
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/116826/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Simpkin, Christopher, Taylor, Ian , Bent, Graham, de Mel, Geeth, Rallapalli, Swati, Ma, Liang and Srivatsa,
Mudhakar 2019. Constructing distributed time-critical applications using cognitive enabled services. Future

Generation Computer Systems 100 , pp. 70-85. 10.1016/j.future.2019.04.010

Publishers page: https://doi.org/10.1016/j.future.2019.04.010

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Constructing Distributed Time-Critical Applications

Using Cognitive Enabled Services

Chris Simpkina, Ian Taylora, Graham A Bentb, Geeth de Melb, Swati
Rallapallic, Liang Mac, Mudhakar Srivatsac

aSchool of Computer Science and Information, Cardiff University, UK
bIBM Research, UK
cIBM Research, USA

Abstract

Time-critical analytics applications are increasingly making use of dis-
tributed service interfaces (e.g., micro-services) that support the rapid con-
struction of new applications by dynamically linking the services into differ-
ent workflow configurations. Traditional service-based applications, in fixed
networks, are typically constructed and managed centrally and assume sta-
ble service endpoints and adequate network connectivity. Constructing and
maintaining such applications in dynamic heterogeneous wireless networked
environments, where limited bandwidth and transient connectivity are com-
monplace, presents significant challenges and makes centralized application
construction and management impossible. In this paper we present an ar-
chitecture which is capable of providing an adaptable and resilient method
for on-demand decentralized construction and management of complex time-
critical applications in such environments. The approach uses a Vector Sym-
bolic Architecture (VSA) to compactly represent an application as a single
semantic vector that encodes the service interfaces, workflow, and the time-
critical constraints required. By extending existing services interfaces, with
a simple cognitive layer that can interpret and exchange the vectors, we show
how the required services can be dynamically discovered and interconnected
in a completely decentralized manner. We demonstrate the viability of this
approach by using a VSA to encode various time-critical data analytics work-
flows. We show that these vectors can be used to dynamically construct and
run applications using services that are distributed across an emulated Mo-
bile Ad-Hoc Wireless Network (MANET). Scalability is demonstrated via an
empirical evaluation.

Keywords: Decentralized Workflows, Quality of Service, Quality of
Experience, Vector Symbolic Architectures, Distributed Fitness Functions,

Preprint submitted to Special Issue of FGCS March 15, 2019

Time-critical Applications, Dynamic Wireless Networks

1. Introduction

Time-critical analytics applications are increasingly making use of dis-
tributed service interfaces (e.g., micro-services) that support the rapid con-
struction of new applications by dynamically linking the services into differ-
ent workflow configurations. In traditional Service Oriented Architectures
(SOA), operating over fixed networks, the underlying TCP/IP backbone
guarantees sufficiently stable service endpoints and connectivity to facilitate
the construction and management of multi-service applications using central-
ized management schemes. Using such schemes also supports the dominant
approach to service discovery and matching, which is based on the use of
centralised service registries to provide a catalogue of services, using for-
mal ontologies to facilitate service definition and service matching. Such
approaches, while often very effective, incur overhead in terms of knowledge
engineering effort required to create them [1]. For time-critical applications,
centralized control also allows multiple workflow tasks to be load-balanced,
scaled, and optimized across multiple heterogeneous compute resources so
that their Quality of Service (QoS) and Quality of Experience (QoE) re-
quirements can be fulfilled.

In decentralized environments, such as Mobile Ad Hoc Wireless Networks
(MANETs) [2–4], constructing and running applications that support group-
oriented collaborative applications (e.g., multi-user chats) or distributed an-
alytics [5, 6], introduces a much more diverse set of requirements. In such
environments end point stability and connectivity remain limited and tran-
sient and it becomes impractical, if not impossible, to support centralised
service registries and to manage workflows executing at the edge. A similar
requirement is emerging for the Internet of Things (IOT) where although
more compute resource and potentially useful services are available at the
edge of networks, both on traditional mobile devices and emerging IoT de-
vices, these cannot be utilised because they cannot easily be connected to-
gether without some centralized, usually cloud based, control. Time-critical
applications operating in such environments introduce further complexity re-
quiring a capability for applications to rapidly reconfigure themselves in the
event of change, so that their QoS/QoE requirements can be satisfied. There
is therefore a need for new methods that can enable application construction
and workflow orchestration without the need for a central point of control.

Micro-services are a variant of the SOA architectural style that struc-
tures an application as a collection of loosely coupled services that can be

2

linked in different workflow configurations. They overcome the complex-
ity of ontology-based service composition by having much simpler interfaces
(usually RESTful interfaces) which enables these services to be developed
by multiple parties without rigid standardisation of service description tem-
plates. However, the lack of a formal template means that a mechanism
is required that will allow semantic matching/discovery of the appropriate
micro-services required for a given application. This mechanism needs to
be compact, in order to minimize bandwidth requirements, and flexible, in
order to minimize the knowledge engineering overhead required to generate
the service descriptions. In this paper we describe a method by which these
objectives can be achieved using the capabilities of Vector Symbolic Archi-
tecture (VSA) representations.

Vector Symbolic Architectures (VSAs) [7–10] are a family of bio-inspired
methods for representing and manipulating concepts and their meanings in a
high-dimensional vector space. They are a form of distributed representation
that enables large volumes of data to be compressed into a fixed size feature
vector in a way that captures associations and similarities as well as enabling
semantic relationships between data to be built up. Such vector representa-
tions were originally proposed by Hinton [11] who identified that they have
recursive binding properties that allow for higher level semantic vector rep-
resentations to be formulated from, and in the same format as, their lower
level semantic vector components. As such they are said to be semantically
self-describing. Eliasmith coined the phrase semantic pointer [12] for such a
feature vector since it acts as both a semantic description of the concept,
which can be manipulated directly, as well as a means of retrieving or ac-
cessing the sub-feature vectors from which it was built, i.e., it is a ’pointer’
to its sub-features’. Vector unbinding provides a means of retrieving the
sub-feature vectors from which it was built.

VSAs are also capable of supporting a large range of cognitive tasks such
as; (a) Semantic composition and matching; (b) Representing meaning and
order; (c) Analogical mapping; (d) and Logical reasoning. They are highly
resilient to noise and they have neurologically plausible analogues which may
be exploited in future distributed cognitive architectures. Consequentially
they have been used in natural language processing [13–15] and cognitive
modeling [12, 16].

Our hypothesis is that a Vector Symbolic Architecture can be used to de-
fine a rich and yet compact encoding that will enable the representation of:
service descriptions; decentralized service and workflow discovery; distributed
workflow execution. This will enable the ability to perform semantic match-
making and reasoning on service descriptions and service compositions (i.e.,

3

workflows).
In this paper we extend the approach taken in [17] and show how binary

VSAs can be used to achieve the following:

• Scaling through recursive binding (chunking): To address scala-
bility, we extend VSAs using a hierarchical vector binding scheme that
is capable of representing multiple levels of semantic abstraction (work-
flow and sub-workflows/branches) into a single vector. We demonstrate
empirically, that this scheme can scale to tens of thousands of vectors
while maintaining semantic matching, which is adequate for represent-
ing most workflows.

• Encoding workflows: We discuss and describe how VSA vectors in
the form of role-filler pairs can be used to successfully encode both func-
tional and QoS/QoE components of service descriptions. In addition
we show how such service descriptions can be encoded via chunking to
encode very large sequences of services.

• Representing workflow primitives: We extend the encoding scheme
to support directed acyclic graph (DAG) workflows having one-to-
many, many-to-many, and many-to-one connections.

• Distributed discovery and orchestration: We show how our VSA
encoding scheme can be used for distributed discovery and orchestra-
tion of complex workflows. Workflow vectors are multicast to the net-
work and participating services, extended with a simple cognitive layer
that can interpret and exchange the vectors, compute their own com-
patibility and offer themselves up for participation in the workflow. We
show how a delayed response mechanism, based on the degree of seman-
tic match, can be used for selection of the best available micro-service
for a particular workflow step based on both functional and QoS/QoE
requirements while minimizing the bandwidth required for negotiation
and selection of such.

The rest of the paper is structured as follows: Section 2 describes re-
lated work on QoS and QoE, time-critical systems and workflows; Section 3
presents an introduction to VSA mathematical operations and VSA struc-
tures; Section 4 describes and discuses how VSA can be used to build seman-
tic representations of services and their QoS; Section 5 outlines how VSA can
encode complex workflows and explains how decentralized workflow execu-
tion is performed; Section 6 describes an architecture for adding a cognitive
service layer to existing services and Section 7 discusses the implementation

4

details of the architecture; Section 8 describes the test-cases used to evalu-
ate of our VSA workflow architecture; Section 9 describes the outcome of the
test-case evaluation; Section 10 details an empirical experiment showing that
the binding method supports semantic comparison of high-level workflow vec-
tors containing many thousands of sub-feature vectors; Finally, Section 11
concludes with a short summary and a discussion of the future directions of
this research.

2. Related Work

2.1. Service Matchmaking and Optimization

With the proliferation of Web service applications, the need for meth-
ods to allow consumers to differentiate among providers of Web services was
needed. The approaches adopted generally have involved identifying metrics
relating to a service provider’s claimed Quality of Service (QoS), and from a
consumer’s point of view, their subjective Quality of Experience (QoE) [18].
General QoS metrics such as Number of Processors, Memory size, Time-to-
Execute, and Reliability (up-time) help consumers make informed decisions.
For eCommerce environments, QoS metrics, such as Cost of Service, Com-
pensation Rate, and Penalty Rate are considered paramount because they
directly affect a consumer’s bottom line [18, 19].

QoE metrics such as Service-Ranking are more difficult to quantify and
collect since they are metrics measured from the consumers’ perspective and
are often subjective. In transient edge environments, the lack of a queryable
central repository for collecting such metrics makes these ‘traditional’ QoE
metrics difficult to conceptualize and so we focus mainly on supporting QoS
metrics in this paper. However, we discuss the idea that repeated successful
participation in a distributed workflow by a component service may be a
useful alternate analog of QoE in edge environments.

The majority of existing time-critical systems store such QoS and QoE
attributes in centralized repositories that require a stable endpoint and typi-
cally offer matchmaking and optimization algorithms which are also managed
centrally. As an example, the ATLAS experiment at CERN uses the TAG
Service Catalog to collect QoS and QoE metrics from the various searches
and data retrieval services sites [20]. A formal ontology is used to define
the ATLAS QoS and QoE metrics and a multi-objective optimization algo-
rithm is used with those metrics to resolve any conflicting requirements and
to enable distributed service load balancing to be achieved [21]. In [19], an
algorithm for normalising multiple QoS, QoE metrics into a single value is
described. The individual metrics along with the normalised QoS and QoE

5

score are published in a central registry. Both [19] and [21] rely on a such
centralized view for the QoS and QoE calculations, however time critical ser-
vices operating in a MANET type environment must determine their utility
based solely on local information. This requires new methods for computing
similar normalized QoS and QoE metrics from local knowledge.

2.2. Time-Critical Systems

Time-critical systems generally rely on a global view and central manage-
ment. For example, ARCADIA [22] offers centrally managed multi-infrastructure
deployment. MODAClouds [23] enables the development of time-critical
cloud applications but does not support software defined networking. How-
ever, SWITCH—the Software Workbench for Interactive, Time-Critical and
Highly self-adaptive applications—provides a full stack solution to support
the entire lifecycle of time-critical applications, and associated QoS and QoE
constraints. SWITCH provides a Web programming workbench that can
be used to orchestrate an application as a set of components and connec-
tions that specify QoS and QoE constraints, along with planning and run-
time monitoring engines that can deploy cloud applications. It also enables
runtime application reconfigurability in order to adapt to changing condi-
tions. SWITCH is designed for cloud environments and provides a central-
ized coordinator for the deployment, but has a decentralized architecture for
monitoring, with one monitoring component being deployed per application.
SWITCH offers an interchange format (i.e., TOSCA) that is similar to our
VSA model in that it provides a single format for storing application depen-
dencies, and QoS and QoE attributes for passing around between the various
parts of the system; however, it differs from VSA because it is a centralized
model with reliance on a TCP-based infrastructures and it does not support
semantic matching capabilities.

2.3. Workflows

Workflows provide a robust means for describing applications consisting
of control and data dependencies along with the logical reasoning necessary
for distributed execution. For fixed networks, there have been a wide va-
riety of workflow systems developed [24–33]. A scientific workflow is a set
of interrelated computational and data-handling tasks designed to achieve
a specific goal. It is often used to automate processes which are frequently
executed, or to formalize and standardize processes. On the other hand,
on-demand distributed analytics workflows for general collaborative environ-
ments need spontaneous discovery of multiple distributed services without
central control [6]. Applying the current state-of-the-art workflow research

6

to such dynamic environments is impractical, if not impossible, due to the
difficulty in maintaining a stable endpoint for a service manager in the face
of variable network connectivity.

The authors of the decentralized workflow system—Newt—have observed
similar technical challenges [34]; Newt addresses such issues for dynamic
heterogeneous wireless networks. Newt is capable of processing distributed
complex causal processing and interactions—in [34], the authors demonstrate
this by an orchestration of William Shakespeare’s play, Hamlet, constructed
as a decentralized workflow, in which the individual actors are services that
are distributed across a wireless network and converse by messages commu-
nicated between one actor and another as the play progresses. Our work
differs because Newt does not provide discovery or semantic matchmaking
capabilities, and cannot support QoS and QoE to support the coordination
of time-critical cooperative workflows. In Section 8.1, we use the Hamlet
play to compare and contrast our approach.

3. Vector Symbolic Architecture, Basic Operations

VSAs use hyper-dimensional vector spaces in which the vectors can be
real-valued, such as in Plate’s Holographic Reduced Representations (HRR) [7],
typically having N dimensions (512 ≤ N < 2048), or they can be large binary
vectors, such as Pentti Kanerva’s Binary Spatter Codes (BSC) [9], typically
having N ≥ 10, 000. For the work here, we have chosen to use Kanerva’s
BSC but we note that most of the equations and operations discussed should
also be compatible with HRRs [16].

Typically, when using BSC, a basic set of symbols (e.g., an alphabet) are
each assigned a fixed, randomly generated hyper-dimensional binary vector.
Due to the high dimensionality of the vectors the basic symbol vectors are
uncorrelated to each other with a very high probability. Hence, they are
said to be atomic vector symbols [9]. Vector superposition is then used to
build new vectors that represent higher level concepts (e.g., words) and these
vectors in turn can be used to recursively build still higher level concepts (e.g.,
sentences, paragraphs, chapters...). These higher level concept vectors can be
compared for similarity using a suitable distance measure such as Normalised
Hamming Distance (HD).

HD is defined as the number of bit positions in which two vectors differ,
divided by the dimension N of the vector. When setting bits randomly, the
probability of any particular bit being set to a 1 or 0 is 0.5; hence, when
generating very large random vectors, the result will be, approximately, an
equal, 50/50, split of 1s and 0s distributed in a random pattern across the

7

vector. Thus, when comparing any two such randomly generated vectors,
the expected HD will be HD ≈ 0.5. Indeed, for 10kbit binary vectors, the
probability of two randomly generated vectors having a HD closer than 0.47
(i.e., differing in only 4700 bit positions instead of approximately 5000) is
less than 1 in 109 [9, page 143]. For the same reason; atomic vectors can
be generated as needed, on the fly, without fear that the newly generated
random vector will be mathematically similar to any existing vector in the
vector space. Further, by implication, when using HD on BSC to test for
similarity, a threshold of 0.47 or lower implies a match has been detected
with a probability of error ≤ 10−9. A threshold of 0.476 or lower implies a
match with a probability of error of ≤ 10−6. Thus, in our experiments, we
used 0.47 as the threshold.

For BSCs, superposition is archived using bitwise majority voting, a form
of vector addition [9]. Simply put, for any particular column of bits in the
sum, the majority wins; ties are broken randomly. Mathematically, when
summing n vectors V , for any bit position i, set the corresponding output
bit Xi as follows,

X[i] =



1, if (
n∑

j=1

Vj[i])/n > 0.5

0, if (
n∑

j=1

Vj[i])/n < 0.5

random, if (
n∑

j=1

Vj[i])/n = 0.5

(1)

The resulting vector is of equal size to its sub-feature vectors and represents
the lossy superposition of these components such that each vector element in
the result participates in the representation of many entities, and each entity
is represented collectively by many elements of the resultant vector [16].

If two high level concept vectors contain a number of similar sub-features,
such vectors are said to be semantically similar, for example, we can create
compound objects analogous to data structures as follows:

Person1v = Johnv + Charlesv + 55yrsv + T2Diabeticv

Person2v = Lucyv + Charlesv + 55yrsv + T2Diabeticv

Person3v = Gregv + Charlesv + 34yrsv + T2Diabeticv

where + is defined as the bitwise majority vote operator.

8

HD can be used to compare such vectors without unpacking or decoding the
sub-features. Using HD to compare Person1v

1 with Person2v will give a match
since they have 3 common sub-features. Also, Person1v and Person2v are more
similar to each other than they are to Person3v. An issue arises, however,
when using superposition to build compound vectors in this way because
such compound vectors behave as an unordered bag of features. Thus, if we
have,

Person4v = Charlesv + Smithv + 55yrsv + T2Diabeticv

Then, Person4v would be equally similar to Person1v as is Person2v despite
the obvious difference in the record.

In order to resolve such issues, VSAs employ a binding operator that
allows vector values such as Charlesv and 55yearsv to be associated with a
particular field name, or role, within the data structure; here we are using
field name in the conventional sense used for data structures—i.e., it is the
name of a subfield within a data structure. Role is an alternate description
of the same and is more easily understood as a conventional variable name.
For example, the variable deposit amount might play the role of dollars being
deposited in a banking transaction program.

When an atomic role vector is bound to a vector value this results in
a role-filler pair which is analogous to variable assignment in conventional
programming. For example, the statement deposit amount = 300 is said
to bind the value 300 to the variable deposit amount. In a similar way,
feature values such as Charlesv can be bound to a role vector and detected
or extracted from the role-filler pair vector using an inverse binding operator.
Bitwise XOR is used for both binding and unbinding with BSC because it is
its own inverse—i.e., BSC is commutative and distributive over superposition
as well as being invertible [9, page 147]. This means that both roles and
fillers can be retrieved from a role-filler pair without any loss. For example,
if Z = X · A then X · Z = X · (X · A) = X ·X · A = A since X ·X = 0 (i.e.,
the zero vector) where ′·′ represents the bitwise XOR operator. Similarly,
A · Z = X.

Due to the distributive property the same method can be used to test for
sub-feature vectors embedded in a compound vector as follows:

Z = X ·A + Y ·B (2)

X · Z = X · (X ·A + Y ·B) = X ·X ·A + X · Y ·B (3)

X · Z = A + X · Y ·B (4)

1Throughout this text, a symbol having suffix v (Xv) depicts a vector that represents
a value; a symbol having suffix r (Yr) represents a known atomic, unique, role vector.

9

Examination of eq. (4) reveals that vector A has been exposed, thus, if
we perform HD(X · Z,A) we will get a match. The second term X · Y ·B is
considered noise because X ·Y ·B is not in our known vocabulary of features
or symbols.

When a role and value are bound together this is equivalent to performing
a mapping or permutation of a vector’s value elements within the hyper-
dimensional space so that the new vector produced is uncorrelated to both
the role and filler vectors. For example, if V = R ·A and W = R ·B then R,
A and B will have no similarity to V or W . However, comparing V with W

will produce the same match value as comparing A with B. In other words, if
A is closely similar to B then V will be closely similar to W because binding
preserves distance within the hyper-dimensional space [9, page 147].

We note that binding with atomic role vectors can be used as a method of
hiding and separating values within a compound vector whilst maintaining
the comparability between compound vectors. This is an important property
and can be used to encode position and temporal information about sub-
feature vectors within a compound vector. It also explains why we can state
that X · Y · B from eq. (4) above will not match to any known symbol,
however, note that we can get back to B from X ·Y ·B by simply performing
the appropriate XOR—i.e., B = ((X · Y ·B) ·X) · Y .

We can now rephrase our person record in order to differentiate sub-
features within the record, for example, we can formulate Person1v as:

Person1v = FNr ·Johnv+SNr ·Charlesv+Ager ·55yearsv+Healthr ·T2Diabeticv

This clearly resolves the incorrect matching between Person1v and Person2v

with Person4v. To test Person1v for the surname Charlesv we perform,

HD(SNr · Person1v, Charlesv) (5)

For 10kbit vectors, if the result of eq. (5) is less than 0.47 then the prob-
ability of Charlesv being detected in error is less than 1 in 109 [9, page
143]. If our person record is distributed over a network we could transmit
or multicast the request vector Z = SNr ·Charlesv + Ager · 55yearsv to the
network. Any listening distributed micro-service, or node in a Parallel Dis-
tributed Processing network, having person records containing the surname
Charlesv and age 55yearsv can check for a match and respond or become
activated.

Since binding and superposition are such simple operations, we note that
a key advantage of this approach is that complex representations of services
can be built using very simple knowledge engineering approaches as described
in Section 4. Further, simultaneous comparisons of complex objects are re-
duced to a single Hamming Distance calculation which greatly simplifies

10

service discovery/match making as compared to traditional ontology based
approaches.

4. Building Semantic Vector Representations of Services and QoS

Having shown that we can use VSAs to represent data structures, we now
consider how to represent service descriptions and their corresponding QoS
as symbolic vectors. Reviewing that Xr represents an atomic role vector and
Yv a value vector and that Xr ·Yv is a role-filler pair that binds the category
Xr to the filler value Yv and enables later matching and retrieval of values
by specific categories, our current scheme employs the following format:

Zx = Servr · Servv + Resourcer ·ResPv + QoSr ·QoSv (6)

where
• Zx is the resultant composite service vector;
• Servr · Servv is the vector representation of the functional description

of the service;
• Resourcer ·ResPv is a vector embedded into a request that points to any

needed external resources. This is not part of a service’s self-description
but allows a matching service to locate any external resources specified
by a requester; and

• QoSr ·QoSv is a vector representing either the requester’s QoS require-
ments or the current QoS value for a specific service.

4.0.1. Building the Description Vector

Servv is itself comprised of symbolic vectors that semantically describe
the essential elements of a service, in terms of role and filler pairs that are
needed to find a match. To illustrate how this is achieved we use an exam-
ple of relatively simple service description comprising service name, inputs,
outputs, and a functional description of the service, for example:

Servv = Inputsr · Inpv + Namer ·Namev + Descr ·Descv + Outputsr · Outv
(7)

Where
• Inputsr · Inpv describes the required inputs;
• Namer ·Namev a vector encoding of the service name;
• Descr ·Descv a vector encoding of the service description 2; and

2Currently, we can build vector representations using JSON or XML description of
services.

11

• Outputsr · Outv describes the required outputs.

Again the filler component of these vectors can be comprised of other sym-
bolic vectors. In considering Inpv, Outv we want to encode these values so
that we get flexible matching. For example, if our service, Zx, has three float
inputs and one bitmap input we might encode this as:

Inpv = Oner · F loatr + Twor · F loatr + Threer · F loatr + Oner ·BitMapr

(8)

Oner, Twor, Threer are atomic role vectors representing numbers. This
simple scheme seems adequate for representing input and output descriptions
because micro-services typically do not have a large number of inputs and
outputs. More complex input and output descriptions can be encoded via
embedding further role-filler pairs. The above vector is a bag representing
the inputs that enables flexible matching. If the input part of a request vector
is encoded as:

InpReqv = Oner · F loatr + Onerv ·BitMapr

then the input description for service Z would constitute a match and pro-
vided that the other sub-features matched sufficiently, including its vector
encoded QoSv, then the service could become activated. Note that a differ-
ent service having exactly one float and bitmap input, would better match
the input specification.

4.0.2. Building the Quality of Service Vector

For QoS, we employ a slightly different encoding scheme. For example,
a QoS metric often has a requirement to meet a certain a minimum or max-
imum value for the metric in question. An example of a static QoS metric
might be that the service must possess a minimum of four CPU cores. A
simple way to encode minimum or maximums, such that they are semanti-
cally comparable is in the form of a bag of acceptable values. In the number
of cores example, to specify four or more cores we can encode:

CpuCoresr · (Fourr + Fiver + Sixr + . . . + MaxCoresr)

Therefore, an individual service that encodes its CpuCores QoS as CpuCoresr·
Fourr or CpuCoresr · Eightr would be a match. For time-critical dis-
tributed applications, available compute power might be a better QoS and
could be a normalised value combining number of CPUs and GPUs, mem-
ory, clock-speed along with the current load. In order to facilitate seman-
tic comparisons of such a metric, a service calculating its value would then
quantise it to the nearest higher or lower value depending on if the ex-
pected comparison is a max or min requirement. Dynamic QoS metrics

12

such as battery life percentage or available runtime can also be encoded
in this way. For example, aggregate bandwidth, obtained by each service
actively monitoring its local bandwidth with pings, might be quantised to
(1Kb, 10Kb, 100Kb, 1Mb, 10Mb, 100Mb, 1Gb)/Sec. Such values are then con-
verted to an enumeration thereby allowing us to encode ranges that represent
different underlying values with the same role vectors. Thus, a minimum
bandwidth QoS requirement of, say, 100Mb/sec (100Mb is in 6th position in
the above list) would be encoded as follows:

Bandwidthr · (Sixr + Sevenr)

The above describes our current method for encoding service descriptions
and QoS as BSC vectors. VSA superposition allows us to combine any set
of individual functional and QoS parameters into a bag of features for si-
multaneous comparison and matching enabling a far more flexible approach
than the ontology-style approach. Both [19] and [21] describe methods that
can be used to combine multiple QoS metrics into a single normalised value
that reflects the weighting given to each individual metric. We are currently
investigating how best to encode this type of metric using our VSA repre-
sentation.

5. Describing Workflows using Vector Symbolic Architecture

As discussed in Section 3, VSAs employ two operations—i.e., binding
and superposition. Binding is used to build role-filler pairs which allow sub-
feature vectors to remain separate and identifiable (although hidden) when
bundled into a compound vector via superposition. For BSCs, binding is a
lossless operation, while superposition is lossy. Kleyko [10, Paper B, page
80] supplies a mathematical analysis of the capacity of a single compound
vector such that it can be reliably unbound, i.e., its sub-feature vectors can
be reliably detected within the compound vector. This analysis shows that
for 10kbit binary vectors the upper limit of superposition is 89 sub-vectors.
To encode large workflows with more complex service descriptions we require
a method for combining more vectors into a single vector whilst maintaining
the semantic matching properties.

Chunking is a recursive binding method that combines groups of vectors
into a single compound vector. The resultant vectors are then used as the ba-
sis for further chunking operations, thus, recursively producing a hierarchical
tree structure as shown in Figure 1. Chunking proceeds from the bottom up
so that each node in the tree is a compound vector encapsulating the child
nodes from the level below. Various methods of recursive chunking have

13

been described [7, 9, 10, 16]. However, such methods suffer from limitations
when employed for multilevel recursion: some lose their semantic matching
ability even if only a single term differs, others cannot maintain separation
of sub-features for higher level compound vectors when lower level chunks
contain the same vectors [9, page 148] [7, pages 61, 72, 74–para2] [10, En-
coding Sequences, page 14]. We addressed these issues and describe a novel
recursive encoding scheme that provides semantic matching at each level by
combining two different methods of permuting vectors.

C

B1 B2 B3 B4

A1 A2 A3 A4

+ + +

+ + +

Figure 1. Vector Chunk Tree, chunking proceeds from the bottom up

In our scheme, the terminal nodes are worker services, the higher level
nodes are concepts used to apply grouping to parts of the workflow. The
chunking process occurs from the bottom up so that the bottom level nodes,
{A1, A2, A3, . . .} are combined via a functional partitioning scheme into a
concept node, e.g., B1. These higher level nodes—referred to as clean-up
memory [7, 9, 10]—are still services but they simply provide a proxy to the
worker services to be unbounded and executed; thus, they are typically co-
located with the first service of the sub-sequence they represent, e.g., B1

can reside on the same compute node as the A1 service and hence, when B1

becomes activated, there is no need for a network transmission in order for
B1 to activate its first worker service, A1. In a centralized system, Clean-
up memory is typically implemented as an auto-associative memory. For
our distributed workflow system, clean-up memory is implemented by the
services themselves, which are distributed throughout the network, matching
and resolving to their own vector representations.

Recchia and Kanerva point out that for large random vectors, any map-
ping that permutes the elements can be used as a binding operator, includ-
ing cyclic-shift [15]. The encoding scheme shown in eq. (9) employs both
XOR and cyclic-shift binding to enable recursive bindings capable of encod-

14

ing many thousands of sub-feature vectors even when there are repetitions
and similarities between sub-features:

Zx =

cx∑
i=1

Zi
i ·

i−1∏
j=0

p0
j + StopV ec ·

i∏
j=0

p0
j (9)

Omitting StopV ec for readability, this expands to,

Zx = p0
0 · Z

1
1 + p0

0 · p
0
1 · Z

2
2 + p0

0 · p
0
1 · p

0
2 · Z

3
3 + . . . (10)

Where
• · is defined as the XOR operator;
• + is defined as the Bitwise Majority Vote/Add operator;
• The exponentiation operator is redefined to mean cyclic-shift—i.e., pos-

itive exponents mean Cshift right, negative exponents mean Cshift left.
Note that cyclic shift is key to the recursive binding scheme since it
distributes over + (i.e., bitwise majority addition) and · (i.e., XOR)
hence it automatically promotes its contents into a new part of the
hyper-dimensional space; thus, keeping levels in the chunk hierarchy
separate;

• Zx is the next highest semantic chunk item containing a superposition
of x sub-feature vectors. Zx chunks can be combined using eq. (9) into
higher level chunks. For example, Zx might be the superposition of
B1 = {A1, A2, A3, . . .} or C = {B1, B2, B3, . . .};

• {Z1, Z2, Z3, . . . Zn} are the sub-feature vectors being combined for the
individual nodes of Figure 1. Each Zn itself can be a compound vec-
tor representing a sub-workflow or a complex vector description for an
individual service step, built using the methods described in Section 4;

• p0, p1, p2, . . . are a set of known atomic role vectors used to define the
current position or step in the workflow.

• cx is the chunk size of vector Zx, i.e., the number of sub-feature vectors
being combined; and

• StopV ec is a role vector owned by each Zx that enables it to detected
when all of the steps in its (sub)workflow have been executed.

5.1. Ordered Unbinding of High-level Concept Vectors

Equation (9) is used recursively to build a workflow request, conceptu-
ally creating a hierarchical chunk tree as shown in Figure 1. The result-
ing output is a set of VSA vectors representing the non-terminal nodes,
{C,B1, B2, B3, . . .}, each of which is a single VSA vector, Zx that is itself a
compound vector representing the ordered sequence of its own children.

15

C = p0
0 ·B

1
1 + p0

0 · p
0
1 ·B

2
2 + p0

0 · p
0
1 · p

0
2 ·B

3
3 + ...B4

4 + p0
0 · p

0
1 · p

0
2 · p

0
3 · p

0
4 · C

5
StopV ec

B1 = p0
0 ·A

1
1 + p0

0 · p
0
1 ·A

2
2 + p0

0 · p
0
1 · p

0
2 ·A

3
3 + ...A4

4 + p0
0 · p

0
1 · p

0
2 · p

0
3 · p

0
4 ·B15

StopV ec

B2 = p0
0 ·A

1
5 + p0

0 · p
0
1 ·A

2
6 + p0

0 · p
0
1 · p

0
2 ·A

3
7 + ...A4

8 + p0
0 · p

0
1 · p

0
2 · p

0
3 · p

0
4 ·B25

StopV ec

B3 = ... etc

The reason multiple p vectors are XOR chained together to define a single
position within the workflow is due to the distributive property of XOR which
operates on every term for each unbinding. Thus, the use of the chained
p vectors when constructing the workflow vector allows for easier iterative
unbinding at execution time using eq. (13), discussed below. Note that the
distributive affect of XOR can also be seen in how the T vector becomes
permuted during unbinding, see eq. (12) and eq. (14).

The generalized version of the concept vectors, {C,B1, B2, . . .}, is shown
in eq. (10). Note that, in this form every sub-step Zn is permuted by at least
one p vector which effectively hides each Zn (the p vector permutation en-
sures that each combined roll-filler pair is orthogonal to the ’self-description’
vectors built by each VSA service listening for work on the network). The
workflow is discovered and orchestrated on the distributed services by, essen-
tially, repeatedly unbinding the workflow vector, using eq. (11) or eq. (13),
before retransmitting it to the network.

Referring to Figure 1, control first passes down the chunk tree, i.e., from
C → B1 → A1 using eq. (11), before traversing horizontally, A1 → A2 →
A3 → A4 → B1 StopV ec) via eq. (13). At this point B1 sees its StopV ec

and employs eq. (13) to activate B2 which then activates its sub-workflow
via eq. (11) and so forth.

Starting a (sub)workflow:

Z′1 = (p0
0.(T + Zx))

-1
(11)

Z′1 = p-1
0 .T -1 + Z0

1 + p-1
1 .Z1

2 + p-1
1 .p-1

2 .Z2
3+... (12)

Traversing horizontally:

Z′n+1 = (p−n
n . Z′n)

−1
(13)

Z′2 = (p-1
1 .Z′1)

-1
= p-1

1 .p-2
0 .T -2 + p-1

1 .Z-1
1 + Z0

2 + p-2
2 .Z1

3+ (14)

When starting a (sub)workflow using eq. (11) notice that Z1 has been
exposed, as shown in eq. (12). That is, Z′1 is effectively a noisy copy of
the currently required workflow step, Z1, while at the same time it is also
a ‘masked’ description of the full (sub)workflow request. Thus, listening
services can only match to Z′1 if they are semantically similar to Z1. Note

16

that, the act of matching gives a service no other information; for example,
it cannot deduce by matching alone whether the match occurred at step 1 or
step 30 of the workflow. Hence, the introduction of the T vector in eq. (11)
which is used to enable calculation of a node’s position within the workflow.

The T vector is a known atomic role vector. It is added to a high level
node’s, clean, (sub)workflow vector, Zx, before the node uses eq. (13) to ex-
pose its first workflow step for transmission to the network. We note that,
eq. (11) is just a special version of eq. (13). Notice in eq. (12) and eq. (14),
how the T vector becomes permuted in a predictable way. Once the cur-
rently active service has completed its own workflow step it uses the current
permutation of the T vector to calculate its position n within the received
request vector. It can then activate the next workflow step in the request by
repeating the unbind operation on the request vector, generalized in eq. (13).
Thus, the workflow proceeds in a completely decentralized manner whereby
each node is activated when its preceding node, or parent, unbinds the cur-
rently active chunk vector, creating the next request vector, which it then
multicasts to the network for matching and processing.

Alternative mechanisms for determining the position of the service are
possible but these require each service to recursively unbind all vectors that it
receives to determine if it is part of the requested workflow. This significantly
increases the work that each service has to perform which is undesirable.
However, such a mechanisms may offer some advantages as discussed in the
following section.

5.2. Pre-provisoning and Learning to Get Ready

From eq. (13) we see that each workflow step is exposed by iterative
application of p vector permutations. Non-matching services can use this
method to peek a vector enabling anticipatory behavior such as the pre-
provisioning of a large data-set or changing a device’s physical position (e.g.,
drones). Obviously, services can peek multiple steps into the future and could
learn how early to start pre-provisioning. This ability to anticipate could be
used to perform more complex, on-line, utility optimization learning. For
example, a drone monitoring multiple workflows may be able to understand
that it will be needed in 10 minutes to perform a low priority task and in 15
minutes for a high priority task. Under these circumstances it may choose
not to accept the low priority task.

5.3. Alternate to QoE for Distributed Transient Environments

As can be seen in eq. (12) and eq. (14), when a particular workflow step is
exposed for discovery and execution by unbinding, it is ‘surrounded by’ (i.e.

17

it is in superposition with) the rest of the workflow steps which, as can be
seen, are permuted in a specific way depending on the position of currently
exposed/active service in the workflow. We can think of this as the current
permutation of the workflow vector and it constitutes a context for the work-
flow step currently in focus. We are investigating the use of these contexts as
an analog of QoE. The idea is that when a services successfully participates
in a workflow it will remember the permutation state of the workflow vector
via which it was activated. If a particular service successfully participates
in the same workflow repeatedly; these workflow context memories can be
used to increase the particular service’s utility with respect to the specific
workflow. We suggest that this might be an interesting analog of traditional
QoE measures which we believe these will be almost impossible to measure
and collect in distributed transient environments. The idea is that a service
that often helps complete a particular workflow should be seen as a more
valuable partner by the other service steps, hence an analog of QoE.

6. Decentralized Architecture for Time-Critical Applications

This section describes an architecture that enables linear or Directed

Figure 2. Overview of the components
for time-critical framework.

Acyclic Graph (DAG) workflows, com-
prising multiple interconnected services,
to be configured with no central point
of control. As discussed in Sections 4
and 5, a workflow can be constructed
as a composite symbolic vector that is
itself built from the symbolic vectors
that describe the component services in
terms of capability and utility, and from
symbolic vectors that describe the links
between the component services. In
Section 8 we describe how more com-
plex workflows are represented. The de-
centralized architecture requires mech-
anisms for the construction and trans-
mission of these vectors and for services
to be ’cognitively enabled, so that they
can participate in any required work-
flow. Our architectural approach to this
challenge is achieved by adding to exist-
ing component services a cognitive layer, using the symbolic vector repre-

18

sentation, that enables services to be self-describing and to self-organize into
the requested distributed workflow.

At a high level, the architecture supports the automatic generation of an
application vector (i.e. services and workflow) from an existing service/work-
flow description (e.g., JSON or XML). To construct the distributed applica-
tion, an initiator service unbinds and transmits the application vector from
anywhere in the network (e.g., using broadcast or multicast). The cognitive
layer for each of the distributed service generates and maintains its own de-
scription vector based on the local service description and its current QoS
(i.e. services are dynamically self-describing). The services then listen for the
transmitted application vectors and reactively respond by performing logical
vector operations on the received vectors. If the service vector semantically
matches a received vector, it is a potential match but there may be other
similar services that also match. To ensure that the best service is selected,
to minimise the number of services that respond, the architecture makes use
of a delayed response timer mechanism. This ensures that services with the
highest utility respond first, suppressing the responses of alternative services
with a lower utility. To avoid problems such as race conditions where more
than one candidate service responds a local arbitration mechanism is used to
select the service with highest utility. If a service is selected, it may perform
some local function and when completed it unbinds the received vector and
re-transmits. This will result in other services reactively responding to the
new unbound vector. In this way control is passed around the network of
distributed services.

To achieve these vector comparison and exchange objectives, the cognitive
service layer comprises the following components:

1. Message Listener and buffer for received symbolic vector messages;
2. Symbolic Vector Memory to store vectors required for various log-

ical operations;
3. Comparator to compute semantic similarity between symbolic vec-

tors;
4. VSA Reasoner to perform logical operations on the symbolic vectors;
5. Delay Response Timer to control if and when new symbolic vectors

are to be transmitted; and
6. Message Transmitter to transmit new symbolic vectors.

These components are described in the next subsections and the relation-
ship of the components are given in Figure 2.

19

6.1. Message Listener and buffer

A cognitive enabled service has a capability to listen to the transmission
of vectors from other services (e.g., in a multicast group) and store these
messages into a temporary buffer. The decision to store a message in the
buffer may require the received message to be compared with one or more
vectors in the VSA memory using the Comparator component. An example
of this would be the typical case of a service that only responds to semantic
vectors that semantically match the specific service description vector.

6.2. Symbolic Vector Memory

The Symbolic Vector Memory is used to store vectors that are to be
used for any operation required by the cognitive layer of the specific service.
This would always include the service description vector and would typically
include specific vectors used to support vector binding and unbinding oper-
ations or to support ‘clean-up memory’ that we describe in Section 5.1. In
other examples the memory is used to store application vectors which when
received on previous occasions resulted in the service being selected. These
vectors essentially represent the context in which the service was historically
invoked and these can be used to increase the utility (i.e. QoE) of the service
if the same workflow is requested at a later time.

6.3. Comparator

To semantically compare vectors, we use a Hamming distance measure
and declare a match if the Hamming distance is within particular ranges. The
comparator uses the computed Hamming distance to determine an appropri-
ate time delay based on the degree of the semantic match. The semantic
match time delay, tsm, is a quantized value in steps of ∆t (usually 10 levels)
where a perfect match produces no delay and a marginal match near the
Hamming threshold produces the maximum delay say 10 x ∆t.

6.4. VSA Reasoner

The VSA Reasoner performs various operations on received symbolic vec-
tors that exceed the Hamming threshold. These operations depend on the
type of vector that is received. For example, in the case of receiving an
unbound workflow vector that matches the service name vector, the VSA
reasoner may simply unbind the received vector and pass it to the message
transmit buffer. In other cases, the response to the match may be to trans-
mit a clean version of the noisy vector that was received (clean-up memory).
Additionally, the reasoner can be tasked to ‘peek’ a received workflow vector
and to determine if and when the current service may be called in order to

20

pre-provision the service. This task can also include listening to the progress
of a particular workflow as flow control is passed among the component ser-
vices to ensure that the current service has reached its maximum utility if
and when it is invoked. The VSA Reasoner also includes an important sub
component called the Vector Encoder which is used to compile symbolic vec-
tors that semantically describe the supported service and its current utility.
These vectors can themselves be constructed from other symbolic vectors
using the hierarchical chunking scheme described in eq. (9).

6.5. Delay Response Timer

There may be multiple services that could respond to the same workflow
request. The purpose of the Delay Response Timer is to ensure that only
services with the best symbolic match and hence the highest utility to per-
form the task will multicast a response message thereby saving bandwidth, as
described in 7.2. The use of a time delay to select resources with the highest
utility has previously been used successfully to control the connectivity and
growth of a dynamic distributed database architecture known as the Gaian
Database [35, 36]. How this mechanism operates can be understood from a
simple example of a service that is attempting to offer itself as a candidate to
be included in a requested workflow. To do this, it needs to determine that
it semantically matches the requested service and then be the first match-
ing service to react by transmitting a Response vector. On reception of the
workflow vector the service uses the Comparator to determine its degree of
match and the corresponding time delay tsm. The service must also have a
particular utility to perform the task which may be based on a number of
factors such as available power, the compute platform that it is operating on,
connectivity to other resources required for the task, and so on. The service
uses its utility to compute a second time delay tut which ranges from zero
where there is the highest utility rising to ∆t where the utility is low but
still adequate to compute the task. If the utility is not sufficient then tut
is essentially infinity and the Delay Response Timer will not allow response
vector to be multicast. The Delay Response Timer now computes a total
delay of td = tsm + tut and stores this with the message in the Message
Transmit Buffer.

6.6. Message Transmit Buffer

The Message Transmit Buffer is tasked to transmit any messages stored
in the message buffer after the corresponding time delay period has elapsed.
The proviso is that no other service has transmitted the same message during
the time delay period. Therefore, during the time delay period, the Message

21

Transmit Buffer is compared with the Message Listener Buffer and if there is
a match then the corresponding message is removed from the transmit buffer.

7. Implementation Example

The architecture discussed in the previous section has been implemented
in our VSA platform in Python2. The VSA platform has a modular architec-
ture with several components that are capable of being reused as plugins to
other systems. The platform is used to evaluate and demonstrate how sym-
bolic vectors can be automatically constructed from typical scientific work-
flow representations and how these vectors can then be used to construct, in
a decentralized manner, the required workflow in an emulated wireless net-
work environment into which the cognitively enabled services are randomly
deployed.

• The Workflow Importer component imports a Pegasus workflow
description(DAX) file [37]. This is an, XML format, multi-nested dic-
tionary description of a workflow which details each service node and
its input output resources. The Workflow Importer reads the DAX
file into a python dictionary. It then parses the dictionary and ex-
tracts the job entries to create a list of vectors that represent each
service node in the DAX, the NodeVectors list. Similarly, it traverses
the child section of the DAX producing the EdgeVectors list, a paired
list of vectors representing the parent(output) and child(input) connec-
tions of the workflow. The Workflow Importer passes NodeVectors and
EdgeVectors to the VSA Creator.

• The VSA Creator is used to bind the lists of vectors into a sin-
gle vector, a reduced representation, of the workflow using chunking.
Chunking is performed bottom up so that higher level vectors are pro-
duced as needed. These are recursively rebound until the vector list is
reduced to a single vector value. The NodeVectors list and the EdgeVec-
tors list are combined separately producing two high level vectors, the
RecruitNodes vector and the ConnectNodes vector. The VSA Creator
then binds these two vectors together with the Start vector into a sin-
gle vector representing the entire workflow, the WorkFlow vector. This
WorkFlow vector and all its associated sub-vectors are encapsulated in
a chunk tree object as per Figure 1 which is then then passed to the
VSA executor.

• The VSA Executor flattens the workflow by distributing copies of
all non-terminal chunk vectors into the terminal (bottom level/worker)

22

nodes. Non-terminal nodes are distributed to the first child of a parent
node to decode the first vector in a higher level vector. For robustness,
the VSA Executor can be made to distribute more than one copy of
the cleanup objects into other terminal node objects.

• The Cognitive Layer consists of the following sub-components

– The VSA Reasoner is responsible for unbinding VSA vectors
and depending on the sub-features of what it has received, it acts
accordingly.

– The Comparator is a Hamming distance function that performs
the comparison of vectors to perform the matching.

– Delay Response Time Engine is responsible for calculating the
fitness function and initiates a delay timer, based on the resulting
utility.

• Messaging System which provides the communications interface for
transmitting and listening for vector communications to and from other
nodes, along with internal buffers for synchronization with the other
system components.

• The Logging Component collects metrics as the workflow runs to
feed into external processors. Logging currently collects a trace of the
nodes and edges that are being processed by the workflow.

• The Visualisation Component takes the log output and generates
a DAG layout graph using Graphviz [38].

7.1. Control Operations

The control of the initiation and subsequent passing of flow control be-
tween the different cognitive layers follows a sequence that is the same for
all cognitive layers. The Initiator performs a subset of the tasks of the
cognitive layers to launch and acknowledge the the completion of a workflow
task by performing the following steps: (1) Compile the workflow vector Zx

with a stop vector Sx as the last vector element; (2) Transmit Zx; (3) En-
ter collecting mode and listen for response vectors Rx; (4) If more than one
response, then arbitrate and transmit a continue vector, RxCONT , to one
of the responders ; (5) Listen for stop vector Sx; and (6) On receipt of Sx,
unbind and transmit to initiate the next workflow step at the same semantic
level and then terminate its operation.

The current implementation of the Cognitive Service Layer can op-
erate in one of two modes. In the first or dynamic mode, the workflow is
required to instantiate and run the associated services as the workflow un-
binding progresses. This mode is applicable to linear workflows. In the
second or static mode the vector unbinding is used to gather and connect the

23

services into a workflow configuration that is then initiated to perform the
required task. This is applicable to more complex workflows with branching
and merging requirements. In Section 8.1 and Section 8.2 examples of both
linear and complex workflow use-cases are given.

7.2. Service Selection by Local Arbitration

A major advantage of the VSA approach is the ability to discover and
select services using semantic matching and we have shown that this can
extend beyond simple matches to include measures of real time utility. Ser-
vice selection therefore involves selecting the correct service with the highest
utility or, if the service is not available, suggesting the nearest semantically
matching service. For time critical applications that need to be resilient to
changes in network connectivity robustness can be achieved by distributing
multiple copies of services throughout the communications network. Further,
within the constraints of our target environment—i.e., field operations in very
transient, low bandwidth MANETs— it is critical that we do not use unnec-
essary bandwidth to obtaining an optimal solution if a sub-optimal meets
the requirement. Using our delay-response mechanism largely addresses this
by reducing the number of services that respond, however network latency
sometimes results in situations where multiple services, with a similar se-
mantic match, respond. A method of preventing race conditions in these
circumstances is required. We have termed this process local arbitration. It
is described in Section 7.4, steps 4–8, Note that, while the currently active
service behaves as the final arbiter for services that do send a match response,
the process of local arbitration is actually a distributed process. Matching
services can and do exclude themselves, as described in Section 7.4, steps 6
and 7, without ever transmitting their match response.

In our implementation this is achieved as follows. Using terminology from
eq. (11) and eq. (13), if the currently active service is Z′n, then before trans-
mitting the next service request, it enters match collecting mode in order
to arbitrate matches from all nodes that reply within a tunable window of
time. After the interval expires the highest ranking responder is selected and
a continue message is broadcast by Z′n identifying the winner. Since all com-
munications is multicast, all services see all messages, and consequently the
winning service continues and losing services discontinue. To reduce com-
munication overhead further matching services delay their response by an
interval inversely proportional to their match value as described in Section
6.5. Thus, better matches respond quicker. If a service sees a higher match
value before it has responded then it terminates without sending a reply. Re-
sponse and Continue vectors are encoded using the currently active workflow

24

vector as a tag-id as follows

Responsev = Responser · Z′n + MyIDr · IDv + Matchr ·Matchv (15)

Continuev = Response1v (16)

7.3. Pre-provisioning

Although the current architecture does not support the type of pre-
provisioning described in Section 5.2 it would be possible to add an extra
step into the control operations between step 1 and 2 where on the receipt of
any vector the layer unbinds multiple times to determine if the local service
name is part of the requested workflow. If it is the case, then it can deter-
mine where in the workflow it is going to be called and start to pre-provision.
When at some later time it receives the matching unbound vector its utility
will be higher and it will respond faster, making it more likely that it will be
the winning service.

7.4. Dynamic Workflow Control

In this subsection, we provide a step-by-step account of how a workflow is
instantiated as a result of the unbinding progresses. The steps are as follows:

1. Compile local service vector Zs and utility vector Zu

2. Listen and receive Z′N
3. Compare service component of Z′N (i.e. Z′N · Servr) with local service

vector to compute the semantic match and if there is a match compute
time delay tsm based on the Hamming distance. If no match return to
listening for new vectors.

4. Compare utility component of Z′N (i.e. Z′N · Utilr) with local utility
vector and if a match compute time delay tut based on the Hamming
distance. If no match return to listening for new vectors.

5. Compute response vector RN

6. Listen for RN equivalent vectors from other fitter services for period
td = tsm + tut. If non heard, then transmit RN .

7. Listen for continue vectors RNCONT . If a continue vector for an al-
ternate service is heard, then return to listening for new vectors.

8. If no continuation message is received after time-out period, then return
to listening for new vectors.

9. On receipt of a continue vector perform the local service task. We note
that this may be a null task or a task to run a sub workflow as a new
initiator or simply to perform an action.

10. On completion of the local service task unbind the received vector again
to get Z′N+1 and transmit.

25

11. Listen for responses RN+1

12. Arbitrate the responses and issue continue vector RN+1

13. Return to listening for new vectors.

7.5. Static Workflow Control

In the static workflow mode steps 1–12 from the dynamic mode are per-
formed but rather than terminate at step 13 the cognitive layer computes
new semantic vectors that are a combination of the current service name
Zs and its position in the unbound vector to essentially create a temporary
service name as a parent node or child node—the details of this are given in
Section 8.2. These vectors are stored in the memory and the service listens
for these vectors. On receipt of a the parent or child vector the steps 1–3
and 5–12 are repeated. Step 4 is not required since the name is unique and
only this service can respond. In the case of receiving a child vector the layer
also accesses the IP address in the associated message and unicasts a ‘hello’
message to the associated service to create a connection. The cognitive layer
than either listens for new requests, since its service can simultaneously be
part of multiple workflows, or it waits until the service has completed the
current workflow and then resumes listening for new vectors with its original
service name.

8. Test Cases

In order to demonstrate the applicability and scalability of our encoding
scheme, we provide two use cases where we have applied the VSA system
to both linear and complex workflows. We also provide an experimental
evaluation for the correctness and scalability of the proposed approach.

8.1. Dynamic Mode Linear Workflow

To compare with alternative approaches such as those described in [34],
we have semantically encoded the entire text of Shakespeare’s play Hamlet
into this type of hierarchical semantic vector representation. In this example
the component services at the lowest level are the 4620 unique words of the
play; the semantic level above are the individual stanzas spoken by each char-
acter (not shown in the diagram); the level above this are individual scenes
of the play(e.g., A1S1, A1S2); next are the five acts, A1-A5 and then finally
a single 10kbit vector semantically represents the whole play (Hamlet). A
vector alphabet, a unique vector per alphabet character, was used to build
compound vectors for each word-service in the play. The idea is that each
letter making up a word represents some feature of a service description, i.e.,

26

H1 = (p00.H)-1

A1 A2 A5

A1S1 A1S2 A1S3

w

A1S52

H = T + p00.A11 + p00.p10.A22 + …

A1 = T + p00.A1S11 +
p0.p10.A1S22 + …

(p1-1. A1S1’)-1

(p1-1. H1)-1

A1’=(p00.A1)-1

(p00.A1S1)-1

Hamlet

A1 A2 A5

A1S1 A1S2 A1S3 A1S52

A1S1who’s A1S1where A1S1Ney A1S1 A1S1me A1S1stand

thethere

w w

(p1-1.A1’)-1

StopVec

StopVec

StopVec Ch
un

ki
ng

answer

Figure 3. Hamlet as a serial workflow

analogous to the different input/output/name/descriptions parts of a real
world service. Thus, variable lengths of words and similarity of spellings
represent a mix of different services of different complexity and functional
compatibility. At the next higher level sentences represent a more complex
sub-workflow, and so on. It is important to recognise that the higher level
vectors do semantically represent the recursive binding from all the levels
below. We use this fact to allow alternative, semantically similar, service
compositions to be invoked if the best matching composition is not available.
Figure 3 shows the word service where being invoked as an alternate to there
which was unavailable. Note also, that when where completes it automati-
cally re-synchronises to the original worflow because it simply unbinds the
next step from the original workflow vector it received.

To simulate QoS matching we employed two random variables represent-
ing current load and battery life. From a requesters point the idea was that
current load should be minimized and battery life should be maximized so
that we could try out our min/max idea for encoding QoS as described in
Section 4.0.2. Acceptable ranges of values were randomly chosen when en-
coding service request vectors and each services simulated its own QoS in
the same manner. Thus matching on functional as well as QoS criterion was
tested. Multiple copies of the individual component vectors at each level are
distributed in a communications network as services and by multicasting the
top level vector the whole play is performed in a distributed manner with
29,770 component word services being invoked in the correct order.

27

8.2. Static Mode Complex Workflow

The workflow described in Section 8.1 is a simple linear sequence of services.
In this section we describe how the vector representation can be extended to
more complex workflows such as those created by the Pegasus workflow gen-
erator. Figure 4 shows a typical Pegasus workflow (the Montage Workflow)
having multiple connections between nodes with branching and merging of
connections.

In order to represent such DAGs we modify our linear scheme by employ-
ing a three phase process comprising the following:

1. A recruitment phase, where the required services are discovered, se-
lected and uniquely rename themselves;

2. A connection phase, where the selected services connect themselves
together using the newly generated names; and

3. An atomic start command indicates to the connected services that the
workflow is fully composed and can be started.

Figure 4. Montage Workflow

<job name=”mProjectPP” ... id=”ID00000”> ... </job>
<job name=”mProjectPP” ... id=”ID00001”> ... </job>

:
<job name=”mDiffFit” ... id=”ID00004”> ...</job>
<job name=”mDiffFit” ... id=”ID00005”> ...</job>

:
<child ref=”ID00004”>
<parent ref=”ID00000”/>
<parent ref=”ID00001”/>

</child>
<child ref=”ID00005”>
<parent ref=”ID00000”/>
<parent ref=”ID00001”/>

</child>

Listing 1. ,DAX snippet

The example workflow in Figure 4 can be represented as a symbolic vector
as follows:

WP = p00 ·(RecruitNodes)
1
+p00 ·p10 ·(ConnectNodes)

2
+ p00 ·p10 ·p20 ·Start3

where:
RecruitNodes = p00 · Z1

1 + p00 · p10 · Z2
1 + . . . 00 · p10 · p20 · p30 · Z4

1

+ p00 · p10 · p20 . . . · p40 · Z5
2 . . . + p00 · p10 · p20 . . . · p90 · Z10

2

28

+ p00 · p10 · p20 . . . · p100 · Z11
3 + p00 · p10 · p20 . . . · p110 · Z12

4

+ p00 · p10 · p20 . . . · p120 · Z13
5 + p00 · p10 · p20 . . . · p150 · Z16

5

+ p00 · p10 · p20 . . . · p160 · Z17
6 + p00 · p10 · p20 . . . · p170 · Z18

7

+ p00 · p10 · p20 . . . · p180 · Z19
8 + p00 · p10 · p20 . . . · p190 · Z20

9

ConnectNodes =
(
p00 · P1

1 + p00 · p0
1.C

2
1

)
+
(
p00 · p10 · p20 · P3

2 + p00 · p10 · p20 · p30 · C4
2

)
· · ·

Each Zn in RecruitNodes is the compound vector representation of each
service. In our implementation, the vectors are constructed automatically
from the Pegasus DAX file as per Listing 1. The RecruitNodes is built from
the <job> entries found in the DAX—we refer the reader to Figure 4 and
Listing 1, where there are 4 mProjectPPs(Z1s), 6 mDiffFitt(Z2s) and so
on.

The ConnectNodes vector, built from from the <child> entry section
of the DAX, defines the producer/consumer relationship between nodes. A
node can act as both a parent (producer) and child (consumer) within the
workflow, see Figure 4. Using Listing 1 as an example, the parent, P, and
child, C, ends of each edge are constructed as follows:

P1 = Z0
1 ·

(
NodeID0

r · Parentr
)

C1 = Z0
2 ·

(
NodeID4

r · Childr

)
P2 = Z0

1 ·
(
NodeID1

r · Parentr
)

C2 = Z0
2 ·

(
NodeID4

r · Childr

)
where

• NodeIDn
r is an atomic role vector used to encode a node’s integer id as

defined in the DAX. For this purpose we encode an integer i as a single
atomic role vector cyclic shifted by i, for example, NodeID4

r = (int)4.
• Parentr and Childr are fixed atomic role vectors used to bind the

resultant vector into the parent or child category.
• Z1 represents mProjectPP and Z2 represents mDiffFitt, as described

above.

By binding these three elements together we construct a unique encoding for
the parent and child ends of every edge in the DAG. Using eq. (9) we then
represent the edges as an ordered list of parent→child ends, see ConnectNodes

above.

8.2.1. Execution of the workflow

The resulting workflow WP is a superposition representing the linear se-
quence of steps needed to: (a) discover the required services, (b) connect

29

the selected services together, and (c) signal to the selected services that the
workflow is composed and work should begin. Therefore, the execution of
the workflow proceeds in a similar manner to that described in Section 5.1
but with some additional workflow specific processing carried out by each
selected node. The top level vector, WP is prepared as per eq. (11):

WP1 = (p0
0 · (T + WP))-1 = p-1

0 · T
-1 + RecruitNodes + noise

When multicast, this activates the RecruitNodes service which, operating as
a cleanup service, carries out the same operation to initiate the recruitment
phase:

Recruit′Nodes = (p0
0 · (T + RecruitNodes))

-1

R′1 = p-1
0 · T

-1 + Z0
1 + p-1

1 · Z
1
1 + p-1

1 · p
-1
2 · Z

2
1+ . . .

Z1 is a request for an mProjectPP service which will be matched by all lis-
tening mProjectPPs. Acting as the local arbitrator, the RecruitNodes service
multicasts its preferred match from the replies received. The newly discov-
ered and activated service uses the current permutation of the T vector to
calculate its position (NodeIDn

r) in the RecruitNodes phase from which it
can calculate its unique parent and child vector names to be used during the
ConnectNodes phase. Thus, the first mProjectPP, having position p0 and
being a Z1, calculates its parent and child names as

P0 = Z0
1 ·
(
NodeID0

r · Parentr
)

C0 = Z0
1 ·
(
NodeID0

r · Childr

)
.

It then enters Listening for Connections Mode while, as the new local arbitra-
tor, it also multicasts the next recruitment request by performing an unbind
using, eq. (13), on its received vector R′1,

R′2 = (p-1
1 · Z′1)

-1
= p-1

1 · p-2
0 · T -2 + p-1

1 · Z-1
1 + Z0

1 + p-2
2 .Z1

1 +

The will cause another mProjectPP to be selected and this decentralized
process repeats until the last service to be recruited, the Z9, mjPeg, service
unbinds and transmits the next vector, the RecruitNodes StopVec.

The RecruitNodes cleanup service detects its stop vector, causing it to
perform an unbind, using eq. (13), and multicast of WP ′ therby activating
the ConnectNodes phase:

WP2 = (p-1
1 ·WP1)

-1
= p-1

1 · p
-2
0 · T

-2 + ConnectNodes + noise

At this point all recruited services are listening for connection request on
their unique parent and child vectors. The activated ConnectNodes service,
acting as a cleanup service, uses eq. (11) to initiate and activate the first
parent node of the ConnectNodes phase:

30

Connect′Nodes = (p0
0 · (T + ConnectNodes))

-1

P′1 = p-1
0 · T

-1 + P0
1 + p-1

1 · C
1
1 + p-1

1 · p
-1
2 · P

2
2+ . . .

When a service matches its parent vector it performs the next unbind
or multicast to activate its associated child service, automatically informing
the child service of the location of its resources/output/ip-address. When a
service receives a multicast matching its child vector it can lookup the sender
and parent’s IP-address and send a unicast hello message to the parent,
thus establishing the required connection before activating the next parent
by performing a further unbind or multicast of the ConnectNodes vector.
This process repeats until the final child request is processed causing the
ConnectNodes service to detect its StopVec which, in turn, causes it to unbind
and multicast the StartVec indicating to all nodes that the workflow has been
fully constructed and processing can be started.

9. Evaluation

Our evaluation of the scalability of the VSA approach for linear workflows
has already been presented using the Hamlet example in Section 8.1. The
evaluation was performed using the CORE/EMANE network emulator to
simulate a MANET network and used a MANET multicast routing protocol
to communicate vectors between the nodes containing the services. Multi-
casting the top level Hamlet vector results in the whole play being enacted
by worker services that generate each word in the play. The VSA workflow
implementation of Hamlet has a number of advantages over the Newt[34]
implementation. Specifically the Newt implementation requires that the IP
address of participating services be known and encoded into the workflow,
whereas, our VSA approach can discover the service(word/sentence) needed
on the fly using semantic matching. In Newt, if the service specified by IP ad-
dress becomes unavailable; i.e., we intentionally move it out of wireless range
in CORE, then the workflow halts and is broken. In VSA Hamlet, the same
action results in the automatic discovery of multiple exact, and near-match
candidate word/sentence/services and the best match is then chosen. When
multiple functionally equal matches were discovered the Local Arbitration
function ensured that the service having best simulated utility was chosen
and logged as such. The best ‘near’ match was chosen when we contrived
to make exact matches unavailable in CORE. Additionally, the advantage of
passing around the workflow as a vector superposition was highlighted be-
cause the stand-in service automatically resynchronized the workflow after

31

‘speaking’ its substitute word by simply performing an unbind and transmit
of the workflow vector it received. Newt has none of these capabilities.

Our evaluation of the more complex workflows was aimed at the following:
to demonstrate that complex workflows could be automatically encoded into
a symbolic vector representation and then recursively decoded to assemble
the required work in a decentralized setting; to show that the workflow con-
structed was also resilient to changes in the communications network; and
to demonstrate that services with the highest utility could be identified and
selected using the semantic matching mechanism.

For the evaluation, we used five different DAX workflows generated using
the Pegasus workflow generator [37]:

1. Montage (NASA/IPAC) stitches multiple input images together to cre-
ate custom mosaics of the sky.

2. CyberShake (Southern Calfornia Earthquake Center) characterizes earth-
quake hazards in a region.

3. Epigenomics (USC Epigenome Center and Pegasus) automates various
operations in genome sequence processing.

4. Inspiral Analysis (LIGO) generates and analyzes gravitational wave-
forms from data collected during the coalescing binary systems.

5. SIPHT (Harvard) automates the search for untranslated RNAs (sR-
NAs) for bacterial replicons in the NCBI database.

We again ran a series of experiments using the CORE/EMANE network
emulator to simulate a MANET network. Pegasus DAX workflows were
processed using the VSA creator to build the semantic vector workflow en-
codings and also to generate the service description vectors that semantically
describe each of the component services. Multiple copies of the component
services were randomly distributed on the network nodes. Each service was
enabled with our VSA cognitive layer containing the appropriate semantic
vector for that service. The workflow request vector was launched from some
node in the network and the workflow was constructed in a decentralized
manner, with control being passed between services as the workflow vector
was recursively unbound. During the execution of the process we extracted a
range of metrics that provided a detailed log of the run and the order of exe-
cution. Using this log we created a graph of the set of nodes and edges that
were selected and we used Graphviz to show the result. Figure 5 shows the
results for the five different Pegasus workflows we evaluated. The coloured
images represent the Pegasus generated workflows and blue workflows show
the VSA generated reconstruction of the workflows. Aside from the cosmetic
difference, this demonstrates that all workflows were composed and correctly

32

Figure 5. A comparison of five different DAX workflows as input and the VSA
reconstructed workflows from post processing the semantic vector

connected accurately in all cases.
To demonstrate the resilience of the approach, we modified the network

connectivity to demonstrate that different instances of the correct services
were selected and that this still produced the same required workflow. We
also demonstrated that if the same services had different QoS utility measures
that the services with the higher utility were selected in preference to those
of lower utility.

10. Hierarchical VSA Scaling Preserving Semantic Similarity

In order to demonstrate that our encoding scheme can scale whilst pre-
serving a measure of semantic similarity, we performed a further empirical
evaluation. Using sets of randomly generated vectors we carried out a num-
ber of experiments. Two sets, set1 and set2, of 10kbit random vectors where
generated and both sets where chunked using eq. (9). The resulting top level
vectors were then compared by measuring Hamming distance similarity. The
comparison was repeated after randomly choosing an increasing percentage

33

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

 V1_50

Semantic similarity, 50 vectors per chunk.

50

2500

20000

NumVecs

Name % Similar

Average of hd

0.525:Threshold

Figure 6. Semantic Similarity 20k Vectors, Chunk Size 50.

of vectors from from set2 and copying them into the same position in set1.
The Hamming distance similarity was then recalculated as the sets become
increasingly more similar. The expected result was that no similarity would
be detected when each set had none or very few common vectors and that
Hamming distance similarity would increasingly improve as the sets become
similar.

Figures 6 and 7 show the results using a set size of 20k for chunk sizes of
50 and 10. Each line shows the average similarity—i.e., (1−HD)—of chunks
at each level in the chunk hierarchy. For example, in Fig. 7, there is only 1
vector at the top level (green), 8 chunks at each point of red and 400 chunks
at each point on the blue line. Comparing Figs 6 and 7 we see that ability
to detect a semantic match decreases for smaller chunk size.

When the chunk size is 50 we are able to detect a match with as little as
20% similarity for the single top level vector, whereas at a chunk size of 10
we can only detect a match when similarity is approximately 30%. This is to
be expected since a smaller chunk size implies more majority-vote operations
which means more noise is introduced. In addition, an even numbered chunk
size causes the addition of additional noise in the form of random splitting
of ties during the majority-vote operation. Thus, using the largest chunk
size consistent with the dimensionality of the vectors being used will facility
better semantic matching at higher conceptual levels.

34

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

 V1_10

Semantic similarity, 10 vectors per chunk.

10

100

1000

10000

20000

NumVecs

Name % Similar

Average of hd

0.525:Threshold

Figure 7. Semantic Similarity 20k Vectors, Chunk Size 10

11. Conclusions And Future Work

In this paper, we addressed the complex problem of how to represent and
enact decentralized time-critical applications. Specifically we investigated
how data analytics tasks, formulated as complex workflows, could operate
in dynamic wireless networks, without any central point of control. To this
end, we described an architecture that exposes a cognitive layer by using a
Vector Symbolic Architecture (VSA) to extend services with semantic service
descriptions and time-critical constraints required to specify the QoS/QoE.
We demonstrated the viability of this approach by showing an empirical
evaluation that such VSA encoding methods work and are scalable. We then
described the architecture of our approach and the components it provides
to enable decentralized fitness functions for on demand resource discovery
and allocation.

We demonstrated that our approach can encode workflows containing
multiple coordinated sub-workflows in a way that allows the workflow logic
to be unbound on-the-fly and executed in a completely decentralized way.
We showed that time-critical QoS and QoE metrics for each workflow, sub-
workflow or even service can be encoded into a single vector that provides
an extremely compact (10kbits) common workflow format exchange for a
MANET, which can be passed around using standard group transport pro-
tocols (e.g., multicast). We also showed that semantic comparisons can be

35

made at each level of the architecture to support scoped searching and that
the scheme is extensible—i.e., new parameter or constraint can be plugged
in and encoded to address practically any real-world scenario.

In the future, we will investigate different schemes for discovery and
matchmaking, which are capable of supporting different modes of use. For
example, we are currently looking at using the look ahead peeking capability
of VSAs in combination with proactive announcements that will be capable
of pushing utility metrics calculations to the client that need to consume
them. A key element of future work is to investigate alternative ways to en-
code semantics and to measure the semantic similarity of services and their
QoS and QoE. We are investigating methods that capture the previous con-
texts, including QoS metrics, in which a particular workflow has operated
in, as well as other methods that avoid rigid ontology style approaches. For
time-critical applications in MANET environments we are investigating alter-
natives to local arbitration that will allow the fittest service to rapidly emerge
from a group of compatible competing individual services. Using symbolic
vectors to semantically represent services and workflows enables suggested
alternative service compositions to be automatically generated when com-
ponent services of an existing workflow are missing or cannot be accessed.
We are investigating if viable alternative compositions can be generated and
automatically validated using this approach.

12. Acknowledgements

This research was sponsored by the U.S. Army Research Laboratory and
the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001.
The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory, the U.S. Gov-
ernment, the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation hereon.

References

[1] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
“Web services composition: A decadeâs overview,” Information Sci-
ences, vol. 280, pp. 218–238, 2014.

[2] S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET):
Routing Protocol Performance Issues and Evaluation Considerations,”

36

RFC 2501 (Informational), Internet Engineering Task Force, Jan. 1999.
[Online]. Available: http://www.ietf.org/rfc/rfc2501.txt

[3] S. Basagni, M. Conti, S. Giordano, and I. Stojmenović, Mobile Ad Hoc
Networking: Edited by Stefano Basagni...[et Al.]. IEEE, 2004.

[4] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” in MobiCom ’98: Proceedings of the 4th annual ACM/IEEE
international conference on Mobile computing and networking. New
York, NY, USA: ACM, 1998, pp. 85–97.

[5] T. Pham, G. Cirincione, A. Swami, G. Pearson, and C. Williams, “Dis-
tributed analytics and information science,” in Information Fusion (Fu-
sion), 2015 18th International Conference on. IEEE, 2015, pp. 245–252.

[6] D. Verma, G. Bent, and I. Taylor, “Towards a distributed federated
brain architecture using cognitive iot devices,” in 9th International Con-
ference on Advanced Cognitive Technologies and Applications (COGNI-
TIVE 17), 2017.

[7] T. A. Plate, Distributed representations and nested compositional struc-
ture. University of Toronto, Department of Computer Science, 1994.

[8] R. W. Gayler, “Vector symbolic architectures answer jackendoff’s chal-
lenges for cognitive neuroscience,” arXiv preprint cs/0412059, 2004.

[9] P. Kanerva, “Hyperdimensional computing: An introduc-
tion to computing in distributed representation with high-
dimensional random vectors.” Cognitive Computation, vol. 1,
no. 2, pp. 139–159, 2009. [Online]. Available: http://dblp.uni-
trier.de/db/journals/cogcom/cogcom1.html#Kanerva09

[10] D. Kleyko, “Pattern recognition with vector symbolic architectures,”
Ph.D. dissertation, Lule̊a tekniska universitet, 2016.

[11] G. E. Hinton, “Mapping part-whole hierarchies into connectionist net-
works,” Artificial Intelligence, vol. 46, no. 1-2, pp. 47–75, 1990.

[12] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang,
and D. Rasmussen, “A large-scale model of the functioning brain,”
Science, vol. 338, no. 6111, pp. 1202–1205, Nov. 2012. [Online].
Available: http://www.sciencemag.org/content/338/6111/1202

[13] M. N. Jones and D. J. K. Mewhort, “Representing word meaning and
order information in a composite holographic lexicon,” psychological Re-
view, vol. 114, no. 1, pp. 1–37, 2007.

[14] G. E. Cox, G. Kachergis, G. Recchia, and M. N. Jones, “Toward a scal-
able holographic word-form representation,” Behavior research methods,
vol. 43, no. 3, pp. 602–615, 2011.

37

http://www.ietf.org/rfc/rfc2501.txt
http://dblp.uni-trier.de/db/journals/cogcom/cogcom1.html#Kanerva09
http://dblp.uni-trier.de/db/journals/cogcom/cogcom1.html#Kanerva09
http://www.sciencemag.org/content/338/6111/1202

[15] G. Recchia, M. Sahlgren, P. Kanerva, and M. N. Jones, “Encoding se-
quential information in semantic space models: comparing holographic
reduced representation and random permutation,” Computational intel-
ligence and neuroscience, vol. 2015, p. 58, 2015.

[16] T. A. Plate, Holographic Reduced Representation: Distributed Represen-
tation for Cognitive Structures. Stanford, CA, USA: CSLI Publications,
2003.

[17] C. Simpkin, I. Taylor, G. A. Bent, G. de Mel, and R. K. Ganti, “A scal-
able vector symbolic architecture approach for decentralized workflows.”

[18] A. Van Moorsel, “Metrics for the internet age: Quality of experience and
quality of business,” in Fifth International Workshop on Performabil-
ity Modeling of Computer and Communication Systems, Arbeitsberichte
des Instituts für Informatik, Universität Erlangen-Nürnberg, Germany,
vol. 34, no. 13. Citeseer, 2001, pp. 26–31.

[19] Y. Liu, A. H. Ngu, and L. Z. Zeng, “Qos computation and policing in
dynamic web service selection,” in Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters. ACM,
2004, pp. 66–73.

[20] E. Vinek, F. T. A. Viegas, A. Collaboration et al., “Composing dis-
tributed services for selection and retrieval of event data in the atlas
experiment,” in Journal of Physics: Conference Series, vol. 331, no. 4.
IOP Publishing, 2011, p. 042027.

[21] E. Vinek, P. P. Beran, and E. Schikuta, “A dynamic multi-objective op-
timization framework for selecting distributed deployments in a hetero-
geneous environment,” Procedia Computer Science, vol. 4, pp. 166–175,
2011.

[22] J. Sterle, M. Rugelj, U. Sedlar, L. Korvsivc, A. Kos, P. Zidar, M. Volk,
and S. Toral, “A novel approach to building a heterogeneous emergency
response communication system,” vol. 2015, 10 2015.

[23] E. D. Nitto, M. A. A. d. Silva, D. Ardagna, G. Casale, C. D. Craciun,
N. Ferry, V. Muntes, and A. Solberg, “Supporting the development and
operation of multi-cloud applications: The modaclouds approach,” in
2013 15th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, Sept 2013, pp. 417–423.

[24] M. Wieczorek, R. Prodan, and T. Fahringer, “Scheduling of scientific
workflows in the askalon grid environment.” SIGMOD Record, vol. 34,
no. 3, pp. 56–62, 2005.

[25] T. Fahringer, R. Prodan, R.Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and

38

M. Wieczorek, Workflows for e-Science. Springer, New York, 2007,
ch. ASKALON: A Development and Grid Computing Environment for
Scientific Workflows, pp. 143–166.

[26] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock,
“Kepler: An Extensible System for Design and Execution of Scientific
Workflows,” in 16th International Conference on Scientific and Statis-
tical Database Management (SSDBM). IEEE Computer Society, New
York, 2004, pp. 423–424.

[27] P. Kacsuk, “P-grade portal family for grid infrastructures,” Concurr.
Comput. : Pract. Exper., vol. 23, pp. 235–245, March 2011. [Online].
Available: http://dx.doi.org/10.1002/cpe.1654

[28] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. Katz, “Pegasus: a Framework for Mapping Complex Scientific
Workflows onto Distributed Systems,” Scientific Programming Journal,
vol. 13, no. 3, pp. 219–237, 2005.

[29] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li, “Taverna: A
Tool for the Composition and Enactment of Bioinformatics Workflows,”
Bioinformatics, vol. 20, no. 17, pp. 3045–3054, November 2004.

[30] A. Harrison, I. Taylor, I. Wang, and M. Shields, “WS-RF Workflow
in Triana,” International Journal of High Performance Computing
Applications, vol. 22, no. 3, pp. 268–283, Aug. 2008. [Online]. Available:
http://hpc.sagepub.com/cgi/doi/10.1177/1094342007086226

[31] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, and Y. Simmhan,
“The trident scientific workflow workbench,” in Proceedings of the 2008
Fourth IEEE International Conference on eScience. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 317–318. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1488725.1488936

[32] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible
and efficient workflow deployment of data-intensive applications
on grids with MOTEUR,” Int. J. High Perform. Comput. Appl.,
vol. 22, pp. 347–360, August 2008. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1400050.1400057

[33] B. Balis, “Increasing scientific workflow programming productivity
with hyperflow,” in Proceedings of the 9th Workshop on Workflows
in Support of Large-Scale Science, ser. WORKS ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 59–69. [Online]. Available:
http://dx.doi.org/10.1109/WORKS.2014.10

39

http://dx.doi.org/10.1002/cpe.1654
http://hpc.sagepub.com/cgi/doi/10.1177/1094342007086226
http://dl.acm.org/citation.cfm?id=1488725.1488936
http://dl.acm.org/citation.cfm?id=1400050.1400057
http://dl.acm.org/citation.cfm?id=1400050.1400057
http://dx.doi.org/10.1109/WORKS.2014.10

[34] J. P. Macker and I. Taylor, “Orchestration and analysis of decentral-
ized workflows within heterogeneous networking infrastructures,” Future
Generation Computer Systems, 2017.

[35] G. Bent, P. Dantressangle, D. Vyvyan, A. Mowshowitz, and V. Mitsou,
“A dynamic distributed federated database,” in Proc. 2nd Ann. Conf.
International Technology Alliance, 2008.

[36] G. Bent, P. Dantressangle, P. Stone, D. Vyvyan, and A. Mowshowitz,
“Experimental evaluation of the performance and scalability of a dy-
namic distributed federated database,” in Proc. 3rd Ann. Conf. Inter-
national Technology Alliance, 2009.

[37] “Workflow Generator Pegasus,” https://confluence.pegasus.isi.edu/
display/pegasus/WorkflowGenerator.

[38] “Graphviz - Graph Visualization Software,” http://www.graphviz.org/
Home.php.

40

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php

