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Abstract: 

In-situ forming hydrogels were prepared from pullulan-HEMA copolymer using three-component visible-light 

system composed of camphorquinone carboxylic acid-folic acid-iodonium salt. The relevance of double bond 

conversion and crosslinking density of hydrogels with the photoinitiator concentration and irradiation time were 

estimated by FT-IR analysis and swelling calculation using Flory-Rehner theory, respectively. The results revealed 

that the crosslinking density and degree of conversion of hydrogels were improved by photoinitiator concentration 

increasing until certain extend, then they decreased due to a primary radicals termination reaction occurred. The 

shortest irradiation time of 10s was essential to obtain acceptable hydrogels for further characterizations. For the 

probability use of hydrogels as scaffold was investigated in vitro by measuring of the indirect cytotoxicity assay by 

MTT-assay using human bone Sarcoma cell as a reference cell lines. The majority of seeded SW1353 cells 

maintained a live with an accepted viability of ~ 85-92% over a four days culture period with irradiation of hydrogel 

10 s, while cell viability has improved to ~95-98% with prolonging the irradiation time of hydrogel to 60s. The 

current photoinitiating system is a proper system for in-situ crosslinking the activated-light biomaterials for bone 

regeneration, dental, or tissue engineering applications. 

Keywords: Pullulan-HEMA; Carboxylated camphorquinone; Folic acid  

 

1. Introduction  

Photopolymerization is widely preferred because hydrogels can be obtained at temperature and 

pH conditions close to physiological medium with presence of biologically active molecules [1, 

2]. In spite of previous reports of photopolymerizable hydrogels for biomedical applications, two 

limitations are still addressed gradually by researchers [2]. First, the possible toxicity issue of the 

used photopolymerization system ingredients [1]; second, the harmfulness issue of the used 

light-irradiation source either UV or γ-rays [2]. The visible-light induced photopolymerization 

technique using blue-light absorbed photoinitiator type II, has many advantages such as its 

flexibility for hydrogels preparation, and it’s easy and more concise method for drug-loading 
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compared to other polymerization methods [3]. In addition, visible light is known to have less 

damage effect to cells and has efficiently transmitting through tissues, resulting strong deep 

curing. If the aforementioned limitations have been overcome and  entirely addressed, the photo-

crosslinked hydrogels for biomedical applications could be strongly grown and developed. In our 

previous work on photopolymerization for vinyl monomers, dextran-HEMA hydrogels have 

been crosslinked under visible-light induced system using camphorquinone (CQ) as 

photoinitiator and amines coinitiator (e.g., DMAEMA, NPG, or BDO) [4]. In that study, the 

hydrogel formation showed some difficulties e.g. poor-water solubility of CQ photoinitiator and 

acute toxicity of amines coinitiator. Thus, lots of efforts and attempts have been done to develop 

a new water-soluble and visible-light absorbed photoinitiator. Two-component photoinitiating 

system under visible-light composed of riboflavin as photoinitiator and L-arginine as coinitiator 

was used for crosslinking dextran-methacrylate hydrogels [5]. This system offered a long 

irradiation time ranged between (15-40 minutes), and a weak photo-bleaching was observed due 

to riboflavin is a mainly producing yellow dye existing in many plants and microorganisms [5]. 

In addition, Arakawa et al. [6] has used riboflavin for crosslinking glycol-chitosan-GMA-

collagen hydrogels under visible light for bone tissue engineering.  

Recently, Hydroxyethyl starch-HEMA hydrogels have been photocrosslinked under visible-light 

using three-component photopolymerization system composed of carboxylated-CQ (CQCOOH) 

as photoinitiator, DMAEMA as coinitiator, and DPIC as accelerator [7]. This system presented 

successful and efficient photoinitiating system in terms of its short irradiation time at 5 seconds, 

very strong photo-bleaching, high water solubility and non-toxicity of photoinitiator [7]. On the 

contrary, both DMAEMA amine coinitiator and DPIC accelerator presented toxicity by MTT 

and LDH assays [6]. According to last contributions and studies, we have focused on how to 

develop a new photoinitiating system avoiding all last mentioned problems for biomedical 

applications. Carboxylated camphorquinone (CQCOOH) is a photoinitiator type II that demands 

an electron donor to create a free radical upon exposure to visible-light source at wavelength λmax 

~ 465 nm [7].  

Camphorquinone carboxylic acid (7,7-Dimethyl-2,3-dioxobicyclo [2.2.1]heptane-1-carboxylic 

acid) was first synthesized and known as diketopinic acid for modification of arginine [8]. 

Hence, CQCOOH was used for the first time as photoinitiator by Ikemura et al. [9], while the 

modified synthetic route for production of CQCOOH has been developed and improved by our 
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previous study [7]. Amines coinitiators have been widely utilized as electron donors for 

photoinitiator type II, so this system was known as a ketone-amine initiation system. Encinas et 

al. [10] have reported the effect of amine structure and type on the polymerization efficiency 

under UV-light irradiation source. Similarly, Kamoun and Menzel [4, 11] demonstrated the 

effect of amines (e.g. DMAEMA and NPG) and non-amines (e.g. BDO) coinitiators’ type on the 

crosslinking density for dextran-HEMA and HES-HEMA hydrogels under visible-light 

irradiation. Exclusively, the folic acid is employed for the first time as a safe and 

alternative/effective coinitiator instead of amine coinitiators. Meanwhile, the iodonium salt 

derivative e.g. diphenyliodonium tetrafluoroborate (DPITFB) is used herein for the first time in 

the current photopolymerization system too, as accelerators to regenerate the dye of initiator, 

resulting a free radical formation is sharply improved and produces additional active radicals 

[4,7,11,12].  

This work aims to evaluate the photocrosslinking performance of pullulan-HEMA hydrogels 

using CQCOOH-folic acid-DPITFB system under visible-light irradiation as a new photo-

initiating system used in literature. Both the CQCOOH photoinitiator concentration and 

irradiation time were readjusted to evaluate the polymerization efficiency of the system in terms 

of the DC% and crosslinking density of formed hydrogels. The optimum concentration of 

CQCOOH and the shortest irradiation time were determined, while the mechanical properties 

and cytotoxicity of formed hydrogels were assessed. 

  

2. Materials and methods      

2.1. Materials  

Pullulan (Mw = 10,000 g/mol), Hydroxyethyl methacrylate (HEMA), 1,1-Carbonyldiimidazole 

(CDI), 4-(N,N-Dimethylamino) pyridine (DMAP)  and Diphenyliodonium tetrafluroborate 

(DPITFB, 97.0%) were supplied from Sigma-Aldrich (Steinheim, Germany). 7,7-Dimethyl-2,3-

dioxobicyclo[2.2.1]heptane-1-carboxylic acid (carboxylated camphorquinone, CQCOOH) was 

previously synthesized and described elsewhere in details [7]. Folic acid was taken up from 

Sigma-Aldrich (St. Louis, MO, USA). Dry/freshly distilled anhydrous tetrahydrofuran (THF) 

and DMSO were obtained from Fluka Chemie, Germany. Magnesium sulphate (95.0%) and 

distilled ethyl acetate were obtained from ADWIC Co. for pharmaceutical chemicals, Egypt. 

Dialysis tubing cellulose membrane (Mwt cut-off 14000, average diameter 16 mm) was obtained 
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from Merck, Germany. A LED-lamp (Bluephase, Ivoclar Vivadent, Amhest, NY, USA) was 

used for irradiation at λmax. 460 nm at 1100 mW/cm
2
. The irradiation distance was almost 0 cm, 

while the irradiation time was ca. ≥ 30 second. 

Fig. 1   

2.2. Photocrosslinking of  pullulan-HEMA hydrogels under visible light irradiation  

Certain degree of substituted pullulan-HEMA copolymers were synthesized and obtained from 

our previous published work [13]. The pullulan-HEMA copolymer (DS 0.065) was crosslinked 

under visible-light irradiation using three-component photoinitiating system, consisting of 

CQCOOH as photoinitiator, folic acid as amine coinitiator, and DPITFB as an accelerator (Fig. 

1). Pullulan-HEMA copolymer concentration (20 w/v, %) was dissolved in distilled water for 30 

minutes until a homogenous polymer solution was formed, and then the three-component 

photoinitiating system was added to the mixture as following: 10 mg (0.25 mol%) of CQCOOH 

photoinitiator was dissolved in polymer solution, and (0.5 mol%) of folic acid was added, 

moreover (10 mg, 0.5 wt. %) of DPITFB was dissolved in the last mixture. The mixture solution 

was preserved under gentle moving for 30 minutes at room temperature in the dark-glass bottle 

for avoiding any premature-polymerization due to the surrounding visible-light. The mixture was 

poured onto PE molds and photo-crosslinked by LED lamp at zero distance irradiation exposure 

distance for obtaining (5mm thick. and 25mm diam.) of hydrogel disk. The hydrogel was formed 

after less than one minute irradiation time. The gel formation point was found out when a scratch 

mark remained on the hydrogel surface upon scratching with a spatula. The gelation was 

complete when the whole gel remained stable without any fluid moving. 

2.3. Equilibrium swelling ratio  

The known dried masses of crosslinked pullulan-HEMA were soaked in distilled water at fitting 

time-intervals, and then the samples were taken out. The swollen hydrogels were weighted when 

the excess of water inters to hydrogel structure. The swollen weights were then compared with 

their dried weights to calculate the equilibrium swelling ratio (ESR %) when the swollen weight 

of hydrogel was remained unchanged. ESR% of hydrogels was determined when the weight of 

swollen hydrogel was remained stable without weight change before the degradation [7].  

ESR % = (Ws – Wd) / Wd × 100.                                                                                       Eq. (1)   

Where Ws and Wd are the weights of hydrogels at the equilibrium swelling state and the dried 

state, respectively.   
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2.4. Calculation of crosslinking density and network characteristics of crosslinked pullulan-

HEMA hydrogels 

The crosslinking density of pullulan-HEMA hydrogels was calculated depending upon the Flory-

Rehner formula, where the crosslink density (Px) is known by the inverse of average number 

molecular weight between two adjacent crosslinkers (Mc). The Mc can be easily calculated by 

determination of the swelling ratio based mass, the volumetric swelling ratio at equilibrium 

swelling state and our previous study [4, 7]. Most hydrogel kinetics of dextran-HEMA 

crosslinked hydrogels successfully were determined which are similar with pullulan polymer [2]. 

The crosslinking density   Px = (Mc ѵ)
-1

     mol cm
-3

                                                           Eq. (2)   

Where, ѵ is the specific volume of dry polymer (0.614 cm
3
g

-1
 at 20 

o
C of pullulan) [14].  

2.5. Calculation of degree of conversion (DC%) of crosslinked pullulan-HEMA hydrogels 

The degree of conversion (DC %) of crosslinked pullulan-HEMA hydrogels was calculated by 

the IR-spectrum integration using “Essential FTIR
®

 spectroscopy toolbox” software for data 

sheet table depending on subtraction of percentage of remained or unchanged C꞊C at 1650 cm
-1

 

after crosslinking process from 100 %.  

DC % = [1- (ƩC꞊C 1650/ ƩC꞊O 1725)] × 100.                                                                        Eq. (3) 

Where, the unchanged carbonyl ester group at 1725 cm
-1

 regardless the crosslinking process, was 

used as internal reference peak [7, 15]. While, the intensity change of the C꞊C peak at 1650 cm
-1

 

of the pullulan-HEMA polymer was employed as an index for the consumption of double bonds, 

due to the crosslinking process. Therefore, the high intensity of the C꞊C peak refers to high 

consumed peaks resulting high DC% value.    

2.6. Cytotoxicity test by MTT-assay   

Human bone sarcoma cells (SW1353) as reference cell lines were chosen to evaluate the 

cytotoxicity of photopolymerization system ingredients (e.g., CQCOOH, folic acid, DPITFB, 

and crosslinked pullulan-HEMA hydrogel disks) using Methylthiazolydiphenyl tetrazolium 

bromide (MTT) assay. The cells were cultured and grown in RPMI-1640 media supplemented 

with (10% fetal bovine serum, 10% CO2, 95% humidity at 37
o
C). Briefly, 2×10

5
 SW1353 cells 

ml
-1

 were speared in 200 µl complete media and plated in 96-well micro-plates. The 

photoinitiating system ingredients and hydrogel pieces were added then cultured and incubated 

for four days at 37 ºC. The cells were then washed twice with the fresh media after incubation, 

and 200µl of a tetrazolium salt (0.5 mg/ml PBS) MTT solution was added to each well. After 
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incubation for another 6 hours at 37°C, the media was left-aside, and the wells were dried. 

Formazan crystals were re-suspended in 200 µl of DMSO and then shacked for 5 minutes to 

entirely dissolve formazan in the solvent. The OD was measured at 570 nm with a reference at 

630 nm. Another medium containing test substance without cells were measured by the same 

way to exclude staining affects with adding substances itself [16]. Cell viability percentage was 

determined, as given in (Eq. 4). 

Cell viability (%) = (Atest / Acontrol) × 100.                                                                          Eq. (4)  

Where Atest is cells number after incubation and Acontrol is initial cells number before incubation. 

In case of hydrogel investigation, cells were suspended in polymer solution at the same 

concentration 2×10
5
 cells ml

-1
, then the mixture was irradiated for 10 and 60 seconds. The 

hydrogels/cells were cultured in the media as described above. Despite of the free radicals 

production through the photopolymerization could be accompanied with damage for cultured 

cells. Thus to evaluate the cytotoxicity effect, cells were encapsulated in hydrogels after various 

irradiation times using the shortest time possible for sample irradiation.    

2.7. Characterizations  

FTIR type: (Shimadzu FTIR-8400S, Kyoto, Japan) was used. KBr-sample disk was prepared by 

crushing polymer sample with infrared grade KBr and then pressing at 105N until getting 

transparent disk. The FTIR spectrums were obtained by recording 64 scans between 4000-400 

cm
-1

 with a resolution of 2 cm
-1

. FTIR was employed to determine DC % for the double bonds 

using the changes in the C꞊C absorbance peak intensity, while unchanged carbonyl ester 

absorbance as an internal reference, which is only approximate because of the conjugation with 

the C꞊C changes the peak shape and intensity as well. The DC was obtained by subtracting the 

percentage of remaining or uncrosslinked (C꞊C %) from 100 % [15]. 

1
H-NMR, the proton nuclear magnetic resonance-spectrum was recorded by a NMR-DRX400 

instrument with 300 MHz (BRUCKER, Karlsruhe, Germany). Typically, 20 mg of the sample 

was completely dissolved in 1.0 mL of deuterium oxide NMR-solvent (
2
H2O-d6), and then the 

sample was micro-filtered before the measuring. 

SEM type: (JEOL, JSM-6360LA, Tokyo, Japan) was used to investigate the interior structure of 

crosslinked hydrogels. Hydrogel samples were first lyophilized and gold-coated with a sputter 

coater (model: 11430, USA, connected with vacuum SPi module control model: 11425, USA). 
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Rheometer type: (Rheo-Stress HAAKE MARS III, Thermo-Fisher Scientific, USA) was 

performed to determine the mechanical properties of crosslinked pullulan-HEMA hydrogels. The 

oscillation shear flow and rotation measurements were performed under the constant temperature 

at 25
o
C, using plate-to-plate geometry (PP-20Ti) with angular sweep frequency 0.1˗10 Hz. The 

polymerization system including polymer solution and photoinitiating system was crosslinked in-

situ the plate, forming hydrogel disk (5mm thick. and 25mm diam.). The results show the 

average of three tested samples. 

3. Results and discussion 

3.1. Synthesis of  pullulan-HEMA copolymer  

Pullulan-HEMA copolymer was synthesized according to the reported procedure of our previous 

study for the synthesis of dextran-HEMA [4]. The catalyzed coupling reaction between HEMA-

carbonyl imidazolyl and pullulan was proven by FTIR analysis, as shown in (Fig. 2 up). It was 

noticed that band of a carbonyl ester group at 1725 cm
-1

 which existing clearly only with 

crosslinked pullulan-HEMA hydrogel, where its absorbance intensity is increased strongly and 

gradually with crosslinking degree. However, this band neither appears in pure pullulan nor 

pullulan-HEMA copolymer (i.e., uncrosslinked polymer).  

Fig. 2 

The successful coupling of HEMA as a side chain in pullulan structure was evidenced and given 

by 
1
H-NMR spectra. In spite carbonyl ester group which is responsible to crosslinking 

performance of pullulan-HEMA could not be detected by NMR spectra; however, this spectrum 

was utilized to determine the coupling reaction resulting pullulan-HEMA copolymer (Fig. 2, 

down). In this part, the influence of CQCOOH photoinitiator concentration and irradiation time 

on crosslinking performance representing on the degree of conversion and crosslinking dentistry 

of pullulan-HEMA hydrogels is discussed in details.  

Fig. 3 

3.2. Equilibrium swelling ratio (ESR %) 

It is desirable for hydrogel properties to retain its defined structure and to swell adequate amount 

of water or biological fluids. The ESR of crosslinked pullulan-HEMA hydrogels with various 

photoinitiator concentrations and various irradiation times was detected for characterizing the 

stability and water uptake during incubation (Fig. 3). As seen, a minimum gelation time needed 

for hydrogel formation was 10 s. However, 10 s of irradiation time formed rather weaker gels 
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due to high swelling ratio, weak crosslinking degree and diffusion of water into a loose network, 

additionally a long time was required for reaching the equilibrium swelling state (almost 6 days). 

Comparing with long irradiation times (30, 60, and 120 s) hydrogels which showed a gradual 

reduction in swelling and short time for reaching equilibrium swelling state (5, 3, and one day) 

respectively, owing to increasing crosslinking degree with prolonging the irradiation time. 

Meanwhile, the equilibrium swelling of hydrogels was reduced with photoinitiator concentration 

from 0.1-0.5 mol% due to the formation of high crosslinked hydrogels, and then it unexpectedly 

increased with CQCOOH > 0.5 mol% due to the generation of a termination reaction for formed 

radicals of CQCOOH [4]. Although, highly swollen hydrogels facilitate mass transfer of 

substances e.g., nutrients, oxygen, and exchange of metabolic waste products in the hydrogels. 

Also, low crosslinked hydrogels allow to the high amount of water absorption into hydrogel 

structure lead to an increase in weight loss of hydrogels [4, 7].  

Fig. 4      

3.3. Effect of CQCOOH photoinitiator concentration on the degree of conversion (%) and 

crosslinking density of pullulan-HEMA hydrogels 

The effect of CQCOOH concentration on the crosslinking performance of pullulan-HEMA 

hydrogels was shown in Fig. 4 to explain the optimal conditions for the proposed photoinitiating 

system. Interestingly, only 60 seconds with 0.25 mol % of CQCCOH was a sufficient needed 

time of irradiation and CQCOOH concentration to initiate the system for crosslinking pullulan-

HEMA copolymer. As seen, with a CQCOOH concentration less than 0.1 mol%, no gelation was 

formed. Notably, the degree of conversion (%) was increased sharply from 62-88% as CQCOOH 

is increased from 0.1-0.25 mol%, respectively. Then, DC% unexpectedly remained almost stable 

until 0.75 mol% of CQCOOH. Both DC% and Px were significantly reduced with CQCOOH 

concentration > 0.75 mol%. Similarly, Px showed crosslinking performance slightly different, 

where it was increased progressively from 0.1 to 0.75 mol% CQCOOH, then it was pointedly 

decreased with a CQCOOH concentration > 0.75 mol%. The opposite crosslinking reaction 

behind a higher CQCOOH photoinitiator contents retarded the crosslinking reaction which might 

be ascribed to increased the opacity of copolymer solution could obstruct the permeation of free 

radicals and irradiation light into the solution.  

Mostly, the DC% and Px go to increase as the photoinitiator concentration was increased because 

the greater amount of molecules are available for generation of free radicals. This was probably 
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owing to the higher free radicals generated as established by the significant correlation between 

radicals amount and photoinitiator concentration reported by Kamoun et al. [7]. As a result, 

CQCOOH of 0.1-0.75 mol% resulted in a satisfactory hydrogel formation with acceptable form 

and shape. On the other hand, CQCOOH > 0.75 mol% formed fragile and undesirable 

mechanical hydrogel, owing to a terminal reaction occurred. Thus, CQCOOH (i.e., 0.25 mol %) 

is regarded the optimum photoinitiator concentration for this system in terms of the gelation 

speed and using the little amounts of chemicals as possible to reduce the toxicity issue. However, 

the relationship between photoinitiator concentration and the polymerization efficiency might be 

elucidated by an excess of CQCOOH might decrease the DC %. This effect is probably owing to 

the radiation attenuation during hydrogels by CQCOOH absorption and a phenomenon known as 

the inner shielding effect, or high rates of primary radical termination which in turn were caused 

by the high rates of initiation. These observations are consistent with results of Kim et al. [5] and 

Kamoun et al. [7], who found that using high photoinitiator concentrations resulted in a terminal 

reaction for crosslinking of dextran-methacrylate and HES-HEMA hydrogels using riboflavin-

arginine and CQCOOH-DMAEMA-DPIC system, respectively.  

Fig. 5             

3.4. Effect of irradiation time on the degree of conversion (%) and crosslinking density of 

pullulan-HEMA hydrogels 

The free radicals generation is gradually increased with irradiation time prolonging, causing high 

crosslinked hydrogels [18].  Figure 5 illustrates the influence of several irradiation dose times 

(10, 20, 30, 60, 120, 180, and 240 seconds) on both the DC% and Px as crosslinking indicators 

and the extent of photoreactivity of the used polymerization system using 0.25 mol% of 

CQCOOH concentration. In this system, no hydrogels formed at irradiation time < 10 seconds. 

Comparing with CQCOOH-DMEMA-DPIC system, the HES-HEMA hydrogels formed at only 

5 second due to using a very reactive amine coinitiator, follow-on acute toxicity for the cell 

proliferation [7]. On the other hand, the current system exhibits a relative long needed irradiation 

time, despite an expected no toxicity due to using folic acid as primary amine coinitiator. It was 

found that the Px is progressively increased with the irradiation time, while the DC % is also 

increased gradually and reach a maximum value after approximately 120 seconds as irradiation 

time. Unlike the previous study of CQCOOH-DMAEMA-DPIC system, the maximum Px of 

HES-HEMA hydrogel was obtained after irradiation time ca. 180 second using the same 



10 
 

CQCOOH concentration (i.e., 0.25 mol%). This explanation indicates that the current initiating 

system based on CQCOOH-folic acid-DPITFB is higher photo-reactivity than the CQCOOH-

amine-DPIC system. Herein, the latter system has a quick response toward the speed-gelation 

compared to the current system of (CQCOOH-folic acid-DPITFB). 

Fig. 6        

3.5. Effect of photoinitiator concentration and irradiation time on the morphology of crosslinked 

pullulan-HEMA hydrogels  

The microstructure of crosslinked pullulan-HEMA hydrogels with various photoinitiator 

concentration and irradiation times are shown in Fig. 6. As ideal scaffolds for tissue engineering 

application should exhibit a porous structure to allow the nutrients and oxygen for penetrating 

freely to the inner origins of scaffolds. Thus, the porous structure of scaffolds also should 

provide the proper position for cell migration and more proliferation. The interior morphology of 

lyophilized crosslinked pullulan-HEMA hydrogels was characterized by SEM and shown in Fig. 

6. It was noticed that all hydrogel samples showed an interconnected porous structure with a pore 

size in the range of 100-400 µm. With the increase of CQCOOH photoinitiator concentration 

from 0.1-0.5 mol %, the pore size and pores distribution of hydrogels decreased accordingly, and 

surface structure became very tight and uniform, which might be caused by the higher 

crosslinking density of hydrogels due to increasing free radicals of specimens. This speculation 

has been further verified by the more careful observation of high irradiated hydrogels. It was 

found that the pores at hydrogel surfaced decreased gradually with prolonging the irradiation 

time, due to crosslinking degree has been improved by irradiation time. These results were 

consistent with the previous results, which claimed that the porosity of scaffolds was reduced 

clearly with an increase of the crosslinking degree of photopolymerized injectable chitosan-

hyaluronic acid hydrogels [19, 20].        

Fig. 7 

3.6. Effect of CQCOOH photoinitiator concentration on mechanical properties of pullulan-

HEMA hydrogels 

The in-situ photo-rheology was used to monitor and evaluate the mechanical properties of 

formed hydrogels with different photoinitiator concentration irradiated for 60 seconds, for each 

different sample. This measurement records the shear storage modulus behavior as a function of 

oscillation frequency sweep ranged from 0.1-10 Hz after the samples have been illuminated with 



11 
 

a λ~ 465 nm for 60 seconds. The polymer solutions are transferred and crosslinked between two 

parallel plates, which was built into the as-prepared gels a certain amount of stress. Figure 7 

shows the typical data obtained for six CQCOOH concentrations hydrogels (0.1, 0.25, 0.5, 0.75, 

1.0 and 1.25 mol %). All hydrogels displayed an increase in storage modulus as a function of 

CQCOOH concentrations, where the hydrogels with high CQCOOH concentration reached to the 

leveling off state at (ca. 1 Hz) faster than those with low CQCOOH concentration. These data 

emphasize the kinetic advantages of using a higher CQCOOH concentration in hydrogels. The 

data elucidate that the shear storage modulus of pullulan-HEMA hydrogels increased 

progressively from ca. 0.5-8.0 kPa, when CQCOOH photoinitiator concentration was raised 

from 0.1-1.25 mol %. This significant growth of the shear storage modulus with CQCOOH could 

be attributed to a chain size expansion and further network formation. Furthermore, it was found 

that the storage modulus increases faster and exceeds the loss modulus of all samples. This 

increase is characteristics of the alteration of a Newtonian-viscous fluid into an elastic-solid state 

owing to network formation. Thus, the storage modulus continues to increase due to the gel 

aging, while the loss modulus was kept invariant and less than storage modulus, showing the 

dominant elasticity of the system and existence a permanent 3D-network of the hydrogel. It is 

also of importance to notice that, higher DC% (Fig. 4) does not always result in a higher storage 

modulus (Fig. 7), because molecular and network structural parameters play major roles in the 

final physical properties of the mixtures of formed hydrogels, this explanation was also observed 

by Emami and Soderholm [21].  Similarly, mechanical results are consistent with those of Duchi 

et al. [22], who revealed that the shear storage modulus of gelatin-methacryloyl/ hyaluronic acid 

methacrylate hydrogels had increased from 0.5-70 kPa when LAP photoinitiator concentration 

was increased from 0.005-0.1% [22], although the lowest storage modulus hydrogels could 

achieve the highest shear storage modulus in case prolonging the irradiation time of the photo-

polymerization system.   

Fig. 8    

3.7. Effect of irradiation time on mechanical properties of pullulan-HEMA hydrogels 

During the frequency sweep measurements, the shear storage modulus for each different samples 

have been excelled their loss modulus which indicate that the samples reached to the elastic-solid 

state (i.e. hydrogels). Figure 8 exhibits the prolongation of the irradiation time (10, 30, 60 and 

120 seconds) which has influenced adequately on the final storage modulus of formed hydrogels 



12 
 

with different frequency. However, all samples reached to the plateau quickly indicating the 

polymerization occurred completely even with the shortest irradiation time (10 seconds). 

Furthermore, prolonging the irradiation time could be considered for enhancing the overall of 

hydrogel mechanical properties [23]. The results depicted that the storage modulus sharply 

increased from 1-9 kPa that is probably due to prolonging the irradiation time from 10-120 

seconds. These contributions are reliable with those discussed by Duchi et al. [22], who 

suggested that storage modulus of hydrogels increased sharply from 10-70 kPa due to prolonging 

the irradiation time from 1-10 seconds using LAP photoinitiator. A clear disparity was observed 

in the final storage modulus in Fig. 8 that is probably owing to the formation of new chemical 

links related to crosslinking degree and the chains rearrangement improved by the applied shear 

stress onto the hydrogels. Also, the fast increment in storage modulus is featured by gel 

transition [22, 23]. Meanwhile, the observed gelation time when storage modulus exceeds loss 

modulus is found of a paramount for the understanding the hydrogel network formation and 

morphology of materials. 

Fig. 9  

3.8. Cytotoxicity test  

Toxicity test is regarded as an effective aspect for biomaterials. Ideal biomaterials should not 

release any toxic substances or produces opposite reactions. Figure 9 shows the cell viability of 

tested photoinitiating system ingredients (e.g. CQCOOH photoinitiator, folic acid coinitiator, and 

DPITFB accelerator) and crosslinked pullulan-HEMA hydrogels with two different irradiation 

time for 10 and 60 seconds. The OD of samples obtained from the MTT assay of cells were 

cultured with the extraction media from various types of specimens. As seen, both CQCOOH 

photoinitiator and folic acid coinitiator offered non-toxic effect even with a high concentration in 

comparable media. Unlike, the DPIFFB accelerator exhibited a clear reduction in the percentage 

of cell viability even with the small cultured cells account, referring that in it was toxic to the 

cells. For crosslinked hydrogels, the longtime irradiated hydrogels for 60 seconds showed non-

toxic effect, compared to those irradiated for 10 seconds which showed also a good viability ca. 

85-90%. This observation is probably owing to the short time irradiated hydrogels might result in 

releasing of unconjugated HEMA molecules and unreacted DPITFB specimens which possess a 

relative toxicity toward the viable cells [24]. It would conclude that the photocrosslinked 

hydrogels with a high crosslinking degree through high photoinitiator concentration or long 
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irradiation time was thought non-toxic effect to SW1353, which supports the idea that this 

photoinitiating system is suitable for bone regeneration and dental applications.  

4. Conclusions 

Pullulan-HEMA hydrogels were successfully prepared and crosslinked by photopolymerization 

method using three component-photoinitiating systems based on CQCOOH-folic acid-DPITFB 

under visible light. The crosslinking performances of hydrogels were described by the degree of 

conversion by FTIR analysis and crosslinking density using swelling calculations, as a function 

of variation of both photoinitiator concentration and irradiation time. The final double bond 

conversion of hydrogel could reach to 90% with CQCOOH concentration of 0.25 mol%, and 

then it is deteriorated due to a primary premature radical’s termination reaction with the high 

CQCOOH concentration. Also, it could reach to 98% with hydrogel irradiated for 60 seconds. 

Similarly, the hydrogel network characterization by crosslinking density showed the same trend 

with photoinitiator concentration and the irradiation time. Moreover, the porosity of hydrogel 

surface was decreased significantly with an increase of photoinitiator concentration and 

prolonging the irradiation time, due to increasing of crosslinking density. The storage modulus of 

hydrogels was increased progressively from 0.5- 8 kPa and 0.5-10 kPa, when photoinitiator 

concentration was increased and the irradiation time was prolonged, respectively. The indirect 

cytotoxicity test showed that photoinitiating system ingredients (e.g., CQCOOH and folic acid) 

did not affect cell viability even with using a high concentration. Conversely, DPITFB showed a 

toxic effect on cell viability with using a low concentration greater than 0.1%. The study 

outcomes will thus guide future efforts to modify the system for avoiding toxicity of iodonium 

salt for the purpose enhancing the cell viability of biomaterials, which is one of the foremost 

unsolved challenges that deter progress in tissue engineering. Nevertheless, this novel 

photoinitiating system has the potential to be used as a proper photopolymerization system for 

scaffolds engineering and preparation of dental materials.        
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