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A B S T R A C T

In this paper, we propose a method that is able to derive rules involving range associations
from numerical attributes, and to use such rules to build comprehensible classification and
characterization (data summary) models. Our approach follows the classification association rule
mining paradigm, where rules are generated in a way similar to association rule mining, but
search is guided by rule consequents. This allows many credible rules, not just some dominant
rules, to be mined from the data to build models. In so doing, we propose several sub-range
analysis and rule formation heuristics to deal with numerical attributes. Our experiments show
that our method is able to derive range-based rules that offer both accurate classification and
comprehensible characterization for numerical data.

1. Introduction

In many practical applications, it is desirable that we are able to extract the following type of rule from numerical data:

𝑎𝑔𝑒 ∈ [25, 30] ∧ 𝑙𝑜𝑎𝑛 ∈ [2000, 3000] ⇒ 𝑟𝑒𝑝𝑎𝑦 = 𝑦𝑒𝑠

That is, we derive rules that contain ranges in their antecedents and a categorical value as a consequent. These rules capture knowledge
from numerical data naturally and allow comprehensible classification and characterization (data summary) models to be built. For
example, in the process industry, performance data is often analyzed to help determine how engineering processes may be optimized.
Such data typically contains a large number of numerical attributes and it is useful that we are able to extract range-based rules to
describe the relationships among various variables, so that causality can be understood naturally and processes tuned accordingly.

Extracting ranges from numerical attributes has been considered in classification rule mining. Existing methods typically follow a
‘‘cover and remove’’ strategy [1]. That is, a rule is heuristically formed to cover a subset of the data as well as possible, and this subset
is then removed from the data. This is repeated on the remaining data until all the data is covered this way. This strategy works well
with categorical data, but is not effective when dealing with numerical attributes, because there is a potentially very large number of
ways to form ranges and to cover the data. Consequently, these methods resort to discretization or point-based split. However, these
mechanisms may not capture some relevant ranges and do not help understand discovered rules [2].

The extraction of ranges from numerical data has also been considered in association rule mining. For example, Srikant and
Agrawal proposed a method that partitions numerical data into initial ranges first and then allows neighboring ranges to be
combined [3]; Fukuda et al. developed an efficient method that allows rectangular regions to be found from two dimensional numerical
data directly [4]; Autmann and Lindell suggested a statistical model which focuses on discovering ranges that are statistically
significant [2]; and Salleb-Aouissi et al. used genetic algorithms to derive ranges heuristically from numerical attributes [5]. All
these methods aim to derive ranges with some kind of optimality, but they are either limited to dealing with no more than two
numerical attributes or they do not attempt to find range-based rules that can support classification as well as characterization.
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In this paper, we propose a method that is able to derive range-based rules from multiple numerical attributes, and to use such rules
to build accurate classification and characterization models. Our approach is inspired by the classification association rule mining
(CARM) methodology [6], where instead of searching for all large itemsets and then generating rules from them, as performed in
conventional association rule mining, search is guided by rule consequents and only those itemsets that are relevant to the given
consequents will be generated. This, in contrast to the conventional ‘‘cover and remove’’ methodology for classification rule mining,
allows many credible rules, rather than only some dominant rules, to be generated. As such, it enables an ensemble type of classifier
to be built or detailed data characterization to be obtained. This is especially useful for applications where data may support multiple
hypotheses. We adapt this approach to discovering range-based rules from numerical data. That is, we use rule consequents to guide
the formation of ranges (e.g. 𝑎𝑔𝑒 ∈ [25, 30]) and to create associated ranges (e.g. 𝑎𝑔𝑒 ∈ [25, 30]∧ 𝑙𝑜𝑎𝑛 ∈ [2000, 3000]). More specifically,
we make the following contributions:

• We attempt to derive rules involving range associations from numerical attributes, and to use such rules to build comprehensible
classification and characterization models. In so doing, we adapt CARM to mining associated ranges from numerical data. This
is significantly more challenging than mining large itemsets from categorical data as there are many ways to form ranges
from a numerical attribute. We introduce consequent bounded ranges which are an association of ranges whose boundaries are
determined by rule consequents. We also propose a top-down split strategy to partition a large range into sub-ranges. These
strategies allow many credible, not just some dominant rules to be discovered from numerical data efficiently.

• We propose heuristics for splitting ranges and for rule formation. Given a range, there can be many ways to split it into sub-
ranges. Our heuristics are greedy in nature and split ranges in such a way that the support, confidence or a tradeoff between
the two is optimized in the resulting sub-ranges. These heuristics allow rules with specific qualities to be extracted from data,
and as such different application needs can be catered for by our method.

• We introduce a new measure, density, for assessing the quality of extracted rules. This is in addition to the standard support
and confidence measures that are commonly used in mining association rules, and is used to measure the concentration of an
extracted rule. This is necessary as unlike dealing with categorical itemsets, associated ranges can contain ‘‘dangling’’ cases
(i.e. tuples contained in one range but not another of the same rule). Such dangling cases can dilute the quality of a range-based
rule, and the density measure is designed to assess this.

• We evaluate extracted rules in both classification and characterization settings, rather than just their classification quality as the
majority of exiting classification rule extraction works consider. Note that while criteria for evaluating rules for classification
are well established, how to assess rules for their data characterization quality is less clear. We introduce measures to study the
characterization power of extracted rules.

To the best of our knowledge our proposed method is the only one that is able to derive associated ranges from any number of
numerical attributes through a top-down range split, and to build an ensemble type of range-based rule set for classification as well as
characterization. Our experiments show that our method is able to derive range-based rules that can offer not only good classification
results, but also good characterization for numerical data.

The rest of the paper is organized as follows. In Section 2, we give the necessary definitions that we use in the paper. In
Section 3, we introduce our CARM-based method. The top-down range partitioning and a number of heuristics for rule formation
are given in Section 4. Section 5 discusses experimental results and related work is analyzed in Section 6. We conclude the paper in
Section 7.

2. Preliminaries

Without loss of generality, we assume that data is contained within a single table 𝑇 (𝐴1, 𝐴2,… , 𝐴𝑚, 𝐶), where each 𝐴𝑗 , 1 ≤ 𝑗 ≤ 𝑚,
is a numerical attribute and 𝐶 is a categorical class attribute. We denote the 𝑘th tuple of 𝑇 by 𝑡𝑘 = ⟨𝑣𝑘,1, 𝑣𝑘,2,… , 𝑣𝑘,𝑚, 𝑐𝑘⟩, where
𝑣𝑘,𝑗 ∈ 𝐴𝑗 , 1 ≤ 𝑗 ≤ 𝑚. We may drop 𝑐𝑘 from 𝑡𝑘 when it is not needed in the discussion. Also, for conciseness of discussion in this paper,
we consider numerical attributes only here. But our proposed method can be extended to work with a table that consists of both
numerical and categorical attributes.

Definition 1 (Range). Let 𝑎 and 𝑏 be two values in the domain of attribute 𝐴 such that 𝑎 ≤ 𝑏. A range over 𝐴, denoted by [𝑎, 𝑏]𝐴, is a
set of values in 𝐴 that fall between 𝑎 and 𝑏.

Definition 2 (Cover). Let 𝑟 = [𝑎, 𝑏]𝐴𝑗
be a range over attribute 𝐴𝑗 . 𝑟 is said to cover tuple 𝑡𝑘 = ⟨𝑣𝑘,1, 𝑣𝑘,2,… , 𝑣𝑘,𝑚⟩ if 𝑎 ≤ 𝑣𝑘,𝑗 ≤ 𝑏. We

denote the set of tuples covered by 𝑟 by 𝜏(𝑟).

Definition 3 (Associated Ranges). Let 𝑟1 = [𝑎1, 𝑏1]𝐴1
, 𝑟2 = [𝑎2, 𝑏2]𝐴2

,… , 𝑟ℎ = [𝑎ℎ, 𝑏ℎ]𝐴ℎ
be a set of ranges over attributes 𝐴1, 𝐴2,… , 𝐴ℎ

respectively. 𝑟1, 𝑟2,… , 𝑟ℎ are associated ranges if 𝜏(𝑟1) ∩ 𝜏(𝑟2) ∩⋯ ∩ 𝜏(𝑟ℎ) ≠ ∅.

Definition 4 (Range-based Classification Rule). Let 𝑐 be a class value and 𝑟1, 𝑟2,… , 𝑟ℎ be a set of associated ranges. 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐 is
a range-based classification rule or range-based rule for short.

Many range-based rules can be formed from a given table 𝑇 . For example, each tuple of 𝑇 can be such a rule. Clearly, such rules
will be too specific to be useful. To find rules with some desired quality, we introduce three measures below.
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Table 1
An example table where 𝑇 𝐼𝐷 shows the tuple identifiers and 𝐶 is the class attribute.
𝑇 𝐼𝐷 𝐴1 𝐴2 𝐴3 𝐶

𝑡1 0.23 0.20 0.21 𝑐1
𝑡2 0.17 0.13 0.10 𝑐1
𝑡3 0.82 0.52 0.05 𝑐2
𝑡4 0.11 0.10 0.33 𝑐1
𝑡5 0.05 0.44 0.52 𝑐2
𝑡6 0.49 0.06 0.06 𝑐2
𝑡7 0.57 0.47 0.15 𝑐2
𝑡8 0.27 0.09 0.13 𝑐1
𝑡9 0.34 0.19 0.45 𝑐1
𝑡10 0.39 0.32 0.72 𝑐2

Definition 5 (Support). Let 𝑇 be a table and 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐 be a range-based rule derived from 𝑇 . The support of 𝜆 in 𝑇 is

𝜎(𝜆) =
|𝜏(𝑟1) ∩ 𝜏(𝑟2) ∩⋯ ∩ 𝜏(𝑟ℎ)|

|𝑇 |

where | ⋅ | denotes the size of a set.

Definition 6 (Confidence). Let 𝑇 be a table and 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐 be a range-based rule derived from 𝑇 . The confidence of 𝜆 in 𝑇 is

𝛿(𝜆) =
|𝜏(𝑟1) ∩ 𝜏(𝑟2) ∩⋯ ∩ 𝜏(𝑟ℎ) ∩ 𝜏(𝑐)|

|𝜏(𝑟1) ∩ 𝜏(𝑟2) ∩⋯ ∩ 𝜏(𝑟ℎ)|

where 𝜏(𝑐) denotes the set of tuples that have class value 𝑐 in 𝑇 .

Definition 7 (Density). Let 𝑇 be a table and 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐 be a range-based rule derived from 𝑇 . The density of 𝜆 in 𝑇 is

𝛾(𝜆) =
|𝜏(𝑟1) ∩ 𝜏(𝑟2) ∩⋯ ∩ 𝜏(𝑟ℎ)|
|𝜏(𝑟1) ∪ 𝜏(𝑟2) ∪⋯ ∪ 𝜏(𝑟ℎ)|

The support and confidence measures follow those used in [7] for numerical association rule mining: support for 𝜆 indicates its
strength (i.e. how many cases in 𝑇 are included in the associated ranges) and confidence indicates its credibility (i.e. how often the
rule is actually valid given the associated ranges). Density is a new measure we introduce to assess a rule’s concentration (i.e. how
many dangling tuples covered by the rule in 𝑇 ). The following example explains these definitions.

Example 1. Suppose that we have the data in Table 1 and we have a rule 𝜆 ∶ [0.11, 0.39]𝐴1
∧ [0.13, 0.32]𝐴2

⇒ 𝑐1. Then we have

𝜎(𝜆) =
|𝜏([0.11, 0.39]𝐴1

) ∩ 𝜏([0.13, 0.32]𝐴2
)|

|𝑇 |

=
|{𝑡1, 𝑡2, 𝑡9, 𝑡10}|

10
= 4∕10

𝛿(𝜆) =
|𝜏([0.11, 0.39]𝐴1

) ∩ 𝜏([0.13, 0.32]𝐴2
) ∩ 𝜏(𝑐1)|

|𝜏([0.11, 0.39]𝐴1
) ∩ 𝜏([0.13, 0.32]𝐴2

)|

=
|{𝑡1, 𝑡2, 𝑡9}|

|{𝑡1, 𝑡2, 𝑡9, 𝑡10}|
= 3∕4

𝛾(𝜆) =
|𝜏([0.11, 0.39]𝐴1

) ∩ 𝜏([0.13, 0.32]𝐴2
)|

|𝜏([0.11, 0.39]𝐴1
) ∪ 𝜏([0.13, 0.32]𝐴2

)|

=
|{𝑡1, 𝑡2, 𝑡9, 𝑡10}|

|{𝑡1, 𝑡2, 𝑡4, 𝑡8, 𝑡9, 𝑡10}|
= 2∕3

Note that in Table 1, 𝑡8 has a value of 0.27 in 𝐴1 which is covered by [0.11, 0.39]𝐴1
, and a value 0.09 in 𝐴2 which is not covered

by [0.13, 0.32]𝐴2
. So 𝑡8 is partially covered by 𝜆 given in Example 1, and therefore is a dangling tuple. Dangling tuples do not affect

the support or confidence of a rule, but intuitively the fewer dangling tuples are covered by a rule, the better the rule is as we can be
more certain about its range association. We introduce density to measure this.

One class of rules of interest is those whose support, confidence and density are above a minimum threshold.

Definition 8 (Min-𝜎𝛾𝛿 Rule). A range-based rule 𝜆 is a min-𝜎𝛾𝛿 rule if it satisfies the following properties, where 𝜎𝑚𝑖𝑛, 𝛾𝑚𝑖𝑛 and 𝛿𝑚𝑖𝑛
are user specified thresholds:

• 𝜎(𝜆) ≥ 𝜎𝑚𝑖𝑛,
• 𝛾(𝜆) ≥ 𝛾𝑚𝑖𝑛, and
• 𝛿(𝜆) ≥ 𝛿𝑚𝑖𝑛.
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Fig. 1. For an arbitrary rule 𝜆 ∶ 𝑟1 , 𝑟2 ,… , 𝑟ℎ ⇒ 𝑐, (a) shows the removal of dangling tuples from the two ends of a range, resulting in narrowed boundaries ([𝑙𝑖 , 𝑢𝑖]) for
each range; and (b) shows the further removal of tuples at the two ends of a range that do not have 𝑐 as a consequent, resulting further contracted boundaries ([𝑙′𝑖 , 𝑢′𝑖])
for each range.

A brute-force solution to find all min-𝜎𝛾𝛿 rules from a given table is to examine all possible combinations of ranges across all
attributes. This is computationally infeasible. In the following sections, we describe our methods for finding such rules heuristically.

3. Deriving associated ranges

To derive range-based rules, we first introduce the concept of consequent bounded ranges, and then discuss how they may be
obtained from data using an apriori type of association formation.

3.1. Consequent bounded ranges

Given an arbitrary range-based rule 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐, we observe that the boundaries of its ranges may be revised (i.e. some
ranges may be narrowed) without affecting its support or confidence. This is illustrated in Fig. 1, where each rectangular box represents
the set of tuples covered by the corresponding range, and their values are sorted in ascending order.

Consider the first tuple covered by 𝑟1 (i.e. the tuple has the smallest value in 𝑟1), for example. If it is a dangling tuple (i.e. it is
not covered by at least one range in 𝑟2,… , 𝑟ℎ), we may move the boundary of 𝑟1 downwards. Likewise, we can apply this boundary
revision to the other end of the range and to all the ranges. As a result, we obtain two sets of new boundaries, 𝐿𝑠(𝜆) and 𝑈𝑠(𝜆) as shown
in Fig. 1(a). 𝐿𝑠(𝜆) = {𝑙1, 𝑙2,… , 𝑙ℎ} contains the lowest value in each range whose corresponding tuples support the rule, and 𝑈𝑠(𝜆)
contains the highest such values. Note that 𝑙1, 𝑙2,… , 𝑙ℎ are not necessarily from the same tuple. These two sets of values effectively
form ‘‘support boundaries’’ within which 𝜆 is supported. Clearly, this revision of boundaries will only eliminate some dangling tuples,
hence it will not affect the rule’s support or confidence, but can increase its density. So this revision is always desirable.

We further observe that the tuples corresponding to the boundary values in 𝐿𝑠(𝜆) and 𝑈𝑠(𝜆) may not have 𝑐 as a consequent.
However, it makes sense that rules should start and end with a tuple whose consequent is 𝑐 [8], so we can move boundaries further
inwards towards the first (non-dangling) tuple that has 𝑐 as a consequent. This will result in ‘‘𝑐-boundaries’’ as shown in Fig. 1(b).

Definition 9 (𝑐-boundaries). Let 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐 be a range-based rule. Its lower and upper consequent boundaries (𝑐-boundaries)
are given by 𝐿𝑐 (𝜆) and 𝑈𝑐 (𝜆)

• 𝐿𝑐 (𝜆) = {𝑎1, 𝑎2,… , 𝑎ℎ ∣ 𝑎𝑖 = min∀𝑡∈∧𝐶(𝑡)=𝑐 𝜙(𝑡, 𝑟𝑖)}
• 𝑈𝑐 (𝜆) = {𝑏1, 𝑏2,… , 𝑏ℎ ∣ 𝑏𝑖 = max∀𝑡∈∧𝐶(𝑡)=𝑐 𝜙(𝑡, 𝑟𝑖)}

where  = 𝜏(𝑟1) ∩ 𝜏(𝑟2) ∩⋯ ∩ 𝜏(𝑟ℎ), 𝐶(𝑡) is a function that returns the consequent of 𝑡, 𝜙(𝑡, 𝑟𝑖) is a function that returns the value of 𝑡
in 𝑟𝑖, and 𝑖 = 1…ℎ.

Note that a rule formed by ranges with 𝑐-boundaries is not necessarily ‘‘better than’’ those formed by ranges with support
boundaries, since by deriving 𝑐-boundaries, support is sacrificed for confidence. However, 𝑐-boundaries are intuitively preferred,
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Table 2
Table 1 in Column Store Format. Each column is represented by a set of triples ⟨𝑡𝑖𝑑, 𝑣𝑎𝑙, 𝑐⟩, where 𝑣𝑎𝑙 records the values of 𝐴𝑖 sorted
in ascending order, 𝑡𝑖𝑑 records their corresponding tuple identifiers, and 𝑐 records their consequents.
𝐴1 𝐴2 𝐴3

𝑡𝑖𝑑 𝑣𝑎𝑙 𝑐 𝑡𝑖𝑑 𝑣𝑎𝑙 𝑐 𝑡𝑖𝑑 𝑣𝑎𝑙 𝑐

𝑡5 0.05 𝑐2 𝑡6 0.06 𝑐2 𝑡3 0.05 𝑐2
𝑡4 0.11 𝑐1 𝑡8 0.09 𝑐1 𝑡6 0.06 𝑐2
𝑡2 0.17 𝑐1 𝑡4 0.10 𝑐1 𝑡2 0.10 𝑐1
𝑡1 0.23 𝑐1 𝑡2 0.13 𝑐1 𝑡8 0.13 𝑐1
𝑡8 0.27 𝑐1 𝑡9 0.19 𝑐1 𝑡7 0.15 𝑐2
𝑡9 0.34 𝑐1 𝑡1 0.20 𝑐1 𝑡1 0.21 𝑐1
𝑡10 0.39 𝑐2 𝑡10 0.32 𝑐2 𝑡4 0.33 𝑐1
𝑡6 0.49 𝑐2 𝑡5 0.44 𝑐2 𝑡9 0.45 𝑐1
𝑡7 0.57 𝑐2 𝑡7 0.47 𝑐2 𝑡5 0.52 𝑐2
𝑡3 0.82 𝑐2 𝑡3 0.52 𝑐2 𝑡10 0.72 𝑐2

as the amount of support that is lost in the process is associated with the tuples that do not support 𝑐. We aim to find a set of rules
whose ranges are given by 𝑐-boundaries, or 𝑐-bounded rules.

Example 2. Consider the rule given in Example 1 again:

𝜆 ∶ [0.11, 0.39]𝐴1
∧ [0.13, 0.32]𝐴2

⇒ 𝑐1

Its support boundaries are 𝐿𝑠(𝜆) = {0.17, 0.13} and 𝑈𝑠(𝜆) = {0.39, 0.32}, respectively. But for the boundary tuple 𝑡10, its consequent
is 𝑐2. Therefore, we revise the corresponding boundaries, and obtain the following 𝑐-bounded rule (assuming that it also meets the
min-𝜎𝛾𝛿 condition):

𝜆′ ∶ [0.17, 0.34]𝐴1
∧ [0.13, 0.20]𝐴2

⇒ 𝑐1

3.2. Finding 𝑐-bounded rules

Our approach to finding 𝑐-bounded rules follows the CARM methodology [6] and is shown in Algorithm 1. For convenience, an
association of 𝑖 ranges will be referred to as an 𝑖-range in the following discussion. For example, [0.11, 0.39]𝐴1

∧[0.13, 0.32]𝐴2
is referred

to as a 2-range.

Algorithm 1 Finding 𝑐-bounded rules

input: 𝑇 (𝐴1, 𝐴2,… , 𝐴𝑚, 𝐶), 𝜎𝑚𝑖𝑛, 𝛾𝑚𝑖𝑛 and 𝛿𝑚𝑖𝑛
output: 

1.  ← ∅;
2. for each 𝑐𝑗 in 𝐶 do
3. 𝐿𝑅1 ← {[𝑣𝑎1 , 𝑣𝑏1 ]𝐴1

,… , [𝑣𝑎𝑚 , 𝑣𝑏𝑚 ]𝐴𝑚
}

4. for (𝑖 = 1, 𝑖 ≤ 𝑚, 𝑖++) do
5. for each 𝑟1, 𝑟2,… , 𝑟𝑖 in 𝐿𝑅𝑖 do
6. 𝑅 ← Analyze(𝑟1, 𝑟2,… , 𝑟𝑖 ⇒ 𝑐𝑗 , 𝜎𝑚𝑖𝑛, 𝛾𝑚𝑖𝑛, 𝛿𝑚𝑖𝑛)
7.  ←  ∪ 𝑅
8. 𝐿𝑅𝑖+1 ← ∅
9. for each 𝑎𝑟 ∈ 𝐿𝑅𝑖 do
10 for each 𝑟 ∈ 𝐿𝑅1 ∧ 𝑟 ∉ 𝑎𝑟 do
11. 𝐿𝑅𝑖+1 ← 𝐿𝑅𝑖+1 ∪ (𝑎𝑟, 𝑟)
12. return 

Algorithm 1 works as follows. Each distinct consequent 𝑐𝑗 is considered in turn (step 2), and a set of largest 1-ranges (𝐿𝑅1) is
obtained for it according to Definition 9 (step 3). For efficiency, we store 𝑇 as a set of columns, for example, Table 2 shows Table 1
stored as a set of columns. This enables the set of largest 1-ranges to be obtained by simply removing tuples whose consequents are
not 𝑐𝑗 at the two ends of the columns. For example, for 𝑐1 we have 𝐿𝑅1 = {[0.11, 0.34]𝐴1

, [0.09, 0.20]𝐴2
, [0.10, 0.45]𝐴3

} for the data in
Table 2.

The algorithm then goes into iteration. Each 𝑖-range in 𝐿𝑅𝑖 is analyzed to generate rules (steps 4–7). Note that when mining
association rules from categorical items, rules that have enough support but not sufficient confidence are simply discarded. In mining
range-based rules, however, we may decrease the size of a range to increase a rule’s confidence or density. Thus, when a rule does
not have sufficient confidence or density, we can consider replacing some of its ranges with their sub-ranges. Furthermore, even
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Fig. 2. Split Tree. Starting with a given rule (root), one range is selected heuristically to split, for example, 𝑟𝑖 into 𝑟𝑖1 and 𝑟𝑖2. This process is then repeated until no
ranges may be split. The result is a binary split tree shown here. Each node represents a rule involving different ranges. Each has sufficient support, but may or may
not have sufficient confidence or density, thus it may or may not be a valid rule.

when a rule has enough confidence and density, it is still worth considering forming additional rules using their sub-ranges, since
these rules may offer better predictive power and data characterization. The Analyze function performs this analysis (its pseudo-code
will be given in Section 4): for each 𝑖-range in 𝐿𝑅𝑖 and the consequent 𝑐𝑗 , it derives relevant sub-ranges from it and uses them to
form range-based rules heuristically. We will discuss different heuristics for sub-range derivation and rule formation in the following
sections. A set of (𝑖+ 1)-ranges is then generated by appending each large 𝑖-range with a largest 1-range (steps 8–11). Finally, the set
of derived rules is returned (step 12).

4. Range analysis

A range can contain many sub-ranges, especially when overlapping sub-ranges are considered. For example, given

[0.05, 0.57]𝐴1
∧ [0.09, 0.20]𝐴2

⇒ 𝑐1

we can derive [0.11, 0.39]𝐴1
and [0.17, 0.49]𝐴1

from [0.05, 0.57]𝐴1
to form

[0.11, 0.39]𝐴1
∧ [0.09, 0.20]𝐴2

⇒ 𝑐1

[0.17, 0.49]𝐴1
∧ [0.09, 0.20]𝐴2

⇒ 𝑐1
This can create a large number of range associations.

To avoid generating excessive sub-ranges for association computation, we propose to iteratively partition a range, rather than
considering all possible sub-ranges. That is, given a range-based rule 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐, we heuristically select one range,
say 𝑟𝑖, from 𝜆 and split it into 𝑟𝑖1 and 𝑟𝑖2, and use them to replace 𝑟𝑖 to form two new rules: 𝜆1 ∶ 𝑟1, 𝑟2,… , 𝑟𝑖1,… , 𝑟ℎ ⇒ 𝑐 and
𝜆2 ∶ 𝑟1, 𝑟2,… , 𝑟𝑖2,… , 𝑟ℎ ⇒ 𝑐. Note that as 𝑟𝑖 is partitioned into two sub-ranges, the resultant 𝑟𝑖1 and 𝑟𝑖2 will not overlap. This avoids
generating excessive ranges. As support is a monotonic measure, we can repeat the process on 𝜆1 and 𝜆2 as long as they have sufficient
support. Consequently, this process will create a split tree, as shown in Fig. 2.

To split a range, it intuitively makes sense that the splitting point in the range should be one that corresponds to a tuple whose
consequent is not the same as the rule’s consequence. Moreover, as all ranges in our rules are required to be 𝑐-bounded, it is easy
to see that we need to remove an interval surrounding such a point when splitting a range. We call such an interval non-consequent
interval (NCI).

Definition 10 (Non-consequent Interval). Let 𝑐 be a class value. If a range 𝑟 covers a set of tuples that do not contain 𝑐 as their class
value and no super-range of 𝑟 has this property, then 𝑟 is said to be a non-consequent interval w.r.t. 𝑐.

In this paper we consider two such splitting heuristics: Max-NCI and Min-NCI. Given a rule 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐, Max-NCI scans
all the ranges in 𝜆, and chooses the largest NCI (an NCI that contains most tuples) to split the corresponding range, and Min-NCI
chooses the smallest (containing least tuples). If there is a tie, one is selected at random. The following example illustrates these split
heuristics.

Example 3. Suppose that we need to split rule 𝜆 ∶ [𝑣6, 𝑣9]𝐴1
∧ [𝑢4, 𝑢7]𝐴2

⇒ 𝑐 whose ranges cover a set of data shown in Table 3. Note
that both [𝑣6, 𝑣9]𝐴1

and [𝑢4, 𝑢7]𝐴2
are 𝑐-bounded ranges and their values are listed in Table 3 in ascending order.

To split the rule using Max-NCI given the data in Table 3, the Analyze function locates the interval covering {𝑢3, 𝑢5, 𝑢8, 𝑢15} in 𝐴2
(shown in bold), and splits 𝜆 into two new rules:

𝜆1 ∶ [𝑣6, 𝑣16]𝐴1
∧ [𝑢4, 𝑢16]𝐴2

⇒ 𝑐 and 𝜆2 ∶ [𝑣7, 𝑣9]𝐴1
∧ [𝑢11, 𝑢7]𝐴2

⇒ 𝑐

Note that the ranges in 𝐴1 are revised following the split in order to satisfy the 𝑐-bounded property. For example, following the split,
𝑢9 is no longer covered by [𝑢4, 𝑢16]𝐴2

, hence 𝑣9 in [𝑣6, 𝑣9]𝐴1
becomes dangling and is removed. All such dangling tuples are removed as

part of our split process. Similarly, to split 𝜆 using Min-NCI, the Analyze function will locate 𝑣1 in 𝐴1 (shown in bold), and split 𝜆 into

𝜆′1 ∶ [𝑣6, 𝑣10]𝐴1
∧ [𝑢6, 𝑢10]𝐴2

⇒ 𝑐 and 𝜆′2 ∶ [𝑣7, 𝑣9]𝐴1
∧ [𝑢4, 𝑢7]𝐴2

⇒ 𝑐

as a result.
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Table 3
Data covered by 𝜆 ∶ [𝑣6 , 𝑣9]𝐴1

∧ [𝑢4 , 𝑢7]𝐴2
⇒ 𝑐. For convenience

of discussion, we refer to the values by their tuple IDs, e.g. 𝑣6
represents the value that the 6th tuple in the original table has in
𝐴1 and 𝑢6 represents the value of the same tuple in 𝐴2. Also, tuples
having 𝑐 as a consequent are represented by 1 and otherwise 0.
𝐴1 𝐴2

𝑣𝑎𝑙 𝑐 𝑣𝑎𝑙 𝑐

𝑣6 1 𝑢4 1
𝑣10 1 𝑢11 1
𝑣1 𝟎 𝑢6 1
𝑣14 1 𝑢10 1
𝑣7 1 𝑢16 1
𝑣11 1 𝑢3 𝟎
𝑣2 1 𝑢5 𝟎
𝑣12 1 𝑢8 𝟎
𝑣5 0 𝑢15 𝟎
𝑣13 0 𝑢11 1
𝑣3 0 𝑢9 1
𝑣4 1 𝑢7 1
𝑣16 1
𝑣15 0
𝑣8 0
𝑣9 1

We now describe how range split is done. Given a range-based rule 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐, a direct implementation of our range
split function is to scan each range to find the largest or smallest NCI to split the rule. This, however, can lead to some redundant
work. For example, when processing 𝐴1, 𝐴2 ⇒ 𝑐 and 𝐴1, 𝐴3 ⇒ 𝑐, 𝐴1 will be scanned twice. To avoid repeated scan of the same range,
we materialize all split intervals in all the attributes in a pre-processing step, and record them as an index:

NCI Index : {𝑁𝐶𝐼1, 𝑁𝐶𝐼2,… , 𝑁𝐶𝐼𝑝}

These NCI ’s are ordered in their interval sizes. For instance, in Table 3 we obtain the following NCI index for 𝐴1 and 𝐴2:

{[𝑢3, 𝑢15]𝐴2
, [𝑣5, 𝑣3]𝐴1

, [𝑣15, 𝑣8]𝐴1
, [𝑣10, 𝑣10]𝐴1

}

To check how 𝐴1, 𝐴2 ⇒ 𝑐 should be split, only a scan of this index is needed. If Max-NCI is used to split the ranges, then this index
is searched from left to right to find the first applicable NCI. Note that the splits following the current split (i.e. those splits at lower
nodes of the tree) will never involve a larger NCI than the current split, so we do not need to repeatedly scan the index from the start
to end, but only need to follow from the current position onwards as we carry on to split the ranges. Min-NCI is performed similarly
except that we search the index from right to left.

Lemma 1. Given a range-based rule 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐, the worst case cost of creating its split tree is 𝑂( ℎ
𝜎𝑚𝑖𝑛

), where 𝜎𝑚𝑖𝑛 is the minimum
support requirement.

Proof. Observe that the splitting process creates a binary tree and in the worse case it can have a maximum of 2⌈log2
1
𝜎𝑚

⌉ nodes, as
each sub-range must have a minimum support of 1

𝜎𝑚𝑖𝑛
tuples. Thus, in the worst case 2⌈log2

1
𝜎𝑚

⌉ splits will be performed on 𝜆. We only
need to scan through the NCI index once to complete all the splits on 𝜆, and the size of the index in the worse case is ℎ

𝜎𝑚𝑖𝑛
. Hence the

total cost is 𝑂( ℎ
𝜎𝑚𝑖𝑛

+ 2⌈log2
1
𝜎𝑚

⌉) = 𝑂( ℎ
𝜎𝑚𝑖𝑛

).

5. Rule formation

Different strategies may be used to form rules by selecting certain sub-ranges from the split tree. In the following sections we
describe four such heuristics for rule formation, each implementing the Analyze function in Algorithm 1.

5.1. Maximum confidence rule (MaxConf)

We first describe a strategy which returns a single rule from the splitting process that has the highest confidence. We call this
strategy maximum confidence rule (MaxConf). This requires a simple tracking of the rule in the splitting process that has the required
minimum density and the highest confidence. Note that all the rules in the split tree have sufficient support.

The MaxConf function works as follows. If a rule under consideration has the minimum support (step 4), then we perform two
tasks. First, if it also has the minimum density and the highest confidence so far, then it is potentially returnable, so we retain it (steps
5–6). Second, we use the Max-NCI heuristic to split the rule (step 7). The Split function simply splits a rule into two with one range
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Algorithm 2 MaxConf

input: 𝜆, 𝜎𝑚𝑖𝑛, 𝛾𝑚𝑖𝑛 and 𝛿𝑚𝑖𝑛
output: A ruleset 𝑅

1. 𝑟𝑚𝑎𝑥 ← ∅, 𝑄 ← 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝜆)
2. while 𝑄 ≠ ∅ do
3. 𝑞 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
4. if 𝜎(𝑞) ≥ 𝜎𝑚𝑖𝑛 then
5. if 𝛾(𝑞) ≥ 𝛾𝑚𝑖𝑛 ∧ 𝛿(𝑞) > 𝛿(𝑟𝑚𝑎𝑥) then
6. 𝑟𝑚𝑎𝑥 ← 𝑞
7. < 𝜆1, 𝜆2 >← Split(𝑞,Max-NCI)
8. 𝑄 ← 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝜆1, 𝜆2)
9. return 𝑟𝑚𝑎𝑥

replaced by two sub-ranges using the NCI index to search for the required splitting interval. The resultant two new rules 𝜆1 and 𝜆2
are put on the queue to be considered in the next iteration to see if they can be further split (step 8). This is repeated for the new
rules created from the splitting process until the support requirement is no longer met.

5.2. Maximum gain rule (MaxGain)

The maximum confidence rule strategy can sacrifice substantial support for confidence. This may not be desirable as, for example,
very confident rules may represent some known knowledge. In this section, we consider how we might strike a balance between
support and confidence, and optimize both jointly. To achieve this, we use the gain measure [4].

Definition 11 (Gain). Let 𝑇 be a table and 𝜆 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐 be a range-based rule derived from 𝑇 . The gain for 𝜆 in 𝑇 is

𝜉(𝜆) = |𝜏(𝑟1) ∩ 𝜏(𝑟2) ∩⋯ ∩ 𝜏(𝑟ℎ) ∩ 𝜏(𝑐)|−

𝛿𝑚𝑖𝑛 × |𝜏(𝑟1) ∩ 𝜏(𝑟2) ∩⋯ ∩ 𝜏(𝑟ℎ)|

Example 4. Suppose we have Table 1, 𝜆 ∶ [0.11, 0.34]𝐴1
∧ [0.06, 0.20]𝐴2

∧ [0.10, 0.33]𝐴3
⇒ 𝑐1 and 𝛿𝑚𝑖𝑛 = 0.5. Then we have

𝜉(𝜆) = |𝜏([0.11, 0.34]𝐴1
) ∩ 𝜏([0.06, 0.20]𝐴2

) ∩

𝜏([0.10, 0.33]𝐴3
) ∩ 𝜏(𝑐1)| −

𝛿𝑚𝑖𝑛 × |𝜏([0.11, 0.34]𝐴1
) ∩ 𝜏([0.06, 0.20]𝐴2

)

∩𝜏([0.10, 0.33]𝐴3
)|

= |{𝑡1, 𝑡2, 𝑡4, 𝑡8, 𝑡9} ∩ {𝑡1, 𝑡2, 𝑡4, 𝑡6, 𝑡8, 𝑡9} ∩

{𝑡1, 𝑡2, 𝑡4, 𝑡7, 𝑡8} ∩ {𝑡1, 𝑡2, 𝑡4, 𝑡8, 𝑡9}| −

𝛿𝑚𝑖𝑛 × |{𝑡1, 𝑡2, 𝑡4, 𝑡8, 𝑡9} ∩ {𝑡1, 𝑡2, 𝑡4, 𝑡6, 𝑡8, 𝑡9}

∩{𝑡1, 𝑡2, 𝑡4, 𝑡7, 𝑡8}|

= 4 − 0.5 × 4 = 2

So gain is a measure that attempts to balance between support and confidence, and our MaxGain strategy is to return a single
rule from the split tree that has the largest gain. The method is similar to Algorithm 2, except for two differences. First, in order
not to bias towards confidence, Min-NCI is used to split a range. Second, the selection will be based on the maximum gain measure,
not on confidence, hence minimum confidence requirement is also checked in order to guarantee that we return min-𝜎𝛾𝛿 rules. The
method is shown in Algorithm 3. Note that this algorithm follows from Algorithm 2 with only steps 4–7 changed, so for conciseness
of presentation, we omitted the same steps from Algorithm 2, and only presented the steps that are different from Algorithm 2 here.

5.3. All supported rules (AllSupp)

The previous two strategies attempt to find one optimal rule to return, which either has the highest confidence (hence likely to be
reliable) or has the largest gain (hence likely to be most characteristic) in the split tree. In this section, we consider returning multiple
rules from a split tree. This is useful when the dataset contains multiple, perhaps even conflicting knowledge patterns, and returning
just one rule may be too limited, especially for data characterization.

One obvious approach is to create the full tree and then return every internal node that has sufficient confidence and density. This
is, however, not desirable as we may return some rules that are contained or subsumed by other rules. These rules can lead to a bias,
for example, when a majority vote is used to classify data using the derived rules, as a ‘‘strong’’ rule may contain many sub-rules.
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Algorithm 3 MaxGain

: input, output and steps 1-3 are the same as Algorithm 2
4. if 𝜎(𝑞) ≥ 𝜎𝑚𝑖𝑛 then
5. if 𝛾(𝑞) ≥ 𝛾𝑚𝑖𝑛 ∧ 𝛿(𝑞) ≥ 𝛿𝑚𝑖𝑛 ∧ 𝜉(𝑞) > 𝜉(𝑟𝑚𝑎𝑥) then
6. 𝑟𝑚𝑎𝑥 ← 𝑞
7. < 𝜆1, 𝜆2 >← Split(𝑞,Min-NCI)
: steps 8-9 are the same as Algorithm 2

Definition 12 (Subrule). Let 𝜆1 ∶ 𝑟1, 𝑟2,… , 𝑟ℎ ⇒ 𝑐 and 𝜆2 ∶ 𝑟′1, 𝑟
′
2,… , 𝑟′𝑘 ⇒ 𝑐 be two range-based rules derived from table 𝑇 . We say

that 𝜆1 is a subrule of 𝜆2, denoted by 𝜆1 ≺ 𝜆2, if for each 𝑟𝑖 in the antecedent of 𝜆1 there exists an 𝑟′𝑗 in the antecedent of 𝜆2 such that
𝑟𝑖 is a subrange of 𝑟′𝑗 .

Clearly, each branch of the split tree will form containment relation from the root to the leaf. That is, each rule at a node is
contained in the rule at its predecessor nodes. Our AllSupp heuristic is to return one rule per branch whose support is as high as
possible, as long as they have minimum confidence and density. The method is described in Algorithm 4, which returns a set of rules
from a split tree that do not have containment relationships.

Algorithm 4 AllSupp

input: 𝜆, 𝜎𝑚𝑖𝑛, 𝛾𝑚𝑖𝑛 and 𝛿𝑚𝑖𝑛
output: A ruleset 𝑅

1. 𝑅 ← ∅; 𝑄 ← 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝜆)
2. while 𝑄 ≠ ∅ do
3. 𝑞 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
4. if 𝜎(𝑞) ≥ 𝜎𝑚𝑖𝑛 then
5. if 𝛾(𝑞) ≥ 𝛾𝑚𝑖𝑛 ∧ 𝛿(𝑞) ≥ 𝛿𝑚𝑖𝑛 then
6. 𝑅 ← 𝑅 ∪ 𝑞
7. else
8. < 𝜆1, 𝜆2 >← Split(𝑔,Min-NCI)
9. 𝑄 ← 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝜆1, 𝜆2)
10. return 𝑅

The methods is similar to Algorithm 2 with one main difference. The split of rule stops as soon as a rule is found with minimum
support, confidence and density (step 4–6). We will only split a rule that has enough support but not enough confidence or density
(step 8). This is because any sub-rule obtained from this point on (i.e. any rules at a lower node in the split tree) will be contained in
this rule as sub-rules and these sub-rules cannot have a higher support than the current rule due to the monotonic property. Hence
this rule is returned. In order to maximize support, we use Min-NCI to split a range, thereby retaining as much support as possible
following the split.

5.4. All confident rules (AllConf)

Our final heuristic mirrors AllSupp, except that instead of using Min-NCI, we use Max-NCI to split a range, and instead of returning
one rule from each branch that has the highest support, we return all rules that have sufficient confidence. The method is similar to
Algorithm 4, and is shown in Algorithm 5. Again we only show the steps that are different from Algorithm 4 here. As confidence is
not monotonic, we need to continue splitting the ranges until they no longer have enough support.

Algorithm 5 AllConf

: input, output and steps 1-3 are the same as Algorithm 4
4. if 𝜎(𝑞) ≥ 𝜎𝑚𝑖𝑛 then
5. if 𝛾(𝑞) ≥ 𝛾𝑚𝑖𝑛 ∧ 𝛿(𝑞) ≥ 𝛿𝑚𝑖𝑛 then
6. if 𝑞 not redundant in 𝑅 w.r.t. Def 13 then
7. 𝑅 ← 𝑅 ∪ 𝑞
8. < 𝜆1, 𝜆2 >← Split(𝑞,Max-NCI)
: steps 9-10 are the same as Algorithm 4

Note that some of the rules passing steps 4–5 are redundant. That is, these rules have their confidence lower than their ancestors.
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Table 4
Datasets used in the experiments.

Dataset Tuples Attributes Types Classes

Breast Cancer
(Diagnostic) 569 30 𝑅𝑒𝑎𝑙 2
Ecoli 336 7 𝑅𝑒𝑎𝑙 8
Glass 214 9 𝑅𝑒𝑎𝑙 7
Image Seg 2310 19 𝑅𝑒𝑎𝑙 7
Iris 150 4 𝑅𝑒𝑎𝑙 3
Page Blocks 5473 10 𝐼𝑛𝑡, 𝑅𝑒𝑎𝑙 5
Waveform 5000 21 𝑅𝑒𝑎𝑙 3
WineQ-Red 1599 11 𝑅𝑒𝑎𝑙 11
WineQ-White 4899 11 𝑅𝑒𝑎𝑙 11
Yeast 1484 8 𝑅𝑒𝑎𝑙 10

Definition 13 (Rule Redundancy). Let 𝑟 and 𝑟′ be two range-based rules that have the same consequent 𝑐. If 𝑟 ≺ 𝑟′ and 𝛿(𝑟) ≤ 𝛿(𝑟′),
then 𝑟 is redundant.

As they cannot have a greater support than their ancestors either, these rules are not useful. We therefore do not retain these rules
(step 6), which is similar to the argument given in [2]. Note that according to Definition 13 only parent rules may render their children
redundant in the split tree and therefore there is no need to remove a rule that has already been added to 𝑅. Due to the rule redundancy
property each of the resulting rules represents a specialization of the same original rule, but with different support and confidence
characteristics. This property is important in data characterization because they help describe possibly multiple characteristics of a
given dataset.

6. Experimental results

In this section we report experimental results. We compare the proposed methods to C4.5 and RIPPER in terms of their classification
accuracy and their ability to characterize a given set of data. We also examine the effect of our density measure on the quality of rule
induction. We compare our methods to C4.5 and RIPPER because these two methods are widely used and studied, and they produce
human-interpretable rules as we do in our work.

6.1. Experments setup

A number of datasets selected from the UCI repository [9] are used in the experiments. These datasets are among the most
popular datasets used in the research community for studying classification and they vary in tuple and attribute size, the nature of
their numerical attributes and the number of different class labels. Table 4 contains a summary of the characteristics of each dataset.

6.2. Classification experiments

This section presents the results of experiments on the performance of the proposed methods for classification. We first compare
the classification accuracy of our methods to that of the Weka implementation of RIPPER algorithm and C4.5 [10] and then report
the effect of density on classification accuracy.

6.2.1. Classification accuracy
In this set of experiments, 50%, 60%, 70%, 80% and 90% of each dataset is used for training and the remaining data for testing. The

training data is selected at random, and prediction is made by using a majority vote. That is, we use every rule in the result set to
predict an unseen case, and the consequent with the most votes is deemed as the result of prediction.

The results are given in Fig. 3. In these experiments, 𝜎𝑚𝑖𝑛 and 𝛾𝑚𝑖𝑛 were set to 0.01 and 𝛿𝑚𝑖𝑛 varied in the range of 0.5 to 0.95. We
ran experiments 5 times and report average results. Overall the AllSupp method did not perform well, suggesting that support alone is
not a good criterion. The MaxConf, MaxGain and AllConf methods all performed well compared to JRip and J48, and outperformed
them in many cases. This is largely the result of our CARM inspired approach: when it is difficult to obtain a set of non-overlapping
rules to classify unseen cases accurately, it can be more reliable to derive as many credible rules from data as possible, and use them
to classify unseen cases collectively. Our results show that this approach is more resilient than the more conventional cover and
remove strategy.

Table 5 shows a summary of the average classification accuracy (over different training datasets) achieved in the experiments. The
AllSupp method is omitted here, as its classification accuracy was not comparable to the other methods. As can be seen, our methods
are comparable to JRip and J48 in terms of average classification accuracy with AllConf and MaxGain outperformed JRip and J48
on 6 of the 10 datasets.

It is also worth mentioning that the proposed methods are designed to achieve good data characterization as well as classification.
While these experiments confirm that the new methods are able to achieve classification performance that is broadly comparable to
two of the most popular rule mining solutions, they can achieve a superior performance in data characterization, as we will see in
Section 6.3.
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Fig. 3. Classification Accuracy. All charts have the same axis titles: % of training data for the 𝑥-axis and classification accuracy for the 𝑦-axis. Other than AllSupp our
methods are comparable to JRip and J48 in classification accuracy.

Table 5
Average classification accuracy over different training datasets (%).

Dataset Algorithm

JRip J48 MaxConf MaxGain AllConf

Breast Cancer
(Diagnostic) 93.63 94.88 93.55 𝟗𝟔.𝟓𝟏 95.80
Ecoli 79.60 𝟕𝟗.𝟖𝟕 74.36 73.20 75.25
Glass 68.94 65.60 61.09 70.86 𝟕𝟖.𝟖𝟓
Image Seg 86.06 𝟖𝟖.𝟗𝟐 88.69 88.52 87.46
Iris 92.69 91.58 90.96 𝟗𝟑.𝟔𝟐 92.62
Page Blocks 92.40 𝟗𝟑.𝟓𝟖 86.70 87.34 92.22
Waveform 78.40 75.47 80.97 81.18 𝟖𝟏.𝟕𝟗
WineQ-Red 48.94 47.30 49.69 𝟓𝟐.𝟔𝟖 52.07
WineQ-White 52.43 43.02 43.45 48.85 𝟓𝟒.𝟒𝟒
Yeast 𝟓𝟓.𝟔𝟐 50.54 48.91 53.75 53.30

6.2.2. Effect of density
To examine the effect of our new density parameter 𝛾𝑚𝑖𝑛 on classification accuracy, we set each dataset the same as in the previous

section with the percentage of data used for training set at 70%, 𝜎𝑚𝑖𝑛 = 0.01 and 𝛿𝑚𝑖𝑛 = 0.8. 𝛾𝑚𝑖𝑛 is however varied from 0 to 0.75.
Note that the setting of particular 𝜎 and 𝛿 values are insignificant in these tests as our goal is to observe how classification accuracy
changes when density varied. These experiments are performed using all four methods. The results of our experiments are presented
in Fig. 4.

We observed that increasing the density threshold reduced the number of rules generated, and overall this has also led to the
drop in classification accuracy. This is an interesting finding and is against our expectation. Close examination of the experimental
results showed that high density settings resulted in many narrow ranges, and these ranges seemed to have caused some overfitting.
Our results therefore suggest that the boundaries and association of ranges are more important than how many values are actually
observed to be associated across the ranges. Our density measure is a conservative assessment that treats dangling cases as those that
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Fig. 4. Density effect on classification accuracy. All charts have the same axis titles: minimum confidence 𝛾𝑚𝑖𝑛 for the 𝑥-axis and classification accuracy for the 𝑦-axis.
Observe that increasing density requirement tends to result in lower classification accuracy, suggesting that highly confident rules with narrow ranges may not always
be desirable for classification.

are likely to lead to wrong predictions. The experiments results seem to suggest that such dangling cases would do little harm, and
finding appropriate boundaries for the ranges involved in a rule has a more significant impact on classification accuracy.

We can however observe that large density seemed to produce more stable classification performance. That is, their classification
performance does not vary significantly when the density is set high enough. This is largely expected as when the density is high,
the discovered associated ranges would contain many actually observed cases in the dataset. As such, they tend to be more reliable
when used to classify unseen cases.

6.3. Characterization experiments

The task of classification is well understood. In contrast, the task of data characterization and how the effectiveness of different
rule sets may be compared for their data characterization power are less clear. In this section we introduce two measures to study
the data characterization power of our proposed methods.

6.3.1. Rule stability
If discovered rules are relatively stable, then we may consider that the rules have characterized the data well. That is, if adding a

small percentage of cases to a dataset does not change the resulting rules significantly, then a set of rules derived from data can be
considered as having truly characterized data, since the key data characteristics should not have changed significantly when the data
is slightly varied. We therefore use stability as a measure of data characterization quality.

Fig. 5 shows a comparison of differences in classification accuracy when changing the percentage of data used for training. That
is, we measure the difference in classification accuracy when the amount of training data is changed from, say 50% to 60% or 60%
to 70%. If the difference is small, then we consider our characterization of the data is stable, as adding 10% data to the dataset has
not significantly changed the model derived from the data.

We compare our MaxGain and AllConf methods to JRip and J48 as AllConf gives best classification accuracy in our study and
MaxGain is the only one that attempts to balance between support and confidence. For conciseness of presentation, we only report
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Fig. 5. Stability Test. All charts have the same axis titles: the 𝑥-axis shows the amount of data used in training, for example 50–60 indicates that we first used 50%
data for training and then added 10% to the data and used the resultant 60% data for training. The 𝑦-axis shows the difference in classification accuracy between the
two tests, for example, 3% for JRip when training data (Breast Cancer) is changed from 50% to 60%.

Table 6
Median density of 10 most confident and 10 most supported rules.

Dataset 10 most confident rules 10 most supported rules

J48 JRip MaxGain AllConf J48 JRip MaxGain AllConf

Breast Cancer
(Diagnostic) 0.015 0.398 𝟎.𝟒𝟏𝟎 𝟎.𝟒𝟏𝟎 0.019 0.398 0.596 𝟎.𝟔𝟒𝟓
Ecoli 0.013 0.126 0.058 𝟎.𝟐𝟐𝟗 0.042 0.126 0.515 𝟎.𝟓𝟏𝟖
Glass 0.026 0.089 𝟎.𝟏𝟐𝟐 𝟎.𝟏𝟐𝟐 0.056 0.089 0.227 𝟎.𝟐𝟑𝟕
Image Seg 0.021 0.147 𝟎.𝟑𝟏𝟑 𝟎.𝟑𝟏𝟑 0.094 𝟎.𝟐𝟑𝟖 0.161 0.161
Iris 0.320 𝟏.𝟎𝟎𝟎 0.625 0.625 0.320 𝟏.𝟎𝟎𝟎 0.625 0.749
Page Blocks 0.001 0.035 0.030 𝟎.𝟎𝟕𝟔 0.021 0.035 𝟎.𝟗𝟗𝟗 𝟎.𝟗𝟗𝟗
Waveform 0.011 𝟎.𝟎𝟕𝟓 0.019 0.035 0.025 0.163 0.191 𝟎.𝟐𝟒𝟑
WineQ-Red 0.009 0.018 0.020 𝟎.𝟎𝟑𝟎 0.024 0.064 0.174 𝟎.𝟑𝟏𝟑
WineQ-White 0.004 0.002 𝟎.𝟎𝟏𝟔 0.012 0.009 0.056 0.482 𝟎.𝟔𝟖𝟒
Yeast 0.007 𝟎.𝟏𝟏𝟎 0.026 0.015 0.038 0.132 0.160 𝟎.𝟏𝟕𝟎

the experimental results on three datasets here: the Ecoli and Glass datasets represent the cases where prediction using our methods is
less and more accurate than the other two methods, respectively, whereas the Breast Cancer dataset is used as a representative case,
where the average of classification accuracy by our methods outperformed the other two.

The figures demonstrate that both AllConf and MaxGain methods performed more consistently than JRip and J48 in most cases.
We attribute this to the fact that CARM was used, and we are able to take inconsistent patterns within the data into account, producing
more robust results. It is also interesting to observe that when the percentage of training data change from 80 to 90, the MaxGain
method performed consistently well. Thus, it appears that in characterizing data, seeking balance between support and confidence
is an effective strategy. These results show that our methods can result in stable solutions, which implies that they can capture key
underlying patterns in data, hence a good solution for data characterization.

6.3.2. Top k rule cohesion
In this section we introduce another measure for data characterization: the median density of 𝑘 most confident or most supported

rules. The rationale for this measure is that intuitively if a rule covers a dense population of tuples and is highly supported and
confident, then it characterizes a key pattern in a dataset. In other words, we want to test how ‘‘separate’’ the data covered by a set
of rules is from the rest of the data, hence the rules have summarized a key pattern from the data.

In this set of experiments, we selected the 10 most confident and 10 most supported rules for each dataset and measured their
median density. The results are presented in Table 6. In all cases 100% of datasets were used to mine the rules.

As we can see, J48 is completely outperformed by the other solutions in every single case. This is because J48 mines rules by
performing point-based split, and in every experiment performed this resulted in rules with large ranges and a reduced density.
AllConf performed better than MaxGain due to its rule formation heuristic: most confident rules tend to cover relatively fewer tuples,
resulting in higher density. Comparing the two sets of results, it is useful to observe that for all methods selecting the rules with most
support results in better density than the most confidence rules. Together with our analysis of density on classification accuracy in
Section 6.2.2, this suggests that highly confident rules are better for classification whereas highly supported rules are better for data
characterization.

Overall, our experiments show that the proposed methods offer better data characterization than the existing rule mining methods.
We attribute this to the fact that the CARM methodology was used. Rather than following the cover and remove strategy, aiming to
derive a single optimal model from the data, we allow many credible rules to be discovered and used collectively in classification
and characterization. Consequently, a small change in data might affect the accuracy of some isolated rules that were learnt, but it
would not affect the overall discovery. This is important to the derivation of stable, comprehensible characterization models from
data.
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7. Related work

One popular approach to obtaining ranges from numerical attributes is discretization and many techniques have been proposed to
discretize numerical data as a pre-processing step in rule mining [11]. These methods rely on the discretization criteria used and there
is no guarantee that relevant or optimal ranges will be captured during the pre-processing step. Some range merging techniques have
also been considered during rule mining to refine the initial ranges obtained from discretization. For example, Srikant and Agrawal
proposed to use equi-depth partitioning to group individual data items into initial ranges first, and then allow neighboring ranges
to be combined based on a user specified threshold [3]. Wang et al. proposed a clustering based method which successively merges
neighboring values into a range. Our method can also be broadly considered as discretization, except that we perform a top-down
split as opposed to a bottom-up merge, and we perform this directly in the rule mining process without a pre-processing step. This
allows more ranges to be explored during mining, resulting in more credible rules to be found.

Methods have also been proposed to extract optimal ranges directly from numerical data. Fukuda et al. [7] proposed an approach
to mining ranges from a single numerical attribute that have maximum support using confidence as a constraint or mining ranges
that have maximum confidence given the support threshold. The gain measure is used as an optimization to balance the two. This
method was then extended to handling two numerical attributes [4]. The extended method was inspired by image segmentation and
finds rectangular and admissible (connected 𝑥-monotone) regions from two dimensional data directly. Other extensions have been
made to extract optimal gain regions from data [12,13], but they are all limited to handling a maximum of two numerical attributes.
Aumann and Lindell proposed a statistical model to determine relevant ranges from data [2]. Their method focuses primarily on the
rule consequent being a single numerical attribute and is able to find all ranges/sub-ranges from that attribute that statically deviate
from the overall statistics in the entire attribute. Their method is again limited to dealing with one numerical attribute only in the
rule antecedent. In contrast, our approach does not have this restriction and we allow multiple numerical attributes to form range
associations as the antecedent of a rule.

Other works have considered extraction of ranges from numerical attributes as an optimization problem. For example, Mata
et al. [14] proposed a solution that uses an evolutionary algorithm based on a fitness function that improves the generated ranges.
This solution is able to mine overlapping ranges with high support but offers poor results in term of confidence. Quantminer [5] is a
genetic algorithm based solution that delivers better results in terms of confidence and a reduced number of rules than the method
given in [14]. Alatas et al. [15–17] proposed several evolution based algorithms for deriving associated ranges without needing to
specify minimum support and confidence and are able to mine positive as well as negative ranges. These proposed methods are
applicable to any number of numerical and categorical attributes, but they are designed to mine association rules, as such they offer
no guarantees that their solutions will extract good ranges for classification and characterization. In contrast we use range split
heuristics to extract rules for classification and characterization. The work reported in [18] is similar to the work presented here.
However, their approach is based on the solution to the Max Sum problem [19], and derives an excessive number of min-𝜎𝛾𝛿 rules.
In comparison, we use a top-down split to find 𝑐-bounded ranges, and our methods are thus more scalable.

All range mining methods we discussed above are done in the context of either classification or association rule mining. In so
doing they attempt to discover a single, optimal model from data. That is, they look for best ways of partitioning numerical data
and deriving rules from such partitioning. In contrast, our work adopts the CARM methodology [6]. This allows effectively multiple
models to be discovered from data, and to be used as a type of ensemble model for classification and characterization. While some
methods have been proposed to mine rules using CARM, they are restricted to deal with categorical data only [20]. We, on the other
hand, extend the approach to deal with numerical data in this paper.

8. Conclusions

In this paper, we proposed a method for finding range-based rules from numerical data in order to build classification and
characterization models. Our method is inspired by the CARM approach: we search for associated ranges in a similar way to how
associated items are searched for in conventional association rule mining, but we guide the range search with class values. To do so, we
have introduced a number of heuristics for splitting ranges into sub-ranges and for range-based rule formation. This allows effectively
multiple models to be discovered from data, and to be used as a type of ensemble model for classification and characterization. Our
experimental results have shown that the new method is promising, and it outperformed popular rule mining methods such as C4.5
and RIPPLE in both data classification and characterization.

There are two issues to be addressed in future research. First, it is worth considering how rules with ranges in the consequent
may be mined using the proposed approach, for example, discovering ranges in the consequent that are statistically significant [2]
and use them to guide the formation of range-based rules. Second, extending our approach to mining rules from both numerical and
categorical attributes can be considered. While it is possible to simply use additional categorical attributes to filter out some ranges
and rules discovered by our method, it will be interesting to study if such categorical attributes can be used as an integral part of
sub-range derivation. We plan to address these issues in our future work.
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