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Summary 
This thesis describes an investigation into performing organic synthesis under 

mechanochemical conditions. Procedures were developed for the selective mono- and 

difluorination of 1,3-dicarbonyls and the one-pot, two-step synthesis of fluorinated 

pyrazolones under ball milling. Attempts to perform a two-step mechanochemical 

synthesis of difluoromethylthioethers led to exciting results demonstrating that ball 

milling can lead to alternative reactions occurring. Finally, some initial results into the 

generation and reaction of organomanganese reagents under mechanochemical 

conditions are reported. 

 

Initial investigations into the use of mechanochemistry for organic synthesis focused on 

the mechanochemical formation of the C-F bond, with a particular focus on differences 

in selectivities observed under different milling conditions. It was found that electrophilic 

fluorination of 1,3-dicarbonyls could be achieved under ball milling conditions using 

Selectfluor. The selectivity of this process could be significantly enhanced using Liquid 

Assisted Grinding with acetonitrile as an additive. The possible causes of this observed 

change in selectivity were investigated.  

 

Further work developing a one-pot, two-step mechanochemical process was 

performed. A procedure for the synthesis of fluorinated pyrazolones was developed 

and some of the key considerations when attempting one-pot mechanochemical 

procedures were established by a careful optimisation. Conditions compatible with both 

the heterocycle formation step and the fluorination step were found and a range of 

fluorinated pyrazolones successfully synthesised by this method. 

 

It was observed that mechanochemistry could be used to alter the chemoselectivity of 

a reaction while attempting the synthesis of difluoromethylthioethers. After detailed 

study, a hypothesis to the origin of this alteration in selectivity was proposed. Finally, 

some initial results into the use of mechanochemical methods to activate manganese 

metal for applications in synthesis are presented. 
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 2 

 

1.1 Chemical reactions and energy input 
 

In order for any chemical reaction to occur, the system needs to absorb energy equal 

to or greater than the activation energy required for the transformation. When 

performing reactions for synthesis, this energy is most commonly delivered by 

controlled heating of the reaction mixture. Alongside heating, which was defined as 

thermochemistry, in 1890 Ostwald categorised chemical reactions by energy input as 

photochemistry, electrochemistry and mechanochemistry.1 In more recent times, 

photochemistry2-6 and electrochemistry7-12 have been pursued significantly as 

techniques to improve synthetic methods. Mechanochemistry remains less utilised and 

studied for organic synthesis, despite recent progress establishing that fundamental 

organic transformations are possible under mechanochemical conditions.13-21 

 

1.2 Mechanochemistry 
 

A mechanochemical reaction is defined as “a chemical reaction that is induced by the 

direct absorption of mechanical energy”. 22 Mechanochemistry therefore complements 

the conventional methods of energy input discussed above. 

It is well known that chemical reactions initiated differently often lead to different 

products, and that altering the reaction environment in this way can be used to control 

the reaction pathway. For example, pericyclic reactions proceed differently depending 

on whether they are induced by light or heat. This is well understood and explained by 

the Woodward-Hoffman rules.23, 24 However, products have been observed using 

ultrasound that do not obey these rules and it has been suggested that they should not 

be applied to mechanochemical pericyclic reactions.25, 26 Mechanochemistry therefore 

presents an opportunity to explore a potentially novel space of chemical reactivity. 

 

1.3 Equipment 
 

The earliest mechanochemical reactions were carried out using a pestle and mortar.27 

However, how these reactions behave is highly operator dependent, as each individual 

may impart different levels of energy. Running reactions for longer than a few minutes 

also becomes challenging, and depends on the operator’s stamina. Therefore, 

automatic milling devices are commonly used for mechanochemical reactions. These 

mills were initially developed as a reliable method for the production of fine powders 
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with a desired particle size.28 However, they have subsequently been adopted for 

mechanochemical reactions.  

 

The mixer mill is one type of ball milling machine, which uses the movement of ball 

bearings to apply mechanical force to the reagents. In this case, reagents are loaded 

into jars and one or more balls are added. The jars are then mounted horizontally and 

shaken at the desired frequency (Scheme 1.1). The main mechanical energy applied to 

the reagents is impact force. 

 

 
 

Scheme 1.1 Operation of a mixer mill and examples of equipment available. 

 

The other most common type of ball mill is a planetary mill. In this case, the reagents 

and ball(s) are loaded as before, but the motion is different. The jars are spun around a 

central axis analogous to planets orbiting around the sun. In both cases, the material 

and size of the jars and balls can be altered (Scheme 1.2). The main type of force 

applied is shear force. 

stainless steel grinding jar

grinding cavity
grinding 

ball

reactants + products

grinding frequency  
(oscillates in a shallow figure-of-eight)

Mixer Mill schematic Cut-away diagram 

Milling jars and balls Mixer Mill 
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Scheme 1.2 Movement of a planetary mill and example of mill available. 

 

Stirred media ball mills are also available, in which the reagents and balls are stirred 

together. This type of mill is commonly used to create very fine powders, such as of 

coal.29, 30 However, it has found limited application in the lab for mechanochemistry. 

 

1.4 Scale Up 
 

If any synthetic procedure is to be useful to society (eg in drug discovery or 

manufacture) it must be achievable on different scales. For mechanochemistry, each 

type of milling device can achieve different scales. The mixer mill can achieve gram 

scales, which are suitable for lab investigations. However, for anything larger, other 

types of mill must be used, and different sizes of planetary mill are available. However, 

for pilot and manufacture scales, stirred media ball mills are used. For example, the 

Outotec HIGMill has a volume of 30000 litres and can be used at >1000 kg scales.31  

 

Stolle et al. demonstrated the scalability of the mechanochemical Knoevenagel 

condensation between vanillin and barbituric acid, scaling up from 20 to 300 mmol 

scales, and state that it should be possible to achieve this reaction in a stirred media 

ball mill.32  

 

rotation speed

sun wheel

grinding jars
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Scheme 1.3 Top: A fully assembled twin-screw extruder. Bottom: Twin screws, 
showing conveying and kneading sections. 
 

A different approach to scalability can be attempted if the process is modified from 

batch to continuous. This can be achieved by using extruders instead of mills. 

Extruders continuously force material through confined spaces and apply shear and 

compression forces (Scheme 1.3). They are commonly used in the pharmaceutical 

industry for drug formulation. The twin-screw extruder moves material along the barrel 

by turning two screws. It can be fitted with different sections, such as kneading or 

reverse sections. In the typical setup, a combination of screw sections (used to convey 

material) and kneading sections (used to compress the material) is employed. James 

and co-workers synthesised MOFs at rates of kilograms per hour making use of twin-

screw extruders.33  

 

1.5 Variables affecting reactions 
 

As when performing any reaction, understanding and controlling the variables is 

important, but when using a ball mill it can be challenging to control or even measure 

the variables individually. There are three main variables that effect how mechanical 

energy is transferred to the reagents: the kinetic energy of the ball(s) prior to collision, 

how that energy is transferred to reagents and the frequency of collisions. If these 
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variables could be controlled individually and independently of each other, their effects 

on a reaction could be more easily understood. 

 

The amount of kinetic energy that the ball(s) possess prior to collision is the maximum 

amount of energy that can be transferred to the reagents per collision. The kinetic 

energy the ball(s) can achieve prior to collision depends on their mass and velocity. 

Their mass can be controlled, but the velocity they possess just before a collision 

depends on their exact trajectory within the jar and therefore depends on several 

parameters. These include filling degree and size of the jar, the mass and number of 

the ball(s) and the frequency of the milling. 

 

In a collision, how that energy is transferred can have an effect on whether a reaction 

occurs. This can be by direct impact, under which the material is locally compressed, or 

by shear force. It has been shown that these different types of energy absorption can 

lead to different outcomes.34 Different types of ball mill achieve different ratios of impact 

and shear forces. How much energy is absorbed in a collision also depends how much 

is lost by physical deformation of the materials. This therefore also depends on the 

texture of the reaction mixture, including its Young’s modulus. 

 

The number of collisions per second is also an important variable. Clearly, the higher 

the number of collisions, the more energy can be transferred and therefore the faster 

the reaction. This depends on the frequency of the mill, the size and number of balls 

and the filling degree of the jar. 

 

Differences in mixing, or mass transfer, can affect the outcome of any reaction. In 

solution, this is easily controlled by stirring, so provided all reagents are dissolved, 

mass transfer is rarely a problem and will be comparable for different mixtures. 

However, in milled reactions, this can be a difficult variable to characterise or control 

and can have a dramatic effect on the outcome of a reaction. It depends on almost 

every variable that can be controlled, and some that cannot (number and size of balls, 

jar filling degree and volume of jar, volume of reagents, type of mill, frequency of milling 

and texture of reagents to name a few).  

 

Finally, variables that are usually changed in any reaction also apply, such as 

stoichiometry, reaction time and temperature. Temperature is not easily controlled, as 

the reaction vessel heats up due to the collisions, although the cryomill has been 

developed, which can apply external cooling.35 Also, if the vessel heats up significantly, 
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it can be debatable whether the reaction is occurring mechanochemically or due to 

heat. 

 

Of these variables that can affect how a reaction performs, few of them can be 

independently changed or controlled. However, there are a number of variables that 

can be controlled, which have multiple influences on the variables affecting reactivity. 

 

1.6 Directly controllable variables 
 

One of the first variables to be decided is what type of ball mill is to be used. As 

discussed previously, there are three main types: the mixer mill, the planetary mill and 

the stirred media mill. This decision may be based on the scale of the reaction, but 

otherwise the key differences are all related to the trajectory of the balls within the 

milling vessel. This leads to differences in the ratio of impact:shear forces, as well as 

the kinetic energy of the ball(s) and mixing. There have been relatively few studies 

comparing different ball mills, although different results have been observed using 

different mills.36-39 Choosing which mill to use may depend on the scale of the proposed 

reaction, with planetary mills capable of handling larger scales than mixer mills. 

However, if any mill can be used, it is not easy to predict which will lead to the best 

outcomes, so early experiments in the optimisation of a process could be a comparison 

of different mills. 

 

The next consideration is usually given to the filling degree. This is a measure of how 

full the jars are, considering the volumes occupied by the reagents and balls compared 

to the total volume of the jars. This has a significant effect on the trajectories of the 

balls, and therefore the energy transfer and mixing. The effect of the milling ball filling 

degree has been investigated for the Knoevenagel condensation of vanillin with 

barbituric acid in a planetary mill by changing the number of balls in the milling 

vessel.32 When this parameter is low, the jar has a small number of balls, so the mixing 

and kinetic energy is low. When this parameter is high, the balls inhibit each other’s 

motion, and they are not able to move freely, so their velocities (and therefore kinetic 

energy) will be limited. There is therefore an optimal value, which is a compromise 

between those two extremes. 

 

The size of grinding balls can be controlled. This is usually decided based on the 

volume of the milling jar, with the most appropriate size being chosen. In general, 



 8 

larger balls may not lead to good mixing and smaller balls can improve the mixing. This 

is because if the diameter of a ball is large and close to the diameter of the jar, the 

reagents cannot easily pass the ball and mix effectively. The mass of the grinding balls 

can also be controlled. The larger the mass, the more kinetic energy the balls can 

possess before a collision, so the larger the energy transferred each collision. As a 

larger ball will have a larger mass, this implies that when choosing the size of ball there 

is a compromise between best mixing and highest energy input. However, the material 

of the balls can also be controlled, and therefore balls of different density can be used, 

allowing the mass to be changed without changing the size. 

 

The material of the grinding balls and jars is therefore important. Density has been 

discussed, but it is also important to consider other properties. Young’s Modulus is an 

important parameter and is the ratio of stress to strain, and is a measure of to what 

extent a material deforms under pressure. It is therefore related to how much energy is 

absorbed on application of force. In a mechanochemical reaction, it is desirable to 

transfer as much energy as possible to the reagents. Therefore, using grinding balls 

and jars that will not absorb much energy (have a high Young’s Modulus) is desirable. 

The other main consideration when deciding on a grinding material is chemical 

compatibility. Not only can this lead to deterioration of the grinding balls and jars, which 

would need to be replaced more frequently, but it can also affect the outcome of a 

reaction. However, the material of the balls can be chosen deliberately to cause 

chemical reactivity, and there are examples of catalysts being replaced by milling 

materials.40  

 

The number of balls used can also influence mechanochemical reactions.41 In general, 

by increasing the number of balls, the mixing can be improved and the frequency of 

collision can be increased. However, unless the material is changed, increasing the 

number of balls usually means decreasing their individual size and mass. This can lead 

to a decrease in their kinetic energy. 

 

Probably the variables that are easiest to control are also the most easily understood. 

The milling frequency can be changed simply by adjusting the settings on the mill. 

When increased, this increases the velocities of the balls, and so increases their kinetic 

energy. This is a facile way to change the energy input into a reaction. Finally, 

variables that apply to any chemical reaction can also be easily controlled, such as 

stoichiometry and reaction time. 
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1.7 Grinding auxiliaries 
 

The texture of the reaction mixture can also be important in how a mechanochemical 

reaction proceeds. This depends largely on the physical state of reagents and 

products. For example, liquids do not absorb mechanical energy efficiently as during an 

impact, they can freely move away from the position of impact.  

 

To overcome these issues, a grinding auxiliary can be added to the reaction mixture. 

This is usually a solid that is inert to the reaction being performed and is often silica, 

sand, alumina or an inorganic salt, such as sodium chloride.42-44 The liquid materials 

can then be adsorbed onto the surface of such solids, which can restrict the motion of 

the liquid and decrease its ability to move away from the position of an impact. The 

addition of a grinding auxiliary can therefore improve the energy transfer to liquid 

reagents. A reaction mixture composed of liquids and solids can also become a gum or 

paste, which can prevent efficient mixing. Under these circumstances, the mixing can 

also be overcome by use of a grinding auxiliary. This method is used in the formulation 

of pharmaceuticals in order to aid the passage of material through an extruder, where 

such additives are termed glidants or lubricants.45 In practice, choosing which grinding 

auxiliary to add in order to improve mixing and energy transfer is often not 

straightforward and can be a trial and error process. In certain circumstances, some 

solid additives can also interfere with organic reactions. For example, silica is slightly 

acidic and can lead to degradation. 

1.8 Liquid Assisted Grinding 
 

The mechanochemical reaction environment can be modified further by the addition of 

a small amount of liquid. This is termed “Liquid Assisted Grinding” (LAG). The amount 

of liquid has been characterised as a ratio compared to the mass of reagents by the 

parameter η.46 This ratio can vary from grinding neat reagents together with no liquid, 

through to LAG, slurry reactions and eventually to solution reactions with increasing 

amounts of liquid (Scheme 1.4).  
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Scheme 1.4 Different reaction environments with different amounts of added liquid. 

 

Liquid assisted grinding was originally used in mechanochemical cocrystallisation and it 

was found to speed up the cocrystallisation.47 It has also been demonstrated that this 

reaction environment can lead to different results to slurry reactions and that the 

outcomes do not necessarily depend on the solubility of the starting materials in the 

liquid used.46  

 

More recently, it has been shown that using different amounts and polarities of liquid 

can lead to the formation of different polymorphs under mechanochemical conditions, 

dispelling the commonly held belief that polymorphism depends on the solvent 

(Scheme 1.5).48 This scheme depicts the polymorphic outcome of milling caffeine and 

anthranilic acid under different LAG conditions. This mixture forms cocrystals, in one of 

three different polymorphs. For example, it can be seen that on milling with any 

quantity of acetonitrile, polymorph II is formed and on milling with nitromethane, 

polymorph I is obtained. However, when milling with ethyl acetate, the polymorphic 

outcome observed depends on the quantity of added liquid. Overall, it was found that 

different polymorphs of a cocrystal were obtained depending on both the quantity and 

identity of which liquid was added.  

 

I n c r e a s i n g   l i q u i d 

Neat grinding Liquid Assisted 
 Grinding  
 (LAG) 

Slurry Solution 

η = 0 η = 0 - 1 η > 1 

η =      Volume of added liquid (µL) 
    Total mass of all reagents (mg) 
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Scheme 1.5 Polymorphic outcomes of cocrystal formation of caffeine and anthranilic 
acid (different polymorphs I, II and III). Grinding with different quantities and types of 
liquid additive leads to the formation of different polymorphs.i  
 

 

The use of LAG could therefore speed up a reaction, or lead to different outcomes 

when compared with neat grinding or the reaction in solution. However, it is also 

possible to achieve different results by modifying the LAG conditions used, such as the 

polarity of the added liquid or the quantity of added liquid.  

It is therefore another reaction environment worth exploring when applying 

mechanochemistry to organic synthesis.49 However, although many studies to date use 

LAG, the role of the liquid remains unclear and is perhaps different in each case. 

 

1.9 Reaction optimisation 
 

Having discussed the variables that can be controlled, we see that each one of these 

has multiple influences on the reaction (Table 1.1). This can make reaction optimisation 

a daunting task. However, considering the number of mechanochemical 

transformations now known demonstrates that this challenge is not insurmountable.  

                                                
i Scheme reproduced from ref. 48 with permission from the ACS. Further permissions 
for reproduction of this scheme should be directed to the ACS. Direct link to source: 
https://pubs.acs.org/doi/10.1021/acs.cgd.6b00682. 

independent of the chemical nature of the liquid. A summary of
LAG experiments performed using different volumes of
nonalcoholic liquids is given in Figure 5, while the PXRD

patterns of each experiment are reported in the Supporting
Information Figures 6−12. The results confirmed that
obtaining different polymorphs as a function of the amount
of the liquid was not limited to alcohols and a similar behavior
was observed with acetone, 2-butanone, ethyl acetate, and 1,4-
dioxane (Figure 5). In addition with this series of liquids the
observed stability regions for different polymorphic forms were
simpler: volumes higher than 50 μL (η range from 0.25 to 0.5)
always generated Form I, while, once again, the lower volume
region (η range from 0.05 to 0.2) was more diverse and varied
from liquid to liquid. Moreover, similar molecules such as
acetone and 2-butanone gave comparable outcomes in terms of
polymorphism. However, chemical similarity is not an absolute
requirement for similar results since ethyl acetate and 1,4-
dioxane, with quite different dipole moments, gave identical
results (Figure 5).
In particularly sharp contrast, some liquids did not produce

different polymorphic forms as a function of liquid amount:
nitromethane, acetonitrile, and ethylene glycol for all volumes
were highly selective to one polymorphacetonitrile and
ethylene glycol generated only Form II while nitromethane
generated Form I (Figure 5). In a previous study28 it was
reported, however, that ethylene glycol produced Form I. To
avoid any possible sample contamination we therefore repeated
the experiments in another laboratory using new grinding jars
and new reactants and liquid. However, the outcome did not
change and pure Form II was obtained in each LAG
experiment.30 Additionally, similar to the LAG experiments
using alcohols, we performed a series of grinding experiments
with a higher molecular weight diol such as 1,6-hexandiol, a
solid at room temperature. Interestingly, the polymorphic Form
II was always generated (SI Figure 13).
As an initial foray into understanding the role of the amount

of liquid on the polymorphic outcome in a LAG reaction, we
performed a series of LAG experiments with presaturated

Figure 4. PXRD pattern of (a), (b), (c) calculated CAF-ANA Form I,
Form II,26 and Form III,26 respectively; (d), (e), (f), (g), and (h) LAG
experiments using 10, 20, 30, 50, and 100 mg of 1-dodecanol,
respectively. Green, blue, and yellow patterns represent solid products
containing X-ray pure Form I, Form II, and Form III, respectively,
while red patterns indicate a solid product containing a mixture of
polymorphic Form I and Form III. The presence of Form III can be
noticed particularly from the diffraction peaks at 8.6°, 9.8°, and 10.9°
of 2θ angle.

Figure 5. Summary of LAG experiments performed with different volumes of chemically different liquids. In parentheses the liquid mole fraction
over the total amount of the starting materials is reported. Green, blue, and yellow balls represent solid products containing X-ray pure Form I, Form
II, and Form III, respectively, while red balls indicate a solid product containing a mixture of either polymorphic Form I and Form II or Form I and
III.

Crystal Growth & Design Article

DOI: 10.1021/acs.cgd.6b00682
Cryst. Growth Des. 2016, 16, 4582−4588

4585
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Table 1.1 Summary of variables affecting a mechanochemical reaction. 

 

The most important factors investigated when optimising these reactions seem to be 

the choice of reagents, stoichiometries and reaction times.16 However, once a reaction 

is found to proceed mechanochemically, the complex interdependence of the 

controllable variables often prevents further logical probing of conditions. It may be 

possible to attempt a full understanding of this interdependence, however this could be 

different for each individual case and would be challenging. Instead, it is simpler to 

investigate the effects of each variable and observe trends. This can lead to more 

optimal conditions via a “trial and error” method. A more sophisticated approach would 

be to use statistical methods, such as design of experiment (DoE), to probe the effect 

of the controllable variables and predict optimal conditions. Such approaches are 

frequently used with success in industrial processes.50 

 

1.10 Reactions well-suited to mechanochemistry 
 

As so many of the mechanisms operating mechanochemically remain elusive, it can be 

difficult to decide when to use mechanochemistry. Certainly, many of the examples that 

Variables 
 affecting reactions 

Directly  
controllable variables Depends on… 

•  Number of balls 
•  Size of balls 
•  Ball material 

•  Number of balls 
•  Size of balls 
•  Size of jar 
•  Filling Degree 

•  Number of balls 
•  Size of balls 
•  Size of jar 
•  Filling Degree 
 
•  Milling frequency 

•  Stoichiometry 

•  Milling time 

	

•  Size of jar 
•  Filling Degree 
•  Type of Mill 
•  Milling frequency 

•  Type of Mill 
•  LAG 
•  grinding auxiliary 
•  Milling frequency 

•  Type of Mill 
•  LAG 
•  grinding auxiliary 

•  Number of balls 
 
	

•  Kinetic energy of ball(s) 
prior to collision 

 
•  Mixing 

 

•  How Energy is transferred 
to reagents. 

 
•  Frequency of collisions. 

•  Stoichiometry 

•  Reaction time 
	



  Chapter 1 – Introduction 

 13 

exhibit different reactivity, are unlikely to have been predicted. However, there are a 

few cases where definite advantages over solution-based reactions can be expected. 

 

Perhaps the most obvious advantage is that reactions can be performed under solvent-

free conditions. This leads to several cases where it is worth attempting 

mechanochemical reactions. Firstly, reactions between solids that are not soluble (or 

not all components are soluble in the same solvent) are well suited to 

mechanochemistry. This class of reactions can otherwise be very challenging, or even 

impossible. Reactions in which the solvent can interfere are also interesting candidates 

for mechanochemical investigations. For example, many catalysts and reagents can be 

very sensitive towards water, or solvents with Lewis basic sites. Indeed, great lengths 

are often taken, with expense, to dry solvents. However, in the mill the solvent is not 

required. Finally, reactions that require hazardous solvents can be made safer by using 

solvent-free conditions, such as mechanochemistry. 

1.11 Mechanochemical Organic Synthesis 
 

Mechanochemistry is often chosen as a technique because it does not require 

solvents. Reactions between neat reagents in a solvent-free process have several 

advantages. They often occur faster, due to the higher concentration of reagents, and 

can make handling easier and the overall process more efficient.51, 52 One of the most 

common reasons solvent-free methods are often chosen is because decreasing the 

use of solvents leads to “greener” processes.  

 

Although developing a solvent-free reaction is desirable, solvents used in other parts of 

the overall process are frequently not considered, despite the fact that the largest 

quantity of solvent is typically used during purification. Among the most common 

methods used for purification are chromatography, crystallisation, washing and filtering. 

All of these methods require the use of significant quantities of solvents. 

 

Apart from enabling solvent free reactions, mechanochemistry can be used to improve 

known reactions and potentially to discover novel transformations. As discussed above, 

mechanochemistry has been used to access cocrystals and polymorphs different from 

those formed in solution, with LAG able to further modify the conditions to afford 

alternative polymorphs. As this has been established for non-covalent intermolecular 

processes, it can be envisaged that for covalent bond forming reactions, different 

reaction outcomes to those obtained in solution can be expected. It is these 
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possibilities that could lead to significant improvements over solution-based reactions. 

Some recent examples of mechanochemical reactions demonstrating interesting 

differences compared to the same reactions in solution are presented below.  

 

1.12 Time Saving 
 

One way in which mechanochemistry offers apparent advantages over solution based 

reactions is a reduction in reaction time. This could be due to a large increase in 

concentration. Several examples comparing reactions under mechanochemical 

conditions and in solution are described in this section, with a time saving achieved by 

using mechanochemistry. 

 
Scheme 1.6 Formation of Cu-NHC complexes. 

 

An example of an inorganic reaction with increased reactivity is the synthesis of Cu-

NHC complexes (NHC = N-heterocyclic carbene). These are used widely as 

organometallic catalysts for a variety of reactions and various methods have been 

developed for the synthesis of Cu-NHC complexes.53 Under solvent-based conditions, 

Cu-NHC complexes can be synthesised by the reaction of metallic Cu(0) with 

imidazolium salts, although these reactions require a large excess of insoluble Cu(0) 

and long reaction times.54  Recently, Lamaty and co-workers reported that Cu-NHC 

complexes (2) could be synthesised from imidazolium salts (1) and metallic copper 

using a planetary ball mill (Scheme 1.6).55 The rate of reactions was enhanced due to 

the highly concentrated reagents and the highly efficient mixing under 

mechanochemical conditions. Using this novel method, five Cu-NHC complexes with 

different counter ions (Cl-, BF4
-, and PF6

-) were successfully synthesised in improved 

yields compared to the analogous reactions in solution.  

 

8 hours

100 °C

8 hours

5 equiv Cu(0)

NNMes Mes

Cl

5 equiv Cu(0) NNMes Mes

CuCl

2; 19%
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One of the most powerful tools for chemical synthesis is the selective functionalization 

of C-H bonds.  Such methods allow the formation of C-C bonds without 

prefunctionalisation of the starting materials.56 There are already several known 

methods for C-H activation and functionalisation using mechanochemical conditions, 

some of which provide a time saving against the analogous reactions in solution.57 

  

In 2014, Ćurić and co-workers achieved the first mechanochemical transition-metal-

mediated C-H bond activation and monitored the transformation with in-situ solid-state 

Raman spectroscopy.58 Using liquid-assisted grinding (LAG) with acetic acid, 

palladacycle 4 was synthesised from asymmetrically substituted azobenzene 3 and 

Pd(OAc)2 in 78% yield after 4.5 hours (Scheme 1.7). When performed in solution, this 

reaction required 3 days and a significantly poorer yield was achieved. Further milling 

of 4 with Pd(OAc)2 yielded dicyclopalladated complex 5, which was not observed after 

multiple attempts at the same transformation in solution. In addition to saving time, this 

example demonstrates that using mechanochemistry can offer novel reaction pathways 

for the synthesis of organometallic compounds that could not be obtained using other 

methods.  

 
Scheme 1.7 Palladacycle synthesis. 

 

In 2016, Bolm and co-workers developed a mechanochemical Iridium(III)-catalyzed C-

H bond amidation of benzamides 6 with sulfonyl azides 7 (Scheme 1.8).59 In this study, 

it was demonstrated that the active cationic Ir(III) catalyst could be formed in situ in the 

mixer mill by reaction of [{Cp*IrCl2}2] with AgNTf2. The corresponding amidated 

products could be obtained in high yields with shorter reaction times (99 min) than 
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those under a solvent-based protocol (12 hours) as reported by Chang and co-

workers.60 

 
Scheme 1.8 Iridium catalysed amidation of benzamides with sulfonyl azides. 

 

Oxidative C-H/C-H coupling has the potential to become a very powerful tool for 

sustainable chemical synthesis, as no starting material prefunctionalization is required 

for either coupling partner.61 Ball-milling has also been used for dehydro-C-C coupling 

reactions with an illustrative example having been developed by Xu and co-workers.62 

Under mechanochemical conditions, biaryl products 11 could be obtained in both high 

selectivity and yield within a one hour reaction time. Specifically, electron-deficient 

oximes 9 were treated with a variety of arenes 10 in the presence of a palladium 

catalyst and oxidant (Scheme 1.9). The comparable reaction in solution, after stirring 

for 24 hours using toluene as both a solvent and reagent, achieved a poorer yield than 

any mechanochemical results. Similar solution based methods by Yu,63a Dong,63b and 

You63c also usually require more than 16 hours for the reaction to be complete. By 

employing ball milling, only 3-6 equiv. of simple arenes were required. It is also worth 

noting that electron-deficient arenes such as acetophenone and fluorobenzene were 

found reactive using this method, which were less studied in other C-H/C-H reports. 63   
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Scheme 1.9 Palladium catalysed oxidative C-H / C-H coupling. 

 

In 2016, Su and co-workers developed a LAG accelerated, palladium catalysed Suzuki-

Miyaura coupling of aryl chlorides 13 with boronic acids 12 under ball-milling conditions 

(Scheme 1.10).64 Compared to the solvent-based reaction, higher yields in shorter 

reaction times could be achieved. Adding solvents, which are commonly used in 

Suzuki-Miyaura reactions (THF, dioxane, DMF or MeCN), as LAG agents, did not lead 

to improved results.65 However, protic solvents such as alcohols/H2O led to improved 

reactivity. It was proposed that under these conditions alcohols form alkoxides in situ, 

which could participate in ligand exchange and boronic acid activation. This may 

explain the improved reactivity observed using LAG. In addition, it was also shown that 

much lower catalyst loading, 0.5 mol% Pd with 2.5 equiv K2CO3, could be used when 

the reaction was scaled up to gram scale. 
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N OMe
H
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Scheme 1.10 Suzuki reaction of aryl chlorides with boronic acids. 

 

The use of organocatalysts negates the need for a metal catalyst, which can lead to 

greener synthetic processes.66 However, there are still limitations such as high catalyst 

loadings (often 10-20 mol%), limited solvent choice (chlorinated solvents are commonly 

used), catalyst recovery and long reaction times, which restricts the industrial 

applications of organocatalysis. In the last decade, ball-milling has been used to 

improve the performance of organocatalysts under solvent free/LAG conditions, 

particularly in the area of secondary amine organocatalysis. 

 

Pioneering investigations of mechanochemical (S)-proline-catalyzed asymmetric aldol 

reactions were carried out by Bolm and co-workers, affording anti-aldol products in high 

yield and with up to 99% ee (Scheme 1.11).67 When comparing the reaction of 

4-nitrobenzaldehyde 15 with tetrahydrothiopyran-4-one 16 to analogous solution 

reactions, a higher yield was achieved with shorter reaction time and similar ee.68 

Following this pioneering work, several other reports on secondary amine 

mechanochemical organocatalysis were published, reporting similar improvements in 

comparison to solution based reactions.69  
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Scheme 1.11 Proline catalysed enantioselective aldol reaction under milling. 

 

Metal complexes containing macrocyclic polyamine ligands have a range of 

applications such as medical imaging agents, protein binding agents, antimalarial drugs 

and catalysis.70 In 2016, Archibald and co-workers developed a novel method for N-

alkylation of glyoxal-bridged bisaminal derivatives of cyclam (1,4,8,11-

tetraazacyclotetradecane) 21 and cyclen (1,4,7,10-tetraazacyclododecane) 22 under 

mechanochemical LAG conditions (Scheme 1.12).71 Most of the monofunctionalized 

quaternary ammonium salts could be formed in good to excellent yields by using 

stoichiometric amounts of alkyl bromides within 30 minutes. Yields of bis-N-alkylated 

products could be increased by increasing the relative quantity of bromide reagent or 

the reaction time. Compared to conventional solution methods, using 

mechanochemistry resulted in a five-fold reduction in the reaction time. It was further 

suggested that CB-TE2A, widely used to form stable 64Cu complexes for PET imaging 

in vivo, could be synthesised within five days using this method. This approach offers a 

much faster synthetic route compare to the conventional six-step process, which takes 

35 days developed by Weisman and co-workers.72  
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Scheme 1.12 Alkylation of polyamines has a shorter reaction time under milling. 

 

The examples described above demonstrate that mechanochemical conditions can, in 

several instances, lead to greatly reduced reaction times compared to the comparable 

reaction in solution. In some instances this is coupled with an increase in yield. This is 

an interesting general observation to note, and could be due to running reactions 

between neat reagents, increased energy input or a contribution from both. Regardless 

of the explanation, the experimental observation holds true that the use of 

mechanochemistry can reduce reaction times.  

 

1.13 Altering selectivity 
 

As well as reducing reaction times, mechanochemistry has been used to alter or 

control the selectivity of reaction outcomes. This section describes a few examples of 

reactions exhibiting a change in selectivity compared to reactions performed in 

solution. 

 

Plant biomass is a potential feedstock for the production of fuels and chemicals.73 The 

degradation of lignin is one such method to convert the feedstock into commodity 
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chemicals. Mechanochemistry could have the potential to be used in industry for the 

degradation of lignin, cellulose and chitin.74 In 2013, Anastas, Crabtree, Hazari and co-

workers reported the mechanochemical oxidation of lignin-like methoxylated aromatic 

substrates 27 (Scheme 1.13) using Oxone (potassium peroxymonosulfate) as the 

oxidant.75 When this reaction was carried out in aqueous solution, the major product 

was 2,3,4-trimethoxyphenol 28, with several other side-products observed. In contrast, 

under mechanochemical conditions, quinone 29 was the only product formed. Making 

use of a rock tumbler/polisher, seven days were required for this transformation. 

 
Scheme 1.13 Oxidation of trimethoxybenzene in solution and mechanochemically. 

 

In 2010, Friščić and co-workers demonstrated that a thermodynamic equilibrium could 

be obtained under mechanochemical conditions. Using the base catalysed metathesis 

of aromatic disulfides as a model reaction (Scheme 1.14), it was shown that there was 

a significant difference in the position of equilibrium under mechanochemical and 

solution-based conditions. 76  In dilute acetonitrile solution, reactions afforded a ratio of 

1:1:2 between homodimers (30 and 31) and heterodimer 32. However, both LAG (with 

MeCN) or neat grinding led to almost complete conversion of homodimers, and 

afforded almost 98% heterodimer 32. These different equilibrium compositions could 

be explained by crystal packing effects, which do not exist in solution, but are a factor 

for consideration under mechanochemical conditions. 
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Scheme 1.14 Disulfide metathesis in solution and mechanochemically. 

 

The examples shown above demonstrate that by switching from solution to 

mechanochemical conditions can alter the selectivity of reactions. The origins of the 

different selectivities observed experimentally are often not clear. However, altering or 

improving the selectivity of a transformation is frequently desirable for organic 

synthesis. 

 

1.14 Alternative reactivity 
 

Perhaps the most interesting observation arising from running reactions under 

mechanochemical conditions is that different products can be achieved. This suggests 

that the kinetics and thermodynamics of some reactions can be significantly altered by 

using a mill. 

 

In 2016, García and co-workers developed the first example of using 

mechanochemistry for the synthesis of adamantoid substituted cyclophosphazenes 

(Scheme 1.15).77 As strong non-carbon covalent backbones, phosphazanes (P-N) are 

interesting compounds, as they are used as multi-dentate ligands78, catalysts79 and 

antitumor drugs80. It was reported that subjecting the isopropyl-substituted macrocycle 

[{P(µ-NiPr)2}2(µ-NiPr)]2 33 to mechanochemical milling caused rearrangement to its 

adamantoid isomer P4(NiPr)6 34 in 90 minutes.77 However, the same rearrangement 

under high temperature (160 °C) conditions required 12 days (Scheme 1.15).81 The 
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analogous tert-butyl-substituted macrocycle [{P(µ-NtBu)2}2(µ-NtBu)]2 35 could not be 

converted to its adamantoid isomer P4(NtBu)6 36 using solution methods (reflux in DMF, 

THF, toluene etc.) or prolonged heating.82 However, this compound was synthesised 

for the first time under mechanochemical conditions. Both adamantoid P4(NiPr)6 34 and 

P4(NtBu)6 36 could be synthesised in the mixer mill within 90 minutes in the presence of 

LiCl (20 wt%). 

 
Scheme 1.15 Synthesis of adamantoid cyclophosphazanes. 

 

It has been shown by Guan, Mack and co-workers that using a copper vial or balls 

instead of conventional ball mill materials, or adding silver foil enables elemental Cu (0) 

and Ag(0) to be used as active recyclable catalysts under ball milling conditions.83 In 

2016, they developed a method for the cyclotetramerisation of alkynes to afford 

cyclooctatetraenes (COT) 40 using recyclable Ni(0) pellets as the catalyst under ball 

milling conditions (Scheme 1.16).84 Conversely, reactions performed in solution, 

catalyzed by Ni(0) complexes, yielded the major products as aromatic trimers 38.85 

This proof-of-principle study demonstrates the potential of using Ni(0) pellets as active 

catalyst under mechanochemical conditions, which avoids the use of air-sensitive 

nickel complexes. It also demonstrates that mechanochemistry can achieve different 

reaction products compared to conventional solution methods.   
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Scheme 1.16 Nickel catalysed cyclotri-/tetra-merisation of alkynes 

 

Su and coworkers reported that 3-vinylindoles 43 and diindolyl propionates 44 could be 

synthesised by Pd(II) catalyzed oxidative coupling reactions between indoles and 

acrylates with MnO2 as oxidant under ball milling conditions (Scheme 1.17).86 It was 

found that the selectivity of the reaction is influenced by the Pd(II) source. When 

Pd(OAc)2 was used with acetic acid as additive, high yields of 3-vinylindoles 43 were 

obtained. However, when using PdCl2 as a catalyst without a liquid additive, diindolyl 

propionates were formed selectively. In contrast, solution conditions; DMF as solvent, 

100 °C, overnight, only the 3-substituted-vinylindoles 43 were formed, with no trace of 

diindolyl propionates 44 being detected (Scheme 1.17).  
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Scheme 1.17 Palladium catalysed coupling of indoles with acrylates. 

 

In solution, anilines react with bis(benzotriazolyl)methanethiones 48 and form their 

corresponding isothiocyanates 50 and benzotriazoles through intermediate N-

(thiocarbamoyl)benzotriazoles 49 (Scheme 1.18).87 Due to the high reactivity of 

N-(thiocarbamoyl)benzotriazoles 49 in solution, they were not isolable using 

conventional solution chemistry. In 2015, Friščić and co-workers reported the first 

isolation of N-(thiocarbamoyl)benzotriazoles 49 using mechanochemistry, which were 

characterized by solid state magic angle spinning 13C NMR spectroscopy. 88 Excellent 

yields (> 97%) of N-(thiocarbamoyl)benzotriazoles could be obtained by milling anilines 

47 with bis(benzotriazolyl)methanethiones 48 under LAG conditions within 10 minutes. 

N-(thiocarbamoyl)benzotriazoles were found to be bench stable in the solid state and 

could be used for further synthesis of both symmetrical and nonsymmetrical thioureas 

51. This novel example shows that mechanochemistry could be used to isolate reactive 

intermediates, which are not isolable in solution. It further demonstrates the ability to 

form different reaction products, isothiocyanates in solution and thioureas 

mechanochemically.  
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Scheme 1.18 Reaction of anilines with bis(benzotriazolyl)methanethiones and isolation 
of intermediate. 
 

 

1.15 Reactivity not possible in solution 
 

One of the most significant observations regarding mechanochemical reactions is that 

there are some examples where reactions can be performed mechanochemically but 

not in solution. It therefore could be the case that some chemical transformations can 

only be achieved using mechanochemistry. 

 

Due to the unique electronic and structural properties of fullerene and its functionalized 

derivatives, a number of methods for the functionalization of fullerene have been 

developed.89 However, fullerene and fullerene-related materials, such as carbon 

nanotubes and graphite, often have low solubility in organic solvents and water, which 

can make their functionalization and application challenging. Mechanochemical 

techniques offer advantages to reactions of these carbon rich nanostructure materials 

and have been used to tackle these problems.90 In 1997, Komatsu and co-workers 

developed the first method for the synthesis of a fullerene dimer, C120 54 by the use of 

high speed vibration milling (Scheme 1.19).91  Fullerene dimer C120 could be obtained in 

30 minutes with 29% yield by milling fullerene C60 with KCN at 2800 cycles per minute 

followed by a trifluoroacetic acid wash. A similar yield could also be achieved by 

replacing KCN with other reagents such as K2CO3, KOAc, alkali metals (Li, Na, K) and 

4-aminopyridine.  A later study revealed that 4% fullerene trimer C180 could also be 

obtained when 4-aminopyridine was used as catalyst.92 These compounds could not be 
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and co-workers only obtained cyano functionalised fullerene 53 by stirring fullerene 

with NaCN in a solvent mixture of 1,2-dichlorobenzene and DMF (Scheme 1.19).93  

 

 
Scheme 1.19 Mechanochemical fullerene dimerization. 

 

Another example of fullerene functionalisation was reported in 2013 by Wang and co-

workers. C60-fused indanes 56 could be synthesised by the reaction of fullerene 52 with 

N-benzhydryl sulphonamides 55 and FeCl3 in a ball mill (Scheme 1.20).94 C60-fused 

indanes (yield: 15-41%) could be obtained within 1 hour under ball milling, whereas no 

product was formed using solution-based methods. 
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Scheme 1.20 Fullerene functionalisation. 

 

In 2014, Friščić and co-workers demonstrated that sulfonyl-(thio)ureas could be 

synthesised from sulfonamides and isocyanates using catalytic CuCl under ball milling 

conditions.95 They subsequently reported that N-sulfonylguanidines could be 

synthesised via the copper-catalyzed coupling of arylsulfonamides 57 and 

carbodiimides 58 under nitromethane LAG conditions (Scheme 1.21). 96 Further 

optimisation showed that acetone was the best LAG agent and good yields were 

obtained after milling for two hours. In contrast, refluxing arylsulfonamides and 

carbodiimides in solvents (DCM or acetone) overnight with or without CuCl led to no 

product formation.  

 

120 °C

o-dichlorobenzene or
1,1,2,2-tetrachloroethane

FeCl3

12 hours

FeCl3

1 hour

NHR

R''R'
55; (R = Ts, Ms)

NHR

R''R'
55; (R = Ts, Ms)

8 examples
56; 15-41%

no reaction
56; 0%

’R
R’’

’R
R’’

52

52



  Chapter 1 – Introduction 

 29 

 
Scheme 1.21 Coupling of sulfonamides and carbodiimides. 

 

Su and co-workers developed an Fe(III)-catalyzed cross-dehydrogenative coupling of 

3-benzylic indoles 60 with compounds bearing acidic methylene groups (63 & 64) 

under ball-milling conditions (Scheme 1.22).97 This catalytic system was also 

successfully used for the synthesis of bisindoles 62 (yield: 24-77%). This was in 

contrast to the comparable solution-based reaction carried out at 100 °C under N2 

using DCE as solvent (Scheme 1.22), under which only trace amounts of product were 

observed.  
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Scheme 1.22 Cross dehydrogenative coupling of indoles. 

 

Synthesising organometallics under mechanochemical conditions can extend the 

scope of suitable reactants without concern for solubility or potential interference from 

solvent, such as through coordination or quenching. 

 

In 2014, an unsolvated tris(allyl)aluminium complex 67 was first isolated and reported 

by Hanusa and co-workers using mechanochemical conditions (Scheme 1.23).98 

Attempts to synthesise this complex by stirring K[1,3-(SiMe3)2C3H3] 73 with AlX3 (X = 

Cl, I) in different solvents (Et2O, THF, hexane) led to a mixture of unidentified products. 

The unsolvated tris(allyl)aluminium complex 67 (yield up to 88%) could be obtained 

within five minutes using a planetary ball mill. The reactivity of this newly synthesised 

complex 70 was tested by reaction with benzophenone in hexane at -78°C. Compared 

to the THF adduct (C3H5)3Al(THF), this unsolvated tris(allyl)aluminium complex 67 
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Scheme 1.23 Synthesis of an unsolvated tris(allyl)aluminium complex. 

 

Overall, these examples show that mechanochemistry has been observed to enable 

alternative reactivity to reactions in solution and can be used to obtain alternative 

products from a reaction mixture. Furthermore, there exist examples of reactivity only 

observed to date under mechanochemical conditions, despite the reactions also being 

attempted in solution. This gives rise to the suggestion that it may only be possible to 

obtain certain compounds by using mechanochemical conditions. 

 

1.16 Multistep reactions 
 

Of particular interest for the applicability of a technique to organic synthesis is the 

ability to perform multistep syntheses. For example, continuous flow chemistry has 

become established as a method for efficient synthesis partly because of the ease in 

which different reaction steps can be directly telescoped together to perform a 

multistep process.99 In particular, one-pot multistep processes are particularly desirable 

due to a reduction in the number of processing steps required when intermediates are 

not purified. This can therefore lead to efficient and more sustainable multistep 

synthesis.100 

 

Applying mechanochemistry to multistep syntheses could lead to improvements, such 

as decreasing the reaction time as described above. If multistep mechanochemical 

processes are successfully developed, they will demonstrate the utility of 

mechanochemistry to organic synthesis. There are some reports of multistep and 

multicomponent mechanochemical processes to date, including the first 

mechanochemical synthesis of a pharmaceutical.101, 102 Presented below are some 

examples of multistep mechanochemical processes reported to date. 
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Scheme 1.24 Iptycene synthesis. 

 

Iptycenes have three dimensional rigid molecular architectures, and potentially have 

multiple applications, such as molecular machines, novel liquid crystals and porous 

polymers.103 In 2016, Swager and co-workers showed that highly functionalized 

iptycenes (molecular weight > 2000 g/mol) could be synthesised by iterative Diels-

Alder/aromatisation reactions under solvent-free conditions (Scheme 1.24).104 A good 
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acidity and catalytic performance of the milled reaction. This multistep solvent free 

synthesis demonstrates the strengths of mechanochemical methods for the synthesis 

of large functionalized extended iptycenes over traditional methods.  

 

 
Scheme 1.25 Multistep mechanochemical synthesis of substituted glycosides. 

 

The multistep mechanochemical preparation of a triazole substituted glycoside was 

reported in 2013 by Kartha and co-workers.105 Initially, bromide 73 was treated with 

4-penten-1-ol and underwent substitution to yield glycoside 74 (Scheme 1.25). This 

was treated with MCPBA to deliver epoxide 75, which was ring opened with sodium 

azide to provide 76. Subsequent click reaction afforded the desired triazole substituted 

glycoside 77 in 85% yield. These two examples highlight the most extensive multistep 

mechanochemical syntheses reported to date. However, there are several examples of 

two-step mechanochemical methods, mainly performed as one-pot procedures. 
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In 2012, the one-pot preparation of thiourea derivatives from phenylenediamine was 

reported (Scheme 1.26).106 Milling diamine 78 with a substituted isothiocyanate under 

LAG conditions formed the monosubstituted thiourea 79 without significant 

overreaction to the symmetrical thiourea derivative. Further milling with a different 

isothiocyanate led to the non-symmetrical thiourea derivative 80. 

 

 
Scheme 1.27 Multistep Biginelli reaction to form dihydropyrimidones. 

 

The one-pot synthesis of dihydropyrimidones via the three component Biginelli reaction 

was reported by Mal and co-workers in 2015 (Scheme 1.27).107 Substituted benzyl 

alcohols 81 were oxidised to the aldehydes by milling with oxone, KBr and TEMPO. In 

a one-pot procedure, these were then milled for three hours with (thio)urea and a 

dicarbonyl to yield the dihydropyrimidones 83 in good yields. The choice of oxidising 

conditions in the first step was key in order for the resultant byproducts to be 

compatible with the second step. 

 

 
Scheme 1.28 One-pot mechanochemical synthesis of aniline-benzoxazoles and -
benzothiazoles. 
 
The one-pot, two-step mechanochemical synthesis of amino-benzoxazoles and 

benzothiazoles was reported in 2015 by Zhang et al. (Scheme 1.28).108 Milling anilines 

84 with carbon disulfide in the presence of KOH yielded the isothiocyanates 85, which 

were then subjected to milling with 2-aminophenol or 2-aminothiophenol to yield the 

desired products 86 in good yields. 
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Scheme 1.29 Multistep mechanochemical Hantzsch-pyrrole synthesis. 

 

The two-step, mechanochemical synthesis of pyrroles using the cerium ammonium 

nitrate promoted Hantzsch synthesis was reported in 2013 by Menéndez and co-

workers (Scheme 1.29).109 Initially, ketone 87 was iodinated by milling with N-

iodosuccinamide. The iodinated ketone 88 was then milled with the desired primary 

amine and dicarbonyl in the presence of cerium ammonium nitrate and silver nitrate to 

afford the corresponding pyrroles 89 in good yields. 

 

 
Scheme 1.30 Multistep mechanochemical synthesis of 2,4-diphenylquinolines. 

 

In a further demonstration of multistep mechanochemical heterocycle synthesis, 

2,4-diphenylquinolines were synthesised by Zhang and co-workers (Scheme 1.30).110 

Initially, the desired imine 92 was formed by condensation of the corresponding 

aldehyde and aniline under ball milling. This imine was then milled with a substituted 

alkyne in the presence of FeCl3 to yield the desired quinolines in good yields. 
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Scheme 1.31 Synthesis of pyrrolinospirooxindoles. 

 

Spirocyclic oxindoles are prevalent in natural products and bioactive molecules.111 The 

first reported mechanochemical synthesis of spirocyclic oxindoles made use of a one-

pot, two-step process (Scheme 1.31).112 The iodine promoted reaction of benzylamine 

95 with ethylacetoacetate 94 generated the desired intermediate 96. On addition of the 

appropriate oxindole, I2, DABCO and silica, the mixture was milled for a further 60 

minutes to yield the desired pyrrolinospirooxindole 97. 

 

The examples presented in this section demonstrate that mechanochemical methods 

can be applied to multistep synthesis. In particular, there are several examples of one-

pot multistep procedures for the synthesis of heterocycles. However, the conditions 

chosen are fairly specific to the exact transformations chosen. Given the importance of 

the texture of the reaction mixture described previously, it is of interest to develop an 

understanding of how to perform one-pot mechanochemical procedures that maintain 

compatibility between each step. For example, none of these examples report the use 

of a grinding auxiliary, however such additives can be important to achieve good mixing 

and energy transfer. In a one-pot process, this is more complex, as each step may 

require a different quantity of grinding auxiliary. 

 

1.17 Conclusions and Outlook 
 

Mechanochemistry can be successfully applied to many reactions that are important for 

organic synthesis. It offers the possibility of conducting reactions in the absence of a 

solvent, which can correspond to a more efficient, less wasteful and safer process than 

reactions in solution. However, perhaps of more interest for the investigation of novel 

chemical reactions is the observation that using mechanochemical methods can lead to 

faster reactivity, altered selectivity and alternative reactivity compared to the same 
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reactions in solution. In particular, this leads to the possibility that there may be some 

transformations that are only possible under mechanochemical conditions. Multistep 

mechanochemical syntheses have also been developed, including one-pot processes, 

which can drastically improve the efficiency of a process. 

Despite the progress made, and the clear potential for mechanochemistry to enhance 

existing transformations and be used to discover new transformations, its effects on a 

reaction remain unpredictable. This is in part due to the many variables involved and 

also due to a lack of basic mechanistic understanding. 

 

Further work establishing what is possible mechanochemically, especially when 

different reactivity is possible compared to solution is of interest. Once new reactivity is 

discovered, investigation of the mechanistic causes is important if mechanochemical 

transformations are to become more predictable and understood. 

 

1.18 Thesis Aims and Objectives 
 

The aim of this thesis is to investigate further the application of mechanochemistry to 

organic synthesis and probe what is made possible by switching from traditional 

solvent-based conditions to mechanochemical conditions. This will be achieved starting 

from a relatively simple model reaction, focusing on fluorination. 

 

In particular, comparisons to the same reactions in solution are important in order to 

contextualise observed differences in reactivity. Probing of the underlying causes for 

observed differences will also be performed, where possible. If a basic understanding 

of the reasons behind changes in reactivity resulting from a switch to mechanochemical 

conditions can be achieved, then it may become possible to establish circumstances 

under which new reactions can be discovered using mechanochemistry. 
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2.1 Introduction 
 

Initial investigations into using mechanochemistry to perform organic synthesis in the 

Browne lab were directed towards fluorination. Prior to this there was no report of the 

mechanochemical formation of a carbon-fluorine bond. This was chosen as a model 

first reaction to investigate partly because there remains significant interest in 

fluorination and because reactions can be easily investigated using 19F NMR. 

2.1.1 Fluorine in commodity chemicals 
 

Molecules containing fluorine are frequently encountered in valuable chemical 

products, such as pharmaceuticals and agrochemicals. Indeed, it has been estimated 

that 15-20% of pharmaceuticals and 40% of agrochemicals contain a fluorine atom.1 

Furthermore, it has been suggested that incorporating fluorine into a lead compound 

can enhance the probability of finding a hit tenfold.2 There are many factors that play a 

role in fluorine’s utility, but they derive from both the fact that fluorine is the most 

electronegative atom and that it has a small atomic radius. The C-F bond (van der 

Waals radius 1.47 Å) is nearly isosteric to the C-O bond (van der Waals radius 1.52 Å), 

but is still close enough to that of the C-H bond (van der Waals radius 1.2 Å) that a 

fluorine atom can be introduced into a bioactive molecule in place of hydrogen without 

substantially changing the steric properties.3 Fluorine can therefore sometimes be 

added without impairing binding with the target site. The electronegativity of fluorine 

means that adding fluorine to a molecule can significantly alter its properties, such as 

pKa, lipophilicity, conformation and solubility.4 These properties can be tuned to 

improve the bioavailability and pharmacokinetic profiles of a bioactive compound. 

Fluorine, therefore, is highly useful as a substituent to enhance the properties of 

pharmaceuticals.4-9 This is demonstrated in the number of fluorine containing 

blockbuster drugs developed10,11 (three of the top selling drugs of 2013 are shown in 

Scheme 2.1).12  
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Scheme 2.1 Examples of top selling fluorine containing drugs in 2013. 

2.1.2 Fluorinating reagents 
 

The synthesis of fluorine-containing molecules can be performed either from fluorine 

containing synthons at the start of the synthesis or by late-stage fluorination.13 The 

most common method is from fluorine-containing starting materials (Scheme 2.2). For 

example, Crestor is synthesised from commercially available 4-fluorobenzaldehyde, 

whereas the trifluoromethyl group in Efavirenz derives from readily available 

ethyltrifluoroacetate.14 

 
Scheme 2.2 Examples of starting materials for the synthesis of Crestor and Efavirenz. 

 

Late-stage fluorination can enable the synthesis of fluorinated molecules for which the 

required fluorine-containing starting materials are not readily available. As a synthetic 

strategy it can also allow fluorinated materials to be screened as part of a medicinal 

chemistry programme without having to redesign a synthesis to start from available 

fluorine-containing starting materials. Furthermore, it is necessary when introducing a 
18F atom for use in PET imaging, due to the short half life of 18F.15 However, in order to 

perform late-stage fluorination, the reaction conditions used to introduce the fluorine 

atom must have good functional group tolerance, as the fluorination would be 

performed on complex structures. The fluorination must also be selective, fluorinating 

only at the desired position. 

 

In order to achieve fluorination, among the cheapest reagents are F2 gas and HF. 

However, these reagents are toxic, difficult to handle and harsh reaction conditions are 
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typically used. They are often also not very selective, and can lead to fluorination at 

multiple sites. There has therefore been considerable development of alternative 

reagents to achieve selective fluorination (Scheme 2.3).16-18  

 

 
Scheme 2.3 Examples of fluorinating reagents. 

 

In general, these reagents are safer and easier to handle than reagents such as HF, 

XeF2 or F2. They can, in general, be handled in any lab without special equipment, 

such as that required to handle F2. They are also often more selective and have better 

functional group tolerance. For the electrophilic mechanochemical fluorination 

developed during this project, Selectfluor was chosen as the fluorinating reagent. 

2.1.3 Selectfluor 
 

Selectfluor is an air and moisture stable solid that is commercially available and an 

effective source of electrophilic fluorine. It is not hygroscopic and is safe to store and 

handle on large quantities in air. During thermal stability tests, pure Selectfluor was 

found to be stable up to 200 °C.19 It is soluble and stable in water, with successful 

fluorination reactions having been performed in water.20 These properties, especially its 

high stability, make it a sensible choice for use in a ball mill. It was developed by Banks 

and patented in 1992, being synthesised from DABCO and F2 (Scheme 2.4).21, 22  

 

 
Scheme 2.4 Synthesis of Selectfluor 
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Selectfluor was found to be significantly more effective than the previously developed 

electrophilic fluorinating reagents based on the N-F bond, for example the 

N-fluoropyridinium salts. In 1992, Banks et al. demonstrated its efficiency by 

fluorinating a testosterone derivative (Scheme 2.5).22 

 

 
Scheme 2.5 Comparison of reactivities of Selectfluor and N-fluoropyridinium salt. 

 

It was found that in only 15 minutes at room temperature, 95% of the fluorinated 

product was obtained. However, using a previously developed N-fluoropyridinium salt 

as the source of electrophilic fluorine, only a 57% yield was obtained after heating to 

80 °C for 5 hours.23 This demonstrates the improved reactivity of Selectfluor, which is 

also supported by comparisons between electrochemical measurements of the 

reduction potentials for different fluorinating reagents.24  

 

Many different nucleophilic species can be successfully fluorinated in operationally 

simple procedures using Selectfluor, including poorly nucleophilic molecules such as 

toluene (Scheme 2.6).25 In 1993, Lal investigated the reactivity of Selectfluor, reporting 

the fluorination of toluene after refluxing a mixture of toluene and Selectfluor in 

acetonitrile for 16 hours. Both the ortho- and para-fluorinated toluene products were 

obtained in a good total yield. Xylenes could also be fluorinated using this method. 

 

 
Scheme 2.6 Fluorination of toluene by Selectfluor. 

 

It was also found that Selectfluor could directly fluorinate alkenes, and that in the 

presence of alcohols formed the oxy-fluorinated product (Scheme 2.7).25 It was found 

that on treating styrene derivatives with Selectfluor in the presence of various alcohols 

by stirring at room temperature in acetonitrile led to oxy-fluorination. The 
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regioselectivity observed suggests the formation of an intermediate carbocation, being 

stabilised by the aromatic ring. 

 

 
Scheme 2.7 Oxy-fluorination of alkenes by Selectfluor in the presence of alcohols. 

 

Many other nucleophilic moieties can also be fluorinated by Selectfluor, including 

steroids25, alkynes26 and carbohydrates.27 However, possibly the most investigated to 

date is the fluorination of a variety of 1,3-dicarbonyls. 

 

2.2 Fluorination of dicarbonyls by Selectfluor 
 

In order to investigate the possibility of mechanochemical fluorination, a model reaction 

was required. Having decided that Selectfluor would be the fluorinating reagent, the 

electrophilic fluorination of 1,3-dicarbonyls was chosen as a model reaction to be 

investigated. The use of Selectfluor to fluorinate dicarbonyls was first reported in 1994 

by Banks et al.28 It was reported that 1,3-diketones, β-ketoesters and β-ketoamides 

could be monofluorinated at room temperature in good yields in 3 - 54 hours. In the 

presence of sodium hydride, the same substrates could be difluorinated with good 

yields. A similar transformation was also reported by Stavber and Zupan using 

Accufluor, a derivative of Selectfluor.29 More recent work has focused on the 

enantioselective fluorination of dicarbonyls, using titanium catalysts and cinchona 

alkaloid derived catalysts.30-32 As the importance of green chemistry has become a 

consideration in method development, the selective monofluorination of β-ketoamides 

in an environmentally benign solvent, PEG-300, was developed by Zhang and co-

workers.33 The emergence of new technologies for synthesis encouraged the 

investigation of fluorination under microwave conditions. Xiao and Shreeve were able 

to fluorinate 1,3-diketones, β-ketoesters and β-ketoamides in 10 minutes using a 

microwave reactor, obtaining good yields of monofluorinated and difluorinated 

analogues.34 This reaction manifold is therefore a robust and well documented 

transformation, that is ideal to use as a model reaction to test the efficiency of C-F 

bond formation under mechanochemical conditions. 
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2.3 Optimisation for diketones 
 

Initial results showed that the electrophilic fluorination of dibenzoylmethane 98 was 

possible under mechanochemical conditions. On milling dibenzoylmethane 98 with 

Selectfluor, the desired fluorinated products were obtained. For this one millimole scale 

reaction, 10 mL stainless steel jars were used with one ball of mass 4 g. These initial 

conditions were chosen so that no more than approximately one third of the volume of 

the jar was filled with reagents and ball. The crude reaction mixture was analysed by 
19F NMR spectroscopy and the yield determined by comparison of the integrals to 

trifluorotoluene as an internal standard. As expected, a mixture of both the 

monofluorinated product 99 and difluorinated product 100 was observed. A variety of 

conditions were then screened in order to optimise this reaction under milling 

conditions (Table 2.1).  

 

Table 2.1 Mechanochemical fluorination of dibenzoylmethane 

 
Entry Equiv selectfluor Time / h Additive Yield 99a Yield 100a 

1 1 1 - 53% 4% 

2 2 1 - 87% 11% 

3 2 1 MeCN (0.25 mL) 79% 0% 

4 2 2 - 74 % 26% 

5 2 2 MeCN (0.25 mL) 91% 7% 

6 2 2 H2O (0.25 mL) 0% 0% 

7 2 2 iPrOH (0.25 mL) 9% 3% 

8 2 2 Toluene (0.25 mL) 30% 2% 

9 2 2 CH2Cl2 (0.25 mL) 20% 0% 

10 2 2 MeCN (0.125 mL) 100% 0% 

11 2 2 Na2CO3 (1 equiv) 6% 94% 

12 2 2 K2CO3 (1 equiv) 2% 87% 

13 2 2 Cs2CO3 (1 equiv) 2% 68% 

14 2 2 CaCO3 (1 equiv) 53% 19% 
a Determined by 19F NMR compared to trifluorotoluene as a standard. 
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Initially, it was found that upon subjecting diketone 98 to milling at 30 Hz with one 

equivalent of Selectfluor for one hour furnished a 53% yield of monofluorinated 

diketone 99 (Table 2.1, Entry 1). However, the reaction mixture also contained some 

difluorinated product 100, demonstrating that over reaction occurs even with a 

stoichiometric quanitity of fluorinating reagent. Doubling the quantity of Selectfluor then 

achieved almost quantitative total yield (Table 2.1, Entry 2). The addition of a small 

quantity of liquid (LAG) was then investigated. Intriguingly, it was observed that upon 

addition of acetonitrile, there was a decrease in the total yield, but a dramatic 

enhancement in the selectivity of monofluorination (Table 2.1, Entry 3). However, on 

increasing the reaction time, the total yield was improved (Table 2.1, Entry 5). In 

comparison to milling without a liquid additive, the selectivity enhancement can be 

clearly seen (Table 2.1, Entry 4). On investigating a range of other solvents possessing 

different properties, all were found to have a detrimental effect on the yield of the 

reaction (Table 2.1, Entries 6 - 9). Decreasing the quantity of acetonitrile was found to 

form exclusively monofluorinated product 99 in quantitative yield (Table 2.1, Entry 10). 

This exciting and unexpected result will be discussed later in more detail. Having 

established optimal conditions for the selective monofluorination of dibenzoylmethane 

98 under mechanochemical conditions, the possibility of selective difluorination was 

investigated.  

 

In order to enhance the rate of difluorination, a base was used to form the reactive 

enolate of 99 (Table 2.1, Entries 11 - 14). After testing a range of carbonate bases, it 

was found that addition of 1 equivalent of sodium carbonate furnished the difluorinated 

product 100 in 94% yield after milling for 2 hours (Table 2.1, Entry 11). The ability to 

use a carbonate base is interesting, as previous reports in solution required very strong 

bases or long reaction times to achieve difluorination, with the comparable product in 

solution reported to require 192 hours for complete reaction.28   

2.4 Comparison to solution reactions 
 

In order to test if there were any advantages in running these reactions 

mechanochemically compared to in solution, direct comparisons of these reaction 

conditions were attempted. 

It was found that upon stirring 98 with 2 equivalents of Selectfluor in acetonitrile at 

room temperature, 3.5 hours was required to consume all the starting material. After 

extraction, 99 was isolated in 88% yield, with a greater than 50:1 ratio of 99:100 (Table 

2.2, Entry 1). In the case of monofluorination, the mechanochemical reaction occurs 
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slightly faster than the solution reaction, forming 99 in a higher yield after a shorter time 

(Table 2.2, Entry 2). 

 

Table 2.2 Comparison of monofluorination under milling and in solution 

 
Entry Conditions Time / 

hours 

Total 

isolated 

yield  

Ratio 

(99:100) 

1 20 mL MeCN, stir r.t. 3.5 88 % >50 : 1 

2 0.125 mL MeCN, Milled 30 Hz 2 95 % >50 : 1 

 

On investigation of the difluorination of 98 in acetonitrile with Selectfluor and sodium 

carbonate, it was found that 24 hours were required to convert all of the starting 

material. The desired product 100 was then isolated with a 93% yield and a 7:1 ratio to 

the monofluorinated product 99 (Table 2.3, Entry 1). This compares to a similar yield 

but significantly shorter reaction time for the mechanochemical reaction (Table 2.3, 

Entry 2). 

 

Table 2.3 Comparison of difluorination under milling and in solution 

 
Entry Conditions Time / 

hours 

Total 

isolated 

yield 

Ratio 

(99:100) 

1 MeCN, stir r.t. 24 93 % 1 : 7 

2 Milled 30 Hz 2 90 % 1 : 9 

 

Overall, it was found that monofluorination under milling and in solution gave similar 

reaction outcomes. However, in the case of difluorination, there is a significant time 

saving observed under milling conditions. 
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2.5 Selectivity enhancement by Liquid Assisted Grinding 
 

A highly interesting observation about the mechanochemical monofluorination of 

dibenzoylmethane is the significant selectivity enhancement observed under LAG with 

acetonitrile, when compared to the mechanochemical reaction in the absence of 

acetonitrile. The origin of this selectivity was investigated further by investigating the 

behaviour of the reactions at different times. 

2.5.1 Reaction profile with time 
 

The behaviour of the fluorination of dibenzoylmethane with 2 equivalents of Selectfluor 

in the mill at 30 Hz was investigated both in the presence and absence of acetonitrile 

for different reaction times (Figure 2.1). In the absence of acetonitrile, full conversion of 

starting material was observed after 1 hour in the mill (Table 2.4). However, there was 

already some over-fluorination to the difluorinated product observed. Milling for longer 

times leads to further conversion to the difluorinated product 100. 

 

Table 2.4 Yields at different times for neat grinding 

Time / min Yield Mono 99 / % Yield Di 100 / % 
5 7 0 

30 53 4 
45 78 9 
60 87 11 
90 76 24 

120 61 38 
180 57 43 

 

This is in stark contrast to what is observed under liquid assisted grinding conditions. In 

this case, 2 hours are required for the reaction to reach full conversion (Table 2.5). 

However, after 2 hours, there is still no difluorination observed. Upon milling for an 

additional hour, a small quantity of difluorinated product 100 is observed. 

 

Table 2.5 Yields at different times for LAG with acetonitrile 

Time / min Yield Mono 99 / % Yield Di 100 / % 
5 12 0 

45 47 0 
90 75 0 

120 100 0 
180 95 3 
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These observations show that the addition of acetonitrile to the reaction mixture has 

two effects, which alter the selectivity. Under liquid assisted grinding, the overall 

fluorination is slowed down, requiring two hours for full conversion of starting material, 

instead of one hour in the neat grinding case. However, LAG seems to also inhibit 

further fluorination of 99 to 100. At full conversion (120 minutes), there is still no 

difluorinated product observed (Table 2.5), whereas under neat grinding conditions at 

full conversion (60 minutes), 11% of 100 is observed. This inhibition of over-fluorination 

is the origin of the selectivity enhancement observed. However, it is still not clear what 

the physical cause of this inhibition is. 

 

 
Figure 2.1 Yields of mono- and difluorinated products at different times a) without and 

b) with acetonitrile. 
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In order to propose and ultimately test hypotheses on the cause of this intriguing effect 

of LAG, the mechanism of this reaction manifold must be considered. A proposed 

mechanism is shown in Scheme 2.7. Initially, the diketone tautomerises to the reactive 

enol form. This can than attack Selectfluor and after proton transfer, possibly mediated 

by the DABCO derived fragment of defluorinated Selectfluor, the monofluorinated 

product 99 is formed. In order to react further, forming difluorinated product 100, the 

keto form must tautomerise to the reactive enol form. Under basic conditions, this may 

proceed via the enolate, which would be significantly more reactive than the enol. 

 

 
Scheme 2.7 Proposed mechanism for the fluorination of 98 

 

Having considered the mechanism, it is clear that in order to form the difluorinated 

product 100, the enol or enolate of 99 must be formed in the presence of a sufficient 

concentration of Selectfluor. This leads to three potential hypotheses to explain the 

physical origin of this selectivity observed. 

 

It is known that in solution, the solvent used can affect the keto:enol ratio of ketones. It 

is therefore possible that in the presence of acetonitrile, the monofluorinated product 99 

is trapped in its unreactive keto form, whereas in the solid state without any solvent, a 

higher quantity of the reactive enol form could be present. On subjecting a pure sample 

of 99 to 1H NMR spectroscopy in MeCN-d3, only the keto form was observed, which 

seems to support this hypothesis. Likewise, in CDCl3, the only form observed was also 

the keto form, suggesting that this is usually the preferred form in solution. 
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An alternative hypothesis that could explain the selectivity enhancement observed 

under LAG conditions relies on the possibility of different solubilities of each component 

of the reaction in acetonitrile. If the starting diketone 98 is more soluble than 99, a 

quantity of 98 will dissolve and become more mobile and able to “find” a molecule of 

Selectfluor to react with. On forming less soluble 99, this would then precipitate out of 

solution, making it less mobile and less likely to “find” a molecule of Selectfluor with 

which to react further. In order to test this, the approximate solubilities of the different 

components in acetonitrile were measured as follows. A known quantity of the sample 

to be measured was placed in a vial and acetonitrile was added in 10 µL portions and 

subjected to ultrasound. This was continued until no more solid was visible and the 

approximate solubilities of each species in acetonitrile were calculated (Table 2.6). 

While this method does not accurately determine the solublility, as it is possible that the 

system had not reached equilibrium, it does provide a fast and simple method to 

determine approximate solubilities. Indeed, this method has been used previously to 

quickly determine approximate solubilities.35 

 

Table 2.6 Approximate solubilities of compounds in acetonitrile. 

Compound Approximate solubility in 

acetonitrile / mgmL-1 

Approximate solubility in 

acetonitrile / moldm-3 

 

113 0.504 

 

360 1.49 

 

290 1.12 

 

69 0.195 
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It can be seen that dibenzoylmethane 98 is significantly less soluble in acetonitrile than 

either monofluorinated 99 and difluorinated 100 (Table 2.6). This suggests that this 

hypothesis is not true. This could be explained if the fluorination is fastest in the solid 

phase. The least soluble components (98 and Selectfluor) would then react faster than 

the more soluble components, forming 99, which would then preferentially be in 

solution. 

A third hypothesis relies on the observation that using LAG can lead to the formation of 

different polymorphs, or crystal structures, of pure materials.36 It has also been 

previously shown that different polymorphs of the same material can react 

differently.37-39 It is therefore possible that the monofluorinated product 99 is formed in 

different polymorphs in the presence and absence of acetonitrile. It is therefore 

possible that the polymorph formed under LAG conditions reacts slower with 

Selectfluor than the polymorph formed under neat grinding. 

 

Currently, it remains unclear what the exact reason behind the observed effect of LAG 

on this reaction. Further studies are required to fully understand the physical processes 

involved. For example, in situ solid state magic angle spinning NMR of the solid 

reaction mixture could allow the exact composition of the reaction mixture at different 

time points to be obtained without having to dissolve the mixture. Combined with 

powder X-ray diffraction, this type of technique could add more information regarding 

any effects caused by different polymorphs. However, such experiments would require 

significant collaboration and expertise. At this point, it was decided to test the 

applicability of this observation to other 1,3-diketones. 

2.6 Substrate scope for monofluorination 
 

In order to probe the applicability of mechanochemical fluorination to other diketones, a 

range of 1,3-diketones had to be obtained. The chosen procedure for the synthesis of 

non-commercially available diketones was the deprotonation of substituted 

acetophenones with sodium hydride and subsequent addition to the corresponding 

esters (Scheme 2.8).40 

 
Scheme 2.8 Synthesis of 1,3-diketones 

 

With a variety of diketones in hand, the mechanochemical fluorination was investigated 

(Scheme 2.9). 
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Scheme 2.9 Scope of monofluorination: a) under LAG conditions & b) under neat 
grinding. Yields based on total mass of material isolated, ratios, mono:di, determined 
by 19F NMR spectroscopy. 
 
For these aromatic 1,3-diketones, monofluorination could be achieved 

mechanochemically with good yields obtained for all cases. It was also observed that 

the selectivity enhancement observed for dibenzoylmethane under LAG conditions also 

seems to apply to other diketones.  

 

2.7 Substrate scope for difluorination 
 

Applying the optimised conditions for difluorination to the same range of diketones was 

also tested (Scheme 2.10). Pleasingly, all the tested 1,3-diketones were successfully 

difluorinated upon milling for two hours in the presence of Selectfluor and sodium 

carbonate, with good yields obtained. 
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Scheme 2.10 Scope of difluorination. Yields based on total mass of material isolated, 
ratios, mono:di, determined by 19F NMR spectroscopy. 
 

Having successfully demonstrated the first mechanochemical fluorination of a range of 

diketones, the reactivity of other 1,3-dicarbonyls was investigated. 

2.8 Optimisation for β-ketoesters 
 

In order to probe the scope of mechanochemical fluorination, it was decided to 

investigate the feasibility of fluorinating β-ketoesters mechanochemically. However, the 

conditions had to be altered in order to achieve this. Perhaps the most important 

difference was that the β-ketoester used to test this reaction is a liquid. Liquids can 

behave differently under mechanochemical conditions, leading to the formation of a 

gum or paste in the mill, which may not mix efficiently. To overcome this problem, 

grinding auxiliaries can be added to the reaction mixture to improve the texture. It has 

also been previously reported that β-ketoesters are significantly less reactive than 

diketones towards fluorination.28 This is due to the extended conjugation provided by 

the lone pair on the oxygen atom of the ester, further delocalising the partial negative 

charge at the α position, thus making it less nucleophilic. 
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Table 2.7 Optimisation of the monofluorination of a β-ketoester. 

 
Entry Additives Yielda Ratio 110:111 

1 - 70% 2.7:1 

2 NaClb 32% 15:1 

3 MeCN (0.125 mL) 69% 7.6:1 

4 NaClb, MeCN (0.125 mL) 83% 11:1 

5 NaClb, MeCN (0.25 mL) 96% 13:1 

6 NaClb, Na2CO3 (1 equiv) 98% 1:7 
a Total yield of 110 and 111 determined by 19F NMR spectroscopy compare to 
trifluorotoluene as a standard. b Twice the total mass of reagents. 
 

Initial milling of liquid ethylbenzoylacetate 109 with two equivalents of Selectfluor for 

two hours led to significant fluorination, with a good total yield but relatively poor 

selectivity (Table 2.7, Entry 1). Addition of acetonitrile improved the selectivity, as was 

also the case for the fluorination of diketones (Table 2.7, Entry 3). Addition of sodium 

chloride as a grinding agent improved the yield and selectivity (Table 2.7, Entry 4), 

whereas without acetonitrile the yield was much lower (Table 2.7, Entry 2). Increasing 

the quantity of acetonitrile led to the highest yield and good selectivity (Table 2.7, Entry 

5). These conditions were chosen as optimal for monofluorination. Pleasingly, simply 

replacing acetonitrile with one equivalent of sodium carbonate enabled difluorination in 

a high yield and good selectivity. 

2.9 Comparison to solution reactions 
 

Having established optimal conditions for the selective mono and difluorination of ethyl 

benzoylacetate 109 in the mill, this reactivity was also investigated in solution. This 

would help to determine whether there are any advantages to performing this reaction 

under mechanochemical conditions. 

On stirring 109 with two equivalents of Selectfluor at room temperature in acetonitrile, it 

was found that five days were required for the monofluorination to occur (Table 2.8, 

Entry 1). This is in stark contrast to mechanochemical conditions, under which only two 

hours are required to obtain a higher yield (Table 2.8, Entry 2). 
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Table 2.8 Comparison of mechanochemical and solution based monofluorination 

 
Entry Conditions Time / 

hours 

Total yield  Ratio 

(110:111) 

1 20 mL MeCN, stir r.t. 120 88 % 20 : 1 

2 0.25 mL MeCN, NaCl, Milled 30 

Hz 

2 96 % 13 : 1 

  

Difluorination of ethylbenzoylacetate 109 also required significantly longer to 

difluorinate in solution. After stirring the reaction mixture at room temperature in 

acetonitrile for five days, a yield of 89% and ratio of 3:1 was obtained (Table 2.9, Entry 

1). Using the ball mill, only two hours were required for the reaction to reach completion 

(Table 2.9, Entry 2). 

 

Table 2.9 Comparison of mechanochemical and solution based difluorination 

 
Entry Conditions Time / 

hours 

Total yield  Ratio 

(110:111) 

1 20 mL MeCN, stir r.t. 120 89 % 1 : 3 

2 0.25 mL MeCN, NaCl, Milled 30 

Hz 

2 98 % 1 : 7 

 

Having established that selective mono and difluorination of ethylbenzoylacetate can 

be performed under mechanochemical conditions with a significant time saving over 

the same reactions in solution, it was decided to test if this transformation could be 

applied to a substrate scope of different β-ketoesters. 

2.10 Substrate scope for monofluorination of β-ketoesters 
 

In order to test the scope of this reaction, a range of different β-ketoesters were 

required. These were synthesised from commercially available ethylbenzoylacetate. 

Initial attempts, focusing on transesterification, were unsuccessful. Ultimately, the most 
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reliable procedure for the synthesis of β-ketoesters was found to be the Steglich 

esterification from the corresponding carboxylic acid.  

 
Scheme 2.11 Procedure used to synthesise a range of β-ketoesters 

 

However, the required β-ketoacid was found to be prone to decarboxylation to the 

acetophenone on storing over about five days. Fresh batches were therefore prepared 

only when needed by hydrolysis of ethylbenzoylacetate with sodium hydroxide and 

used immediately. Esterification of this β-ketoacid with dicyclohexylcarbodiimide (DCC) 

and 4-dimethylaminopyridine (DMAP) yielded the desired β-ketoesters (Scheme 2.11). 

With a range of β-ketoesters in hand, the scope of monofluorination with and without 

LAG was investigated (Scheme 2.12). 

 

 
Scheme 2.12 Substrate scope of monofluorination a) under LAG conditions, b) under 
neat grinding. Yields based on mass of material isolated, ratios mono:di determined by 
19F NMR spectroscopy. RSM = remaining starting material. 
 

It was found that the optimal conditions for the monofluorination of ethylbenzoylacetate 

109 were applicable to a range of β-ketoesters. All monofluorinated products were 

obtained in good yields and selectivities, although on comparing the results with and 

without acetonitrile it can be seen that the trend is not the same as it was for 
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1,3-diketones. It seems that the addition of acetonitrile is speeding up the reaction, as 

without acetonitrile the yields are generally poor, with significant amounts of starting 

material remaining.  

2.11 Substrate scope for difluorination of β-ketoesters 
 

The same β-ketoesters were also subjected to the optimised conditions for 

mechanochemical difluorination. Good yields of the difluorinated products were 

obtained apart from the menthol derived β-ketoester 121 (Scheme 2.13).  

 

 
Scheme 2.13 Substrate scope of difluorination. Yields based on mass of material 
isolated, ratios mono:di determined by 19F NMR. RSM = remaining starting material. 
 

The difluorination of β-ketoesters under mechanochemical conditions is therefore also 

applicable to a variety of substrates. 

2.12 Conclusions and Outlook 
 

The first mechanochemical C-F bond formation has been achieved. Specifically, the 

electrophilic fluorination of 1,3-dicarbonyls was performed in a mixer mill using 

Selectfluor as the fluorine source. It was found that 1,3-diketones could be selectively 

mono or difluorinated depending on the conditions applied. Under LAG conditions with 

acetonitrile, the monofluorinated products were formed selectively, without over 

reaction to the difluorinated products. The selectivity was greater than under neat 

grinding conditions. This is of particular importance, as using LAG to achieve better 
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selectivity had not been previously reported. It was found that the addition of 

acetonitrile both slowed down the overall reaction and inhibited difluorination. By 

swapping acetonitrile for sodium carbonate, difluorination of 1,3-diketones could also 

be achieved by milling at 30 Hz for two hours. 

 

These conditions were adapted to the fluorination of β-ketoesters. However, as these 

substrates were liquids, sodium chloride was added to the reaction mixture as a 

grinding auxiliary. Both mono- and di-fluorination were successful, again using LAG 

conditions to monofluorinate. However, in this case, LAG was found to enhance the 

reactivity.  

 

Despite the interesting selectivity differences observed using LAG, it was perhaps 

surprising that in general this reaction manifold behaved reasonably predictably. 

Adapting a well-known reaction from solution to the ball mill seemed to behave 

approximately as expected. As this was also the first attempt at a mechanochemical 

process in the Browne group, it was especially notable and encouraging that during the 

initial investigations, the reaction proceeded fairly well. This demonstrates that it can be 

relatively straightforward to translate known processes to milling. 

 

Further work in this area focused on further functionalization to more useful molecular 

scaffolds, by the mechanochemical synthesis of fluorinated heterocycles (See Chapter 

3). In the future, it would be interesting to further investigate the physical cause of the 

enhanced selectivity observed under LAG conditions. If the origin of this can be 

established, then it may become possible to predict other scenarios where LAG could 

help improve a synthetic process. Further work to build a complete understanding 

would require collaborations across different fields of chemistry as expertise from 

physical, theoretical and solid state chemists would need to be combined to establish a 

sound underlying theory. 
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3.1 Introduction 
 

In order to further probe the applicability of mechanochemical methods to synthesis, a 

one-pot multistep process was envisaged. Having developed a process for the 

mechanochemical formation of C-F bonds, it was decided that one step would be a 

fluorination. Due to their prevalence in pharmaceutically active compounds, the overall 

aim would be to synthesise fluorinated heterocycles. 

 

3.1.1 One-pot procedures and considerations 
 

One-pot, multistep procedures are particularly efficient, with the same reaction vessel 

being used for all the transformations without intermediate purification or removal of 

side products from the reaction mixture. After one step is complete, the reagents 

required for the next step are simply added to the reaction mixture. The workup and 

purification is therefore only performed once, after the entire process has been 

completed.1 This can significantly improve the process, requiring fewer processing 

steps. Intermediate purification steps can be time and resource consuming, generating 

significant quantities of waste, usually harmful solvents. When the side products of one 

reaction are not detrimental to the next desired reaction, then there is the possibility of 

performing the entire transformation as a one-pot process. The extension of one-pot 

procedures to mechanochemistry could offer further improved efficiencies and 

timesavings. Indeed, there are several examples of mechanochemical reactions having 

been performed either as one-pot multistep processes or as multicomponent reactions, 

in which all the reagents for every step are added at the start of the procedure (See 

chapter 1).2  

 

When developing one-pot procedures, it is important to consider all of the components 

that will be present at each point and their compatibilities with subsequent steps. This 

therefore usually includes any unreacted starting materials, catalysts, side products 

and solvents. These can interfere with subsequent reactions, leading to unfavourable 

results such as unfavourable pH, catalyst poisoning or undesired reactivity. One of the 

main difficulties encountered during the development of one-pot multistep procedures 

is solvent compatibility between steps. In solution, it is usually necessary to maintain all 

of the components of a reaction dissolved in order for efficient mass transfer. When 

performing multiple reactions in a one-pot process, it would be unlikely for the optimum 

solvent for every step to be the same, so compromises are often required. However, in 
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a mechanochemical process this solvent compatibility is not an issue, as reactions are 

performed under solvent free conditions.  

 

 
Scheme 3.1 Some of the considerations relevant to one-pot mechanochemical 
procedures. 
 

There are other considerations under mechanochemical conditions that are not usually 

important or even considered for reactions in solution (Scheme 3.1). The physical state 

of compounds can be important for good mixing and energy transfer in a ball mill. 

Liquids, for example, do not absorb kinetic energy as well as solids. A grinding auxiliary 

is often required in order for mechanochemical reactions between liquids to perform 

well. However, reactions frequently require the addition of several different reagents, 

each of which often will have a different physical form. When performing a series of 

transformations in a one-pot process, the possibility of the texture of the reaction 

mixture changing at each step is likely. This is known to significantly alter the kinetics of 

mechanochemical reactions.3 Maintaining an optimal texture throughout is therefore 

important, such as by adding a grinding auxiliary. This could be very challenging in a 

one-pot procedure, since different quantities of grinding agent may be required for each 

step but there is no opportunity to remove material once it is inside the reaction vessel. 

Another consideration is the use of liquid assisted grinding (LAG), which can favourably 

alter the reactivity of one step, but may cause problems for another subsequent step. 

Like in solution one-pot procedures, the side products of each step remain in the 

reaction vessel for subsequent steps. These can have chemical influences, as 

previously discussed, but the extra consideration in a mechanochemical process is that 

these can act as grinding auxiliaries or LAG agents, whether desired or not, in 

subsequent steps. 

A final potential limitation to one-pot, multistep mechanochemical processes lies with 

the filling degree. As discussed in chapter 1, how full the milling vessel is can 

significantly alter the performance of a reaction. By its very nature, during a one-pot 

procedure, material is added at each step but none is removed. Even if all the other 

considerations can be successfully addressed, ultimately there will be a limit to how 

many steps can be achieved as the milling vessels will become too full, and the energy 

input from the ball(s) will become insufficient for effective reactivity. 
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Scheme 3.2 Development of the one-pot, two step mechanochemical synthesis of 
dihydropyrimidones. 
 

A one-pot, two step mechanochemical reaction for the formation of dihydropyrimidones 

was developed by Mal and co-workers, as briefly described in chapter 1.4 In this 

process, all of the reagents were solids, except for the ethylacetoacetate required for 

the second step (Scheme 3.2). No grinding auxiliary was therefore required in this 

process. The first step was the oxidation of the benzyl alcohol to the aldehyde. The 

reaction chosen made use of oxidation by catalytic KBr, which under these conditions 

can be oxidised to Br+ or Br radicals.5 This process can result in over oxidation to the 

benzoic acid in solution, but under mechanochemical conditions it was found to be 

highly selective to the benzaldehyde. Choice of the exact mixture of reagents for this 

oxidation always resulted in a high performance of the first step, but the success of the 

second step was highly dependent on the exact conditions of the first step. Changing 

from TBAB as the bromide source to KBr was found to be important, as was 

decreasing the quantity of TEMPO to 1 mol%. This demonstrates the importance of 

controlling the side products of the first reaction in order for subsequent reactions to be 

successful. Ultimately, the authors were able to use a side product to their advantage, 

as acid is generated during the oxidation step. The second step is acid catalysed, so 

no additional acid had to be added for the second step.  

In this chapter, the one-pot two step mechanochemical synthesis of fluorinated 

pyrazolones is reported. Optimisation of this procedure was challenging, mainly due to 

the different conditions required for each step and different physical state of the 

reagents.  

3.1.2 Pyrazolones 
 

Pyrazolones are the class of pyrazoles that are substituted with an oxygen atom. Like 

pyrazoles, they consist of two adjacent nitrogen atoms in a five membered unsaturated 
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heterocycle. One of these nitrogen atoms has a lone pair in conjugation with the 

π-system in the ring, analogous to in pyrrole. The other nitrogen atom has its lone pair 

oriented outside the ring in an sp2 orbital, analogous to in pyridine. When the oxygen is 

in the 5 position, these pyrazolin-5-ones can exist in three tautomeric forms (Scheme 

3.3).6 These consist of an aromatic enol form 123, a keto form 122 and a keto form that 

maintains both C=O and C=C double bonds (124). Although the enol form is aromatic, 

the keto form is observed to be the favoured tautomer in most cases. This is due to the 

formation of the strong C=O bond. 

 

 
Scheme 3.3 The three tautomers of pyrazolin-5-ones. 

 

The general reactivity of pyrazolones can be explained by these tautomeric forms. Like 

pyrazoles, they are nucleophilic at C-4. If R3 is a proton, they can also be nucleophilic 

at N-1, as well as at the oxygen. They are electrophilic at C-3 and C-5. 

 

Pyrazolones are amongst the oldest class of synthetic pharmaceuticals, with the first 

synthesis of phenazone, an analgesic, reported in 1883.7 Since then, a range of 

pyrazolone derived drugs have been developed (Scheme 3.4).8, 9 

 

 
Scheme 3.4 Examples of approved pyrazolone based drugs 

 

Pyrazolones are typically synthesised from the condensation of hydrazines with 

β-ketoesters (Scheme 3.5). This reaction is usually performed with an acid catalyst for 

long times at high temperatures, such as refluxing in acetic acid for three hours.10-13 
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Pyrazolone synthesis using a microwave reactor has also been reported to decrease 

the reaction time required to five minutes.14  

 

 
Scheme 3.5 Synthesis of pyrazolones  

 

Having previously discussed the potential advantages that can be achieved by the 

incorporation of fluorine into bioactive compounds, it was decided to attempt the one-

pot two step synthesis of fluorinated pyrazolones. There are relatively few reports of 

fluorinated pyrazolones (Scheme 3.6). In 2000, Zhang and Lu reported the synthesis of 

monofluorinated pyrazolones by condensation of hydrazine with an unsaturated, 

fluorine-containing ester.15  

 

 
Scheme 3.6 Previous work on the synthesis of fluorinated pyrazolones. 

 

Monofluorinated pyrazoles have also been reported by the Moody and Ishikawa 

groups, starting from the monofluorinated β-ketoester.16, 17 In addition to their work on 
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synthesising monofluorinated pyrazolones, the DeKimpe group also reported the 

synthesis of difluorinated pyrazolones.18 

 

All of these approaches require fluorine-containing starting materials, which can be 

problematic to obtain. How challenging it is depends on the commercial availability of 

the desired starting materials. This approach also does not allow an easy screening of 

fluorinated pyrazolones, as each target would require a new total synthesis from 

different fluorinated starting materials. Prior to the work in this chapter, there was no 

report on the direct fluorination of pyrazolones. 

 

In order to develop an approach to the synthesis of fluorinated pyrazolones by direct 

fluorination, it is interesting to note the methods developed to date for the synthesis of 

fluorinated pyrazoles (Scheme 3.7). Fluorination at a later stage of the synthesis has 

been reported from prefunctionalised pyrazoles. The Balz-Schiemann reaction was 

reported in 1978 from an amine prefunctionalised pyrazole.19 In this process, 

diazotisation is performed using sodium nitrite in the presence of fluoroboric acid. The 

intermediate diazonium salt then decomposes under photochemical conditions to 

release nitrogen gas, leaving an aryl cation, which is fluorinated by a tetrafluoroborate 

anion. Another example requiring the use of prefuncitonalised pyrazoles was the 

synthesis of an 18F - labelled radiotracer.20 This method made use of a brominated 

pyrazole which was fluorinated by an SNAr process with K18F. However, this SNAr 

reaction also required an electron withdrawing substituent on the pyrazole, high 

temperatures and the synthesis of the required brominated pyrazole starting material.  
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Scheme 3.7 Examples of approaches for the synthesis of fluorinated pyrazoles. 

 

The other most common methods, as is the case for fluorinated pyrazolones, make use 

of fluorinated starting materials. The most straightforward starts from fluorinated 1,3-

diketones.21 Other methods have been developed, including cycloadditions of fluorine 

containing alkenes or alkynes with diazo compounds.22-26 However, possibly the most 

straightforward synthesis of fluorinated pyrazoles is the direct fluorination. This 

approach takes advantage of the inherent nucleophilicity of pyrazoles, and can be 

performed with electrophilic fluorinating reagents, such as Selectfluor, or fluorine 

gas.27-29 Given that pyrazolones are also nucleophilic at C-4, the direct fluorination of 
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pyrazolones could also be possible using Selectfluor or other electrophilic fluorinating 

reagents. 

 

Given the previous fluorination in the ball mill using Selectfluor, it was decided to 

investigate the possibility of the direct fluorination of pyrazolones. This avoids the 

necessity to use fluorine-containing starting materials, or to synthesis prefunctionalised 

pyrazolones. A one-pot, two step process was proposed, synthesising the pyrazolone 

and then directly fluorinating without intermediate purification. 

 

3.1.3 Development of one-pot process 
 

In the envisaged process, there are several considerations that need to be addressed 

in order to ensure compatibility between both reaction steps (Scheme 3.8). Early 

investigations revealed that pyrazolone formation from fluorinated β-ketoesters was 

prohibitively slow.  

 
Scheme 3.8 Envisaged one-pot, two step procedure. 

 

Milling difluorinated β-ketoester 111 with phenylhydrazine and a catalytic amount of 

acetic acid for one hour formed the difluorinated pyrazolone 128 in 28% yield (Scheme 

3.9).  It was therefore decided to first synthesise the pyrazolone and then perform 

fluorination as the second step. 

 
Scheme 3.9 Initial results on forming pyrazolone from fluorinated β-ketoester 111. 
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It was proposed that the pyrazolone could be formed initially from the condensation of 

a β-ketoester with the desired hydrazine. These starting materials are both liquids, so a 

grinding auxiliary may be necessary for effective energy transfer. However, the 

pyrazolone product is a solid, so the texture of the reaction mixture will change as the 

reaction progresses. This could either be beneficial or detrimental, depending on the 

quantity of grinding auxiliary. Pyrazolone formation is usually performed under acidic 

conditions, so an acid may need to be added. The side product of this reaction is 

ethanol, which could lead to LAG effects, possibly interfering with the fluorination step. 

For the fluorination step, the starting materials are now both solid, so the presence of a 

grinding auxiliary from the first step may be detrimental to mixing. The compatibility of 

this second step with any other required additives remaining from the first step, such as 

acid, may also present challenges. 

 

3.2 Optimisation of mechanochemical pyrazolone synthesis 
 

Initial results established that under mechanochemical conditions, the condensation of 

phenylhydrazine hydrochloride with ethylbenzoylacetate was unsuccessful. However, 

on switching to the free hydrazine from the hydrochloride salt, reactivity was observed. 

The reagents required are therefore both liquids, which can have a significant effect on 

the performance of a mechanochemical reaction.  
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Table 3.1 Optimisation of acid additive. Thanks to William Nicholson for these results. 

 
 

 

Milling 125 and 126 for ten minutes resulted in a poor yield (Table 3.1 Entry 1), so the 

addition of a grinding auxiliary was investigated. It was found that on addition of sodium 

chloride, the yield was improved to 66% (Table 3.1, Entry 2). This is likely due to the 

improved energy transfer between the ball and solids compared to between the ball 

and liquids. Increasing the reaction time led to a slight decrease in yield, suggesting 

degradation of the product (Table 3.1, Entries 3 & 4). The same reagents (125 and 

126) were also subjected to reaction in toluene under reflux, and after 24 hours, the 

yield of the desired pyrazolone 127 was close to that achieved under 

mechanochemical conditions after only 10 minutes (Table 3.1, Entry 5). This 

demonstrates the enhanced reactivity of this reaction manifold under mechanochemical 

conditions. 

 

O

OEt

O
NHNH2

1 equiv.

NaCl (6 mass equiv.)
Additive

Time
Millied, 30 Hz

NN
O

127
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126

Entry Additive (equiv.) pKa Time / min Yielda 

1b - - 10 20% 

2 - - 10 66% 

3 - - 40 53% 

4 - - 60 53% 

5c - - 1440 58% 

6 HCl (0.5) -7 10 43% 

7 Tosic acid (0.5) -2.8 10 37% 

8 Oxalic acid (0.5) 1.2 10 22% 

9 Citric acid (0.5) 3.1 10 38% 

10 Benzoic acid (0.5) 4.2 10 88% 

11 Acetic acid (0.5) 4.7 10 88% 
a Determined by 1H NMR spectroscopy using mesitylene as an internal 
standard.  
b Mechanochemical reaction with no NaCl. c solvent based reaction: heating 
under reflux in toluene, no NaCl. 
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Scheme 3.10 Proposed mechanism of acid catalysed pyrazolone formation. 

 

As pyrazolone formation is normally conducted under acidic conditions, a range of 

acids were then screened (Table 3.1, Entries 6 - 11). Acidic conditions will promote the 

initial attack of the hydrazine to the β-ketoesters by protonating the carbonyl, making it 

more electrophilic (Scheme 3.10). A variety of both solid and liquid acids were tested, 

as a solid acid could act as a grinding auxiliary for this reaction between liquids. It was 

observed that there was a general trend of improved yields for weaker acids, possibly 

due to acid promoted degradation of the starting material or products. Interestingly, 

both solid benzoic acid and liquid acetic acid gave the same yield. The envisioned 

second step of the process (fluorination) is thought to be enhanced by base so the 

weakest acid tested (acetic acid) was used for subsequent optimisation. 

 

Table 3.2 Optimisation of quantity of acid added on pyrazolone formation. Thanks to 
William Nicholson for these results. 
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Having established that acidic conditions with acetic acid were optimal, the effect of the 

quantity of acid used was investigated (Table 3.2). 

It can be seen that there is an increase in yield up to the addition of 100 µL of acetic 

acid (Table 3.2, Entry 3), when the reaction is complete, with 97% yield of the desired 

pyrazolone 127 obtained. However, increasing the quantity of acid further, to 250 µL, 

caused a decrease in the yield. When deciding which conditions to proceed with, in the 

optimisation of a normal reaction, entry 3 would be chosen as it has the highest yield. 

In this case, where a one-pot process was being developed, it is important to consider 

compatibility with the other step in the process. As previously mentioned, the 

fluorination is likely to be inhibited by acid, so the smallest quantity of acid with a high 

yield was chosen as a compromise (Table 3.2, Entry 2). 

In order to improve the yield but keep conditions compatible with the second step, 

further optimisation was performed, investigating the effect of reaction time (Table 3.3). 

 

Table 3.3 Effect of reaction time on mechanochemical pyrazolone formation. Thanks to 
William Nicholson for these results. 
 

 
 

 

Maintaining a constant quantity of acid and varying the reaction time showed that the 

reaction was complete after 40 minutes in the ball mill (Table 3.3, Entry 3). Longer 
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Entry Time / min Yielda 

1 10 88% 

2 20 86% 

3 40 97% (92%c) 

4 60 97% 

5 120 97% 

6b 1440 80% 
a Determined by 1H NMR spectroscopy using mesitylene as an internal 
standard.  
b Solvent based reaction: heating under reflux in toluene, no NaCl. 
c Isolated yield 
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reaction times did not improve the yield of pyrazolone 127. Therefore, optimal 

conditions for the first step had been established; milling β-ketoester 125 with 

hydrazine 126 and 0.5 equivalents of acetic acid for 40 minutes using sodium chloride 

as a grinding auxiliary. A final comparison to these conditions in solution was 

performed (Table 3.3, Entry 6). On heating β-ketoester 125 with hydrazine 126 and 

acetic acid in refluxing toluene, it was found that after 24 hours, 80% of the pyrazolone 

product was obtained. These reaction conditions are inferior to the conditions required 

in the ball mill, resulting in a poorer yield after significantly longer reaction time.  

 

With the conditions established for a high yield of the desired pyrazolone, the 

compatibility of these conditions with the fluorination step was considered. One such 

compatibility issue could be the presence of a grinding auxiliary after the first step. It 

was therefore investigated whether the quantity of grinding auxiliary could be 

decreased without significantly affecting the yield of pyrazolone formation (Table 3.4). 

 

Table 3.4 Investigation into quantity of grinding auxiliary. Thanks to William Nicholson 
for these results. 

 
 

 

 

 

 

 

 

 

 

 

It was 

found that on decreasing the quantity of sodium chloride, in general the yield of the 

reaction was poorer (Table 3.4, Entries 1-5). Interestingly, when decreasing the 

quantity further from 0.6 g to 0.3 g, the yield dramatically increased. This suggests a 

significant change in the texture of the reaction mixture, leading to a faster reaction. 

O

OEt

O
NHNH2

1 equiv.

NaCl (x mass equiv.)
AcOH (0.5 equiv.)

40 min.
Millied, 30 Hz

NN
O

127

125

126

Entry NaCl x mass equiv. NaCl / g Yielda 

1 6 1.8 97% 

2 5 1.5 91% 

3 4 1.2 91% 

4 3 0.9 82% 

5 2 0.6 67% 

6 1 0.3 92% 
a Determined by 1H NMR spectroscopy using mesitylene as an internal 

standard. 
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However, the highest yield was still obtained for 6 mass equivalents of grinding 

auxiliary. This was the quantity therefore chosen for further experiments.  

 

With optimised conditions for mechanochemical pyrazolone formation in hand, 

attention was turned to optimisation of the fluorination step. It was important to bear in 

mind the compatibility of conditions between the steps, as this is crucial for the 

successful development of a one-pot process. 

3.3 Optimisation of mechanochemical pyrazolone fluorination 
 

After isolating pure pyrazolone 127, the conditions required for the fluorination step 

were probed. Notably, the difluorinated pyrazolone 128 was observed under all 

reaction conditions attempted, with no monofluorinated pyrazolone detected. The 

fluorination of the monofluorinated intermediate must therefore be faster than the initial 

monofluorination. 

Table 3.5 Optimisation of pyrazolone fluorination. Thanks to William Nicholson for 
these results. 

 
Entry Additive (equiv.) Time / min Yielda 

1 - 10 11% 

2 - 30 41% 

3 - 60 83% 

4 - 120 95% 

5 - 180 94% 

6 Na2CO3 (1.0) 10 20% 

7 Na2CO3 (1.0) 30 85% 

8 Na2CO3 (1.0) 60 100% 

9 NaCl (6.0)b 120 68% 

10 Acetic acid (0.5) 120 75% 

11 Acetic acid (0.5), NaCl (6.0)b 120 52% 

12 NaCl (6.0)b, Na2CO3 (1.0) 60 100% 
a Determined by 19F NMR spectroscopy. b Mass equivalents 
NaCl. 

NN
O

Selectfluor (2 equiv.)
Additive

Time
Milled, 30 Hz

NN
O

F F

127 128
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Initially, pyrazolone 127 was subjected to a range of milling times in the presence of 

two equivalents of Selectfluor (Table 3.5, Entries 1 - 5). It was found that the reaction 

was finished after milling at 30 Hz for two hours, yielding the difluorinated product 128 

in 95% yield (Table 3.5, Entry 4). It was hypothesised that the rate of this process 

would be enhanced by the addition of a base. The proposed mechanism requires 

tautomerisation to the reactive enol form, which can then nucleophilically attack 

Selectfluor, leading to the monofluorinated intermediate (Scheme 3.11). However, in 

the presence of a base, the enolate can be obtained, which will be a more reactive 

nucleophile than the enol.  

 

 
Scheme 3.11 Proposed mechanism for the fluorination of pyrazolone 127 by 
Selectfluor. 
 

Therefore, investigation into the addition of a base revealed that the rate of 

difluorination was enhanced, affording complete reaction after one hour with one 

equivalent of sodium carbonate (Table 3.5, Entries 6 - 8). As a one-pot process was 

envisaged, the other additives present in the optimised conditions for the first step 

(pyrazolone formation) were tested for compatibility with the fluorination step (Table 

3.5, Entries 9 - 11). Given that pyrazolone 127 is a solid at room temperature, whereas 

the starting materials for the first step are liquids, the grinding auxiliary may inhibit the 

second step (fluorination). It was found that the addition of acetic acid, sodium chloride 

or both had a deleterious effect on the yield. However, it was found that on adding 

sodium carbonate and sodium chloride to the reaction, the yield could be recovered so 

that the fluorination was complete in one hour (Table 3.5, Entry 12). With the optimal 

conditions now established for each step in isolation, the two steps could now be 

combined to a one-pot, two step procedure. 
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3.4 Development of a one pot two step process 
 

Having established that the optimised conditions for the first step required acid, and 

that the second step required base, is was clear that a compromise was required in 

order to obtain an optimal one-pot two step process. Under a one-pot procedure, it was 

therefore decided to investigate the addition of 1.25 equivalents of base with the other 

reagents for the second step. This is in order to neutralise the 0.5 equivalents of acid 

present from the first step and leave one equivalent remaining for the second step. The 

side product of the neutralisation, carbon dioxide, should not interfere with the 

fluorination reaction. However, the release of gas could be problematic on larger 

scales. Pleasingly, this process was successful, and so the optimised conditions for the 

one-pot two step process are shown in Scheme 3.12. 

 

 
Scheme 3.12 Optimised conditions for the one-pot two step process 

 

After milling β-ketoester 125 for 40 minutes with phenylhydrazine in the presence of 

sodium chloride and acetic acid the jars were opened. Selectfluor and sodium 

carbonate were then added directly, and the reaction mixture was milled for a further 

60 minutes to yield the difluorinated pyrazolone 128 in 75% isolated yield. Having 

developed this operationally simple, one-pot two step mechanochemical synthesis of 

difluorinated pyrazolone 128, the scope of this process was investigated. 

3.5 Substrate scope 
 

A range of β-ketoesters were synthesised from the corresponding acetophenones by 

treating with sodium hydride and diethyl carbonate (Scheme 3.13). 

 
Scheme 3.13 Synthesis of β-ketoesters from acetophenones. 

 

With a range of β-ketoesters in hand, they were subjected to the optimised one-pot two 

step conditions. Good yields of the novel fluorinated pyrazolones were achieved, with 
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both electron-donating and withdrawing groups tolerated (Scheme 3.15). However, a 

poorer yield was obtained for the electron poor trifluoromethyl substituent 132. This 

may be due to the electron withdrawing effect on the nucleophilic carbon centre, 

decreasing the reactivity towards Selectfluor. A range of substituted hydrazines were 

also tested, with good yields obtained for several substrates. Again, trifluoromethyl 

substituted hydrazine performed poorly (135). In this case, a 19F NMR of the crude 

reaction mixture was taken after the pyrazolone formation step, with a conversion of 

only 41% measured. This suggests that the cause of the lower yield in this example is 

the pyrazolone formation step. 

 

Finally, the difluorinated derivative of edavarone 139 was synthesised using this 

procedure, albeit in a low yield of 30%. This is the only example without an aromatic 

group as the substituent and it features another enolisable position, perhaps leading to 

unwanted side reactions. It was also possible to synthesise the monofluorinated 

pyrazolone 140 using one equivalent of Selectfluor by blocking the α position on the 

starting β-ketoester with a methyl group. 

 

 
Scheme 3.14 Photographs of practical procedure. 

 

Overall, this procedure is operationally simple (Scheme 3.14). Sodium chloride is 

added to the liquid starting materials, and the pyrazolone formation (step 1) is complete 

after milling for 40 minutes. Then, the jars are simply opened, Selectfluor and sodium 

carbonate added, the jars closed and milled again.  
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Scheme 3.15 Substrate scope for one-pot synthesis of fluorinated pyrazolones. 
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3.6 Conclusions and Outlook 
 

A one-pot, two step mechanochemical synthesis of fluorinated pyrazolones has been 

developed. The first step was the formation of the pyrazolone, and the second step 

was the fluorination using Selectfluor. Determining optimal reaction conditions to be 

compatible with both steps was challenging, with the first step requiring acid and the 

second step requiring base. Also relevant to the compatibility was the physical state of 

the materials for each step, with the overall starting materials being liquids, but making 

a solid pyrazolone. These challenges were successfully overcome by using an excess 

of base in the second step, to neutralise the acid remaining from the first step, and by 

using sodium chloride as a grinding auxiliary. 

 

The successful development of this procedure and its application to a small range of 

substrates further demonstrates the possibility of applying mechanochemical methods 

to synthetic challenges. In particular, this shows that efficient one-pot processes are 

also possible under ball milling. Further developments to this procedure could include 

mechanochemical electrophilic pyrazolone functionalisation with a variety of 

electrophiles. For example, the synthesis of dyes is one possible application, which 

could benefit from mechanochemical synthesis. The industrial dye, pigment yellow 10, 

could be synthesised under the method developed here, using a diazonium salt as the 

electrophile in place of Selectfluor (Scheme 3.16). 

 
Scheme 3.16 Possible mechanochemical synthesis of a dye. 

 

This procedure could also be further adapted in order to synthesise other heterocycles 

and use other electrophiles. For example, pyrazoles could be synthesised simple by 

using 1,3-diketones as substrates instead of β-ketoesters or 1,4-diketones to 

synthesise pyrroles by reaction with amines. 
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This systematic development of this one-pot mechanochemical process also 

systematically demonstrates the considerations that need to be taken in any such 

process. It is therefore likely that other one-pot, multistep procedures performed in ball 

mills will continue to be investigated. 
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4.1 Introduction 
 

Having established that fluorination can be successfully achieved in the ball mill, and 

further that one-pot multistep processes are also possible, attention was turned to the 

synthesis of potentially bioactive difluoromethyl thioethers. Methyl thioethers are rarely 

found in biologically active materials, due to their poor metabolic stability. In vivo, they 

are readily oxidised to the corresponding sulfones and sulfoxides, which are then easily 

removed before reaching their biological target. In order to improve this, the 

trifluoromethyl analogue has been used and features in several bioactive compounds, 

with many synthetic methodologies reported to synthesise trifluoromethylthioethers.1 

Following on from this, the difluoromethylthioether (-SCF2H) group has been studied 

recently as it possesses interesting properties from a drug design perspective. It has a 

better metabolic stability than methylthioethers, and is lipophilic. However, it also 

features a relatively acidic proton, which is able to undergo hydrogen bonding.2 The 

difluoromethylthioether motif features in a number of commercially available bioactive 

compounds (Scheme 4.1).  

 

 
Scheme 4.1 Examples of bioactive compounds containing the -SCF2H group. 

 

Consequently, there has been significant interest in developing methods for the 

synthesis of the -SCF2H moiety, including previous work in the Browne group.3, 4 These 

methods generally involve difluoromethylation of a sulfur-containing substrate (Scheme 

4.2). The most common methods make use of the reaction of thiols with 

difluorocarbene. However, many of the difluorocarbene precursors are ozone-depleting 

species, so alternative methods have been developed.  
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Scheme 4.2 Examples of methods for the synthesis of difluoromethylthioethers. 

 

Another important method makes use of electrophilic sources of the difluoromethyl 

group, such as reagents developed by the Prakash or Hu groups.5,6 A further 

alternative approach uses the nucleophilic difluoromethylation of disulfides. For 

example, previous work in the Browne group, as well as by Goossen and co-workers 

uses TMSCF2H.4, 7 There are also further examples where the entire -SCF2H group is 

transferred, making use of reagents such as organometallic [M]-SCF2H species.3 An 

interesting nucleophilic source of the difluoromethyl group was reported by Yi, Lu and 

co-workers in 2016.8 It was found that on treating a difluorinated 1,3-diketone with 

cesium carbonate in the presence of disulfides at 80 °C for 12 hours, the corresponding 

difluoromethylthioether could be obtained. Given the previously described optimised 

method for the mechanochemical synthesis of such fluorinated dicarbonyls (Chapter 2), 

and encouraged by the successful development of a one-pot, two-step 

mechanochemical process (Chapter 3), it was envisaged that such a multistep 

mechanochemical synthesis of biologically useful difluoromethylthioethers could be 

developed (Scheme 4.3).  
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Scheme 4.3 Proposed one-pot, two-step mechanochemical synthesis of difluorinated 
thioethers. 
 
 
The mechanism for this transformation as proposed by Yi, Lu and co-workers begins 

with the base mediated fragmentation of difluorinated diketone 100 (Scheme 4.4). 

 
Scheme 4.4 Mechanism as proposed by Yi, Lu and co-workers. 

 

The proposed product of this fragmentation is the difluorinated enolate 141, which can 

then attack the electrophilic disulfide, forming 142. It is then suggested that at high 

temperature or longer reaction times, a further fragmentation occurs, mediated by base 

and water, to yield the difluoromethylthioether 143. 

 

4.2 Initial results 
 

Preliminary results demonstrated that on milling 0.25 millimoles of difluorinated 

diketone 100 with cesium carbonate and phenyl disulfide in the mixer mill at 30 Hz for 

90 minutes, the starting material 100 was consumed (determined by 19F NMR 

spectroscopy). However, the major product was determined to be 144 (Scheme 4.5).  

 
Scheme 4.5 Preliminary results on the mechanochemical reaction of 100. 

 

This is in stark contrast to the reactivity reported in DMSO solution by Li, Yu and co-

workers and suggests that the use of mechanochemistry is significantly altering the 

reactivity.  
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Given the different, potentially reactive intermediates involved, it is reasonable that a 

change in reaction environment could give rise to different reactivity. It has previously 

been demonstrated that by switching from solution to mechanochemical conditions can 

lead to a change in the thermodynamics. Belenguer et al. reported that for reversible 

disulfide metathesis, the position of equilibrium was altered significantly in the ball mill.9 

This means that the thermodynamic product of a reaction can be altered using 

mechanochemistry. It was suggested that this difference was due to the contribution of 

crystal lattice enthalpy to the overall thermodynamics of the system. As 

mechanochemical reactions do not typically contain solvent, crystals of the different 

species can form. These crystallisation events will contribute to an extra stabilisation of 

certain species that will not occur in solution, where crystals would not form. However, 

the exact values of this extra stabilisation by crystallisation are not easy to predict. 

 

It has also been reported that changing from solution to mechanochemical conditions 

can lead to a significant change in the kinetic profile of a reaction.10 James and co-

workers reported differences in the kinetics of a Knoevenagel condensation between 

the reaction in solution and under mechanochemical conditions. The differences 

observed were attributed to a change in the texture of the reaction mixture. 

 

The fragmentation and self-aldol reactivity observed in this attempted 

difluoromethyation under mechanochemical conditions has been previously observed 

in solution, though from different starting materials (Scheme 4.6). 
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Scheme 4.6 Previously reported syntheses of hydroxyketone motifs. 

 

Colby and co-workers reported generation of the difluorinated enolate by fragmentation 

and the loss of a trifluoroacetate group. This enolate was then trapped by aldol reaction 

with aldehydes. However, the self-aldol reaction was observed as a side reaction 

during development of this method when the naphthyl derivative was used.11 In 1999, it 

was reported by Chai that the same difluoroenolate could be prepared by loss of a 

halide, promoted by a bimetallic Cr(III)/Fe system. It was suggested that radical 

processes were involved in the mechanism.12 The same transformation was reported in 

2017 by Wu and co-workers, who made use of lithium triethylborohydride to generate 

the difluoroenolate and also observed the self-aldol reaction product.13 However, there 

currently exists no report of the formation of 144 from the difluorinated diketone 145. 

 

4.2.1 Reaction time 
 

Having observed this different behaviour under ball milling, it was decided to optimise 

the reaction. Initially, the reaction time was investigated in the absence of disulfide 

(Table 4.1). 
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Table 4.1 Optimisation of reaction time. 

 
Entry Time / min. Yield 144a Yield 145 a 

1 30 40% 32% 
2 60 55% 23% 
3 120 19% 44% 
4 180 33% 34% 

a Determined by 19F NMR using trifluorotoluene as internal standard. 
 

In all cases, both aldol product 144 and difluorinated ketone 145 were obtained. The 

highest yield of 144 was obtained after milling for one hour (Table 4.1, Entry 2). Milling 

for longer times did not improve the overall yield of the reaction, however the ratio of 

144 : 145 changed, favouring ketone 145 after longer times. For further investigation of 

reaction conditions, 60 minutes was chosen as the milling time. 

4.2.2 Reaction scale 
 

The next variable to be investigated was the scale of the reaction, which can have a 

significant effect on the outcome of the reaction. Filling the jars to different degrees can 

significantly alter the trajectory of the ball bearings and the texture of the reaction 

mixture, leading to different mixing and energy transfer. 

 

Table 4.2 Optimisation of reaction scale. Thanks to Michael Brand for these results. 

 
Entry X / mmol. Total mass of 

reagents / g 
Yield 144 a Yield 145 a 

1 0.25 0.309 76% 14% 
2 0.50 0.618 55% 23% 
3 0.75 0.927 43% 28% 
4 1.00 1.236 30% 36% 

a Determined by 19F NMR using trifluorotoluene as internal standard.  
 

It can be seen that the scale of the reaction does indeed have a significant effect on the 

outcome. The highest yield of 144 was obtained for the smallest scale (Table 4.2, Entry 

1), with a clear trend of decreasing yield on increasing the scale of the reaction. This 

could be due to the energy imparted by the collisions of the balls with the reagents. As 
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the jar is filled with more material, the ball is blocked from moving freely and may be 

impeded and slowed, leading to less energy being transferred. A scale of 0.25 mmol 

was chosen for subsequent reactions. 

4.2.3 Ball size and quantity 
 

The nature of the ball was the next parameter to be investigated. Phenyl disulfide was 

included at this point in order to test that the selectivity difference originally observed 

between milling and the reaction in solution (Scheme 4.5) was still holding true. 

 

Table 4.3 Effect of size and quantity of milling balls on reaction. Thanks to Michael 
Brand for these results. 

 
Entry Ball size, x 

mm (g) 
Quantity Yield 144a Yield 145a 

1 7 (1.4) 1 35% 14% 
2 7 (1.4) 2 40% 32% 
3 10 (4.2) 1 88% (72%b) 10% 
4 10 (4.2) 2 45% 3% 
5 14 (11.8) 1 70% 9% 

a Determined by 19F NMR spectroscopy using trifluorotoluene as internal standard. b Isolated. 
 

Interestingly, after adding disulfide to the reaction mixture, the yield of 144 was 

improved further from 76% (Table 4.2, Entry 1) to 88% (Table 4.3, Entry 3), isolating 

72% after purification by flash column chromatography. As the disulfide was also 

obtained unchanged after the reaction, this suggests that phenyl disulfide may be 

acting as a grinding auxiliary, possible leading to a better yield by improving mixing and 

energy transfer. In general, on changing the size of the ball in the reaction, the yield 

increases with ball size, to a maximum using one 10 mm ball (Table 4.3, Entry 3). 

Increasing the ball size further led to a decrease in yield (Table 4.3, Entry 5), possibly 

due to degradation of the product. The higher the mass of the ball, the more kinetic 

energy it will possess prior to colliding with the reagents, so the more energy will be 

input into the reaction mixture, leading to a faster reaction. However, the larger 

diameter of a ball with a higher mass, the less space available in the jar for effective 

mixing. When increasing the number of balls the yield decreased significantly (Table 

4.3, Entries 2 & 4). The balls are not able to pass each other, so will disrupt each 

other’s motion, so each ball will have less kinetic energy. Having now established 
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optimum conditions for the mechanochemical synthesis of 144, attention was turned to 

the mechanochemical synthesis of 142. 

 

4.3 Screen of Liquid Assisted Grinding conditions 
 

As the formation of 142 and 143 from this reaction mixture are reported in a DMSO 

solution, the possibility of using liquid assisted grinding (LAG) to alter the reaction 

products was investigated. Using DMSO as the added liquid, the effect of the quantity 

on the selectivity of the reaction was investigated (Table 4.4). 

 

Table 4.4 Effect of LAG with different quantities of DMSO. 

 

 
It was found that on addition of DMSO, reaction with phenyl disulfide was observed, 

with a switch in reactivity observed depending on the quantity of DMSO added. On 

addition of 25 µL, some conversion to ketone 142 was observed (16%, Table 4.4, Entry 

2). On adding more than 50 µL of DMSO, the reactivity was completely switched, with 

no hydroxyketone 144 observed and only the products of reaction with phenyl disulfide 

obtained. With 50 µL of DMSO, ketone 142 was obtained in good yield (Table 4.4, 

Entry 3). With larger quantities of DMSO, 142 was further converted to 

difluoromethylthioether 143 (Table 4.4, Entries 4 & 5). 

 

This LAG induced switching of reactivity is intriguing. Similar to the results presented in 

Chapter 2, using LAG is leading to a change in selectivity. However, it is now not just a 
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different outcome from the same reaction pathway, such as mono- or di- addition. 

Here, a completely different reaction is occurring; under neat grinding, the disulfide is 

untouched, however under LAG conditions with DMSO, the disulfide is consumed. This 

is therefore an example where the chemoselectivity of a reaction is being altered by 

using mechanochemistry. In order to probe this further, a range of solvents were 

investigated for their use in LAG. 

 

It has been previously reported that the polymorphic outcome of a cocrystallisation can 

depend on the solvent used in LAG.14-16 It is therefore possible that different solvents 

used in LAG would alter the selectivity of the reaction. Solvents spanning a range of 

properties were therefore screened, sorting by their dielectric constant, and the yields 

of the different possible products were measured using 19F NMR. 

 

Table 4.5 Effect of different solvents on reaction selectivity. Thanks to Michael Brand 
for these results. 

 

 
 

Similar to the previous observations on the effect of quantity of DMSO on the reaction 

selectivity, a general trend can be observed of a switching of product ratios as the 
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dielectric constant of the added liquid increases (Table 4.5). In general, for non-polar 

additives, 144 is obtained as the major product. However, for the most polar additives, 

a switch in reactivity is observed, and the major product is 142 when the dielectric 

constant is greater than 30. However, this is with the exception of water and 

acetonitrile. Interestingly when water was used as the additive, the selectivity of the 

reaction changed again, with difluorinated ketone 145 being the main product 

observed. 

 

Having established the factors that effect the selectivity of the reaction, it was important 

to investigate the underlying causes of the altering of chemoselectivity. The first step in 

approaching this problem was to understand the mechanism of the reaction. 

4.4 Proposed mechanism 
 

Initially, the difluorinated diketone fragments to yield difluoroenolate 141, as proposed 

previously.8 This fragmentation may be enhanced by the motif of three adjacent 

partially positively charged carbon atoms. Cesium carbonate is necessary for the 

transformation, suggesting that it plays a role in this initial fragmentation (Scheme 4.8). 

The carbonate anion may behave as a nucleophile, attacking a ketone to initialise the 

fragmentation. Once this enolate (141) has been formed, the possible reaction 

pathways diverge (Scheme 4.7). Under LAG conditions with polar additives, the 

enolate reacts with the electrophilic disulfide with the loss of phenyl thiolate to yield the 

major observed product 142 (Path A). Under certain conditions, such as high 

temperature or extended reaction times in solution, 142 can fragment further to form 

difluoromethylthioether 143. 

 

Under neat milling or LAG with non-polar additives, different reactivity is observed 

(Scheme 4.7, Path B). In these circumstances, the difluorinated enolate 141 does not 

react with the disulfide. Instead, some amount of 141 must be protonated to the ketone 

145, which then undergoes an aldol reaction with enolate 141. After subsequent 

protonation, the major product observed under neat milling (144) is obtained. It is 

possible that the overall formation of 144 from enolate 141 is reversible. 
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Scheme 4.7 Proposed mechanism. 

 

Next, it was decided to probe the validity of this proposed mechanism by testing the 

reversibility of different steps and by verifying the participation of the proposed 

intermediates in the reaction. 

4.5 Mechanistic experiments 
 

Initially, the fragmentation of 100 was investigated. Under the optimal reaction 

conditions for the formation of 144, treating 100 with cesium carbonate and phenyl 

disulfide under neat milling, benzoic acid could also be isolated in 84% yield by an 

acid/base extraction. This is the expected side product of the fragmentation of 100 

induced by a nucleophile and would be the side product from direct addition of water to 

100. However, it is also a possible side product of the initial nucleophilic attack of the 
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carbonate anion, as shown in Scheme 4.7. The potentially unstable carbonate formed 

could then quickly decarboxylate, with the loss of carbon dioxide, to form benzoic acid. 

 
Scheme 4.8 Investigating the initial fragmentation 

Subsequent control experiments confirmed that the fragmentation does not occur 

spontaneously under ball milling of 100 (Scheme 4.8). Upon milling 100 in the absence 

of cesium carbonate, only the starting material was observed, with any combination of 

added DMSO and phenyl disulfide (Scheme 4.8). This demonstrates that DMSO and 

phenyl disulfide do not cause the initial fragmentation, and that cesium carbonate is 

required for the initial step of the reaction mechanism. Furthermore, this suggests that 

the identity of the nucleophile inducing the fragmentation is the carbonate anion of 

cesium carbonate. The only other possibility is that the fragmentation is induced by 

water present in cesium carbonate. However, that would suggest that 100 would be 

moisture sensitive, but it is stable for extended periods in air. The reaction was also 

performed and found to proceed successfully from dried starting materials, drying 

cesium carbonate in a drying pistol. 

 

Subsequent mechanistic experiments were directed at establishing whether the 

reversibility proposed for the formation of 144 from 141 is correct. A sufficient quantity 

of 144 was isolated by performing ten reactions in parallel and isolation by column 

chromatography. It was then investigated whether 144 was a reactive starting material 

in solution (Scheme 4.9).  
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Scheme 4.9 Experiments testing the reversibility of 144 formation in solution. 

 

Initially, on stirring 144 in DMSO solution for two hours, only 144 was observed. 

However, on addition of cesium carbonate, diketone 145 was obtained in 67% yield. 

This demonstrates that the formation of 144 from 145 is reversible in the presence of 

cesium carbonate. It also suggests that difluorinated ketone 145 is an intermediate in 

the overall reaction mechanism. On stirring 144 in a DMSO solution with cesium 

carbonate and phenyl disulfide for extended reaction times, difluoromethylthioether 143 

was formed in 84% yield. This confirms that 144 formation is reversible under the 

reaction conditions in solution and that it is a competent starting material for reaction 

with disulfide. 
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Scheme 4.10 Testing reversibility in mixer mill. 

 

The reversibility of 144 formation was also investigated under mechanochemical 

conditions. On subjecting 144 to neat grinding with phenyl disulfide and cesium 

carbonate for one hour, ketone 145 was obtained in 47% yield. This confirms that the 

formation of 144 is reversible under milling. The use of 144 for formation of thioethers 

142 and 143 in the mill was also tested in a one-pot procedure. The optimum 

conditions for the formation of 144 were used (Table 4.3, Entry 3), then the jar was 

opened, DMSO added and then milled for a further hour. Thioethers 142 and 143 were 

observed, demonstrating that the reaction pathway can be switched by adding DMSO 

to the crude reaction mixture, and that 144 is a competent starting material for this 

transformation. To further test this, purified 144 was milled for one hour in the presence 

of DMSO, cesium carbonate and phenyl disulfide, and only thioethers 142 and 143 

were observed as products by 19F NMR spectroscopy, though in low yields. 

 

 
Scheme 4.11 Confirmation of common intermediate. 
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Next, the proposed intermediate ketone 145 was tested both under neat milling and 

LAG with DMSO (Scheme 4.11). It was found that 145 was a competent starting 

material for both reactions. This supports the proposed mechanism of 145 as an 

intermediate that is common to both reaction pathways. 

 

 
Scheme 4.12 Reversibility of C-S bond formation on milling. 

 

The final test of the proposed mechanism was probing the reversibility of the C-S bond 

formation step (Scheme 4.12). This step is proposed to explain the formation of 142 

from 141 (Scheme 4.7, Path A). In the proposed mechanism, enolate 141 attacks 

phenyl disulfide, liberating phenylthiolate. It can be envisaged that this step could be 

reversible, requiring the thiolate to attack 142 at sulfur, reforming phenyldisulfide and 

enolate 141. This could be promoted by the electron poor nature of the carbon α to the 

carbonyl, caused by the electron withdrawing fluorine atoms. To test the feasibility of 

this back-reaction, thioether 142 was milled for one hour with thiophenol and cesium 

carbonate (Scheme 4.12). While 99% of 142 remained after one hour, 1% of the 

difluorinated ketone 145 was observed. This shows that under milling, the C-S bond 

formation is reversible. However, it is either very slow or the position of equilibrium 

strongly favours the thioether 142, given the low observed yield of ketone 145. 

 

In summary, these experiments all support the proposed mechanism (Scheme 4.7). 

The initial fragmentation requires cesium carbonate, and benzoic acid has been 

isolated as a side product, suggesting that CO3
2- is acting as a nucleophile and causing 

the initial fragmentation. It was then confirmed that ketone 145 (and by inference its 

enol form 141) is a common intermediate to both reaction pathways. The formation of 

144 was determined to be reversible under the reaction conditions. However, despite 

now having a reasonable mechanistic understanding of the overall process, the origin 

of which reaction pathway is observed is still not clear. In solution or LAG with polar 

additives for one hour, path A is observed. However, under neat milling or LAG with 

non-polar additives, path B is observed. 
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4.6 Origin of altering reaction pathway 
 

In any reaction, the observed selectivity is due to a combination of kinetic and 

thermodynamic factors. Therefore in order to change the selectivity, the 

thermodynamics, kinetics or both must be altered by a change in reaction conditions. 

Therefore, the switch from solution (or LAG with polar additives) to neat grinding (or 

LAG with non-polar additives) must be either altering the thermodynamic product of the 

reaction, or changing the rate of a key step in the mechanism, or a combination of 

these effects. Indeed, it has been observed previously that performing reactions under 

mechanochemical conditions can lead to differences in kinetics and thermodynamics 

compared to the same reactions in solution.9, 10 

 

In order to gain some insight into the possible underlying cause of the different reaction 

outcomes observed, the reaction profile with time under different conditions was 

investigated. 

 

Investigations into the early part of the reaction under LAG conditions with DMSO show 

an interesting reaction profile with time (Figure 4.1). Early on in the reaction, the main 

product observed was 144, in significant contrast to the product ratio observed after 

milling for one hour. However, 144 and 145 then decrease over time, and the yield of 

the thioether 142 increases over time until there is no 144 remaining after one hour. 

This suggests that under liquid assisted grinding with DMSO, the fragmentation of 100 

occurs rapidly to form enolate 141, which can then reversibly form 144. However, after 

one hour, this has all reacted with the disulfide to form thioether 142. 

  



 Chapter 4 – Using mechanochemistry to alter reaction pathway 
 

 107 

 

 
Figure 4.1 Reaction profile with time for liquid assisted grinding with DMSO. 

 

Having observed 144 at short reaction times under LAG conditions with DMSO, that 

suggests that the reaction of enolate 141 with phenyl disulfide to form 142 is much 

faster than under neat milling. It was therefore suggested that at long reaction times 

under neat milling, some conversion to 142 may be observed. To test this, the reaction 

profile for long reaction times under neat milling was investigated (Figure 4.2). 

 

It was found that on milling for longer times than one hour, the amount of 144 

significantly decreased, and conversion to ketone 145 was then observed. As it has 

already been shown that the formation of 144 from 145 is reversible, then they must be 

in equilibrium. After extended milling times this mixture slowly reacts with the disulfide, 

forming thioether 142.  
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Figure 4.2 Reaction profile for long reaction times under neat milling. 

 

This confirms that the key difference in reactivity observed between neat milling (or 

LAG with non-polar additive) and LAG with polar additive (or solution) is due to 

differences in the rate of formation of 142 from 141 (Scheme 4.7, Path A). In both 

cases, at long reaction times, them main product is thioether 142, suggesting that this 

is the thermodynamic product of this reaction manifold. However, in both cases at 

shorter reaction times, 144 is observed. This suggests that 144 is the kinetic product, 

which under neat milling, can be obtained in good yield after one hour. The origin of the 

different reaction selectivity has therefore been determined. It is a kinetic effect, where 

the use of LAG with a polar additive or solution leads to a faster reaction of 141 with 

the disulfide. Under neat milling (or LAG with a non-polar additive), this step is 

significantly slower, so the main product after one hour is 144. 

 

With the cause of the reaction pathway switching now established as a kinetic effect, 
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reaction.10 In that study it was proposed that the cause of the different kinetics was due 

to a change in the texture of the reaction. However, that example simply demonstrated 

different kinetics for one reaction that exhibited no selectivity differences. Here, the 

difference in rate of one step can be exploited to give different reaction products. 

Taking this proposal of different textures as inspiration, a hypothesis to the physical 

cause of the observed rate differences was postulated (Scheme 4.13). The 

fundamental cause seems to be the non-homogeneous nature of mechanochemical 

reaction mixtures. 

 

 
Scheme 4.13 Proposed physical cause of kinetic differences observed. 

 

Initially in the ball mill, the reaction mixture will be mixed and the particle size of 

reagents decreased. The first chemical transformation under both sets of reaction 

conditions is the cesium carbonate mediated fragmentation of difluorinated diketone 

100 to the difluoroenolate 141. This will initially be formed at the interface of a particle 

of 100 and Cs2CO3, on the surface of a bulk particle of 100 (Scheme 4.13). The rate of 
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neat milling, if some of enolate 141 is protonated to form ketone 145, it will be formed 

surrounded by a locally very high concentration of enolate 141. Therefore, the aldol 

reaction to form 144 will be much faster than the reaction with phenyl disulfide, as 

observed under neat miling or LAG with non-polar additives. Under LAG with a polar 

solvent, the coating of enolate 141 on unreacted 100 could be broken up by a polar 

solvent, significantly increasing its mobility. The enolate could then react much faster 

with phenyl disulfide. 
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Figure 4.3 Yields of different products after milling with different quantities of DMSO. 
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physical cause of the different reaction rates observed. With more DMSO in the 
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Figure 4.4 Graph of yield against time for solution reaction. 
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4.7 Conclusions and Outlook 
 

An example of a reaction where the chemoselectivity is altered by using 

mechanochemical conditions has been discovered. Although the exact transformation 

is perhaps of little interest for synthetic chemists, it does provide a proof of concept that 

alternative reaction pathways can be discovered in the chemical space of 

mechanochemistry.  

 

It was found that using liquid assisted grinding (LAG), both the quantity and nature of 

the added liquid could switch the reaction pathway. Using more polar additives (as 

determined by their dielectric constant), the product observed in solution was obtained, 

whereas with less polar additives, the product observed under neat milling was 

observed. The mechanism, including the different reaction pathways, was then 

investigated, and the ultimate reason for the selectivity differences observed found to 

be due to different kinetics. 

 

This example is the first example of opening an alternative reaction pathway by using 

mechanochemistry, with a different reaction happening in solution from the same 

reagents. If, on further investigation, the physical phenomena giving rise to this 

alternative selectivity can be confirmed and well understood then it may become 

possible to predict situations where using mechanochemistry could lead to novel 

reactions being discovered. Such investigations would require significant collaboration 

across multiple fields of chemistry. 

As this is demonstrating the ability of mechanochemistry to trap a kinetic product, any 

reaction that features kinetic and thermodynamic product selectivity could perhaps 

make use of milling to achieve the desired reactions outcome. For example, enolate 

formation is typically carried out either at low temperatures with a very strong base in 

order to form the kinetic enolate, or at high temperatures with a weaker base to form 

the thermodynamic product. An alternative direction for this procedure would be to 

investigate the use of electrophiles other than a disulfide. For example, perhaps milling 

the difluorinated diketone 100 with Cs2CO3 in the presence of Selectfluor may lead to 

the trifluoromethylated ketone. 

 

 

 

 



 Chapter 4 – Using mechanochemistry to alter reaction pathway 
 

 113 

4.8 References 
 

[1] X. H. Xu, K. Matsuzaki and N. Shibata, Chem. Rev., 2015, 115, 731–764. 

[2] J. A. Erickson and J. I. McLoughlin, J. Org. Chem., 1995, 60, 1626–1631. 

[3] H. Y. Xiong, X. Pannecoucke and T. Besset, Chem. Eur. J., 2016, 22, 16734–
16749. 

[4] J. L. Howard, C. Schotten, S. T. Alston and D. L. Browne, Chem. Commun., 
2016, 52, 8448–8451. 

[5] W. Zhang, J. Zhu and J. Hu, Tetrahedron Lett., 2008, 49, 5006–5008. 

[6] G. K. S. Prakash, Z. Zhang, F. Wang, C. Ni and G. A. Olah, J. Fluor. Chem., 
2011, 132, 792–798. 

[7] B. Bayarmagnai, C. Matheis, K. Jouvin and L. J. Goossen, Angew. Chem. Int. 
Ed., 2015, 54, 5753–5756. 

[8] Y. M. Lin, W. Bin Yi, W. Z. Shen and G. P. Lu, Org. Lett., 2016, 18, 592–595. 

[9] A. M. Belenguer, T. Friščić, G. M. Day and J. K. M. Sanders, Chem. Sci., 2011, 
2, 696. 

[10] B. P. Hutchings, D. E. Crawford, L. Gao, P. Hu and S. L. James, Angew. Chem. 
Int. Ed., 2017, 56, 15252–15256. 

[11] C. Han, E. H. Kim and D. A. Colby, J. Am. Chem. Soc., 2011, 133, 5802–5805. 

[12] K. Y. Chai, Bull. Korean Chem. Soc., 1999, 20, 101–102. 

[13] P. Peng, J. Wu, J. Liang, T. Zhang, J. Huang and F. Wu, RSC Adv., 2017, 7, 
56034–56037. 

[14] A. M. Belenguer, G. I. Lampronti, A. J. Cruz-Cabeza, C. A. Hunter and J. K. M. 
Sanders, Chem. Sci., 2016, 00, 1–11. 

[15] D. Hasa, E. Miniussi and W. Jones, Cryst. Growth Des., 2016, 16, 4582–4588. 

[16] T. Friščić, S. L. Childs, S. A. A. Rizvi and W. Jones, CrystEngComm, 2009, 11, 
418–426. 

 



 114 

5 Mechanochemical activation of metals 
 

 

 

5 Mechanochemical activation of metals ................................................. 114 
5.1 Introduction .................................................................................................. 115 

5.1.1 Mechanochemical direct oxidative addition to base metals ..................... 117 
5.1.2 Organomanganese formation .................................................................. 120 
5.1.3 Reactivity of organomanganese reagents ................................................ 122 

5.2 Results and discussion ............................................................................... 124 
5.2.1 Mechanochemical formation of organomanganese reagents .................. 124 
5.2.2 Initial results ............................................................................................. 126 
5.2.3 Scope ....................................................................................................... 128 
5.2.4 Conclusion and outlook ............................................................................ 134 

5.3 References .................................................................................................... 136 
 

  



 Chapter 5 – Mechanochemical activation of metals 
 

 115 

5.1 Introduction 
There are many uses of metals in organic synthesis, particularly as catalysts and 

activating agents.1 In terms of being used as synthetic building blocks, organometallic 

species are usually the synthetic equivalents of choice for nucleophilic-at-carbon 

synthons. Possibly the most well known example is the Grignard reagents, which are 

organomagnesium species that react efficiently with electrophiles to form new carbon 

carbon bonds.2 Metal catalysts are often also organometallic species, with specialised 

organic ligands designed to enhance catalytic activity and/or induce enantioselectivity 

during the transformation. 

 

The synthesis of organometallics can be challenging. They are usually air and moisture 

sensitive and can be extremely reactive. The most straightforward route from the 

simplest starting materials involves direct oxidative addition of the alkyl halide to the 

base metal. Although this uses readily available starting materials, in practice this can 

be challenging. For example, during the synthesis of Grignard reagents from alkyl 

bromides and magnesium metal, initiating the reaction can be problematic. The main 

problem is the coating of magnesium oxide on the surface of magnesium metal, which 

prevents the reactive metal from being exposed to the alkyl halide for oxidative 

addition. The typical solution to this problem is to “activate” the metal by removing the 

surface oxide layer, which is often achieved by adding iodine, dibromoethane or other 

additives.3 This activation can be a significant problem, especially on large scales, 

since once initiated the reaction is exothermic and thermal runaways are possible.4 

Another key consideration is the choice of solvent, with Grignard formation being easier 

in ethereal solvents, since the oxygen can coordinate to the magnesium metal centre, 

stabilising the organometallic. This coordination also helps dissolve the organometallic 

species, washing newly formed reagent from the surface of the magnesium metal and 

revealing fresh reactive metal surface for the reaction to continue. These 

considerations are well understood for the case of organomagnesium species. 

However, the synthesis of other organometallics is often more challenging. The relative 

ease in the synthesis of organomagnesium reagents is due to a balance between how 

reactive magnesium metal is, leading to fast reaction with alkyl halides, and the facile 

methods available to remove the surface oxide layer.  

 

Despite the wide use of Grignard reagents, they exhibit poor functional group tolerance 

and stability. They are very basic, with pKa values of the corresponding alkanes being 

approximately 50, and so even weakly acidic groups such as alcohols must be 

protected before a Grignard reaction. They will also react with most electrophilic 
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centres, including esters, nitriles and alkyl halides. Finally, they are air and moisture 

sensitive, which can present complications in their handling. 

 

However, other organometallics can offer solutions to some of these problems; indeed, 

the full suite of metals are needed to achieve selectivity and reactivity across a broad 

range of capabilities. By varying the metal, the reactivity can be adjusted, which can 

lead to improved functional group tolerance and stability. For example, organozinc 

reagents have these improved properties compared to Grignard reagents, although 

they possess correspondingly decreased reactivity. Unfortunately, few organozinc 

reagents are commercially available and their synthesis is more challenging than the 

synthesis of Grignard reagents, leading to the chemistry of organozinc reagents being 

under-utilised, such as the Negishi cross-coupling reaction.5 The traditional method to 

synthesise organozincs and other organometallics is by transmetallation from the 

corresponding organolithium or organomagnesium, formed either by direct C-H 

metallation by deprotonation or ortho lithiation, 6 or by oxidative addition from the alkyl 

halide (Scheme 5.1). 7 However, any advantages gained in terms of functional group 

tolerance of the new organometallic are lost by transmetallation from these more 

reactive organolithium or organomagnesium species used as intermediates. For 

example, it would be impossible to synthesise an organozinc reagent containing an 

ester by transmetallation from an organolithium or Grignard. 

 

The solution to this problem is to directly synthesise the desired organometallic. For 

example, the direct zincation of C-H bonds has been developed by Knochel and 

coworkers, by using specialised zinc-amide bases.8 Perhaps more attractively, for C-X 

bonds, is the direct oxidative insertion of Zn(0) from activated zinc metal. Indeed, highly 

reactive Rieke zinc can be formed by the reduction of ZnCl2 using alkali metals and 

naphthalene, and will undergo oxidative addition with an alkyl or aryl halide to generate 

the desired organozinc species (Scheme 5.1).9 A complementary, and more popular 

approach to generate activated zinc metal is to remove zinc oxide from the metal 

surface by chemical reaction or entrainment. This is typically performed by using 

chemical additives such as TMSCl, 1,2-dibromoethane, bromine or iodine.10 A further 

issue arises in the generally poor solubility and oligermerization of organozinc species, 

causing them to form on the surface of the bulk zinc metal, preventing the exposure of 

fresh zinc surfaces and reducing the reactivity for subsequent reactions. Knochel and 

co-workers observed that this limitation can be overcome by the addition of lithium 

chloride to the reaction mixture.11 
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Scheme 5.1 Methods to synthesise organozinc reagents. 

 

All of these methods require strictly inert conditions and can be unreliable, as well as 

requiring multiple additives and long reaction times. They are also highly dependent on 

the form of metal used. An experimentally more straightforward approach to the 

activation of metals could be to use mechanochemistry. 

 

 

5.1.1 Mechanochemical direct oxidative addition to base metals 
 

One of the significant issues encountered when attempting to obtain organometallics 

directly from the base metals and alkyl halides is the presence of a surface layer of 
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metal oxide. As previously described, activation of these metals typically requires 

chemical removal of this layer. Under mechanochemical conditions, however, this 

metal oxide layer may be physically removed, revealing fresh reactive metal surfaces 

on impact. This idea has been exploited using a pestle and mortar to activate zinc 

metal.12 Metals are commercially available in many different forms, which can have a 

significant impact on their reactivity. However, under milling, any metal form could be 

ground to a fine powder, suggesting that any commercially available form could be 

used mechanochemically. Indeed, the forms of metal with the highest surface area to 

volume ratios (such as fine powders) would have a higher proportion of metal oxide 

compared to reactive metal.  

 

Previous work in the Browne group developed a mechanochemical process for the 

activation of zinc metal in order to synthesise organozinc species directly from zinc 

metal and the corresponding alkyl halide (Scheme 5.2).13 On milling the alkyl halide 

with zinc metal and DMA the organozinc reagent could be obtained. Inert conditions 

were not required and organozinc formation was found to be successful using any 

commercially available form of zinc. These organozinc reagents were then directly 

used in the Negishi cross-coupling in a one-pot process. 
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Scheme 5.2 Examples of mechanochemical activation of metals. 

 

Direct synthesis of metal complexes from base metals under ball milling has also been 

reported. In 2016, it was reported by Friščić, Lumb and co-workers that milling zinc 

powder with a quinone and pyridine could form zinc (II) complexes (Scheme 5.2).14 By 

changing the pyridine linker used, the authors were able to use this method to form 

self-assembled metal-organic materials. In a separate report, Friščić and co-workers 

were able to synthesise palladium (II) and gold (II) complexes directly in a ball mill from 

the metals, ligands and oxone (Scheme 5.2).15 These complexes were water-soluble 

and a palladium complex synthesised by this method was successfully used to catalyse 

a Suzuki cross-coupling reaction. In a further example of mechanochemical metal 

activation, Lamaty and co-workers reported that copper - NHC complexes could be 

directly synthesised in the mill from Cu(0) metal and the desired NHC salt, without 

addition of a base.16 
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copper catalysed alkynylation of tetrahydroisoquinolines has been performed using 

copper milling balls as the catalyst.17 A further demonstration of reactions caused by 

the presence of metals in the milling balls reports the reduction of arenes using 

stainless steel milling balls and alkanes.18 It was demonstrated that the presence of 

chromium in the balls was vital for this transformation. 

 

As the possibility of synthesising organometallic species in a simple practical method 

from base metals using mechanochemistry has been demonstrated in the Browne 

group and by others, attention was turned to manganese. Like organozinc species, 

organomanganese synthesis is often not straightforward and an improved method for 

their synthesis would be desirable.19  

 

5.1.2 Organomanganese formation 
 

Organomanganese reagents have multiple uses and reactivity in synthesis, such as 

selective, nucleophilic-at-carbon reagents or as coupling partners in cross-coupling 

reactions.19-22 However, they can be challenging to synthesise. By far the most 

common method used to synthesise organomanganese species is by transmetallation 

from the corresponding organolithium or organomagnesium (Scheme 5.3).23 Despite 

currently being the most reliable method available, this approach has several 

drawbacks. Firstly, it is a multistep process and therefore is not efficient, forming 

stoichiometric salts of lithium or magnesium as waste. It also requires strictly inert 

conditions and synthesis of the required organolithium or organomagnesium is not 

always straightforward. As discussed previously, there are also drawbacks in terms of 

functional group tolerance and stability.  

A better method would be direct oxidative addition of alkyl halides to manganese metal. 

This has been achieved from various forms of “activated manganese” (Scheme 5.3). In 

a similar method to activating zinc, Rieke manganese can also be synthesised by 

reducing manganese iodide with lithium metal and naphthalene (Scheme 5.3).24  
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Scheme 5.3 Methods for the synthesis of organomanganese species. 

 

A further method to activate manganese metal was found by Fürstner in 1996. The 

soluble complex MnBr2.2LiBr could be reduced by potassium graphite (Scheme 5.3).25 

This activated manganese reacts smoothly with allyl-, alkenyl- and aryl halides and can 

be used to prepare functionalised organomanganese species, such as those featuring 

nitriles. An alternative method of generating activated manganese was developed by 

Oshima and co-workers. This process featured the same starting complex 

(MnBr2.2LiBr), but reduction was performed using magnesium metal, which was 

activated by treatment with 1,2-dibromoethane (Scheme 5.3).26 An alternative to using 

activated manganese is direct manganese insertion into a carbon-halide bond. This 

was achieved by Hosomi in 1997 by using Bu4MnLi2 as a source of manganese 

(Scheme 5.3).27  
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process required significant excess reagents to be used and was only successful for 

allyl bromide.  

 

 
Scheme 5.4 Synthesis of organomanganese reagents from alkyl bromides and 
commercially available manganese metal. 
 

In 1989, Cahiez and co-workers extended this process to reaction with ketones and 

methallyl bromide (Scheme 5.4).29 The choice of solvent was found to be crucial, with 

ethyl acetate idenitified as the best solvent for this transformation. However, further 

substitution on the allyl bromide caused the reaction to be unsuccessful. It was also 

found that aldehydes were not competent electrophiles for this transformation. This 

observed reactivity is unusual, as aldehydes are more electrophilic than ketones. 

However, the addition of 10 mol% ZnCl2 enabled aldehydes and further substitution of 

the allyl bromide to be tolerated. It was proposed that the reactive species was a 

manganese/zinc couple. 

 

5.1.3 Reactivity of organomanganese reagents 
 

Like other organometallic reagents, organomanganese reagents are nucleophilic at 

carbon. However, they are more stable and less reactive than other organometallics, 

such as Grignards or organolithiums. They will react with aldehydes, ketones, carbon 

dioxide, isocyanates and sulfur dioxide. However, they will not react with nitriles, esters 

or amides.19 As well as nucleophilic addition to carbonyls, organomanganese 

compounds can also be used as substrates for cross-coupling reactions. 

 

An early example demonstrating the utility of organomanganese reagents describes 

chemoselective addition to aldehydes in the presence of ketones (Scheme 5.5).30  
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Scheme 5.5 Chemoselective addition of organomanganese to aldehydes. 

 

Prior to this example, the best performing class of reagents for this chemoselective 

transformation were organotitaniums.31 

 

Organomanganese reagents behave as soft nucleophiles, as demonstrated by Cahiez 

and Alami in 1989.32 It was reported that butyl manganese chloride reacted smoothly 

with various alkylidenemalonic esters (Scheme 5.6).  

 

 
Scheme 5.6 Selective 1,4-addition of butylmanganese chloride to alkylidenemalonate 
esters. 
 
It is interesting to note that this selective 1,4-addition is not observed for reactions with 

unsaturated ketones (Scheme 5.7).  

 
Scheme 5.7 Reaction of cyclohexenone with a variety of organomanganese reagents. 
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This kind of transformation is known photochemically34, and has recently been 

achieved using a titanium catalyst.35 The exact ratio of the different products depended 

on the nature of the organomanganese reagent used and the solvent. 

 

5.2 Results and discussion 
5.2.1 Mechanochemical formation of organomanganese reagents 
Initial investigations into the possibility of forming organomanganese reagents directly 

from manganese metal and alkyl halides were performed in a mixer mill.  

The formation of the organometallic was analysed by the same method previously used 

in the Browne group to investigate the formation of organozincs.13 

Ethyl-4-bromobutyrate 146 was chosen as a model substrate because, if this method 

was successful, an organomanganese species containing an ester would have been 

directly synthesised. As discussed previously, by current state of the art methods this 

remains challenging. Bromoester 146 was milled with manganese metal under various 

conditions, then the reaction mixture was stirred with HCl to hydrolyse any 

organomanganese 147 formed, and a GC yield and conversion from starting material 

was determined (Table 5.1). Pleasingly, after milling 146 for 3 hours with manganese 

metal, the yield was determined as 28%, with 100% conversion of starting material 

(Table 5.1, Entry 3). Milling for longer times does not yield a significant improvement. 

However, Increasing the quantity of manganese to two equivalents did show some 

improvement to the yield (Table 5.1, Entry 5). Next, the addition of different additives 

was explored, with DMA chosen initially. In our previous work, it was found that DMA 

significantly improved the formation of organozinc species. Co-ordinating ligands or 

solvents are known to improve the stability of organomanganese species.36 The 

formation of organomanganese was sensitive to the quantity of DMA added, with the 

highest yield obtained for one equivalent (Table 5.1, Entry 9). Lithium chloride was 

investigated as an additive, since when forming organomanganese reagents by 

transmetallation from organolithiums to MnCl2, it is present as a byproduct. Lithium 

chloride has also been used to enhance the reactivity of other organometallics, such as 

the turbo Grignard reagents.37 This was found not to have a significant effect on the 

outcome of the reaction (Table 5.1, Entries 13-14). Tetrahydrofuran (THF) was also 

investigated as an additive, since this is the solvent most commonly used when 

performing reactions with organomanganese reagents, with no significant improvement 

in the yield (Table 5.1, Entry 15). However, a mixture containing THF and LiCl was 

found to increase the yield to that similar to the addition of DMA (Table 5.1, Entry 17). 

Increased milling time was unable to increase the yield significantly, despite a higher 
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conversion of starting material (Table 5.1, Entry 24). Other solvents were also 

screened (Table 5.1, Entries 19 - 23), without any improvement in the yield.  

 

Table 5.1 Initial results on mechanochemical organomanganese formation. 

 
Entry Mn equiv. Time / h. Additive (equiv.) Conversion of 

146a 

Yield 

148a 

1 1.1 1 - 14% 0% 

2 1.1 2 - 46% 2% 

3 1.1 3 - 100% 28% 

4 1.1 4 - 100% 33% 

5 2 3 - 100% 43% 

6 3 3 - 100% 26% 

7 1.1 3 DMA (0.5) 77% 23% 

8 1.1 3 DMA (0.75) 75% 25% 

9 1.1 3 DMA (1.0) 80% 37% 

10 1.1 3 DMA (1.25) 67% 30% 

11 1.1 3 DMA (1.5) 84% 16% 

12 1.1 3 DMA (2.0) N. D.b N.D.b 

13 1.1 3 LiCl (1.0) 52% 21% 

14 1.1 3 LiCl (2.0) 33% 12% 

15 1.1 3 THF (1.0) 69% 20% 

16 1.1 3 THF (2.0) N. D.b N.D.b 

17 1.1 3 THF (1.0) / LiCl (1.0) 75% 36% 

18 2 3 DMA (1.0) 82% 34% 

19 1.1 3 DMF (1.0) 75% 28% 

20 1.1 3 DMSO (1.0) N. D.b N.D.b 

21 1.1 3 EtOAc (1.0) 0% 0% 

22 1.1 3 NMP (1.0) 81% 23% 

23 1.1 4 DMA (1.0) 88% 33% 

24 1.1 4 THF (1.0) / LiCl (1.0) 97% 38% 
a Measured by GC. bMilling vessel leaked during reaction. 

The larger quantities of solvents sometimes led to the milling jar leaking, perhaps due 

to a build up in pressure (Table 5.1, Entries 12, 16). These reactions were repeated, 
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with the same outcome. Interestingly, there were also problems with leaking when one 

equivalent of DMSO was used (Table 5.1, Entry 20), which also occurred on repetition. 

Possible decomposition of DMSO to dimethyl sulfide could have occurred, which, as a 

gas, could lead to a build up of pressure inside the milling vessel.  

 

At this point, the highest yields observed resulted from milling with two equivalents of 

manganese for three hours (Table 5.1, Entry 5). However, with high stoichiometric ratio 

of manganese being undesirable, the optimal conditions were chosen as milling with 

1.1 equivalents of manganese and one equivalent of DMA (Table 5.1, Entry 9) or with 

one equivalent of THF and LiCl (Table 5.1, Entry 17). However, the conversion of 

starting material remained high. This suggests that the organomanganese is being 

formed, but without any external reagent to react with, it decomposes. It was therefore 

proposed that an external electrophile should be added to the reaction mixture. 

 

5.2.2 Initial results 
As alkylmanganese reagents are reported to react smoothly with aldehydes in solution, 

the first reaction attempted was with tolaldehyde. However, to date there is no report of 

an organomanganese reagent featuring an ester. 

 

Table 5.2 Attempts at mechanochemical reaction of organomanganese with 
tolaldehyde. 

 
Entry 

 

Mn equiv. Time / h. Additive (equiv.) Yield 149 

1 1.1 3 DMA (1.0) 0% 
2 1.1 3 THF (1.0) / LiCl (1.0) 0% 

 

On addition of tolaldehyde to the optimal conditions for the formation of 

organomanganese 147, no addition product 149 was identified in the reaction mixture 

by GC-MS (Table 5.2), with only starting materials observed. 

 

The possibility of reaction with alkylidenemalonate esters was then investigated. The 

optimal conditions from Table 5.1 were applied, with the addition of 1.1 equivalents of 

diethylbenzylidenemalonate 150 (Table 5.3). There was significant conversion of 

starting material with THF / LiCl, but not to the expected 1,4-addition product. The main 

O

O
Br

1.1 equiv. 
Mn pieces

Mill 30 Hz

O
OH

OEt

O
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product was isolated and identified as 151 in 66% yield (Table 5.3, Entry 2). On 

increasing the reaction time, this product could also be obtained using DMA as an 

additive. This reductive dimerisation product is similar to the reactivity previously 

observed between organomanganese reagents and cyclohexenone33, but with better 

selectivity, as only the dimerised product was observed for the alkylidenemalonate 

ester. 

 

Table 5.3 Attempts at mechanochemical reaction of organomanganese with 
diethylbenzylidenemalonate 150. 

 
Entry 

 

Mn equiv. Time / h. Additive (equiv.) Yield 151a 

1 1.1 3 DMA (1.0) 0% 
2 1.1 3 THF (1.0) / LiCl (1.0) 66% 

3 1.1 4 DMA (1.0) 31% 
4 1.1 5 DMA (1.0) 42% 

a Isolated yield. 

 

As this reactivity was unexpected, a number of control experiments were performed to 

establish which additives are required for the dimerisation to occur. 

It was found that the dimerisation did not occur only by milling of reactant 150 (Table 

5.4, Entry 1). Likewise, milling the same reaction mixture without manganese did not 

lead to any product formation (Table 5.4, Entry 2). This demonstrates that manganese 

is required, however on milling with only manganese no reactivity was observed (Table 

5.4, Entries 3 - 4). Further experiments demonstrate that THF, LiCl and Mn are 

required for this dimerisation to occur (Table 5.4, Entry 8). However, the isolated yield 

is significantly lower than when bromoester 146 is present (Table 5.4, Entry 2). 

 

 

 

Table 5.4 Control experiments on dimerisation of 150. 
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Entry Reagents (equiv.) Yield 151 

1 - 0% 

2 LiCl (1.0), THF (1.0), ethyl-4-bromobutyrate (1.0) 0% 

3 Mn (1.1) 0% 

4 Mn (0.5) 0% 

5 Mn (1.1), LiCl (1.0) 0% 

6 Mn (1.1), ethyl-4-bromobutyrate (1.0) 0% 

7 Mn (1.1), ethyl-4-bromobutyrate (1.0), LiCl (1.0) 0% 

8 Mn (1.1), THF (1.0), LiCl (1.0) 30% 

9 Mn (1.0), THF (1.0), ethyl-4-bromobutyrate (1.0) 0% 

 

 

This is interesting, as it suggests that an organomanganese species is not required for 

the dimerisation to occur, but that if one can be formed, it significantly enhances the 

reactivity. Further investigations are required to probe how this reaction proceeds are 

necessary in order to understand the mechanism and what intermediates are involved. 

 

The literature precedents for this type of reductive alkene dimerisation are relatively 

few. The currently known methods all make use of single electron transfer conditions, 

such as electrochemical processes.38 There are also reports of similar transformations 

using samarium diiodide39 and a recent report of alkene dimerisation using a palladium 

catalyst in the presence of an alcohol.40 However, manganese is not currently known to 

mediate reductive dimerisation, although Mn(III) salts can perform single electron 

oxidations.41 

 

5.2.3 Scope 
In order to probe this reactivity further, the scope of the dimerisation was briefly 

investigated. Arylidenemalonate ester 152 was synthesised by Knoevenagel 

condensation of diethyl malonate with 4-fluorobenzaldehyde. Diester 152 was then 

subjected to the reaction conditions identified for the dimerisation of 150 (Table 5.3). 
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Table 5.5 Dimerisation of 152. 

 
Entry Additive (equiv.) Yield 153 

1 Mn (1.1), THF (1.0), LiCl (1.0) 0% 

2 Mn (1.0), THF (1.0), LiCl (1.0), ethyl-4-bromobutyrate (1.0) 37% 

 

It was found that dimerisation to 153 occurred in the presence of all additives with an 

isolated yield of 37%. As 152 features an electron deficient aromatic ring, an example 

with an electron rich aromatic ring was tested. The arylidenemalonate ester 154 

derived from anisaldehyde was subjected to the same reaction conditions (Table 5.6). 

Under the same reaction conditions, that were successful for the dimerisation of 150 

and 152, no conversion to 154 was observed, with only starting material obtained after 

the reaction. If the reaction mechanism involves single electron transfer to the 

alkylidenemalonate, then this result is to be expected. A more electron rich substrate 

would undergo single electron reduction slower than a more electron poor substrate. 

 

Table 5.6 Attempts at dimerisation of 154.  

 

 
Entry Additive (equiv.) Yield 155 

1 Mn (1.1), THF (1.0), LiCl (1.0) 0% 

2 Mn (1.0), THF (1.0), LiCl (1.0), ethyl-4-bromobutyrate (1.0) 0% 

 

A range of different activated alkenes were then synthesised and applied to the 

reaction conditions. Electron withdrawing groups were chosen with varying Hammett 

parameters in order to probe any electronic effects on the reaction outcome. The 

unsaturated monoester 156 was subjected to milling under comparable reaction 

conditions, and no reactivity was observed (Table 5.7). 
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Table 5.7  Attempts at dimerisation of 156. 

 
Entry Additive (equiv.) Yield 157 

1 Mn (1.1), THF (1.0), LiCl (1.0) 0% 

2 Mn (1.0), THF (1.0), LiCl (1.0), ethyl-4-bromobutyrate (1.0) 0% 

 

The unsaturated nitrile 158 was also subjected to these reaction conditions (Table 5.8). 

It was found that using a mononitrile as the electron-withdrawing group was not 

sufficient for activating the alkene towards this dimerisation process. 

 

Table 5.8 Attempts at dimerisation of mononitrile 158. 

 
Entry Additive (equiv.) Yield 159 

1 Mn (1.1), THF (1.0), LiCl (1.0) 0% 

2 Mn (1.0), THF (1.0), LiCl (1.0), ethyl-4-bromobutyrate (1.0) 0% 

 

A further test of functional groups that are able to activate the alkene towards 

manganese mediated dimerisation was performed with nitroalkene 160 (Table 5.9). 

Although the expected product 161 was not observed, the starting material could not 

be recovered from the reaction mixture in this case. However, most of the material was 

lost on rotary evaporation, demonstrating that nitroalkene 160 decomposed to volatile 

materials on being subjected to these conditions. 

 

 

 

 

Table 5.9 Attempts at dimerisation of mononitrile 160. 
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Entry Additive (equiv.) Yield 161 

1 Mn (1.1), THF (1.0), LiCl (1.0) 0% 

2 Mn (1.0), THF (1.0), LiCl (1.0), ethyl-4-bromobutyrate (1.0) 0% 

 

As alkenes activated by one electron withdrawing group are unreactive towards 

dimerisation under the conditions investigated, the reactivity of dinitrilealkene 162 was 

investigated (Table 5.10). This substrate was, however, also found to be unreactive 

under these mechanochemical conditions, with only starting material observed after 

milling. 

 

 

Table 5.10 Attempts at dimerisation of dinitrile 162. 

 
Entry Additive (equiv.) Yield 163 

1 Mn (1.1), THF (1.0), LiCl (1.0) 0% 

2 Mn (1.0), THF (1.0), LiCl (1.0), ethyl-4-bromobutyrate (1.0) 0% 

 

As a further initial search for reactive functional groups the propargyl ester 164 was 

used as a substrate (Table 5.11). This was synthesised by Sonogashira coupling from 

the corresponding ethyl propiolate and iodobenzene. This reaction attempt also failed 

to furnish any product, with only starting materials obtained at the end of the milling 

time. 
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Table 5.11 Attempts at dimerisation of propargyl ester 164. 

 
Entry Additive (equiv.) Yield 165 

1 Mn (1.1), THF (1.0), LiCl (1.0) 0% 

2 Mn (1.0), THF (1.0), LiCl (1.0), ethyl-4-bromobutyrate (1.0) 0% 

 

In summary, the observed dimerisation of diethylarylidenemalonates under 

mechanochemical conditions with manganese metal and various additives could not be 

extended to other examples of electron deficient alkenes. None of the alkenes 

activated by one electron-withdrawing group were reactive, suggesting that possibly 

two activating groups are required. However, even dinitrile 162 was unreactive, despite 

being more electron-withdrawing than diester 150 (Table 5.12). This suggests that the 

success of the reaction may depend on a different property of the substrate.  

 

Table 5.12 Hammett parameters for substituents tested.42 

Substituent Hammett σpara parameter for benzoic 

acid ionisation 

-NO2 0.778 

-CN 0.660 

-CO2Et 0.45 

-F 0.062 

-H 0 
-OMe -0.268 

 

If the mechanism involves the single electron reduction of the substrate, more 

important a parameter than how electron-withdrawing the substrates are is the 

reduction potential of the substrates. 

 

In order to probe the possible utility of this process an attempt at cross coupling 

different alkenes was performed. The two alkenes found that exhibited reactivity 

towards dimerisation (150 and 152) were both subjected to the milling reaction 

conditions in a 1:1 mixture (Table 5.13). 
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Table 5.13 Cross coupling of 150 with 152. 

 
Entry Additive (equiv.) Yield 

153 

Yield 

166 

1 Mn (1.1), THF (1.0), LiCl (1.0) 0% 0% 

2 Mn (1.0), THF (1.0), LiCl (1.0), ethyl-4-bromobutyrate (1.0) 38%a, b 36%a, c 

aIsolated as a mixture of 153 and 166. b Relative to 0.25 mmol. c Relative to 0.5 mmol. 

 

It was found that cross coupling was possible on milling, with a mixture of 153 and 166 

isolated and the ratio determined by 19F NMR spectroscopy. The homocoupled product 

of 150 with 150 was not observed. However, a significant quantity of the fluorinated 

dimer was also obtained, so the selectivity is fairly poor for the desired cross-coupled 

product.  

 

As a control experiment, it was investigated whether mechanochemical conditions were 

required for the desired transformation. A mixture of diethylbenzylidenemalonate 150 

with manganese powder and lithium chloride in refluxing THF for 2 days yielded only 

the starting materials (Table 5.14). Likewise, a mixture containing the same reagents 

and ethyl-4-bromobutyrate under reflux for 2 days also failed to yield any of dimer 151. 

 

Table 5.14 Attempts at the dimerisation of 150 in refluxing THF. 

 
Entry Additive (equiv.) Yield 151 

1 Mn (1.1), LiCl (1.0) 0% 

2 Mn (1.0), LiCl (1.0), ethyl-4-bromobutyrate (1.0) 0% 
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This result suggests that the mechanical action in the ball mill is required, possibly to 

expose reactive surfaces of manganese metal. 

 

5.2.4 Conclusion and outlook 
 

Initial investigations into the formation and reaction of an organomanganese reagent 

were performed under ball milling conditions. Following on from previous work in the 

Browne group into organozinc reagents, ethyl-4-bromobutyrate was milled with 

manganese metal and it was found that the most promising reaction conditions 

included THF and LiCl. However, on addition of diethylbenzylidenemalonate, which 

was expected to undergo conjugate addition with the organomanganese reagent, a 

different reaction occurred. Under these conditions, a reductive dimerisation of the 

alkene occurred in the ball mill, with the unsaturated diester exhibiting umpolung 

reactivity. This transformation could also be achieved for the electron poor diethyl-(4-

fluoro)-benzylidenemalonate and the reductive cross coupled product could also be 

obtained from these two different arylidenemalonate esters. Other less-activated 

alkenes were not competent substrates in this reaction. The reactivity observed in the 

ball mill could not be reproduced in refluxing THF. 

 

These initial results are interesting, and demonstrate a novel manganese mediated 

reaction manifold. However, a significant amount of further work is required to further 

develop and understand this reactivity. As other electrophilic, electron-deficient alkenes 

could not be transformed in this process, this suggests that the mechanism may not be 

ionic, but radical. Future work could focus on establishing a reasonable mechanism for 

this transformation, including the role of each additive. To test for the formation of 

radicals, a radical trapping experiment from the cyclopropane derivative would be 

interesting (Scheme 5.8).  
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Scheme 5.8 Envisaged possible products from cyclopropane derivative giving 
information about the mechanism. 
 
Addition of other radical trapping agents, such as TEMPO could also be used to help 

determine the mechanism. This experiment could give information about possible 

radical intermediates and therefore single electron transfers occurring during the 

dimerisation process. As both the dimerisation and cross-coupling processes observed 

require reduction, one or more of the additives must be being oxidised. Experiments 

carefully analysing side products could help elucidate the mechanism and role of the 

additives. Kinetic studies varying the concentration of the different additives would also 

help. 

 

Once a mechanism that explains the observations can be proposed, then it may be 

possible to predict reactive substrates for the observed transformation. It may also be 

possible to predict other possible transformations using similar reaction conditions. 

 

Assuming that the mechanism is found to involve single electron reduction of the 

alkene by manganese metal, this would be the first demonstration of such reactivity 

using manganese. A range of more synthetically useful substrates could then have 

their reactivity in this process predicted by measuring their reduction potentials using 

cyclic voltammetry. It would also be interesting to test if the previously observed 

reactivity with cyclohexenone and organomanganese reagents in solution (to yield 1,2-

addition, 1,4-addition and dimerisation, Scheme 5.7) occurs mechanochemically, or if 

this can be achieved selectively. 
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Turning attention back to the original aim, of synthesising and reacting 

organomanganese reagents in the ball mill, is also important. The initial attempts 

presented in this chapter using ethyl-4-bromobutyrate are complicated by the presence 

of an ester, with no such organomanganese reagents previously reported. It would 

therefore be interesting to investigate the mechanochemical synthesis of 

organomanganese reagents that are known, such as from butyl bromide or allyl 

bromide. These substrates may form the organomanganese reagent more successfully 

and react reliably with electrophiles such as aldehydes. 

 

The texture of the reaction mixture when forming the organomanganese reagent could 

also be an important parameter to optimise. As all the reagents added are liquids, 

except for the manganese metal, it would be of interest to investigate the addition of a 

grinding auxiliary. 
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6.1 General Methods 
 

All chemicals were obtained from commercial sources and used without further 

purification unless stated otherwise. Dry solvents were obtained from a Braun MB SPS-

800 solvent purification system fitted with the recommended columns. 
1H, 19F and 13C NMR spectra were obtained on Bruker 300 Avance II, Bruker 400 MHz 

and Bruker 500 MHz spectrometers with chloroform-d, MeCN-d3 or DMSO-d6 as 

deuterated solvents. The obtained chemical shifts δ are reported in ppm and are 

referenced to the residual solvent signal (7.26 and 77.16 ppm for 1H and 13C 

respectively). Spin-spin coupling constants J are given in Hz and refer to apparent 

multiplicities rather than true coupling constants. Data are reported as: chemical shift, 

multiplicity and integration.  

High resolution mass spectral (HRMS) data were obtained on a Thermo Scientific LTQ 

Orbitrap XL by the EPSRC UK National Mass Spectrometry Facility at Swansea 

University or on a Waters MALDI-TOF mx at Cardiff University. Spectra were obtained 

using electron impact ionization (EI), chemical ionization (CI), positive electrospray 

(ES), pneumatically-assisted electrospray (pNSI) or atmospheric solids analysis probe 

(ASAP+). 

Infrared spectra were recorded on a Shimadzu IR-Affinity-1S FTIR spectrometer. 

Melting points were measured using a Gallenkamp apparatus and are reported 

uncorrected. 

The ball mill used for sections 6.2 and 6.3 was a Retsch MM 400 mixer mill. Unless 

otherwise stated, mechanochemical reactions were performed in 10 mL stainless steel 

jars with one stainless steel ball of mass 4 g. The longest time that this mill can be 

programmed to run for is 99 minutes. In order to run longer reaction times the mill was 

started, then additional time added to the timer in order to ensure that the mill was 

running continuously for the desired reaction time. 

The ball mill used for sections 6.4 and 6.5 was an InSolidoTech IST500 mixer mill. 

Unless otherwise stated, mechanochemical reactions were performed in 14 mL 

stainless steel jars with one stainless steel ball of mass 4 g at a milling frequency of 30 

Hz. 
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6.2 Mechanochemical Fluorination 
6.2.1 Conventional solution phase reactions 
Monofluorination 

To a solution of Selectfluor (0.708 g, 2 mmol) in acetonitrile (20 mL) was added the 

1,3-dicarbonyl (1 mmol). α,α,α -Trifluorotoluene (0.041 mL, 0.33 mmol) was added as 

an NMR standard and the reaction mixture was stirred at room temperature, monitoring 

by 19F NMR. When the reaction was complete, the solvent was removed under reduced 

pressure. Water (20 mL) and dichloromethane (20 mL) were added and the aqueous 

layer further extracted with dichloromethane (2 x 20 mL). The combined organic layers 

were dried (MgSO4), filtered and the solvent removed to yield the product. 19F NMR 

spectra were measured again to confirm that the ratio of products had not changed 

during extraction. 

 

Difluorination  

To a solution of Selectfluor (0.708 g, 2 mmol) in acetonitrile (20 mL) was added the 

1,3-dicarbonyl (1 mmol) and sodium carbonate (0.106 g, 1 mmol). α,α,α -

Trifluorotoluene (0.041 mL, 0.33 mmol) was added as an NMR standard (δ = -63 ppm) 

and the reaction mixture was stirred at room temperature, monitoring by 19F NMR 

spectroscopy. When the reaction was complete, the solvent was removed under 

reduced pressure. Water (20 mL) and dichloromethane (20 mL) were added and the 

aqueous layer further extracted with dichloromethane (20 mL). The combined organic 

layers were dried (MgSO4), filtered and the solvent removed to yield the product. 19F 

NMR spectra were measured again to confirm that the ratio of products had not 

changed during extraction. 

 

6.2.2 Study of yield against time with and without LAG 
6.2.3 Neat grinding conditions 
To a 10 mL stainless steel jar was added Selectfluor (0.142 g, 0.2 mmol), 

dibenzoylmethane (0.045 g, 0.2 mmol) and a stainless steel ball (mass 4.0 g). The ball 

mill was run at 30 Hz for the appropriate time. The contents of the jar were transferred 

to a flask, washing with chloroform. α,α,α-Trifluorotoluene (0.041 mL, 0.33 mmol) was 

added and the mixture filtered through a plug of cotton wool into an NMR tube. 19F 

NMR spectra were measured and the yield determined by comparing the integrals of 

the products to the integrals of trifluorotoluene. This process was repeated for each jar 

over different time intervals (Table 6.1).  
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Table 6.1 Neat grinding kinetic results 

Time / min Yield Mono / % Yield Di / % 
5 7 0 

30 53 4 
45 78 9 
60 87 11 
90 76 24 

120 61 38 
180 57 43 

 

 

Liquid-Assisted-Grinding (LAG) conditions 

To a 10 mL stainless steel jar was added Selectfluor (0.142 g, 0.2 mmol), 

dibenzoylmethane (0.045 g, 0.2 mmol), acetonitrile (0.125 mL) and a stainless steel 

ball (mass 4.0 g). The ball mill was run at 30 Hz for the appropriate time. The contents 

of the jar were transferred to a flask, washing with chloroform. α,α,α-Trifluorotoluene 

(0.041 mL, 0.33 mmol) was added and the mixture filtered through a plug of cotton 

wool into an NMR tube. 19F NMR spectra were measured and the yield determined by 

comparing the integrals of the products to the integrals of trifluorotoluene. This process 

was repeated for each jar over different time intervals (Table 6.2).  

 

Table 6.2 LAG kinetic results 

Time / min Yield Mono / % Yield Di / % 
5 12 0 

45 47 0 
90 75 0 

120 100 0 
180 95 3 
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Figure 6.1 Yields of mono- and difluorinated products at different times a) without and 
b) with acetonitrile 
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6.2.4 Synthesis of 1,3-diketones 

 
General Procedure 1 (GP1) 

Following a modified literature procedure1, the corresponding ester (20 mmol, 2 equiv) 

and NaH (1.2 g, 28 mmol, 2.8 equiv, 60% in mineral oil) were dissolved in dry THF 

(20 mL) in oven-dried glassware under N2. A solution of the corresponding ketone 

(10 mmol) in dry THF (20 mL) was added slowly and the reaction mixture, heated to 

reflux and stirred overnight. The reaction mixture was quenched with aqueous HCl 

(25 mL, 1 M) and dichloromethane (50 mL). The aqueous layer was extracted with 

dichloromethane (2 x 20 mL) and the combined organic phase washed with brine 

(20 mL). The organic layer was dried (MgSO4) and the solvent removed under reduced 

pressure to yield the crude product. This was further purified by recrystallization from 

EtOH to give the clean product. 

 

1-(4-methoxyphenyl)-3-phenylpropane-1,3-dione2 

Prepared according to GP1, 0.915 g, 3.6 mmol, 18%, 

off-white powder. Analytical data is in agreement with 

the literature.2 
1H NMR (300 MHz, CDCl3, enol form) δ 8.05 – 7.93 (m, 

4H, Ar-H), 7.58 – 7.42 (m, 3H, Ar-H), 6.99 (d, J = 9.0 Hz, 2H, Ar-H), 6.80 (s, 1H, enol), 

3.89 (s, 3H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 186.4 (C=O), 184.2 (C=O), 175.7 (Ar), 163.4 (Ar), 

135.7 (Ar), 132.3 (Ar), 129.5 (Ar), 128.8 (Ar), 127.2 (Ar), 114.1 (Ar), 92.5 (CH2), 55.7 

(CH3). 

IR: 1587, 1437, 1296, 1257, 1182, 1020, 766, 702, 694 cm-1 

HRMS (EI+) [C16H14O3]: calc. 254.0943, found 254.0948 

mp: 129 - 130 °C (ethanol) 

 

1,3-bis(4-methoxyphenyl)propane-1,3-dione, 102SM3 

Prepared according to GP1, 2.410 g, 8.45 mmol, 

85%, yellow crystals. Analytical data is in 

agreement with the literature.3 
1H NMR (400 MHz, CDCl3, enol form) δ 7.96 (d, J 

= 8.7 Hz, 4H, Ar-H), 6.98 (d, J = 8.7 Hz, 4H, Ar-H), 6.73 (s, 1H, enol), 3.88 (s, 

6H, -CH3). 

R

O

R' OEt

O NaH

R'

O

R

O

O O
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13C {1H} NMR (101 MHz, CDCl3) δ 185.0 (C=O), 163.0 (Ar), 129.0 (Ar), 128.5 (Ar), 

114.0 (Ar), 91.5 (-CH2), 55.5 9 (CH3). 

HRMS (EI+) [C17H16O4]: calc. 284.1049, found 284.1053. 

IR: 1587, 1437, 1256, 1227, 1167, 1110, 1018, 835, 777, 575, 507, 473 cm-1. 

mp: 111 - 113 °C (ethanol) 

 

1,3-di-p-tolylpropane-1,3-dione, 103SM 

Prepared according to GP1, 1.686 g, 6.6 mmol, 33%, 

yellow needles. 
1H NMR (400 MHz, CDCl3, enol form) δ 7.89 (d, J = 

8.1 Hz, 4H, Ar-H), 7.29 (d, J = 8.0 Hz, 4H, Ar-H), 6.81 (s, 1H, enol), 2.43 (s, 6H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 185.6 (C=O), 143.3 (Ar), 133.0 (Ar), 129.5 (Ar), 

127.3 (Ar), 92.6 (-CH2), 21.8 (-CH3). 

IR: 1522, 1477, 1182, 1121, 1055, 1015, 768, 474 cm-1. 

HRMS (EI+) [C17H16O2]: calc. 252.1150, found 252.1154 

mp: 127 - 128 °C (ethanol) 
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6.2.5 Mechanochemical monofluorination of 1,3-diketones 
General procedure 2 (GP2) 

To a 10 mL stainless steel jar was added the 1,3-diketone (1 mmol), Selectfluor 

(0.708 g, 2 mmol) and acetonitrile (0.125 mL). A stainless steel ball of mass 4.0 g was 

added and the mixture milled at 30 Hz for 2 hours. The resulting powder was 

transferred into a flask, washing the residue with chloroform (approximately 40 mL). 

The insoluble material was removed by gravity filtration. α,α,α-Trifluorotoluene 

(0.041 mL, 0.33 mmol) was added as an NMR standard (δ = -63 ppm) and 19F NMR 

spectra of the crude mixture were measured to determine the product ratio and 

conversion. The solvent and α,α,α-trifluorotoluene were removed under reduced 

pressure to yield the product. 19F NMR spectra were measured again to confirm that 

the ratio of products had not changed after evaporation of the solvent. 

 

2-fluoro-1,3-diphenylpropane-1,3-dione, 994 

Prepared according to GP2, 236 mg, 0.98 mmol, 98%, 50:1 

mono:di, yellow solid. Analytical data is in agreement with the 

literature. 
1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 8.4 Hz, 4H, Ar-H), 

7.65 – 7.59 (m, 2H, Ar-H), 7.53 – 7.45 (m, 4H, Ar-H), 6.54 (d, J = 49.2 Hz, 1H, -CHF). 
13C {1H} NMR (126 MHz, CDCl3) δ 191.3 (d, J = 20.2 Hz, C=O), 134.7 (Ar), 133.7 (d, J 

= 2.0 Hz, Ar), 130.0 (d, J = 3.5 Hz, Ar), 128.9 (Ar), 96.7 (d, J = 199.0 Hz, -CHF). 
19F NMR (376 MHz, CDCl3) δ -186.88 (d, J = 48.9 Hz).  

IR: 1697, 1672, 1593, 1448, 1282, 1097, 1022, 1001, 966, 867, 779, 705, 680, 553, 

457 cm-1 

HRMS (EI+): [C15H11O2F + NH4] calc. 260.1081, found 260.1083  

mp: 74-76 °C (chloroform) 

 

2-fluoro-1-phenylbutane-1,3-dione, 1014 

Prepared according to GP2, 180 mg, 0.99 mmol, 99%, 5:1 

mono:di, purple oil. Analytical data is in agreement with the 

literature. 
1H NMR (400 MHz, CDCl3) δ 7.90 (d, J = 7.6 Hz, 2H, Ar-H), 7.61 – 

7.48 (m, 1H, Ar-H), 7.39 (t, J = 7.6 Hz, 2H, Ar-H), 5.86 (d, J = 50.0 Hz, 1H, -CHF), 2.23 

(s, 3H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 200.6 (d, J = 23.9 Hz, C=O), 190.3 (d, J = 19.0 Hz, 

C=O), 134.6 (Ar), 133.5 (d, J = 1.3 Hz, Ar), 129.7 (d, J = 3.0 Hz, Ar), 128.8 (Ar), 96.5 

(d, J = 198.0 Hz, -CHF), 25.9 (-CH3). 
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19F NMR (376 MHz, CDCl3) δ -189.58 (d, J = 50.1 Hz). 

IR: 1734, 1692, 1597, 1450, 1360, 1275, 1204, 1179, 1101, 959, 689 cm-1. 

HRMS (EI+) [C10H9O2F] calc. 180.0587, found 180.0589 

 

2-fluoro-1-(4-methoxyphenyl)-3-phenylpropane-1,3-dione, 102 

Prepared according to GP2, 225 mg, 0.83 mmol, 83%, 

40:1 mono:di, yellow solid 
1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 8.0 Hz, 4H, 

Ar-H), 7.54 (t, J = 7.2 Hz, 1H, Ar-H), 7.41 (t, J = 7.5 Hz, 

2H, Ar-H), 6.88 (d, J = 8.3 Hz, 2H, Ar-H), 6.51 (d, J = 49.2 Hz, 1H, -CHF), 3.78 (s, 

3H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 191.5 (d, J = 20.2 Hz, C=O), 189.3 (d, J = 19.8 Hz, 

C=O), 164.6 (Ar), 134.4 (Ar), 133.6 (d, J = 1.9 Hz, Ar), 132.3 (d, J = 3.6 Hz, Ar), 129.7 

(d, J = 3.3 Hz, Ar), 128.7 (Ar), 126.5 (d, J = 2.1 Hz, Ar), 114.0 (Ar), 96.5 (d, J = 198.1 

Hz, -CHF), 55.5 (-CH3). 
19F NMR (376 MHz, CDCl3) δ -186.37 (d, J = 49.2 Hz). 

IR: 1672, 1595, 1510, 1256, 1024, 841, 750, 691 cm-1. 

HRMS (EI+): [C16H13O3F] calc. 272.0849, found 272.0845 

mp: 37 - 39 °C (chloroform) 

 

2-fluoro-1,3-bis(4-methoxyphenyl)propane-1,3-dione, 1035 
Prepared according to GP2, 295 mg, 0.98 mmol, 

98%, 50:1 mono:di, yellow crystals. Analytical 

data is in agreement with the literature. 
1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 8.5 Hz, 

4H, Ar-H), 6.90 (d, J = 8.5 Hz, 4H, Ar-H), 6.45 (d, J = 49.3 Hz, 1H, -CHF), 3.81 (s, 6H, -

CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 189.6 (d, J = 19.9 Hz, C=O), 164.6 (Ar), 132.4 (d, J 

= 3.5 Hz, Ar), 126.6 (d, J = 2.0 Hz, Ar), 114.0 (Ar), 97.8 (d, J = 191.9 Hz, -CHF), 55.6 (-

CH3). 
19F NMR (376 MHz, CDCl3) δ -185.98 (d, J = 49.3 Hz). 

IR: 1667, 1589, 1572, 1508, 1244, 1169, 1096, 1022, 961, 835, 567, 513 cm-1. 

HRMS (EI+) [C17H15O4F] calc. 302.0954, found 302.0961 

mp: 94 - 95 °C (chloroform) 
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2-fluoro-1,3-di-p-tolylpropane-1,3-dione, 104 

Prepared according to GP2, 202 mg, 0.75 mmol, 75%, 

29:1 mono:di, yellow solid. 
1H NMR (500 MHz, CDCl3) δ 8.02 (d, J = 8.5 Hz, 4H, 

Ar-H), 7.13 (d, J = 8.5 Hz, 4H, Ar-H), 6.50 (d, J = 49.2 

Hz, 1H, -CHF), 2.43 (s, 6H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 190.8 (d, J = 20.0 Hz, C=O), 145.7 (Ar), 131.1 (d, J 

= 1.9 Hz, Ar), 130.0 (d, J = 3.4 Hz, Ar), 129.5 (Ar), 96.7 (d, J = 198.3 Hz, -CHF), 21.8 (-

CH3). 
19F NMR (376 MHz, CDCl3) δ -186.72 (d, J = 49.2 Hz). 

IR: 1695, 1603, 1287, 1233, 1184, 1090, 959, 876, 824, 752, 556 cm-1. 

HRMS (EI+): [C17H15O2F] calc. 270.1056, found 270.1051 

mp: 88 - 89 °C (chloroform) 

 

6.2.6 Mechanochemical difluorination of 1,3-diketones 
General Procedure 3 (GP3) 

To a 10 mL stainless steel jar was added the 1,3-diketone (1 mmol), Selectfluor 

(0.708 g, 2 mmol) and sodium carbonate (0.106 g, 1 mmol). A stainless steel ball of 

mass 4.0 g was added and the mixture milled at 30 Hz for 2 hours. The resulting 

powder was transferred into a flask, washing the residue with chloroform 

(approximately 40 mL). The insoluble material was removed by gravity filtration. α,α,α-

Trifluorotoluene (0.041 mL, 0.33 mmol) was added as a NMR standard (δ = -63 ppm) 

and 19F NMR spectra of the crude mixture were measured to determine the product 

ratio and conversion. The solvent and α,α,α-trifluorotoluene were removed under 

reduced pressure to yield the product. 19F NMR spectra were measured again to 

confirm that the ratio of products had not changed after evaporation of the solvent. 

 

2,2-difluoro-1,3-diphenylpropane-1,3-dione, 1006 

Prepared according to GP3, 242 mg, 0.93 mmol, 93%, 17:1 

di:mono, brown crystals. Analytical data is in agreement with 

the literature. 
1H NMR (400 MHz, CDCl3) δ 8.11 (dd, J = 8.5, 1.0 Hz, 4H, 

Ar-H), 7.71 – 7.65 (m, 2H, Ar-H), 7.55 – 7.50 (m, 4H, Ar-H). 

 13C {1H} NMR (101 MHz, CDCl3) δ 187.4 (t, J = 27.0 Hz, C=O), 135.1 (Ar), 131.6 (t, J = 

1.5 Hz, Ar), 130.3 (t, J = 2.5 Hz, Ar), 129.0 (Ar), 112.7 (t, J = 266.0 Hz, -CF2). 
19F NMR (376 MHz, CDCl3) δ -102.66 (s, 2F).  
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IR 1693, 1595, 1577, 1448, 1305, 1251, 1188, 1155, 1136, 1101, 999, 941, 887, 771, 

719, 694, 678, 663, 569, 522, 435, 422 cm-1 

HRMS (EI+): [C15H10F2O2] [M+NH4]
+ calc. 278.0987, found 278.0988.  

mp: 58 – 60 °C.  

 

2,2-difluoro-1-phenylbutane-1,3-dione, 1057 

Prepared according to GP3, 185 mg, 0.93 mmol, 93%, >50:1 

di:mono, red oil. Analytical data is in agreement with the literature. 
1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 7.4 Hz, 2H, Ar-H), 7.55 (t, 

J = 6.8 Hz, 1H, Ar-H), 7.40 (t, J = 7.4 Hz, 2H, Ar-H), 2.31 (s, 3H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 196.0 (C=O), 187.6 (C=O), 135.2 (Ar), 131.4 (Ar), 

130.1 (t, J = 2.7 Hz, Ar), 129.0 (Ar), 111.3 (t, J = 266.5 Hz, -CF2), 25.0 (-CH3). 
19F NMR (376 MHz, CDCl3) δ -108.97 (s). 

IR: 1753, 1697, 1597, 1450, 1361, 1292, 1111, 1080, 891, 837, 712, 685 cm-1. 

HRMS (EI+) [C10H8O2F2] calc. 198.0492, found 198.0495 

 

2,2-difluoro-1-(4-methoxyphenyl)-3-phenylpropane-1,3-dione, 106 

Prepared according to GP3, 270 mg, 0.93 mmol, 93%, 

>50:1 di:mono, orange solid. 
1H NMR (400 MHz, CDCl3) δ 8.14 – 8.03 (m, 3H, Ar-H), 

8.01 - 7.94 (m, 1H, Ar-H), 7.60 (t, J = 7.1 Hz, 1H, Ar-H), 

7.46 (t, J = 7.3 Hz, 2H, Ar-H), 7.00 - 6.88 (m, 2H, Ar-H), 3.83 (s, 3H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 187.5 (t, J = 26.8 Hz, C=O), 185.6 (t, J = 26.6 Hz, 

C=O), 165.1 (Ar), 134.9 (Ar), 132.9 (t, J = 2.6 Hz, Ar), 132.2 (Ar), 130.3 (t, J = 2.5 Hz, 

Ar), 128.9 (Ar), 127.0 (Ar), 114.3 (Ar), 113.0 (t, J = 265.3 Hz, -CF2), 55.6 (-CH3). 
19F NMR (376 MHz, CDCl3) δ -102.38 (s). 

IR: 1589, 1508, 1182, 1092, 1020, 840, 766, 503 cm-1. 

HRMS (EI+) [C16H12O3F2] calc. 290.0755, found 290.0749. 

mp: 35 - 36 °C (chloroform) 

 

2,2-difluoro-1,3-bis(4-methoxyphenyl)propane-1,3-dione, 107 

Prepared according to GP3, 219 mg, 0.68 mmol, 

68%, >50:1 di:mono, orange crystals. 
1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.4 Hz, 

4H, Ar-H), 6.81 (d, J = 8.4 Hz, 4H, Ar-H), 3.73 (s, 

6H, -CH3). 
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13C {1H} NMR (101 MHz, CDCl3) δ 185.7 (t, J = 26.5 Hz, C=O), 165.1 (Ar), 132.9 (t, J = 

2.6 Hz, Ar), 124.6 (Ar), 114.3 (Ar), 113.2 (t, J = 264.5 Hz, -CF2), 55.6 (-CH3). 
19F NMR (376 MHz, CDCl3) δ -102.36 (s). 

IR: 1676, 1593, 1508, 1256, 1126, 1020, 847, 781, 573 cm-1. 

HRMS (EI+) [C17H14O4F2] calc. 320.0860, found 320.0863. 

mp: 68 - 69 °C (chloroform) 

2,2-difluoro-1,3-di-p-tolylpropane-1,3-dione, 108 

Prepared according to GP3, 274 mg, 0.95 mmol, 95%, 

8:1 di:mono, orange crystals. 
1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 7.9 Hz, 4H, 

Ar-H), 7.14 (d, J = 7.9 Hz, 4H, Ar-H), 2.27 (s, 6H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 186.9 (t, J = 26.7 Hz, C=O), 146.5 (Ar), 130.4 (t, J = 

2.6 Hz, Ar), 129.7 (Ar), 129.2 (Ar), 112.9 (t, J = 265.6 Hz, -CF2), 21.9 (-CH3). 
19F NMR (376 MHz, CDCl3) δ -102.65 (s). 

IR: 1688, 1603, 1244, 1159, 1125, 1094, 939, 880, 766, 573, cm-1. 

HRMS (pNSI+) [C17H14O2F2 + H] calc. 289.1035, found 289.1035 

mp: 84 °C (chloroform) 

 

6.2.7 Synthesis of β-ketoesters 
General Procedure 4 (GP4) 

Following a modified literature procedure8; an aqueous sodium hydroxide solution (1 M, 

50 mL) was added to ethylbenzoylacetate (8.7 mL, 50 mmol) . This mixture was stirred 

overnight at room temperature then transferred to a separating funnel. It was washed 

with dichloromethane (3 x 10 mL) and the aqueous layer acidified to pH 1 by the 

addition of aqueous HCl (3 M). The precipitate was collected by suction filtration and 

dried under vacuum to yield benzoylacetic acid (6.325 g, 39 mmol, 78%), which was 

used without further purification. A solution of this acid (1.640 g, 10 mmol) and the 

corresponding alcohol (10 mmol) in acetonitrile (20 mL) was prepared. To this solution 

was added a solution of dicyclohexylcarbodiimide (2.063 g, 10 mmol) and 

4-dimethylaminopyridine (0.061 g, 0.5 mmol) in acetonitrile (10 mL) under rapid stirring. 

This mixture was stirred overnight at room temperature then directly dry loaded onto 

silica and purified by flash column chromatography eluting with 40-60 petroleum ether 

and ethyl acetate to yield the desired product. 
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Isopropyl 3-oxo-3-phenylpropanoate, 112SM 

Prepared according to GP4. 1.820 g, 8.8 mmol, 88%, yellow oil. 

3:1 keto:enol 
1H NMR (400 MHz, CDCl3) δ 12.59 (s, enol), 7.86 (t, J = 7.7 Hz, 

2H, Ar-H), 7.67 (t, J = 11.0 Hz, enol), 7.57 – 7.44 (m, 1H, Ar-H), 

7.43 – 7.28 (m, 2H, Ar-H), 5.55 (s, enol), 5.06 (sep, J = 6.2 Hz, enol), 4.99 (sep, J = 6.3 

Hz, 1H, -CHMe2), 3.87 (s, 2H, -CH2), 1.22 (d, J = 6.3 Hz, enol), 1.14 (d, J = 6.3 Hz, 6H, 

-CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 192.7 (C=O), 167.1 (C=O), 133.7 (Ar), 128.8 (Ar), 

128.5 (Ar), 126.1 (Ar), 69.1 (CH2), 46.4 (-CHMe2), 22.0 (-CH3). 

IR: 1732, 1684, 1265, 1200, 1103, 689 cm-1. 

HRMS (ES+) [C12H14O3 + Na] calc. 229.0841, found 229.0849. 

 

 

Pentyl 3-oxo-3-phenylpropanoate, 113SM 

Prepared according to GP4. 0.760 g, 4.9 mmol, 49%, 

yellow oil. 2.5:1 keto:enol 
1H NMR (400 MHz, CDCl3) δ 12.59 (s, enol), 7.93 (d, J 

= 7.9 Hz, 2H, Ar-H), 7.77 (d, J = 7.8 Hz, enol), 7.57 (t, J 

= 7.4 Hz, 1H, Ar-H), 7.52 – 7.35 (m, 2H, Ar-H), 5.66 (s, enol), 4.19 (t, J = 6.7 Hz, enol), 

4.13 (t, J = 6.7 Hz, 2H, -CH2O), 3.98 (s, 2H, -CH2), 1.69 - 1.70 (m, enol), 1.64 – 1.52 

(m, 2H, -CH2), 1.36 (dd, J = 8.5, 5.3 Hz, enol), 1.31 – 1.16 (m, 4H, -CH2CH2-), 0.91 (t, J 

= 6.6 Hz, enol), 0.85 (t, J = 6.7 Hz, 3H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 192.6 (C=O), 173.4 (enol), 171.5 (C=O), 167.6 

(enol), 136.1 (Ar), 133.8 (Ar), 133.5 (Ar), 131.3 (Ar), 128.8 (Ar), 128.6 (Ar), 128.5 (Ar), 

126.1 (Ar), 87.4 (enol), 65.7 (enol), 64.6 (-CH2), 46.1(-CH2O), 28.5 (enol), 28.2 (-CH2), 

28.1 (enol), 27.9 (-CH2), 22.4 (enol), 22.3 (-CH2), 14.1 (enol), 14.0 (-CH3). 

IR: 1738, 1686, 1450, 1411, 1263, 1190, 1144, 978, 775, 754, 687 cm-1. 

HRMS (ES+) [C14H18O3 + Na] calc. 257.1154, found 257.1144 

 

Benzyl 3-oxo-3-phenylpropanoate, 114SM9 

Prepared according to GP4. 2.176 g, 8.6 mmol, 86%, 

yellow oil. 10:3 keto:enol 
1H NMR (400 MHz, CDCl3) δ 12.48 (s, enol), 7.90 (d, J = 

8.0 Hz, enol), 7.86 (d, J = 8.0 Hz, 2H, Ar-H), 7.72 (d, J = 

7.9 Hz, enol), 7.51 (t, J = 7.5 Hz, 1H, Ar-H), 7.44 – 7.24 (m, 7H, Ar-H), 5.68 (s, enol), 

5.19 (s, enol), 5.13 (s, 2H, -CH2), 3.98 (s, 2H, -CH2). 
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13C {1H} NMR (101 MHz, CDCl3) δ 192.3 (C=O), 167.4 (C=O), 135.4 (Ar), 133.8 (Ar), 

128.8 (Ar), 128.6 (Ar), 128.6 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 67.1 (-CH2), 45.9 (-

CH2). 

IR: 1738, 1682, 1263, 1182, 1140, 752, 689 cm-1. 

HRMS (ES+) [C16H14O3 + Na] calc. 277.0841, found 277.0842 

 

Cyclohexyl 3-oxo-3-phenylpropanoate, 115SM 

Prepared according to GP4. 2.135 g, 8.7 mmol, 87%, yellow 

oil. 2.5:1 keto:enol 
1H NMR (400 MHz, CDCl3) δ 12.70 (s, enol), 7.94 (d, J = 7.9 

Hz, 2H, Ar-H), 7.77 (d, J = 7.8 Hz, enol), 7.57 (t, J = 7.4 Hz, 

enol), 7.52 – 7.37 (m, 3H, Ar-H), 5.66 (s, enol), 4.95 – 4.88 (m, enol), 4.88 – 4.79 (m, 

1H, -CHO-), 3.97 (s, 2H, -CH2), 2.09 – 1.10 (m, 10H, (-CH2-)5). 
13C {1H} NMR (101 MHz, CDCl3) δ 192.7 (C=O), 166.9 (C=O), 133.6 (Ar), 128.7 (Ar), 

128.5 (Ar), 126.0 (Ar), 87.9 (-CHO-), 73.8 (-CH2), 46.4 (-CH2), 31.3 (-CH2), 25.3 (-CH2), 

23.5 (-CH2). 

IR: 2936, 2859, 1732, 1684, 1449, 1263, 1194, 1013, 756, 689 cm-1. 

HRMS (ES+) [C15H18O3 + Na] calc. 269.1154, found 269.1154 

 

 

(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl3-oxo-3-phenylpropanoate, 116SM 

Prepared according to GP4. 1.697 g, 5.6 mmol, 56%, yellow 

crystals. 2.5:1 keto:enol. 
1H NMR (400 MHz, CDCl3) δ 12.62 (s, enol), 7.85 (t, J = 11.1 

Hz, 2H), 7.68 (d, J = 7.5 Hz, enol), 7.47 (t, J = 7.4 Hz, 1H), 

7.40 – 7.25 (m, 4H), 5.56 (s, enol), 4.74 (td, J = 10.8, 4.3 Hz, enol), 4.63 (td, J = 10.9, 

4.3 Hz, 1H), 3.86 (q, J = 15.4 Hz, 2H), 2.03 – 1.75 (m, 1H), 1.71 – 1.48 (m, 3H), 1.45 – 

1.14 (m, 2H), 1.0 - 0.65 (m, 10H), 0.59 (d, J = 6.9 Hz, 2H). 
13C {1H} NMR (101 MHz, CDCl3) δ 192.5, 167.1, 133.6, 128.7, 128.5, 126.0, 87.7, 75.5, 

74.1, 47.1, 34.1, 31.3, 26.3, 25.9, 23.6, 23.2, 22.0. 

IR: 2957, 2932, 2866, 1630, 1576, 1406, 1223, 1182, 1080, 810, 772, 689 cm-1. 

HRMS (ES+) [C19H26O3 + Na] calc. 325.1780, found 325.1776 

mp: 40 °C (dichloromethane) 
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6.2.8 Mechanochemical monofluorination of β-ketoesters 
General Procedure 5 (GP5) 

To a 10 mL stainless steel jar was added the β-ketoester (1 mmol), selectfluor (0.708 g, 

2 mmol), sodium chloride (twice the total mass of substrate and selectfluor) and 

acetonitrile (0.25 mL). The ball was added and the mixture milled at 30 Hz for 2 hours. 

The resulting powder was transferred into a flask, washing the residue with chloroform 

(about 40 mL). The insoluble material was removed by gravity filtration. The solvent 

was removed under reduced pressure to yield the product. The selectivity ratio was 

determined by 19F NMR spectroscopy. 

 

Ethyl 2-fluoro-3-oxo-3-phenylpropanoate, 1104 

Prepared according to GP5. 0.201 g, 0.96 mmol, 96%, 12.5:1 

mono:di, dark red liquid. 
1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.8 Hz, 2H, Ar-H), 

7.64 (t, J = 7.4 Hz, 1H, Ar-H), 7.51 (t, J = 7.8 Hz, 2H, Ar-H), 

5.86 (d, J = 48.9 Hz, 1H, -CHF-), 4.30 (q, J = 6.8 Hz, 2H, -CH2), 1.26 (t, J = 7.1 Hz, 3H, 

-CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 189.7 (d, J = 20.2 Hz, C=O), 165.1 (d, J = 24.2 Hz, 

C=O), 134.7 (Ar), 133.5 (Ar), 129.7 (d, J = 3.4 Hz, Ar), 129.0 (Ar), 90.2 (d, J = 

197.7 Hz, -CHF), 62.7 (-CH2), 14.1 (-CH3). 
19F NMR (376 MHz, CDCl3) δ -190.29 (d, J = 48.8 Hz). 

IR: 2983, 1759, 1693, 1597, 1448, 1371, 1242, 1095, 686 cm-1 

HRMS (ASAP+) [C11H11O3F + H] calc. 211.0770, found 211.0773 

 

Isopropyl 2-fluoro-3-oxo-3-phenylpropanoate, 112 

Prepared according to GP5. 0.182 g, 0.81 mmol, 81%, 15:1 

mono:di, light brown liquid. 
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.8 Hz, 2H, Ar-H), 

7.64 (t, J = 7.3 Hz, 1H, Ar-H), 7.50 (t, J = 7.4 Hz, 2H, Ar-H), 5.83 (d, J = 48.9 Hz, 1H, -

CHF), 5.20 – 5.10 (m, 1H, -OCHMe2), 1.28 (d, J = 6.2 Hz, 3H, -CH3), 1.18 (d, J = 6.2 

Hz, 3H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 189.8 (d, J = 20.1 Hz, C=O), 164.6 (d, J = 24.1 Hz, 

C=O), 134.6 (Ar), 129.6 (d, J = 3.3 Hz, Ar), 128.9 (Ar), 128.6 (d, J = 26.3 Hz, Ar), 90.3 

(d, J = 197.4 Hz, -CHF), 71.1 (-OCHMe2), 21.7 (-CH3)2. 
19F NMR (376 MHz, CDCl3) δ -190.28 (d, J = 48.9 Hz). 

IR: 2984, 1755, 1692, 1597, 1449, 1098, 689 cm-1 

HRMS (ASAP+) [C12H13O3F + H] calc. 225.0927, found 225.0922 
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Pentyl 2-fluoro-3-oxo-3-phenylpropanoate, 113 

Prepared according to GP5. 0.239 g, 0.95 mmol, 95%, 

16:1 mono:di, pale red oil. 
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.8 Hz, 2H, 

Ar-H), 7.63 (t, J = 7.3 Hz, 1H, Ar-H), 7.49 (t, J = 7.6 Hz, 

2H, Ar-H), 5.88 (d, J = 48.8 Hz, 1H, -CHF), 4.22 (sep, J = 5.1 Hz, 2H, -OCH2), 1.64 – 

1.54 (m, 2H, -CH2), 1.30 – 1.14 (m, 4H, -CH2), 0.82 (t, J = 6.8 Hz, 3H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 189.6 (d, J = 20.0 Hz, C=O), 165.0 (d, J = 24.2 Hz, 

C=O), 134.6 (Ar), 133.5 (d, J = 1.9 Hz, Ar), 129.6 (d, J = 3.3 Hz, Ar), 128.9 (Ar), 90.1 

(d, J = 197.3 Hz, -CHF), 66.8 (-OCH2), 28.1 (-CH2), 27.8 (-CH2), 22.2 (-CH2), 13.9 

(-CH3). 
19F NMR (376 MHz, CDCl3) δ -190.61 (d, J = 48.8 Hz). 

IR: 1759, 1694, 1597, 1449, 1240, 1099, 959, 880, 689 cm-1. 

 

Benzyl 2-fluoro-3-oxo-3-phenylpropanoate, 1149 

Prepared according to GP5. 0.239 g, 0.88 mmol, 88%, 7:1 

mono:di, dark yellow liquid. 
1H NMR (400 MHz, CDCl3) δ 8.00 (d, J = 7.8 Hz, 2H, Ar-

H), 7.63 (t, J = 7.3 Hz, 1H, Ar-H), 7.47 (t, J = 7.4 Hz, 3H, Ar-H), 7.31 (s, 4H, Ar-H), 5.92 

(d, J = 48.7 Hz, 1H, -CHF), 5.31 – 5.21 (m, 2H, -OCH2). 
13C {1H} NMR (101 MHz, CDCl3) δ 189.5 (d, J = 20.2 Hz, C=O), 164.9 (d, J = 24.3 Hz, 

C=O), 134.7 (Ar), 134.5 (Ar), 129.7 (d, J = 3.4 Hz, Ar), 129.1 (d, J = 4.9 Hz, Ar), 129.0 

(Ar), 128.8 (Ar), 128.7 (Ar), 128.5 (Ar), 90.1 (d, J = 198.1 Hz, -CHF), 68.2 (-OCH2). 
19F NMR (376 MHz, CDCl3) δ -190.39 (d, J = 48.6 Hz). 

IR: 1761, 1688, 1597, 1449, 1101, 955, 743, 687, 586 cm-1 

HRMS (EI+): [C16H13O3F] calc. 272.0849, found 272.0850 

 

Cyclohexyl 2-fluoro-3-oxo-3-phenylpropanoate, 115 

Prepared according to GP5. 0.199 g, 0.75 mmol, 75%, 17:1 

mono:di, yellow liquid. 
1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.8 Hz, 2H, Ar-H), 

7.63 (t, J = 7.4 Hz, 1H, Ar-H), 7.50 (t, J = 7.5 Hz, 2H, Ar-H), 

5.85 (d, J = 48.9 Hz, 1H, -CHF), 4.96 – 4.90 (m, 1H, -OCH-), 1.91 – 1.15 (m, 10H, (-

CH2-)5). 
13C {1H} NMR (101 MHz, CDCl3) δ 189.8 (d, J = 20.0 Hz, C=O), 164.5 (d, J = 24.2 Hz, 

C=O), 134.6 (Ar), 133.6 (d, J = 1.9 Hz, Ar), 129.6 (d, J = 3.3 Hz, Ar), 128.9 (Ar), 90.2 

(d, J = 197.1 Hz, -CHF), 75.6 (-OCH-), 31.3 (-CH2), 31.1 (-CH2), 23.2 (-CH2). 
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19F NMR (376 MHz, CDCl3) δ -190.44 (d, J = 49.0 Hz). 

IR: 2936, 2860, 1755, 1690, 1597, 1449, 1236, 1007, 689 cm-1 

HRMS (EI+): [C15H17O3F] calc. 264.1162, found 264.1161  

 

(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl-2-fluoro-3-oxo-3-phenylpropanoate, 

116 

Prepared according to GP5. 0.288 g, 0.90 mmol, 90%, 20:1 

mono:di, dr 56:44, yellow oil. 
1H NMR (400 MHz, CDCl3) δ 8.01 (t, J = 6.2 Hz, 2H, Ar-H), 

7.61 (t, J = 6.8 Hz, 1H, Ar-H), 7.47 (t, J = 7.2 Hz, 2H, Ar-H), 5.83 (m, 1H, -CHF), 4.94 – 

4.55 (m, 1H, -OCH-), 1.87 – 0.36 (m,18H). 
13C {1H} NMR (101 MHz, CDCl3) δ 189.6 (d, J = 21 Hz, C=O), 189.4 (d, J = 20 Hz, 

C=O), 164.5 (d, J = 23 Hz, C=O), 164.4 (d, J = 24 Hz, C=O), 134.5 (Ar), 134.4 (Ar), 

133.4 (Ar), 129.5 (Ar), 129.47 (Ar), 129.41 (Ar), 129.38 (Ar), 128.78 (Ar), 90.3 (d, J = 

198 Hz, -CHF), 90.1 (d, J = 198 Hz, -CHF), 46.7 (-CH2), 40.5 (-CH2), 33.9 (-CH2), 31.4 

(-CH2), 25.6 (-CH2), 22.9 (-CH2), 21.9 (-CH2), 20.5 (-CH3), 16.1 (-CH3), 15.5 (-CH3). 
19F NMR (376 MHz, CDCl3) δ -189.94 (d, J = 48.8 Hz), -190.52 (d, J = 48.7 Hz). 

IR: 2955, 2870, 1755, 1694, 1449, 1238, 1096, 953, 910, 689 cm-1. 

HRMS (ES+) [C19H25O3F + Na] calc. 343.1685, found 343.1683 
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6.2.9 Mechanochemical difluorination of β-ketoesters 
General Procedure 6 (GP6) 

To a 10 mL stainless steel jar was added the β-ketoester (1 mmol), selectfluor (0.708 g, 

2 mmol), sodium carbonate (0.106 g, 1 mmol) and sodium chloride (twice the total 

mass of substrate and selectfluor). The ball was added and the mixture milled at 30 Hz 

for 2 hours. The resulting powder was transferred into a flask, washing the residue with 

chloroform (about 40 mL). The insoluble material was removed by gravity filtration. The 

solvent was removed under reduced pressure to yield the product. The selectivity ratio 

was determined by 19F NMR spectroscopy. 

 

Ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate, 1117 

Prepared according to GP6. 0.227 g, 1 mmol, 100%, 7:1 

di:mono, yellow-green liquid. 
1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 7.9 Hz, 2H, Ar-H), 

7.68 (t, J = 7.5 Hz, 1H, Ar-H), 7.53 (t, J = 7.5 Hz, 2H, Ar-H), 

4.39 (q, J = 7.1 Hz, 2H, -OCH2), 1.32 (t, J = 7.2 Hz, 3H, -CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 185.6 (t, J = 30.3 Hz, C=O), 162.0 (t, J = 30.6 Hz, 

C=O), 135.2 (Ar), 131.2 (Ar), 130.1 (t, J = 2.7 Hz, Ar), 129.1 (Ar), 109.9 (t, J = 

264.6 Hz, -CF2), 63.9 (-OCH2), 14.0 (-CH3). 
19F NMR (376 MHz, CDCl3) δ -107.61 (s). 

IR: 1770, 1697, 1597, 1450, 1371, 1307, 1255, 1155, 1097, 1001, 921, 684, 582 cm-1 

HRMS (ASAP+) [C11H10O3F2  + H] calc. 229.0676, found 229.0680 
 

Isopropyl 2,2-difluoro-3-oxo-3-phenylpropanoate, 117 

Prepared according to GP6. 0.187 g, 0.77 mmol, 77%, >50:1 

di:mono, light yellow liquid. 
1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 8.0 Hz, 2H, Ar-H), 

7.67 (t, J = 7.4 Hz, 1H, Ar-H), 7.52 (t, J = 7.7 Hz, 2H, Ar-H), 5.29 – 5.14 (m, 

1H, -OCHMe2), 1.29 (d, J = 6.3 Hz, 6H, -(CH3)2). 
13C {1H} NMR (101 MHz, CDCl3) δ 185.7 (t, J = 27.5 Hz, C=O), 161.5 (t, J = 30.3 Hz, 

C=O), 135.2 (Ar), 131.3 (t, J = 1.9 Hz, Ar), 130.0 (t, J = 2.7 Hz, Ar), 129.1 (Ar), 109.7 (t, 

J = 264.5 Hz, -CF2), 72.5 (-OCHMe2), 21.5 (-CH3)2. 
19F NMR (376 MHz, CDCl3) δ -107.93 (s). 

IR: 2988, 1769, 1599, 1450, 1307, 1260, 1159, 1092, 922, 831, 685, 584 cm-1 

HRMS (EI+): [C12H12O3F2] calc. 242.0755, found 242.0753  
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Pentyl 2,2-difluoro-3-oxo-3-phenylpropanoate, 118 

Prepared according to GP6. 0.239 g, 0.89 mmol, 89%, 

5:1 di:mono, colourless oil. 
1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 7.9 Hz, 2H, 

Ar-H), 7.67 (t, J = 7.4 Hz, 1H, Ar-H), 7.52 (t, J = 7.6 Hz, 2H, Ar-H), 4.34 - 4.19 (m, 2H, -

OCH2), 1.73 – 1.52 (m, 2H, -CH2), 1.45 – 1.12 (m, 4H, -CH2), 0.85 (t, J = 6.8 Hz, 3H, -

CH3). 
13C {1H} NMR (101 MHz, CDCl3) δ 185.5 (t, J = 27.5 Hz, C=O), 162.0 (t, J = 30.6 Hz, 

C=O), 135.2 (Ar), 134.6 (Ar), 130.0 (t, J = 2.7 Hz, Ar), 129.1 (Ar), 109.9 (t, J = 

264.4 Hz, -CF2), 67.9 (-CH2), 28.0 (-CH2), 27.7 (-CH2), 22.2 (-CH2), 13.9 (-CH3). 
19F NMR (376 MHz, CDCl3) δ -107.62 (s). 

IR: 2957, 2932, 2868, 1632, 1614, 1450, 1406, 1256, 1200, 1080, 959, 810, 773, 725, 

689 cm-1 

HRMS (ASAP+) [C13H16O3F2 + H] calc. 271.1146, found 271.1144 

 
Benzyl 2,2-difluoro-3-oxo-3-phenylpropanoate, 1199 

Prepared according to GP6. 0.218 g, 0.75 mmol, 75%, 

>50:1 di:mono, light yellow liquid. 
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.9 Hz, 2H, Ar-

H), 7.66 (t, J = 7.4 Hz, 1H, Ar-H), 7.48 (t, J = 7.7 Hz, 2H, 

Ar-H), 7.36 – 7.28 (m, J = 5.7 Hz, 5H, Ar-H), 5.34 (s, 2H, -CH2). 
13C {1H} NMR (101 MHz, CDCl3) δ 185.4 (t, J = 27.4 Hz, C=O), 161.8 (t, J = 30.7 Hz, 

C=O), 135.2 (Ar), 133.9 (Ar), 131.1 (t, J = 1.9 Hz, Ar), 130.0 (t, J = 2.7 Hz, Ar), 129.1 

(Ar), 129.1 (Ar), 128.8 (Ar), 128.6 (Ar), 109.9 (t, J = 265.1 Hz, -CF2), 69.2 (-CH2). 
19F NMR (376 MHz, CDCl3) δ -107.40 (s, J = 9.2 Hz). 

IR: 1773, 1697, 1597, 1450, 1304, 1263, 1155, 1099, 920, 793, 745, 685 cm-1 

HRMS (EI+): [C16H12O3F2] calc. 290.0755, found 290.0752  

 
Cyclohexyl 2,2-difluoro-3-oxo-3-phenylpropanoate, 120 

Prepared according to GP6. 0.234 g, 0.83 mmol, 83%, 16:1 

di:mono,  light yellow liquid. 
1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 7.9 Hz, 2H, Ar-H), 

7.67 (t, J = 7.4 Hz, 1H, Ar-H), 7.52 (t, J = 7.6 Hz, 2H, Ar-H), 

5.04 – 4.95 (m, 1H, -OCH-), 1.90 – 1.18 (m, 10H, (-CH2-)5). 
13C {1H} NMR (101 MHz, CDCl3) δ 185.6 (t, J = 27.4 Hz, C=O), 161.4 (t, J = 30.4 Hz, 

C=O), 135.1 (Ar), 131.3 (t, J = 1.7 Hz, Ar), 130.0 (t, J = 2.7 Hz, Ar), 129.1 (Ar), 109.7 (t, 

J = 264.2 Hz, -CF2), 77.0 (-OCH-), 31.0 (-CH2), 25.2 (-CH2), 23.3 (-CH2). 
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19F NMR (376 MHz, CDCl3) δ -107.90 (s). 

IR: 2940, 2862, 1769, 1697, 1597, 1450, 1306, 1258, 1161, 1101, 1003, 930, 826, 685, 

407 cm-1 

HRMS (EI+): [C15H16O3F2] calc. 282.1068, found 282.1067  

 
(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl-2,2-difluoro-3-oxo-3-

phenylpropanoate, 121 

Prepared according to GP6. 0.263 g, 0.78 mmol, 78%, 

2.25:1 di:mono, orange liquid. 
1H NMR (400 MHz, CDCl3) δ 8.12 – 7.90 (m, 2H, Ar-H), 7.72 

– 7.55 (m, 1H, Ar-H), 7.55 – 7.37 (m, 2H, Ar-H), 4.91 – 4.65 

(m, 1H, -OCH-), 2.10 – 0.38 (m, 18H). 
13C {1H} NMR (101 MHz, CDCl3) δ 185.3 (t, J = 27.3 Hz, C=O), 161.5 (t, J = 30.0 Hz, 

C=O), 135.0 (Ar), 129.8 (t, J = 2.6 Hz, Ar), 129.5 (t, J = 8.9 Hz, Ar), 129.0 (Ar), 90.3 (t, 

J = 197.4 Hz, -CF2), 78.7 (-OCH-), 46.6 (-CH2), 40.0 (-CH2), 33.9 (-CH2), 31.4 (-CH2), 

25.9 (-CH2), 23.1 (-CH2), 21.9 (-CH3), 20.6 (-CH3), 15.8 (-CH3). 

19F NMR (376 MHz, CDCl3) δ -107.37 (d, J = 284.5 Hz), -108.58 (d, J = 284.5 Hz). 

IR: 2957, 1765, 1695, 1599, 1450, 1369, 1308, 908, 687 cm-1 

HRMS (EI+): [C19H24O3F2] calc. 338.1694, found 338.1696  
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6.3 Mechanochemical one-pot, two step synthesis of fluorinated 
pyrazolones 

6.3.1 Synthesis of β-ketoesters 

 
General Procedure 7 (GP7) 

Following a literature procedure10: to a suspension of NaH (1.2 g, 30 mmol, 60% in 

mineral oil) in dry THF (10 mL) was added diethyl carbonate (4.85 mL, 40 mmol) in 

oven-dried glassware under N2. A solution of the corresponding ketone (10 mmol) in 

dry THF (5 mL) was added slowly and the reaction mixture heated under reflux for 6 

hours. The reaction mixture was quenched with glacial acetic acid (1 mL) and HCl 

(10%, 20 mL). The aqueous phase was extracted with ethyl acetate (3 x 10 mL) and 

the combined organic phase washed with saturated sodium hydrogen carbonate 

(10 mL), water (10 mL) and brine (10 mL). The combined organic phase was dried 

(MgSO4), filtered and the solvent removed under reduced pressure to yield the crude 

product. This was purified by flash column chromatography on silica gel (gradient 

elution EtOAc in petroleum ether (0-25%)). 

 

Ethyl 3-oxo-3-(p-tolyl)propanoate, 130SM11 

Prepared according to GP7 with further purification by short-

path distillation (190 °C, 7 mbar); 0.583 g, 2.8 mmol, 28%, 

yellow oil. 1:3.7 enol:keto. 
1H NMR (400 MHz; CDCl3): δ 12.60 (s, enol 1H), 7.86 (d, J = 

8.2 Hz, 2H, Ar-H), 7.69 (d, J = 8.1, enol 2H), 7.29 (d, J = 8.1 Hz, 2H, Ar-H), 7.24 (d, J = 

7.9 Hz, enol 2H), 5.65 (s, enol 1H), 4.27 (q, J = 7.1 Hz, enol 2H), 4.23 (q, J = 7.1 Hz, 

2H, -OCH2), 3.98 (s, 2H, -CH2), 2.44 (s, 3H, -CH3), 2.41 (s, enol 3H), 1.35 (t, J = 7.1 

Hz, enol 3H), 1.28 (t, J = 7.1 Hz, 3H, -CH3). 
13C {1H} NMR (101 MHz; CDCl3): δ 192.2, 173.4, 171.7, 167.8, 144.8, 141.8, 133.7, 

130.8, 129.6, 129.4, 128.8, 126.1, 86.8, 61.6, 60.4, 46.1, 21.8, 21.6, 14.5, 14.2. 

IR: 2980, 1736, 1682, 1265, 1182, 1144, 808 cm-1. 

HRMS (AP+): [C12H14O3 + H]+ calc. 207.1021, found 207.1024. 
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Ethyl 3-(4-methoxyphenyl)-3-oxopropanoate, 131SM12 

Prepared according to GP7 with further purification by 

short-path distillation (200 °C, 8 mbar); 0.434 g, 2.0 mmol, 

20%, colourless oil. 1:18 enol:keto. 
1H NMR (400 MHz; CDCl3): δ 12.63 (s, enol 1H), 7.93 (d, 

J = 9.1 Hz, 2H, Ar-H), 7.74 (d, J = 9.1 Hz, enol 2H, Ar-H), 6.95 (m, 2H, -CH2), 5.58 (s, 

enol 1H), 4.25 (q, J = 7.1 Hz, enol 2H), 4.22 (q, J = 7.1 Hz, 2H, -CH2) 3.94 (s, 2H, -

CH2), 3.88 (s, 3H, -CH3), 3.85 (s, enol 3H), 1.33 (t, J = 7.1 Hz, enol 3H), 1.26 (t, J = 7.1 

Hz, 3H, -CH3). 
13C {1H} NMR (101 MHz; CDCl3): δ 191.1 (C=O), 167.9 (C=O), 164.1 (Ar), 131.0 (Ar), 

129.3 (Ar), 114.1 (Ar), 61.6 (-OCH2), 55.7 (-OCH3), 46.0 (-CH2), 14.2 (-CH3). 

IR: 2980, 1734, 1674, 1597, 1256, 1024, 843 cm-1. 

HRMS (pNSI+): [C12H14O4 + H]+ calc. 223.0965, found 223.0964. 

 

Ethyl 3-(4-bromophenyl)-3-oxopropanoate, 133SM12 

Prepared according to GP7; 2.395 g, 8.8 mmol, 88%, 

yellow oil. 1:2.2 enol:keto. 
1H NMR (400 MHz; CDCl3): δ 12.56 (s, enol 1H), 7.81 (d, J 

= 8.5 Hz, 2H, Ar-H), 7.63 (m, 2H, Ar-H), 7.55 (d, J = 8.6 Hz, 

enol 2H), 5.64 (s, enol 1H), 4.30 (q, J = 7.3 Hz, enol 2H), 4.18 (q, J = 7.3 Hz, 2H, -

OCH2), 3.95 (s, 2H, -CH2), 1.33 (t, J = 7.1 Hz, enol 3H), 1.25 (t, J = 7.1 Hz, 3H, -CH3). 
13C {1H} NMR (101 MHz; CDCl3): δ 191.6, 173.2, 170.3, 167.3, 134.9, 132.5, 132.3, 

131.9, 130.1, 129.2, 127.7, 125.9, 87.9, 61.8, 60.6, 46.1, 14.4, 14.2. 

IR: 2980, 1734, 1686, 1585, 1260, 1194, 995, 800 cm-1. 

HRMS (pNSI+): [C11H11O3Br + H]+ calc. 270.9964, found 270.9957. 

 

 

Ethyl 3-oxo-3-(4-(trifluoromethyl)phenyl)propanoate, 132SM13 

Prepared according to GP7; 1.701 g, 6.5 mmol, 65%, 

yellow oil. 3:2 enol:keto. 
1H NMR (400 MHz; CDCl3): δ 12.57 (s, enol 1H), 8.06 (m, 

2H, Ar-H), 7.88 (m, enol 2H), 7.76 (m, 2H, Ar-H), 7.68 (m, 

enol 2H), 5.72 (s, enol 1H), 4.31 (q, J = 7.1 Hz, enol 2H), 4.19 (q, J = 7.1 Hz, 2H, -

OCH2) 4.01 (s, 2H, -CH2), 1.39 (t, J = 7.1 Hz, enol 3H), 1.21 (t, J = 7.1 Hz, 3H, -CH3). 
13C {1H} NMR (101 MHz; CDCl3): δ 191.7, 173.0, 169.5, 167.1, 138.7, 136.9, 135.0 (q, 

J = 32.7 Hz), 132.8 (q, J = 32.7 Hz), 129.0, 126.5, 125.9 (q, J = 3.7 Hz), 125.6 (q, J = 
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3.7 Hz), 123.9 (q, J = 272.7 Hz), 123.6 (q, J = 272.7 Hz), 89.1, 61.8, 60.7, 46.2, 14.30, 

14.10. 
19F NMR (376 MHz; CDCl3): δ -62.9 (s, enol 3F), -63.2 (s, 3F). 

IR: 2980, 1744, 1695, 1616, 1319, 1260, 1111, 1065, 853, 802 cm-1. 

HRMS (pNSI+): [C12H11F3O3 + H]+ calc. 261.0733, found 261.0736. 

 

Ethyl 2-methyl-3-oxo-3-phenylpropanoate, 140SM11 

Following a literature procedure14: To a suspension of sodium 

hydride (0.788 g, 19.5 mmol, 60% in mineral oil) in dry THF 

(20 mL) was added dropwise ethylbenzoylacetate (3.75 g, 

19.5 mmol). When the gas evolution stopped, methyl iodide 

(1.2 mL, 19.5 mmol) was added slowly. The reaction mixture was stirred for a further 

20 hours at room temperature then quenched with a saturated aqueous solution of 

ammonium chloride (30 mL). The phases were separated and the aqueous phase 

further extracted with ethyl acetate (3 x 20 mL). The combined organic layers were 

dried (MgSO4), filtered and the solvent removed to yield the product as a yellow oil 

(4.01 g, 99%). 
1H NMR (400 MHz; CDCl3): δ 7.98 (d, J = 7.2 Hz, 2H, Ar-H), 7.58 (t, J = 7.2 Hz, 1H, Ar-

H), 7.49-7.45 (m, 2H, Ar-H), 4.37 (q, J = 7.1 Hz, 1H, -CHMe-), 4.14 (q, J = 7.1 Hz, 

2H, -OCH2-), 1.49 (d, J = 7.1 Hz, 3H, -CH3), 1.16 (t, J = 7.1 Hz, 3H, -CH3). 
13C {1H} NMR (101 MHz; CDCl3): δ 196.0 (C=O), 171.0 (C=O), 136.0 (Ar), 133.6 (Ar), 

128.8 (Ar), 128.7 (Ar), 61.5 (-OCH2-), 48.5 (-CH-), 14.1 (-CH3), 13.9 (-CH3). 

IR: 2980, 1734, 1684, 1375, 957 cm-1. 

HRMS (pNSI+): [C12H14O3 + H]+ calc. 207.1016, found 207.1014. 
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6.3.2 Multistep one pot mechanochemical synthesis of fluorinated 
pyrazolones 

General procedure 8 (GP8) 

To a 10 mL stainless steel jar was added the β-ketoester (1 mmol), the hydrazine 

(1 mmol), sodium chloride (six times the total mass of reagents) and glacial acetic acid 

(30 µL, 0.5 mmol). The ball was added and the mixture milled at 30 Hz for 40 minutes. 

Following this initial grinding period, Selectfluor (0.708 g, 2 mmol) and sodium 

carbonate (0.133 g, 1.25 mmol) were added to the reaction mixture. The jar was hand 

sealed and milled for a further 60 minutes at 30 Hz (Scheme S1). The resulting powder 

was transferred into a flask, washing the residue with dichloromethane (approximately 

40 mL). The insoluble material was removed by filtration. The solvent was removed 

under reduced pressure to yield the crude product. This was purified by flash column 

chromatography on silica gel (gradient elution EtOAc (0-5%) in petroleum ether). 

 

4,4-Difluoro-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one, 12915 

Prepared according to GP8. 0.205 g, 0.75 mmol, 75%, orange 

powder. 
1H NMR (400 MHz; CDCl3): δ 7.98 (m, 4H, Ar-H), 7.52 (m, 5H, Ar-

H), 7.30 (t, J = 7.4 Hz, 1H, Ar-H). 
13C {1H} NMR (126 MHz; CDCl3): δ 159.3 (t, J = 29 Hz, C=O), 149.8 

(t, J = 25 Hz, C=N), 136.8 (Ar), 132.3 (Ar), 129.3 (Ar), 129.2 (Ar), 

126.8 (Ar), 126.5 (Ar), 126.4 (Ar), 118.8 (Ar), 109.2 (t, J = 265 Hz, -CF2). 
19F NMR (376 MHz; CDCl3): δ -115.7 (s). 

IR: 1736, 1491, 1410, 1179, 1101, 756, 737, 664, 631 cm-1. 

HRMS (AP+): [C15H10N2F2O + H]+ calc. 273.0839, found 273.0842. 

mp: 77-78 °C (ethyl acetate). 

 

4,4-Difluoro-2-phenyl-5-(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, 130 

Prepared according to GP8. 0.238 g, 0.83 mmol, 83%, Yellow 

powder. 
1H NMR (400 MHz; CDCl3): δ 7.95 (d, J = 7.8 Hz, 2H, Ar-H), 7.87 

(d, J = 8.0 Hz, 2H, Ar-H), 7.48 (t, J = 8.0 Hz, 2H, Ar-H), 7.33 (m, 

3H, Ar-H), 2.45 (s, 3H, -CH3). 
13C {1H} NMR (126 MHz; CDCl3): δ 159.3 (t, J = 30 Hz, C=O), 

149.9 (t, J = 21 Hz, C=N), 143.2 (Ar), 136.9 (Ar), 130.1 (Ar), 129.2 (Ar), 126.8 (Ar), 

126.4 (Ar), 123.7 (Ar), 118.8 (Ar), 109.3 (t, J = 258 Hz, -CF2), 21.8 (-CH3). 
19F NMR (471 MHz; CDCl3): δ -115.4 (s). 
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IR: 1738, 1493, 1261, 1103, 743, 689 cm-1. 

HRMS (AP+): [C16H12N2F2O + H]+ calc. 287.0996, found 287.0999. 

mp: 112-113 °C (ethyl acetate). 

 

4,4-Difluoro-5-(4-methoxyphenyl)-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, 131 

Prepared according to GP8. 0.224 g, 0.74 mmol, 74%, Yellow 

powder. 
1H NMR (500 MHz; CDCl3): δ 7.94 (m, 4H, Ar-H), 7.47 (t, J = 

8.0 Hz, 2H, Ar-H), 7.29 (t, J = 7.4 Hz, 1H, Ar-H), 7.02 (d, J = 

8.9 Hz, 2H, Ar-H), 3.89 (s, 3H, -CH3). 
13C {1H} NMR (126 MHz; CDCl3): δ 162.9 (Ar), 159.2 (t, J = 31 

Hz, C=O), 149.7 (t, J = 21 Hz, C=N), 137.0 (Ar), 129.2 (Ar), 128.8 (Ar), 126.4 (Ar), 

119.01 (Ar), 118.86 (Ar), 114.9 (Ar), 109.5 (t, J = 258 Hz, -CF2), 55.7 (-CH3). 
19F NMR (471 MHz; CDCl3): δ -115.1 (s). 

IR: 1734, 1520, 1497, 1180, 1099, 833, 687 cm-1. 

HRMS (AP+): [C16H12F2N2O2 + H]+ calc. 303.0945, found 303.0941. 

mp: 105-106 °C (ethyl acetate). 

 

4,4-Difluoro-2-phenyl-5-(4-(trifluoromethyl)phenyl)-2,4-dihydro-3H-pyrazol-3-one, 

132 

Prepared according to GP8. 0.137 g, 0.40 mmol, 40%, Orange 

powder. 
1H NMR (400 MHz; CDCl3): δ 8.10 (d, J = 8.4 Hz, 2H, Ar-H), 

7.93 (d, J = 8.0 Hz, 2H, Ar-H), 7.79 (d, J = 8.4 Hz, 2H, Ar-H), 

7.50 (t, J = 8.4 Hz, 2H, Ar-H), 7.32 (m, 1H, Ar-H). 
13C {1H} NMR (101 MHz; CDCl3): δ 159.1 (t, J = 30 Hz, C=O), 148.5 (t, J = 22 Hz, 

C=N), 136.6 (Ar), 133.7 (q, J = 33 Hz, Ar), 129.6 (Ar), 129.4 (Ar), 127.1 (Ar), 126.9 (Ar), 

126.4 (q, J = 4 Hz, Ar), 123.6 (q, J = 274 Hz, -CF3), 119.0 (Ar), 108.7 (t, J = 259 Hz, -

CF2). 
19F NMR (376 MHz; CDCl3): δ -63.2 (s, 3F), -116.2 (s, 2F). 

IR: 1742, 1493, 1400, 1321, 1167, 1065, 1015, 934, 825, 733 cm-1. 

HRMS (ASAP+): [C16H9N2F5O + H]+ calc.341.0713, found 341.0718. 

mp: 112-113 °C (ethyl acetate). 
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5-(4-Bromophenyl)-4,4-difluoro-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, 133 
Prepared according to GP8. 0.187 g, 0.53 mmol, 53%, Yellow 

powder. 
1H NMR (400 MHz; CDCl3): δ 7.92 (d, J = 8.8 Hz, 2H, Ar-H), 

7.83 (d, J = 8.8 Hz, 2H, Ar-H), 7.67 (d, J = 8.8 Hz, 2H, Ar-H), 

7.48 (m, 2H, Ar-H), 7.31 (t, J = 7.2 Hz, 1H, Ar-H). 
13C {1H} NMR (126 MHz; CDCl3): δ 159.1 (t, J = 30 Hz, C=O), 

149.0 (t, J = 21 Hz, C=N), 136.6 (Ar), 132.7 (Ar), 129.3 (Ar), 128.1 (Ar), 127.2 (Ar), 

126.7 (Ar), 125.2 (Ar), 118.9 (Ar), 108.9 (t, J = 259 Hz, -CF2). 
19F NMR (471 MHz; CDCl3): δ -115.8 (s). 

IR: 2980, 1740, 1587, 1487, 1256, 1393, 1098, 1069, 934, 745, 685 cm-1. 

HRMS (AP+): [C15H9N2F2OBr + H]+ calc. 350.9945, found 350.9945. 

mp: 123-124 °C (ethyl acetate). 

 

General Procedure 9 (GP9) 

Diethyl ether (10 mL) and sodium hydroxide solution (10 mL, 0.5 M) were added to the 

hydrazine hydrochloride (2 mmol) and shaken until dissolved. The layers were 

separated and the aqueous layer further extracted with diethyl ether (2 x 10 mL). The 

organic phase was dried (MgSO4), filtered and the solvent removed to yield the 

hydrazine. To a 10 mL stainless steel jar was added ethylbenzoyl acetate (0.192 g, 

1 mmol), the hydrazine (1 mmol), sodium chloride (six times the total mass of reagents) 

and glacial acetic acid (30 µL, 0.5 mmol). The ball was added and the mixture milled at 

30 Hz for 40 minutes. Following this intial grinding period, Selectfluor (0.708 g, 2 mmol) 

and sodium carbonate (0.133 g, 1.25 mmol) were directly added to the reaction 

mixture. The jar was hand sealed and milled for a further 60 minutes at 30 Hz. The 

resulting powder was transferred into a flask, washing the residue with 

dichloromethane (about 40 mL). The insoluble material was removed by filtration. The 

solvent was removed under reduced pressure to yield the crude product. This was 

purified by flash column chromatography on silica gel (gradient elution EtOAc (0-5%) in 

petroleum ether). 
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4,4-Difluoro-2-(4-fluorophenyl)-5-phenyl-2,4-dihydro-3H-pyrazol-3-one, 134 

Prepared according to GP9. 0.193 g, 0.67 mmol, 67%. Orange 

powder. 
1H NMR (400 MHz; CDCl3): δ 7.97 - 7.92 (m, 4H, Ar-H), 7.56-7.51 

(m, 3H, Ar-H), 7.19-7.14 (m, 2H, Ar-H). 
13C {1H} NMR (101 MHz; CDCl3): δ 160.8 (d, J = 248 Hz, -CF), 

159.1 (t, J = 30 Hz, C=O), 150.0 (t, J = 21 Hz, C=N), 132.9 (Ar), 

132.5 (Ar), 129.4 (Ar), 126.9 (Ar), 126.3 (t, J = 2 Hz, Ar), 120.7 (d, J 

= 8 Hz, Ar), 116.1 (d, J = 23 Hz, Ar), 109.2 (t, J = 260 Hz, -CF2). 
19F NMR (376 MHz; CDCl3): δ -114.8 (s, 1F), -115.6 (s, 2F). 

IR: 2980, 1742, 1508, 1225, 1107, 1067, 831, 737, 687 cm-1. 

HRMS (ASAP+): [C15H9N2OF3 + H]+ calc. 291.0745, found 291.0745. 

mp: 92-93 °C (ethyl acetate). 

 

4,4-Difluoro-5-phenyl-2-(4-(trifluoromethyl)phenyl)-2,4-dihydro-3H-pyrazol-3-one, 

135 

Prepared according to GP9. 0.127 g, 0.37 mmol, 37%. Yellow 

powder. 
1H NMR (400 MHz; CDCl3): δ 8.13 (d, J = 6.8 Hz, 2H, Ar-H), 8.00 

(d, J = 6.0 Hz, 2H, Ar-H), 7.74 (d, J = 6.8 Hz, 2H, Ar-H), 7.58 (m, 

3H, Ar-H). 
13C {1H} NMR (126 MHz; CDCl3): δ 159.5 (t, J = 30 Hz, C=O), 

150.3 (t, J = 21 Hz, C=N), 139.5 (Ar), 132.8 (Ar), 129.5 (Ar), 128.2 (q, J = 33 Hz, Ar), 

127.0 (Ar), 126.6 (q, J = 4 Hz, Ar), 126.0 (Ar), 123.0 (q, J = 272 Hz, -CF3), 118.4 (Ar), 

109.0 (t, J = 259 Hz, -CF2). 
19F NMR (471 MHz; CDCl3): δ -62.3 (s, 3F), -115.0 (s, 2F). 

IR: 1751, 1618, 1518, 1406, 1319, 1159, 1109, 1061, 841, 739, 687, 635, 592 cm-1. 

HRMS (ASAP+): [C16H9N2F5O + H]+ calc. 341.0713, found 341.0706. 

mp: 84-85 °C (ethyl acetate). 

 

4,4-Difluoro-5-phenyl-2-(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, 136 

Prepared according to GP9. 0.169 g, 0.59 mmol, 59%. Brown 

powder. 
1H NMR (400 MHz; CDCl3): δ 8.00 (d, J = 6.0 Hz, 2H, Ar-H), 7.84 

(d, J = 6.4 Hz, 2H, Ar-H), 7.56 (m, 3H, Ar-H), 7.29 (m, 2H, Ar-H), 

2.42 (s, 3H, -CH3). 
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13C {1H} NMR (126 MHz; CDCl3): δ 159.2 (t, J = 30 Hz, C=O), 149.7 (t, J = 21 Hz, 

C=N), 136.5 (Ar), 135.2 (Ar), 134.4 (Ar), 132.3 (Ar), 129.8 (Ar), 129.3 (Ar), 126.8 (Ar), 

118.9 (Ar), 109.2 (t, J = 259 Hz, -CF2), 21.2 (-CH3). 
19F NMR (471 MHz; CDCl3): δ -115.8 (s). 

IR: 2980, 1754, 1512, 1402, 1256, 1067, 937, 816, 739, 664, 640, 598, 513 cm-1. 

HRMS (pNSI+): [C16H12F2N2O + H]+ calc. 287.0990, found 287.0992. 

mp: 80-81 °C (ethyl acetate). 

 

2-(4-Chlorophenyl)-4,4-difluoro-5-phenyl-2,4-dihydro-3H-pyrazol-3-one, 137 

Prepared according to GP9. 0.205 g, 0.67 mmol, 67%. Yellow 

powder. 
1H NMR (400 MHz; CDCl3): δ 7.97 (d, J = 7.2 Hz, 2H, Ar-H), 7.91 

(m, 2H, Ar-H), 7.53 (m, 3H, Ar-H), 7.44 (m, 2H, Ar-H). 
13C {1H} NMR (101 MHz; CDCl3): δ 159.2 (t, J = 30 Hz, C=O), 150.1 

(t, J = 21 Hz, C=N), 135.4 (Ar), 132.6 (Ar), 131.8 (Ar), 129.4 (Ar), 

129.3 (Ar), 126.9 (Ar), 126.2 (t, J = 2 Hz, Ar), 119.9 (Ar), 109.1 (t, J 

= 260 Hz, -CF2). 
19F NMR (376 MHz; CDCl3): δ -115.3 (s). 

IR: 1742, 1493, 1402, 1016, 1111, 737, 687 cm-1. 

HRMS (ASAP+): [C15H9N2F2OCl + H]+ calc. 307.0450, found 307.0459. 

mp: 79-80 °C (ethyl acetate). 

 

2-(4-Bromophenyl)-4,4-difluoro-5-phenyl-2,4-dihydro-3H-pyrazol-3-one, 138 

Prepared according to GP9. 0.246 g, 0.70 mmol, 70%. Orange 

powder. 
1H NMR (400 MHz; CDCl3): δ 7.98 (d, J = 6.8 Hz, 2H, Ar-H), 7.87 

(d, J = 9.2 Hz, 2H, Ar-H), 7.58-7.52 (m, 5H, Ar-H). 
13C {1H} NMR (101 MHz; CDCl3): δ 159.1 (t, J = 30 Hz, C=O), 

150.1 (t, J = 21 Hz, C=N), 135.8 (Ar), 132.6 (Ar), 132.3 (Ar), 129.4 

(Ar), 126.9 (Ar), 126.1 (t, J = 2 Hz, Ar), 120.1 (Ar), 119.6 (Ar), 109.1 (t, J = 260 Hz, -

CF2). 
19F NMR (376 MHz; CDCl3): δ -115.3 (s). 

IR: 1745, 1489, 1400, 1254, 1103, 739, 683 cm-1. 

HRMS (ASAP+): [C15H9N2F2OBr + H]+ calc. 350.9945, found 350.9930. 

mp: 79-80 °C (ethyl acetate) 
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4,4-Difluoro-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, 13916 

Prepared according to GP8. 0.064 g, 0.30 mmol, 30%. Red oil. 
1H NMR (400 MHz; CDCl3): δ 7.86 (d, J = 7.8 Hz, 2H, Ar-H), 7.48-7.44 

(m, 2H, Ar-H), 7.28 (t, J = 7.4 Hz, 1H, Ar-H), 2.32 (t, J = 1.3 Hz, 

3H, -CH3). 
13C {1H} NMR (101 MHz; CDCl3): δ 159.2 (t, J = 30 Hz, C=O), 152.0 (t, J 

= 23 Hz, C=N), 136.7 (Ar), 129.2 (Ar), 126.3 (Ar), 118.6 (Ar), 108.1 (t, J = 258 Hz, -

CF2), 11.9 (-CH3). 
19F NMR (376 MHz; CDCl3): δ -122.4 (s). 

IR: 2980, 1748, 1501, 1373, 1254, 1146, 1111, 754, 731, 689, 648 cm-1. 

HRMS (ASAP+): [C10H8N2OF2 + H]+ calc. 211.0683, found 211.0687. 

 

4-Fluoro-4-methyl-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one, 140 

Prepared according to modified GP8 using 1 equivalent of 

Selectfluor. 0.126 g, 0.47 mmol, 47%. Orange powder. 
1H NMR (400 MHz; CDCl3): δ 8.02-7.99 (m, 4H, Ar-H), 7.54-7.53 

(m, 3H, Ar-H), 7.52-7.48 (m, 2H, Ar-H), 7.28 (t, J = 7.6 Hz, 1H, 

Ar-H), 1.91 (d, J = 22.4 Hz, 3H, -CH3). 
13C {1H} NMR (126 MHz; CDCl3): δ 168.9 (d, J = 22 Hz, C=O), 155.8 

(d, J = 14 Hz, C=N), 137.6 (Ar), 131.4 (Ar), 129.2 (Ar), 129.1 (Ar), 128.7 (d, J = 2 Hz, 

Ar), 126.8 (d, J = 2 Hz, Ar), 125.9 (Ar), 119.0 (Ar), 93.7 (d, J = 195 Hz, -CFMe), 21.6 (d, 

J = 27 Hz, -CH3). 
19F NMR (471 MHz; CDCl3): δ -163.8 (q, J = 23.1 Hz). 

IR: 1724, 1593, 1395, 1177, 1117, 745, 683 cm-1. 

HRMS (pNSI+): [C16H13ON2F + H]+ calc. 269.1085, found 269.1086. 

mp: 73-74 °C (ethyl acetate). 
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6.4 Using mechanochemistry to alter reaction pathway 
6.4.1 Liquid Assisted Grinding (LAG) Screen 
2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.065 g, 0.25 mmol), diphenyl disulfide 

(0.055 g, 0.25 mmol), cesium carbonate (0.244 g, 0.75 mmol) and the liquid additive 

were added to a 14 mL stainless steel jar and a ball added. The mixture was milled for 

one hour and the resulting mixture transferred into a flask by manually removing the 

material with a spatula and washing with ethyl acetate (approximately 40 mL). The 

insoluble material was removed by gravity filtration. α,α,α-trifluorotoluene (0.020 mL, 

0.16 mmol) was added as a standard and 19F NMR spectra of the crude mixture were 

measured to determine the yields of different products. 

6.4.2 Optimum conditions for synthesis of 142. General procedure 10 
(GP10). 

2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.065 g, 0.25 mmol), cesium carbonate 

(0.244 g, 0.75 mmol), diphenyl disulfide (0.055 g, 0.25 mmol) and DMSO (0.050 mL) 

were added to a 14 mL stainless steel jar and charged with one stainless steel ball (10 

mm, 4.1 g). The reaction mixture was milled at 30 Hz for one hour. The resulting 

mixture was transferred into a flask by manually removing the material with a spatula 

and washing with ethyl acetate (approximately 40 mL). The insoluble material was 

removed by gravity filtration. α,α,α-trifluorotoluene (0.020 mL, 0.16 mmol) was added 

as a NMR standard and 19F NMR spectra of the crude mixture were measured and the 

yield determined to be 62%. The mixture was then added to a separating funnel with 

distilled water (40 mL). The aqueous layer was extracted with ethyl acetate (2 x 40 

mL). The organic layers were combined and washed with brine (50 mL). The organic 

layer was dried (MgSO4), filtered and the solvent removed under reduced pressure to 

yield the crude product. This was purified by flash column chromatography with 

gradient elution (0 - 10% ethyl acetate in petroleum ether) to yield the product as a 

colourless oil (0.038 g, 0.14 mmol, 56%).17 

2,2-difluoro-1-phenyl-2-(phenylthio)ethan-1-one, 142 
1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 7.5 Hz, 2H, Ar-H), 7.68 – 

7.60 (m, 3H, Ar-H), 7.55 – 7.44 (m, 3H, Ar-H), 7.39 (t, J = 7.3 Hz, 2H, 

Ar-H).  
13C {1H} NMR (101 MHz, CDCl3) δ 185.3 (t, J = 28.0 Hz, C=O), 136.8 (Ar), 134.8 (Ar), 

131.2 (Ar), 130.6 (Ar), 130.5 (t, J = 2.5 Hz, Ar), 129.4 (Ar), 128.8 (Ar), 124.8 (Ar), 123.8 

(t, J = 291.0 Hz, -CF2).  
19F NMR (376 MHz, CDCl3) δ -77.20 (s, 2F).  
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IR 1701, 1597, 1577, 1473, 1448, 1440, 1307, 1269, 1188, 1130, 1056, 1024, 1001, 

983, 933, 883, 823, 779, 748, 709, 682, 665, 640, 594, 497, 441, 406 cm-1.  

HRMS (EI+): [C14H10F2OS] calc. 264.0420, found 264.0426.  

 

6.4.3 Optimum conditions for synthesis of 144. General Procedure 11 
(GP11) 

2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.065 g, 0.25 mmol), cesium carbonate 

(0.244 g, 0.75 mmol), and diphenyl disulfide (0.055 g, 0.25 mmol) were added to a 14 

mL stainless steel jar and charged with one stainless steel ball (10 mm, 4.1 g). The 

reaction mixture was milled at 30 Hz for one hour. The resulting mixture was 

transferred into a flask by manually removing the material with a spatula and washing 

with ethyl acetate (approximately 40 mL). The insoluble material was removed by 

gravity filtration. α,α,α-trifluorotoluene (0.020 mL, 0.16 mmol) was added as a NMR 

standard and 19F NMR spectra of the crude mixture were measured and the yield 

determined to be 88%. The mixture was then added to a separating funnel with distilled 

water (40 mL). The aqueous layer was extracted with ethyl acetate (2 x 40 mL). The 

organic layers were combined and washed with brine (50 mL). The organic layer was 

dried (MgSO4), filtered and the solvent removed under reduced pressure to yield the 

crude product. This was purified by flash column chromatography with gradient elution 

(0 - 10% ethyl acetate in petroleum ether) to yield the product as a yellow oil (0.028 g, 

0.09 mmol, 72%). 

2,2,4,4-tetrafluoro-3-hydroxy-1,3-diphenylbutan-1-one, 144 
1H NMR (400 MHz, CDCl3) δ 7.97 (dd, J = 8.5, 1.1 Hz, 2H, Ar-H), 

7.81 – 7.57 (m, 3H, Ar-H), 7.55 – 7.37 (m, 5H, Ar-H), 6.43 (t, J = 54.5 

Hz, 1H, -CF2H), 4.32 (s, 1H, -OH). 

 13C {1H} NMR (101 MHz, CDCl3) δ 190.5 (t, J = 29.5 Hz, C=O), 134.9 (Ar), 132.6 (t, J 

= 2.5 Hz, Ar), 132.6 (Ar), 130.4 (t, J = 3.5 Hz, Ar), 129.4 (Ar), 128.7 (Ar), 128.6 (Ar), 

127.0 (Ar), 115.2 (t, J = 267.0 Hz, -CF2), 114.0 (tt, J = 250.0, 3.0 Hz, -CF2), 78.1 (t, J = 

23.0 Hz, -COHPh-).  
19F NMR (376 MHz, CDCl3) δ -105.41 (dt, J = 293.5, 8.0 Hz, 1F), -106.63 (dt, J = 

293.5, 9.3 Hz, 1F), -128.59 (ddt, J = 289.3, 54.1, 8.6 Hz, 1F), -130.31 (dddd, J = 289.4, 

54.9, 10.0, 7.5 Hz, 1F).  

IR 3458, 1694, 1597, 1450, 1278, 1161, 1132, 1097, 1070, 846, 808, 744, 711, 553 

cm-1.  

HRMS (EI+): [C16H12F4O2] calc. 312.0773, found 312.0772.  

 

 

Ph

O

F F

HO Ph

F

F



 170 

6.4.4 Procedures for mechanistic experiments 
6.4.5 Testing fragmentation 

 
2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.065 g, 0.25 mmol), cesium carbonate 

(0.244 g, 0.75 mmol) and diphenyl disulfide (0.055 g, 0.25 mmol) were added to a 

14 mL stainless steel jar and charged with one stainless steel ball (10 mm, 4.1 g). The 

reaction mixture was milled at 30 Hz for one hour. The residue was then transferred 

into a separating funnel, washing with dichloromethane (30 mL) and water (30 mL). 

The layers were separated and the aqueous layer further extracted with 

dichloromethane (2 x 30 mL). The aqueous phase was acidified to pH 1 with HCl (1 M) 

then extracted with dichloromethane (3 x 30 mL). This organic phase was dried 

(MgSO4), filtered and the solvent removed under reduced pressure to yield benzoic 

acid (0.026 g, 0.21 mmol, 84%). 

 
 

2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.065 g, 0.25 mmol) and the specified 

additive(s) were added to a 14 mL stainless steel jar and charged with one stainless 

steel ball (10 mm, 4.1 g). The reaction mixture was milled at 30 Hz for one hour. The 

resulting mixture was transferred into a flask by manually removing the material with a 

spatula and washing with ethyl acetate (approximately 40 mL). The insoluble material 

was removed by gravity filtration and 19F NMR spectra of the crude mixture were 

measured. In all cases the only peak observed was due to the starting material. 
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6.4.6 Testing intermediate 

 
2,2-difluoro-1-phenylethan-1-one (0.039 g, 0.25 mmol), cesium carbonate (0.244 g, 

0.75 mmol), DMSO (0.050 mL, where applicable) and diphenyl disulfide (0.055 g, 

0.25 mmol) were added to a 14 mL stainless steel jar and charged with one stainless 

steel ball (10 mm, 4.1 g). The reaction mixture was milled at 30 Hz for one hour. The 

resulting mixture was transferred into a flask by manually removing the material with a 

spatula and washing with ethyl acetate (approximately 40 mL). The insoluble material 

was removed by gravity filtration. α,α,α-trifluorotoluene (0.020 mL, 0.16 mmol) was 

added as a NMR standard and 19F NMR spectra of the reaction mixture were 

measured to determine the yields. To measure the quantity of benzoic acid (for the 

LAG case), the residue was then transferred into a separating funnel, washing with 

dichloromethane (30 mL) and water (30 mL). The layers were separated and the 

aqueous layer further extracted with dichloromethane (2 x 30 mL). The aqueous phase 

was acidified to pH 1 with HCl (1 M) then extracted with dichloromethane (3 x 30 mL). 

This organic phase was dried (MgSO4), filtered and the solvent removed under reduced 

pressure to yield benzoic acid (0.011 g, 0.09 mmol, 36%). 

6.4.7 Testing reversibility in solution 
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A mixture of 2,2,4,4-tetrafluoro-3-hydroxy-1,3-diphenylbutan-1-one (0.037 g, 

0.12 mmol), other reagents (see scheme above) in DMSO (1 mL) was stirred at room 

temperature for the required time. α,α,α-trifluorotoluene (0.020 mL, 0.16 mmol) was 

added as a NMR standard and 19F NMR spectra of the reaction mixture were 

measured to determine the yields.   

 

6.4.8 Testing reversibility in ball mill 
 

 
2,2,4,4-tetrafluoro-3-hydroxy-1,3-diphenylbutan-1-one (0.037 g, 0.12 mmol), diphenyl 

disulfide (0.055 g, 0.25 mmol) and cesium carbonate (0.244 g, 0.75 mmol) were added 

to a 14 mL stainless steel jar and a stainless steel ball (10 mm, 4.1 g) added. The 

mixture was milled for one hour. The resulting mixture was transferred into a flask by 

manually removing the material with a spatula and washing with ethyl acetate 

(approximately 40 mL). The insoluble material was removed by gravity filtration. 

α,α,α-trifluorotoluene (0.020 mL, 0.16 mmol) was added as a NMR standard and 19F 

NMR spectra of the reaction mixture were measured to determine the yield. 

 

 
 

2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.065 g, 0.25 mmol), cesium carbonate 

(0.244 g, 0.75 mmol), and diphenyl disulfide (0.055 g, 0.25 mmol) were added to a 

14 mL stainless steel jar and charged with one stainless steel ball (10 mm, 4.1 g). The 

reaction mixture was milled at 30 Hz for one hour. The jar was opened, DMSO 

(0.050 mL) added and the mixture further milled for one hour. The mixture was milled 

for one hour. The resulting mixture was transferred into a flask by manually removing 

the material with a spatula and washing with ethyl acetate (approximately 40 mL). The 

insoluble material was removed by gravity filtration. α,α,α-trifluorotoluene (0.020 mL, 

0.16 mmol) was added as a NMR standard and 19F NMR spectra of the reaction 

mixture were measured to determine the yields. 
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2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.065 g, 0.25 mmol), cesium carbonate 

(0.244 g, 0.75 mmol), diphenyl disulfide (0.055 g, 0.25 mmol) and DMSO (50 µL) were 

added to a 14 mL stainless steel jar and charged with one stainless steel ball (10 mm, 

4.1 g). The reaction mixture was milled at 30 Hz for one hour. The resulting mixture 

was transferred into a flask by manually removing the material with a spatula and 

washing with ethyl acetate (approximately 40 mL). The insoluble material was removed 

by gravity filtration. α,α,α-trifluorotoluene (0.020 mL, 0.16 mmol) was added as a NMR 

standard and 19F NMR spectra of the reaction mixture were measured to determine the 

yields. 
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6.4.9 Effect of time on yield for LAG reaction 
The reactions were run as in GP10 but for different times. 

 

Time / 
min 

Yield 142 Yield 144 Yield 145 

10 13% 22% 35% 
20 27% 26% 27% 
30 43% 12% 20% 
40 53% 10% 17% 
50 57% 0% 8% 
60 62% 0% 5% 

 

 
Figure 6.2 Effect of time on yield under LAG conditions  
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6.4.10 Effect of time on yield for neat grinding reaction 
The reactions were run as in GP11 but for different times. 

 

Time / 
hours 

Yield 142 Yield 144 Yield 145 

1 0% 88% 10% 
2 10% 24% 33% 
4 18% 24% 21% 
6 26% 18% 7% 
8 27% 14% 8% 

 

 
Figure 6.3 Effect of time on yield under neat milling 

 

6.4.11 Effect of quantity of DMSO on yield after 10 minutes 
2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.065 g, 0.25 mmol), cesium carbonate 

(0.244 g, 0.75 mmol), diphenyl disulfide (0.055 g, 0.25 mmol) and the relevant quantity 

of DMSO were added to a 14 mL stainless steel jar and charged with one stainless 

steel ball (10 mm, 4.1 g). The reaction mixture was milled at 30 Hz for 10 minutes. The 

resulting mixture was transferred into a flask by manually removing the material with a 

spatula and washing with ethyl acetate (approximately 40 mL). The insoluble material 

was removed by gravity filtration. α,α,α-trifluorotoluene (0.020 mL, 0.16 mmol) was 

added as a NMR standard and 19F NMR spectra of the crude mixture were measured 

and the yield determined. 
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DMSO / 
µL 

Yield 142 Yield 144 Yield 145 

0 29%	 50% 0% 
25 45%	 24% 5% 
50 35%	 22% 13% 

100 16%	 16% 48% 
150 9%	 12% 59% 

 

 
Figure 6.4 Effect of quantity of added DMSO on yield after milling for 10 minutes. 

 

6.4.12 Effect of time on yield in solution 
 

2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.520 g, 2 mmol.), cesium carbonate 

(1.952 g, 6 mmol), diphenyl disulfide (0.440 g, 2 mmol) and DMSO (10 mL) were added 

to a flask, which was stirred at room temperature. α,α,α-trifluorotoluene (0.160 mL, 1.3 

mmol) was added as a NMR standard. After stirring for the desired time, a sample was 

removed from the reaction mixture and filtered through cotton wool into an NMR tube. 
19F NMR spectra of this mixture were measured and the yields determined. 
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Time / 
min 

Yield 100 Yield 142 Yield 145 

3 68% 14% 18% 
10 13% 33% 28% 
20 0% 52% 28% 
30 0% 62% 27% 
40 0% 66% 27% 
50 0% 68% 27% 
60 0% 73% 27% 

 

 
Figure 6.5 Effect of time on yield in solution. 

 

6.4.13 Synthesis of Starting Materials 
 

2,2-difluoro-1,3-diphenylpropane-1,3-dione, 100 

To dibenzoylmethane (5.6 g, 25 mmol), Selectfluor (17.7 g, 50 mmol) 

and sodium carbonate (5.3 g, 50 mmol) was added acetonitrile 

(250 mL). This mixture was stirred at room temperature for 72 h. The 

solvent was removed under reduced pressure, the residue dissolved in water (150 mL) 

and dichloromethane (150 mL) and transferred to a separating funnel. The layers were 

separated and the aqueous layer further extracted with dichloromethane (2 x 100 mL). 

The combined organic phase was dried (MgSO4), filtered and the solvent removed 

under reduced pressure to yield the crude product. Hot hexane was added until most of 

the residue was dissolved, with a dark, insoluble impurity remaining. The solution in hot 

hexane was transferred to another flask and left to cool to room temperature. 
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Colourless crystals of pure product were obtained and collected by vacuum filtration, 

washing on the filter with hexane to yield the desired product (4.69 g, 18 mmol, 72%).18 
1H NMR (400 MHz, CDCl3) δ 8.11 (dd, J = 8.5, 1.0 Hz, 4H, Ar-H), 7.71 – 7.65 (m, 2H, 

Ar-H), 7.55 – 7.50 (m, 4H, Ar-H).  
13C {1H} NMR (101 MHz, CDCl3) δ 187.4 (t, J = 27.0 Hz, C=O), 135.1 (Ar), 131.6 (t, J = 

1.5 Hz, Ar), 130.3 (t, J = 2.5 Hz, Ar), 129.0 (Ar), 112.7 (t, J = 266.0 Hz, -CF2). 
19F NMR (376 MHz, CDCl3) δ -102.66 (s, 2F). 

IR 1693, 1595, 1577, 1448, 1305, 1251, 1188, 1155, 1136, 1101, 999, 941, 887, 771, 

719, 694, 678, 663, 569, 522, 435, 422 cm-1 

HRMS (EI+): [C15H10F2O2] [M+NH4]
+ calc. 278.0987, found 278.0988.  

mp: 58 – 60 °C (hexane).  

 

2,2-difluoro-1-phenylethan-1-one, 145 

Prepared according to a modified literature procedure.19 To 

ethylbenzoylacetate (4.3 mL, 4.77 g, 25 mmol) was added aqueous 

sodium hydroxide (1 M, 25 mL) and the mixture stirred at room 

temperature for 20 hours. The mixture was transferred to a separating funnel and the 

aqueous layer washed with dichloromethane (3 x 10 mL). The aqueous layer was 

acidified to pH 1 with HCl (1 M). The precipitate was collected by vacuum filtration, 

washing on the filter with water to yield benzoylacetic acid (2.545 g, 15.5 mmol, 62%), 

which was used without further purification. 

To benzoylacetic acid (2.545 g, 15.5 mmol) was added Selectfluor (13.718 g, 

38.75 mmol) and acetonitrile (100 mL). A reflux condenser was fitted and the mixture 

heated to 60 °C and stirred for 67 hours. The solvent was removed under reduced 

pressure. Water (50 mL) and dichloromethane (50 mL) were added to the residue and 

the mixture transferred to a separating funnel. The layers were separated and the 

aqueous layer further extracted with dichloromethane (2 x 50 mL). The combined 

organic phase was dried (MgSO4), filtered and the solvent removed under reduced 

pressure to yield the crude product. This was further purified by flash column 

chromatography with gradient elution (0 - 10% Ethyl acetate in petroleum ether) to yield 

the product as a colourless oil (1.146 g, 7.35 mmol, 47%).19 
1H NMR (500 MHz, CDCl3) δ 8.10 (d, J = 7.5 Hz, 2H, Ar-H), 7.70 (t, J = 7.5 Hz, 1H, Ar-

H), 7.56 (t, J = 7.9 Hz, 2H, Ar-H), 6.32 (t, J = 53.5 Hz, 1H, -CF2H).  
13C {1H} NMR (126 MHz, CDCl3) δ 187.6 (t, J = 25.5 Hz, C=O), 134.9 (Ar), 131.5 (t, J = 

2.0 Hz, Ar), 129.7 (t, J = 2.5 Hz, Ar), 129.0 (Ar), 111.2 (t, J = 254.0 Hz, -CF2H). 
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19F NMR (471 MHz, CDCl3) δ -121.94 (d, J = 53.5 Hz, 2F).  

IR 1707, 1597, 1579, 1450, 1348, 1288, 1055, 1001, 972, 933, 862, 761, 700, 682, 

657, 572, 553, 468 cm-1. 

HRMS (EI+): [C8H6F2O] calc. 156.0387, found 156.0385.  

 

2,2,4,4-tetrafluoro-3-hydroxy-1,3-diphenylbutan-1-one, 144 

2,2-difluoro-1,3-diphenylpropane-1,3-dione (0.065 g, 0.25 mmol), 

diphenyl disulfide (0.055 g, 0.25 mmol) and cesium carbonate 

(0.244 g, 0.75 mmol) were added to a 14 mL stainless steel jar and 

a ball added. The mixture was milled for one hour. The residue was then transferred 

into a separating funnel, washing with ethyl acetate (30 mL) and water (30 mL). The 

layers were separated and the aqueous layer further extracted with ethyl acetate (2 x 

30 mL). The combined organic phase was dried (MgSO4), filtered and the solvent 

removed under reduced pressure. This reaction and workup procedure was repeated 

ten times and the crude material combined and purified by flash column 

chromatography with gradient elution (0 - 10% ethyl acetate in petroleum ether) to yield 

the product as a yellow oil (0.240 g, 0.77 mmol, 62%). 
1H NMR (400 MHz, CDCl3) δ 7.97 (dd, J = 8.5, 1.1 Hz, 2H, Ar-H), 7.81 – 7.57 (m, 3H, 

Ar-H), 7.55 – 7.37 (m, 5H, Ar-H), 6.43 (t, J = 54.5 Hz, 1H, -CF2H), 4.32 (s, 1H, -OH). 

 13C {1H} NMR (101 MHz, CDCl3) δ 190.5 (t, J = 29.5 Hz, C=O), 134.9 (Ar), 132.6 (t, J 

= 2.5 Hz, Ar), 132.6 (Ar), 130.4 (t, J = 3.5 Hz, Ar), 129.4 (Ar), 128.7 (Ar), 128.6 (Ar), 

127.0 (Ar), 115.2 (t, J = 267.0 Hz, -CF2), 114.0 (tt, J = 250.0, 3.0 Hz, -CF2), 78.1 (t, J = 

23.0 Hz, -COHPh-).  
19F NMR (376 MHz, CDCl3) δ -105.41 (dt, J = 293.5, 8.0 Hz, 1F), -106.63 (dt, J = 

293.5, 9.3 Hz, 1F), -128.59 (ddt, J = 289.3, 54.1, 8.6 Hz, 1F), -130.31 (dddd, J = 289.4, 

54.9, 10.0, 7.5 Hz, 1F).  

IR 3458, 1694, 1597, 1450, 1278, 1161, 1132, 1097, 1070, 846, 808, 744, 711, 553 

cm-1.  

HRMS (EI+): [C16H12F4O2] calc. 312.0773, found 312.0772.  
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6.5 Mechanochemical activation of metals 
6.5.1 Evaluation of mechanochemical organomanganese formation 
 

 
 

Ethyl-4-bromobutyrate (0.195 g, 1 mmol), manganese pieces, irregular (relevant 

quantity) and additive(s) were added to a 14 mL stainless steel jar and a stainless steel 

ball (10 mm, 4.1 g) added. The mixture was milled at 30 Hz for the appropriate time. 

The mixture was then washed into a flask with dichloromethane (approx. 50 mL), HCl 

(1 M, 25 mL) was added and the mixture stirred for ten minutes. Trifluorotoluene (0.041 

mL) was added as an internal standard, and a sample from the organic layer was 

passed through a silica plug, washing with diethyl ether. This sample was subjected to 

GC analysis to determine the yield of 148 and conversion of 146.  
 

The GC yield of products and conversion of substrates were determined by using the 

internal standard method. The response factor (RF) of analytes was determined by 

analyzing known quantities of internal standard (trifluorotoluene) against known 

quantities of substrate and product: 

 
 

The quantity of an analyte was then calculated according to the following equation: 

 

 
 

6.5.2 General procedure for mechanochemical reactions (GP12) 
 

Manganese pieces, irregular (0.060 g, 1.1 mmol), substrate (1 mmol), ethyl-4-

bromobutyrate (0.194 g, 1 mmol, if relevant), THF (0.081 mL, 1 mmol) and lithium 

chloride (0.043 g, 1 mmol) were added to a 14 mL stainless steel jar and a ball added. 

The mixture was milled at 30 Hz for 3 hours, and then washed into a flask with 

dichloromethane (approx. 50 mL). HCl (1 M, 25 mL) was added and the mixture 

transferred to a separating funnel. The layers were separated and the aqueous phase 
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further extracted with DCM (3 x 30 mL). The combined organic phase was dried 

(MgSO4), filtered and the solvent removed under reduced pressure. The crude mixture 

was analysed by TLC and 1H NMR spectroscopy and samples that showed 

consumption of starting material were purified by flash column chromatography with 

gradient elution (0 - 25% ethyl acetate in petroleum ether). 

 

Tetraethyl 2,3-diphenylbutane-1,1,4,4-tetracarboxylate, 151 

Prepared according to GP12 from ethylbenzylidenemalonate. 

Colourless crystals (0.182 g, 0.33 mmol, 66%). Relative 

stereochemistry was determined by single crystal X-Ray 

diffraction on a sample recrystallized from hot ethanol. 
1H-NMR (400 MHz; CDCl3): δ 7.32-7.24 (m, 10H, Ar-H), 4.12 (dd, 

J = 6.0, 2.2 Hz, 2H, 2(-CH(CO)2), 3.98-3.90 (m, 4H, 2(-OCH2Me), 3.87-3.81 (m, 4H, 2(-

OCH2Me), 3.69 (dd, J = 6.0, 2.2 Hz, 2H, 2(-CHPh-), 1.13 (t, J = 7.1 Hz, 6H, 2(-CH3)), 

0.94 (t, J = 7.1 Hz, 6H, 2(-CH3)). 
13C {1H} NMR (101 MHz; CDCl3): δ 168.5 (C=O), 167.8 (C=O), 138.3 (Ar), 130.3 (Ar), 

128.2 (Ar), 127.6 (Ar), 61.6 (-OCH2Me), 61.2 (-OCH2Me), 55.9 (-CH(CO)2), 48.8 (-

CHPh-), 14.0 (-CH3), 13.8 (-CH3). 

IR 2982, 1744, 1721, 1366, 1314, 1252, 1231, 1169, 1134, 1030, 868, 773, 706, 575, 

550 cm-1. 

HRMS (ES+): [C28H34O8 + H] calc. 499.2332, found 499.2327. 

mp: 89 - 90 °C (ethanol) 

single crystal X-Ray diffraction structure: 
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Tetraethyl2,3-bis(4-fluorophenyl)butane-1,1,4,4-tetracarboxylate, 153 

Prepared according to GP12 from 

diethyl-4-fluorobenzylidenemalonate. Colourless powder 

(0.100 g, 0.19 mmol, 37%). 
1H NMR (400 MHz; CDCl3): δ 7.31-7.28 (m, 4H, Ar-H), 7.00-

6.96 (m, 4H, Ar-H), 4.09-4.08 (m, 2H, 2(-CH(CO)2), 3.99-

3.94 (m, 4H, 2(-OCH2Me)), 3.91-3.86 (m, 4H, 2(-OCH2Me)), 3.61-3.59 (m, 2H, 2(-

CHAr-)), 1.13 (t, J = 7.1 Hz, 6H, 2(-CH3)), 0.98 (t, J = 7.1 Hz, 6H, 2(-CH3)). 
13C {1H} NMR (101 MHz; CDCl3): δ 168.3 (C=O), 167.7 (C=O), 162.3 (d, J = 248 Hz, 

Ar-F), 133.8 (d, J = 3 Hz, Ar), 131.9 (d, J = 8 Hz, Ar), 115.1 (d, J = 21 Hz, Ar), 61.7 

(-OCH2Me), 61.3 (-OCH2Me), 55.5 (-CH(CO)2), 47.9 (-CHPh-), 13.95 (-CH3), 13.82 

(-CH3). 
19F NMR (376 MHz; CDCl3): δ -114.7. 

IR 2984, 1740, 1506, 1308, 1256, 1219, 1157, 1138, 1094, 1028, 851, 565 cm-1. 

HRMS (ES+): [C28H32O8F2 + H] calc. 535.2143, found 535.2141. 

mp: 152 - 154 °C (EtOAc) 

 

 Tetraethyl 2-(4-fluorophenyl)-3-phenylbutane-1,1,4,4-tetracarboxylate,166 

Isolated as a mixture with tetraethyl-2,3-bis(4-

fluorophenyl)butane-1,1,4,4-tetracarboxylate 153 as white 

crystals (0.147 g). Molar ratio determined by 19F NMR 

spectroscopy as 0.53:1 (166:153), corresponding to 153 

(0.095 g, 0.18 mmol, 36%) and 166 (0.052 g, 0.097 mmol, 

38%). Presence of 166 confirmed by HRMS. 
19F NMR (376 MHz; CDCl3): δ -115.0. 

HRMS (AP+): [C28H33O8F + H] calc. 517.2238, found 517.2249. 

 

6.5.3 Preparation of starting materials 
 Diethyl 2-(4-fluorobenzylidene)malonate, 152 

Following a modified literature procedure,20 4-fluorobenzaldehyde 

(2.48 g, 20 mmol) and diethyl malonate (3.20 g, 20 mmol) were 

dissolved in toluene (100 mL). To this were added piperidine 

(0.296 mL, 3 mmol) and glacial acetic acid (0.172 mL, 3 mmol). 

The flask was fitted with a Dean-Stark head, heated to reflux and 

stirred for 24 hours. The reaction mixture was cooled, diluted with diethyl ether (50 mL) 

and water (50 mL) and transferred to a separating funnel. The layers were separated 

and the organic layer washed with water (50 mL) and HCl (1 M, 50 mL), dried (MgSO4), 
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filtered and the solvent removed under reduced pressure. This mixture was initially 

purified by flash column chromatography with gradient elution (0 - 10% ethyl acetate in 

petroleum ether). This was then further purified by Kugelrohr distillation (180 °C, 30 

mbar) to remove the unreacted diethyl malonate and byproducts. This yielded the 

product as a red oil (2.238 g, 8.41 mmol, 42%). 
1H NMR (500 MHz; CDCl3): δ 7.68 (s, 1H, -ArCH-), 7.46 (dd, J = 8.5, 5.3 Hz, 2H, Ar-H), 

7.07 (t, J = 8.6 Hz, 2H, Ar-H), 4.38-4.27 (m, 4H, 2(-OCH2Me)), 1.33 (t, J = 7.1 Hz, 3H, -

Me), 1.30 (t, J = 7.1 Hz, 3H, -Me). 
13C {1H} NMR (101 MHz; CDCl3): δ 166.7 (C=O), 164.2 (C=O), 164.0 (d, J = 254 Hz, 

Ar-F), 140.9 (-C(CO)2), 131.7 (d, J = 9 Hz, Ar), 129.3 (d, J = 3 Hz, Ar), 126.3(-ArCH-), 

116.2 (d, J = 22 Hz, Ar), 61.92 (-OCH2Me), 61.85 (-OCH2Me), 14.3 (-Me), 14.1 (-Me). 
19F NMR (471 MHz; CDCl3): δ -108.7. 

IR 1721, 1601, 1508, 1258, 1209, 1192, 1161, 1061, 833, 509 cm-1. 

HRMS (EI+): [C14H15O4F] calc. 266.0954, found 266.0951. 

 

 Diethyl 2-(4-methoxybenzylidene)malonate, 154 

Following a modified literature procedure,21 diethyl malonate 

(3.20 g, 20 mmol) and p-anisaldehyde (2.723 g, 20 mmol) 

were dissolved in ethanol (10 mL). To this were added glacial 

acetic acid (0.172 mL, 3 mmol) and piperidine (0.296 mL, 

3 mmol) and the mixture was heated to reflux and stirred for 2 

days. This mixture was purified by Kugelrohr distillation (130 °C, 50 mbar) to remove 

the unreacted diethyl malonate and byproducts. The product was obtained as a yellow 

oil (4.905 g, 17.6 mmol, 88%). Data is in agreement with the literature values.21 
1H NMR (500 MHz; CDCl3): δ 7.67 (s, 1H, (-ArCH-), 7.42 (d, J = 8.8 Hz, 2H, Ar-H), 6.89 

(d, J = 8.8 Hz, 2H, Ar-H), 4.35 (q, J = 7.1 Hz, 2H, (-OCH2Me)), 4.29 (q, J = 7.1 Hz, 2H, 

(-OCH2Me)), 3.83 (s, 3H, -Me), 1.32 (t J = 7.1 Hz, 6H 2(-Me)). 
13C {1H} NMR (126 MHz; CDCl3): δ 167.3 (C=O), 164.6 (C=O), 161.7 (Ar), 141.9 (Ar), 

131.7 (Ar), 125.5 (Ar), 123.7 (-C(CO)2), 114.4 (-ArCH-), 61.75 (-OCH2Me), 61.57 (-

OCH2Me), 55.5 (-OMe), 14.3 (-Me), 14.1 (-Me). 

IR 2980, 1717, 1601, 1512, 1254, 1200, 1171, 1061, 1020, 829, 540, 518 cm-1. 
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2-benzylidenemalononitrile, 162 

Following a modified literature procedure23, benzaldehyde (1.061 g, 

10 mmol), malononitrile (0.661 g, 10 mmol) and piperidine (0.099 mL, 

1 mmol) were dissolved in ethanol (10 mL). The mixture was stirred at 

room temperature overnight. The solvent was removed under reduced 

pressure, dichloromethane (50 mL) and HCl (0.1 M, 50mL) were added and the mixture 

transferred to a separating funnel. The layers were separated and the aqueous layer 

further extracted with dichloromethane (2 x 50 mL). The combined organic phase was 

dried (MgSO4), filtered and the solvent removed under reduced pressure. The residue 

was then recrystallized from hot EtOH/H2O to yield the product as yellow crystals 

(0.941 g, 6.11 mmol, 61%). Data is in agreement with literature values.23 
1H NMR (500 MHz; CDCl3): δ 7.91 (d, J = 7.8 Hz, 2H, Ar-H), 7.78 (s, 1H, Ar-H), 7.65-

7.62 (m, 1H, -ArCH-), 7.55 (t, J = 7.6 Hz, 2H, Ar-H). 
13C {1H} NMR (126 MHz; CDCl3): δ 160.0, 134.8, 131.1, 130.9, 129.8, 113.8, 112.7, 

83.1. 

IR 2222, 1736, 1670, 1589, 1450, 1217, 959, 754, 677, 615, 519 cm-1. 

mp: 80 - 81 °C (ethanol) 
 

 Ethyl 3-phenylpropiolate, 164 

Following a modified literature procedure;22 To an oven-dried flask 

was added potassium carbonate (2.073 g, 15 mmol) and the flask 

flushed with nitrogen. Ethyl propiolate (0.507 mL, 5 mmol), 

iodobenzene (0.839 mL, 7.5 mmol) and dry THF (40 mL) were added and stirred. To 

this mixture was added Pd(PPh3)2Cl2 (0.070 g, 0.1 mmol) and CuI (0.018 g, 0.1 mmol) 

and the flask flushed with nitrogen. The mixture was heated to reflux, stirred for 22 

hours, cooled and filtered through cotton wool into a separating funnel. 

Dichloromethane (50 mL) and water (50 mL) were added, the layers separated and the 

aqueous layer further extracted with dichloromethane (2 x 50 mL). The combined 

organic phase was washed (brine), dried (MgSO4), filtered and the solvent removed 

under reduced pressure. The product was purified by flash column chromatography 

with gradient elution (0 - 10% ethyl acetate in petroleum ether) and the product 

obtained as a yellow oil (0.325 g, 1.87 mmol, 37%). Data is in agreement with literature 

values.22 
1H NMR (500 MHz; CDCl3): δ 7.59 (d, J = 8.0 Hz, 2H, Ar-H), 7.46-7.43 (m, 1H, Ar-H), 

7.37 (t, J = 7.6 Hz, 2H, Ar-H), 4.32-4.28 (m, 2H, -OCH2Me), 1.36 (t, J = 7.1 Hz, 

3H, -Me). 

CO2Et

CNNC
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13C {1H} NMR (126 MHz; CDCl3): δ 154.2 (C=O), 133.1 (Ar), 130.7 (Ar), 128.7 (Ar), 

119.8 (Ar), 86.2 (alkyne), 80.8 (alkyne), 62.3 (-OCH2Me), 14.3 (-Me). 
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