1
2 and

s = 4 have been chosen as examples. Note that the Nf and the Nt data are scaled logarithmically

(base 10) and that the data for even numbers of m are shown only.
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