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Autism spectrum disorders (ASD) are more prevalent in male than in female 

individuals and are characterised by clinical core symptoms such as impaired 

sociability, verbal communication and ritualistic behaviours. The gene encoding the 

cytoplasmic FMR1 interacting protein 1 (CYFIP1) has been associated with ASD in 

humans. At the molecular level, CYFIP1 has been demonstrated to negatively 

regulate protein synthesis and actin remodelling. At the neuronal level, Cyfip1 

haploinsufficiency leads to defects in synaptic plasticity associated with alteration of 

dendritic spine morphology, two pathophysiological features found in numerous 

mouse models of ASD. However, the consequences of Cyfip1 deletion at the 

behavioural level remains unclear, limiting our understanding of the relationship 

between pathophysiology and behavioural phenotypes. 

With this study, we aimed to characterise the behavioural phenotype of Cyfip1+/- mice 

and then to identify associated cellular phenotypes. The results we obtained revealed 

sex-specific defects in social interest and motor learning. In addition, motor learning 

deficits were observed in adult Cyfip1+/- mice but not earlier in development. 

Associated with motor learning deficits, we identified a brain region-specific neuronal 

phenotype with decreased dendritic spine densities and increased dendritic spine 

turnover in Cyfip1+/- mice. The dendritic spine formation and the in vivo protein 

synthesis rate were intact in Cyfip1+/- mice. 

These results identified behavioural deficits in Cyfip1+/- mice, which relate to 

symptoms and comorbidities of ASD in human. The cellular phenotypes indicated an 

alteration of dendritic spine density and spine turnover, a phenotype found in several 

mouse models of ASD and in humans affected by the condition. Altogether, these 

findings indicate that Cyfip1+/- mice can represent a valuable model for the study of 

ASD pathophysiology and in particular the relationship between specific neuronal 

phenotypes and behavioural alterations.	 	
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1.1. Microdeletions and microduplications of chromosome 15q11.2 

This chapter summarises the role of CYFIP1 in the context of the human pathology. 

CYFIP1 is one of the genes encoded in the 11.2 region of chromosome 15, which can 

undergo structural rearrangements such as microdeletions and microduplications. 

15q11.2 microdeletions and microduplications are associated with Prader-Willi and 

Angelman syndromes, which allow explaining the relationship between genetics and 

clinical relevance of CYFIP1. 

Prader-Willi and Angelman syndromes arise from deletions of risk genes located on 

chromosome 15 (Nicholls & Knepper 2001). These deletions can be classified into 

two types. The genetic deletion between breakpoint 1 and breakpoint 2 is classified 

as Type I deletion of 6.58 megabases, whereas the Type II deletion of 5.33 

megabases occurs between breakpoint 2 and breakpoint 3 (Amos-Landgraf et al. 

1999; Butler et al. 2008). The larger Type I deletion is associated with more severe 

neurodevelopmental symptoms than the Type II deletion (Butler et al. 2004; Milner et 

al. 2005; Varela et al. 2005; Bittel et al. 2006). Both types of deletions are 

characterised by neurobehavioral deficits, developmental speech and motor delays, 

which are most commonly described manifestations in individuals with microdeletions 

in the 11.2 region (Cox & Butler 2015). Some of the 15q11.2 deletion carriers also 

show symptoms of autism (Sahoo et al. 2007; Burnside et al. 2011; Madrigal et al. 

2012), schizophrenia (Kirov et al. 2009; Rees et al. 2014; Stefansson et al. 2014) or 

seizures (Valente et al. 2013). Individuals carrying 15q11.2 microduplications 

(Browne et al. 1997; Roberts et al. 2002) also show clinical symptoms including 

developmental, motor and speech delays (Burnside et al. 2011; Benítez-Burraco et 
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al. 2017) and, for some of them, autistic features (Van Der Zwaag et al. 2010; 

Burnside et al. 2011). 15q11.2 deletions were reported to occur at a frequency of 8 in 

3,992 individuals (0.20%) and duplications at a frequency of 16 in 4,363 individuals 

(0.37%) whereas developmental delays are more likely upon 15q11.2 microdeletions 

than microduplications (Burnside et al. 2011). 

Four genes were identified to be encoded in 15q11.2: tubulin gamma complex 

associated protein 3 (TUBGCP3), CYFIP1 and non-imprinted in Prader-

Willi/Angelman syndrome 1 and 2 (NIPA1/2) (Chai et al. 2003). Notably, Prader-Willi 

and Angelman syndromes are imprinted genetic disorders. The Prader-Willi 

syndrome results from the functional lack of paternally inherited genes, whereas the 

Angelman syndrome arises from the loss of maternally expressed genes on 

chromosome 15 (Nicholls & Knepper 2001). With regards to the genes located in the 

11.2 region, NIPA1/2 are non-imprinted genes and there is no evidence for TUBGCP3 

or CYFIP1 to be imprinted (Chai et al. 2003). TUBGCP3 encodes a member of the 

gamma-tubulin small complex involved in microtubule nucleation and dynamics 

(Raynaud-Messina & Merdes 2007; Murphy et al. 2001). The proteins encoded by 

NIPA1 and NIPA2 function as magnesium ion transporters (Goytain et al. 2007). The 

functions of the protein encoded by CYFIP1 are summarised below (1.2 and 1.3.). 

In order to understand the pathophysiologic contribution of TUBGCP3, CYFIP1 and 

NIPA1/2 the corresponding mRNA levels were determined in carriers of 15q11.2 

deletion or duplication. Microdeletions of 15q11.2 correlated with decreased 

TUBGCP3, CYFIP1 and NIPA1/2 mRNA levels in lymphoblastoid cells derived from 

patients with Prader-Willi syndrome (Bittel et al. 2006). Decreased CYFIP1 mRNA 

levels were also found in leukocytes obtained from patients diagnosed with Fragile X 

and Prader-Willi syndromes (Nowicki et al. 2007). However, the authors did not clarify 

whether 15q11.2 microdeletions or microduplications were involved. Nevertheless, 

decreased CYFIP1 mRNA levels were detected in a subject that had been diagnosed 

with autism and carried an SH3 and multiple ankyrin repeat domains 2 (SHANK2) 
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deletion (Leblond et al. 2012). On the other hand, TUBGCP3 and NIPA1/2 mRNA 

levels (Van Der Zwaag et al. 2010) and CYFIP1 mRNA levels (Van Der Zwaag et al. 

2010; Noroozi et al. 2018) were increased in whole blood RNA extracts from patients 

diagnosed with ASD. 

Availability of patient-derived samples is restricted and limits the preclinical research. 

Therefore, investigating the mechanism that links dysregulated gene dosage of 

TUBGCP3, CYFIP1 and NIP1/2 with the symptoms required a model system. In the 

mouse, orthologues of TUBGCP3, CYFIP1 and NIPA1/2 were identified and on 

chromosome 7 (Chai et al. 2003). 

 

 

 

1.2 Molecular functions of CYFIP1 

This chapter summarises the molecular roles of CYFIP1. The focus is first set on 

CYFIP1 as an effector downstream of the small GTPase Rac1 and CYFIP1 as a 

member of the WAVE regulatory complex. Second, the role of CYFIP1 as a negative 

regulator of translation is described in chapter 1.2.2. Notably, Cyfip1 is expressed in 

neurons but numerous insights into the molecular roles of CYFIP1 originate from 

studies using non-neuronal cells. 

	

	

1.2.1 CYFIP1 as a regulator of actin dynamics 

1.2.1.1 CYFIP1/Sra-1 association with Rac1 GTPase 

CYFIP1 was initially named specifically Rac1-associated protein 1 (Sra-1) referring 

to its binding to the small GTPase Rac1. The small GTPase Rac1 is a member of the 

Rho family GTPases which regulates actin reorganisation (Hall 1998). In order to 

better understand Rac1 specific functions, a study was conducted to identify novel 
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targets of the small GTPase Rac1. Affinity purification was used to probe for Rac-1 

interacting proteins in the bovine brain cytosol, which revealed a protein with a 

molecular weight of 140 kilodaltons (Kobayashi et al. 1998). Interestingly, this protein 

of 140 kilodaltons was specifically co-purified with the active guanosine triphosphate 

(GTP) bound form of Rac1, but not with Rac1 in its inactive guanosine diphosphate 

(GDP) bound state (Kobayashi et al. 1998). This was the first functional 

characterisation of a previously discovered protein of 1,253 amino acids encoded by 

the gene shyc involved in neuronal differentiation in vitro (Nagase et al. 1995; Köster 

et al. 1998). Moreover, the interaction between GTP-Rac1 and the identified 

interaction partner was demonstrated to be established by the N-terminus of the 

identified protein. This association was specific to GTP-Rac1 as other small GTPases 

such as cell cycle division control protein 42 homologue (Cdc42) or Ras homologue 

gene family member A (RhoA) did not bind the identified GTP-Rac1 interactor. 

Therefore, the characterised protein was named specifically Rac1-associated protein 

1 (Sra-1) (Kobayashi et al. 1998), also known as CYFIP1. 

Rac1 was reported to regulate the actin cytoskeleton dynamics associated with 

membrane ruffling in mouse-derived Swiss 3T3 and human-derived KB cells (Ridley 

et al. 1992; Nishiyama et al. 1994). In addition, CYFIP1 co-sedimented with 

filamentous actin in KB cells (Kobayashi et al. 1998). This suggested that the CYFIP1 

as a Rac1 effector is potentially involved in actin filament organisation associated with 

membrane ruffling. However, the molecular pathway linking CYFIP1 to actin 

remodelling remained unclear up until the characterisation of the Wiskott-Aldrich 

syndrome protein family verprolin homologous protein (WAVE) regulatory complex. 
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1.2.1.2 CYFIP1 is a member of the WAVE regulatory complex 

CYFIP1 is a member of the Wiskott-Aldrich syndrome protein family verprolin 

homologous protein (WAVE) regulatory complex (WRC). The WRC is an assembly 

of the proteins WAVE1/2/3, CYFIP1/2, Nck-associated protein 1 (NCKAP1), ABI 

interactor 1/2 (ABI1/2) and haematopoietic stem cell protein 300 (HSPC300) (Dai & 

Pendergast 1995; Shi et al. 1995; Eden et al. 2002; Kunda et al. 2003; Schenck et al. 

2003; Chen et al. 2010). The assembled WRC inhibits the verprolin-homology central 

acidic regions (VCA) motif of WAVE1 which is required for the binding and activation 

of actin-related protein 2/3 (Arp2/3) (Takenawa & Suetsugu 2007; Chen et al. 2010; 

Padrick & Rosen 2010). Inhibition of the WRC relies on the binding of CYFIP1 to the 

WAVE1 VCA (Chen et al. 2010). Point mutations of CYFIP1 prevented Rac1 binding 

to the WRC (Chen et al. 2010) in agreement with the finding that Rac1 does not 

directly bind to the WRC (Pollard & Borisy 2003; Chen et al. 2010). This suggests that 

WRC-associated CYFIP1 serves as a binding site for Rac1 (Chen et al. 2010), which 

is supported by the reported Rac1-CYFIP1 interaction (Kobayashi et al. 1998).  

These findings allow concluding on a working model in which the assembled WRC 

includes CYFIP1 as an inhibitor of the WAVE1 VCA (Figure 1.1). Binding of activated 

GTP-bound Rac1 triggers a conformational change in CYFIP1 (De Rubeis et al. 2013) 

and releases CYFIP1 from the WRC. Consequently, the inhibition of the WAVE1 VCA 

is abolished. As a result, the VCA motif can promote actin filament nucleation by V-

region dependent recruitment of actin monomers and C- and A-region mediated 

conformational changes in Arp2/3 (Marchand et al. 2001; Goley et al. 2004). 
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Figure 1.1 Schematic of CYFIP1 as a negative regulator of the WRC. 
CYFIP1 is a member and negative regulator of the multiprotein WRC. Dissociation of 

CYIFP1 overcomes the WRC inhibition and the WAVE1 VCA promotes actin 

nucleation. Schematic adapted from Abekhoukh & Bardoni 2014. 

 

 

 

1.2.2 CYFIP1 as a translational repressor 

Despite the previous characterisation and terminology of the protein encoded by the 

mouse orthologue of human cDNA clone KIAA0068 as Sra-1 (Kobayashi et al. 1998) 

(as discussed in chapter 1.2.1.1), CYFIP1 became the commonly used annotation 

based on the findings described here. 

A study was conducted to better understand the pathophysiology underlying the 

fragile X syndrome caused by mutations or loss of fragile X mental retardation 1 

(FMR1) (Verkerk et al. 1991). The aim of the study was to identify novel interaction 

partners of the FMR1 encoded fragile X mental retardation protein (FMRP). 

Therefore, the N-terminal part of FMRP was used as a bait in a two-hybrid system to 

screen an embryonal mouse library (Schenck et al. 2001). The screening revealed 

the protein encoded by the mouse orthologue of human cDNA clone KIAA0068. The 
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identified FMRP interactor was denoted as cytoplasmic FMRP Interacting protein 1 

(CYFIP1). 

In the following, relevant FMRP functions are introduced to then explain the 

consequences of the FMRP-CYFIP1 interaction. FMRP is known to bind to RNAs 

either directly via G quartet structures and U-rich sequences or through noncoding 

RNAs (Ashley et al. 1993; Siomi et al. 1993). This enables FMRP to localise mRNAs 

as cargo to granules that are transported from the soma to dendrites (Kanai et al. 

2004). In addition, FMRP can stabilise target mRNAs based on the finding that FMRP 

binds the 3` untranslated region of postsynaptic density protein 95 (PSD-95) mRNA 

and increased PSD-95 mRNA half-life upon pharmacological inhibition of 

transcription (Zalfa et al. 2007). The RNA binding properties also support the role of 

FMRP in translational repression (Brown et al. 2001; Qin et al. 2005; Bassell & 

Warren 2008; Darnell et al. 2011; Michalon et al. 2012). Translational repression is 

mediated by FMRP binding to the L5 protein on the ribosomal 80S subunit which 

hinders the binding of tRNA and translation elongation factors (Che et al. 2015). 

CYFIP1 as an identified FMRP interacting protein was therefore studied for its 

involvement in translational control. Translation initiation is established by a complex 

of the eukaryotic translation initiation factor (eIF) 4E, 4G and 4A (Sonenberg & 

Hinnebusch 2009). Inhibition of the assembly of this complex is a regulatory 

mechanism reducing translation initiation. 4E binding proteins are negative regulators 

of the assembly of the translation initiation complex by specifically interfering with the 

association of eIF4E with eIF4G (Richter & Sonenberg 2005). Pull-down experiments 

revealed that CYFIP1 binds directly to eIF4E (Napoli et al. 2008; Beggs et al. 2015). 

Therefore, FMRP can repress the translation of target mRNAs through 

CYFIP1  (Figure 1.2). Moreover, this process could be promoted by FMRP stabilising 

CYFIP1 at the 5` end of the target mRNAs (Napoli et al. 2008). Neuronal signalling 

can mediate the dissociation of the CYFIP1-eIF4E interaction as discussed in the 

following section. 
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Figure 1.2 Schematic of CYFIP1 as a negative regulator of translation. 
CYFIP1 mediates translational repression based on its interaction with eIF4E and 

FMRP. CYFIP1 interferes with the assembly of the translation initiation complex 

centred around eIF4E as whereas FMRP mediates stalling of the ribosomal unit 80S. 

Dissociation of the eIF4E-CYFIP1-FMRP interaction results in translation initiation 

and protein synthesis. Schematic adapted from De Rubeis et al. 2013. 

 

 

CYFIP1 acting as a WRC regulator downstream of Rac1 and as a repressor of protein 

translation can be reconciled. The structure of the assembled CYFIP1 containing 

WRC complex does not enable CYFIP1 to simultaneously bind to eIF4E binding. This 

is supported by pull-down experiments which did not reveal WRC components 

associated with eIF4E bound CYFIP1 (Napoli et al. 2008). Thus, Rac1 has been 

suggested to regulate the mode of CYFIP1 function where activated Rac1 releases 

CYFIP1 from the WRC (Cory & Ridley 2002; Eden et al. 2002) which enables CYFIP1 

to associate with FMRP and eIF4E to repress protein synthesis (De Rubeis et al. 

2013).	
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1.3. Neuronal functions of CYFIP1 

Cyfip1 is highly conserved in evolution and its expression in the central nervous 

system has been demonstrated in Drosophila melanogaster (Schenck et al. 2001), 

Mus musculus (Napoli et al. 2008), Bos taurus (Kobayashi et al. 1998) and Homo 

sapiens (Oguro-Ando et al. 2014). Neurons are polarised cells with a specific cellular 

biology and neuronal CYFIP1 functions have been studied. CYFIP1 has been 

implicated in the regulation of neuronal morphology and electrophysiologic properties. 

This chapter describes first CYFIP1 functions related to neuronal morphology and 

second CYFIP1 functions related to neuronal transmission. 

 

1.3.1 Synaptic morphology 

In Drosophila melanogaster, heterozygous Cyfip1 deletion is associated with 

decreased size of the neuromuscular junction (Schenck et al. 2003; Zhao et al. 2013), 

increased number of boutons and increased filamentous actin assembly (Zhao et al. 

2013). This suggests that lack of CYFIP1 as a repressor of actin dynamics leads to 

increased actin nucleation. This consequently promotes formation and stabilisation of 

growth cone protrusions (Gomez & Letourneau 2014) giving rise to aberrant 

neuromuscular junction size. Increased presynaptic filamentous-actin assembly, as 

well as increased protein synthesis, was observed in hippocampal neurons from 

heterozygous Cyfip1 mice (Hsiao et al. 2016). Rac1 inhibition normalised actin 

nucleation, suggesting that the mechanism is independent of the increased protein 

synthesis rate (Hsiao et al. 2016). Thus, CYFIP1 at the presynapse controls actin 

dynamics through Rac1 which is associated with morphologic consequences. 

Cyfip1 overexpression in mouse hippocampal neurons in vitro increased dendritic 

complexity accompanied by increased dendritic length, increased number of filopodia 

and increased numbers of long and thin spines whereas the spine density was 

remained unchanged (Pathania et al. 2014). 
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The dendritic architecture was also studied in the context of Cyfip1 deletion using 

cultured hippocampal neurons heterozygous for Cyfip1. In contrast to Cyfip1 

overexpression, Cyfip1 haploinsufficiency revealed decreased dendritic complexity 

comprising reduced dendritic length and number of branch points without affecting 

the dendritic density overall. Although, morphologic spine subtypes such as long and 

thin spines and filopodia were increased in Cyfip1+/- dendrites compared to wild type 

dendrites (Pathania et al. 2014). Decreased dendritic complexity and thin dendrites 

were also observed in fixed Cyfip1+/- Cornu Ammonis 1 (CA1) neurons compared to 

wild type controls (Pathania et al. 2014). Hence, Cyfip1 deletion results in decreased 

dendritic complexity and increased number of spines with morphologic properties 

associated with immaturity whereas the net dendritic density remained unchanged 

(Pathania et al. 2014). Similar observations were made in principal neurons 

originating from mice with a conditional homozygous Cyfip1 deletion selectively in 

principal cells of the neocortex (Davenport et al. 2018). This suggests that altered 

spine morphology results from a cell-autonomous mechanism involving CYFIP1. 

Alongside altered dendritic spine morphology upon Cyfip1 deletion, increased 

assembly of filamentous actin was observed in cultured hippocampal Cyfip1+/- 

neurons compared to wild type controls (Pathania et al. 2014). This finding is not 

unexpected since CYFIP1 is a regulator of actin dynamics (section 1.2.1). Actin is 

localised at dendritic spines (Matus et al. 1982) and is crucial for development and 

maintenance of dendritic spines (Wegner et al. 2008; Hotulainen et al. 2009), 

structural plasticity (Halpain 2000; Matus et al. 2000; Kim et al. 2013) and the 

anchoring of postsynaptic receptors such as α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors 

(NMDARs) at excitatory synapses (Allison et al. 1998). Formation of a dendritic spine 

has been suggested to be initiated by a dynamic filopodium, which cycles between 

elongation and shrinkage where actin polymerisation at the tip is independent of 

Arp2/3 activity but potentially occurring at the root of the filopodium. With the 
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beginning of spine head formation, Arp2/3 nucleates branched actin filaments that 

mediate spine head growth. During spine maturation, cofilin counteracts actin 

polymerisation to regulate the spine length. Actin polymerisation and disassembly at 

the surface of a mature dendritic spine allow morphologic plasticity (Hotulainen et al. 

2009). 

In the light of the relevance of actin dynamics in neurons, spine pathologies have 

been characterised in patients diagnosed with ASD (Hutsler & Zhang 2010), epilepsy 

(Bothwell et al. 2001), schizophrenia and bipolar disorder reviewed in (Glausier & 

Lewis 2013; Forrest et al. 2018). Since CYFIP1 regulates actin dynamics, 

dysregulated CYFIP1 levels might have consequences on stabilisation of dendritic 

spines (Luo et al. 1996; Nakayama et al. 2000). Thus, it is possible that CYFIP1 plays 

a role in the spine pathologies observed in different psychiatric conditions. 

Dysregulated CYFIP1 protein levels might have more broad implications for the 

synaptic morphology since CYFIP1 is necessary for the recruitment and localisation 

of the WRC. The fully assembled WRC, but not any WRC subcomplex, enables 

association of CYFIP1 and ABI2 (Ismail et al. 2009; Chen et al. 2010). The CYFIP1-

ABI2 interaction serves as a binding site for a specific motif named WRC interacting 

receptor sequence (WRIS) (Chen et al. 2014). Numerous adhesion proteins, 

receptors, ion channels and scaffolding proteins were identified to contain the WRIS 

sequence and were validated as WRC ligands (Nakao et al. 2008; Tai et al. 2010; 

Stavoe et al. 2012). WRIS containing proteins or synergistic protein complexes can 

recruit the WRC. For example clustering of WRIS motif containing membrane proteins 

at the cell membrane can recruit the WRC to the membrane. Interestingly, WRIS 

motifs were found in synaptic proteins such as neuroligins, protocadherins and G-

protein coupled receptors (Chen et al. 2014). This suggests a role for CYFIP1 as a 

synapse-specific regulator of the WRC with implications in dendritic morphology. 

However, the effect of the WRC binding through WRIS motifs depends on WRIS 

neighbouring motifs which are likely to involve various regulatory functions. 
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1.3.2 Synaptic physiology 

The postsynaptic proteome can be regulated by local translation (Steward & 

Schuman 2003; Glock et al. 2017) which is thought to be crucial for neuronal function 

and specification of neuronal networks (Martin et al. 2000; Pfeiffer & Huber 2006). 

Postsynaptic local protein translation is induced by two distinct mechanisms. Brain-

derived neurotrophic factor (BDNF) binds and activates its receptor, tropomyosin 

receptor kinase B (TrkB) (Barbacid 1994), which in turn alleviates FMRP-dependent 

repression of translation. This leads to increased expression of specific proteins 

including the activity regulated cytoskeleton associated protein (Arc) and alpha 

Ca2+/calmodulin-dependent protein kinase II (αCaMKII) (Aakalu et al. 2001; Yin et al. 

2002; Schratt et al. 2004). Similarly, stimulation of the metabotropic glutamate 

receptor 1 (mGluR1) alleviates FMRP-dependent repression of translation (Weiler & 

Greenough 1993). Studies hypothesised that activation of TrkB or mGluR1 could 

modulate the binding between CYFIP1, FMRP and the translation initiation factor 

eIF4E to control protein translation. Using synaptosome preparations of primary 

cortical cultures it was demonstrated that BDNF activation of TrkB and 

dihydroxyphenylglycine (DHPG) stimulation of mGluR1 signalling decreases the 

interaction between CYFIP1 and eIF4E (Napoli et al. 2008; Panja et al. 2014; 

Genheden et al. 2015). TrkB signalling mediated CYFIP1-eIF4E dissociation requires 

the activation of mitogen-activated protein kinase interacting protein kinases, a 

mechanism also observed in non-neuronal cells (Panja et al. 2014; Beggs et al. 2015; 

Genheden et al. 2015). Further, sustained activation of mGluR1 can lead to synaptic 

plasticity such as long-term potentiation (LTP) or long-term depression (LTD). 

Hippocampal slices were prepared from Cyfip1 haploinsufficient mice and Schaffer 

collateral - CA1 synapses were assessed by electrophysiologic recordings. LTD 

induction by paired pulse-low frequency stimulation or DHPG application revealed 

enhanced reductions in field excitatory postsynaptic potential slopes (Bozdagi et al. 
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2012). In wild type but not in Cyfip1+/- mice, inhibition of protein translation using 

cycloheximide or a mammalian target of rapamycin (mTOR) inhibitor prevented LTD 

induction (Bozdagi et al. 2012).	Induction of LTP at Schaffer collateral - CA1 synapses 

was not affected by Cyfip1 haploinsufficiency. Taken together, these results show 

that CYFIP1 is required for TrkB and mGluR1 activity-dependent regulation of protein 

synthesis and LTD (Bozdagi et al. 2012).	

CYFIP1 localises at excitatory synapses and Cyfip1 overexpression increased the 

number of excitatory synapses (Pathania et al. 2014; Davenport et al. 2018). Cyfip1 

overexpression also increased miniature excitatory postsynaptic current (mEPSC) 

frequencies (Davenport et al. 2018). The knockout of Cyfip1 specifically in 

glutamatergic principal cells of the neocortex and hippocampus was demonstrated to 

increase miniature inhibitory postsynaptic current (mIPSC) amplitudes in CA1 

pyramidal neurons. In contrast, AMPARs mediated mEPSCs remained unchanged 

despite increased AMPAR mobility at the synapse (Pathania et al. 2014; Davenport 

et al. 2018). The increased inhibitory transmission can be explained by increased 

levels of gamma-aminobutyric acid type A receptor beta 2/3 (GABAAR β2/3) that can 

serve as building blocks for GABAAR receptors expressed at the cell membrane 

(Lüscher et al. 2011). This finding illustrates that CYFIP1 can have cell non-

autonomous effects on inhibitory synaptic transmission. In contrast to Cyfip1 deletion, 

Cyfip1 overexpression in cultured hippocampal neurons revealed decreased 

inhibitory synapse size and decreased mIPSC amplitudes (Davenport et al. 2018). 

Therefore, the bidirectional dosage of Cyfip1 has opposite effects on synaptic 

excitation and inhibition. This indicates that CYFIP1 is involved in the regulation of 

inhibitory and excitatory synapses with consequences on synaptic transmission. The 

functional and structural consequences of Cyfip1 overexpression point towards 

potential pathophysiologic mechanisms underlying the 15q11.2 microduplication. 

However, Cyfip1 overexpression is not directly elucidating the physiologic function of 

CYFIP1. Notably, CYFIP1 localisation at excitatory and inhibitory synapses was 
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determined based on Cyfip1 overexpression (Pathania et al. 2014; Davenport et al. 

2018) which can lead to ectopic localisation of CYFIP1. 

The specific molecular mechanisms underlying these neuronal CYFIP1 functions 

remain elusive. In addition, Cyfip1 expression in the brain might not be restricted to 

neurons but up until now, there is no supportive literature on Cyfip1 expression in glial 

cells. 

 

 

	

1.4 The Cyfip1 paralogue Cyfip2 

Mouse Cyfip1 shares high sequence homology (87.7% identity, 94.5% homology) 

with the gene encoding the human p53-mediated pro-apoptotic protein (PIR121) 

(Saller et al. 1999; Schenck et al. 2001). This observation was made alongside the 

characterisation of the Rac1-CYFIP1 interaction. Therefore, PIR121 was validated by 

pull-down experiments to bind to FMRP, which designated PIR121 as cytoplasmic 

FMRP interacting protein 2 (CYFIP2) (Schenck et al. 2001). 

In human, CYFIP2 is encoded on chromosome 5q33.3. CYIFIP2 is a CYFIP1 

paralogue which is not associated with structural rearrangements of 15q11.2. CYFIP2 

has been related to neuropathologies such as schizophrenia, epilepsy, Alzheimer`s 

disease (Föcking et al. 2015; Tiwari et al. 2016; Nakashima et al. 2018). Outside of 

the central nervous system, CYFIP2 characterised as a target of the tumour protein 

p53 in cells related to lung, colorectal cancer and gastric cancer (Saller et al. 1999; 

Jackson et al. 2007; Jiao et al. 2017). CYFIP2 interacts through its N-terminus with 

FMRP like CYFIP1 but CYFIP2 binds FMRP with a higher affinity. In addition to 

FMRP, CYFIP2 associates with the FMRP related proteins FXR1P, and FXR2P 

(Schenck et al. 2001). In addition, CYFIP2 was determined as a member of WRC 
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whereas the functional characterisation is restricted to CFYIP1 (Eden et al. 2002; 

Chen et al. 2010). 

CYFIP2 localises to excitatory (Pathania et al. 2014) and inhibitory (Davenport et al. 

2018) synapses. Cyfip2 overexpression in cultured hippocampal neurons results in 

increased number of excitatory synapses and decreased the number inhibitory 

synapses. The functional consequences are increased mEPSCs and reduction in 

mIPSC amplitudes. In addition, Cyfip2 overexpression increases the dendritic 

complexity based on increased dendritic length and number of branch points 

(Pathania et al. 2014). The increased dendritic outgrowth observed in Cyfip2 

overexpressing neurons was prevented when the phosphorylation-deficient 

CYFIP2T1067A was overexpressed (Lee et al. 2017). Heterozygous loss of Cyfip2 

resulted in increased number of immature spines and decreased number of mature 

spines in the cortex whereas the dendritic organisation was unchanged in CA1 

neurons compared to wild type controls (Han et al. 2014). Moreover, structural 

plasticity upon DHPG stimulation of mGluR1 signalling was absent in cortical Cyfip2+/- 

neurons. In wild type cortical neurons, DHPG activation of mGluR1 signalling 

increased the number of mature dendritic spines and moreover increased Cyfip2 

mRNA levels independent from translation (Han et al. 2014). This suggests that 

CYFIP2 function is required for the regulation of dendritic morphology, mGluR1 

induced structural plasticity and translational control of its own target mRNA. 

Mice heterozygous for Cyfip2 were hyperactive and showed decreased startle 

responses for auditory stimulus and enhanced prepulse inhibition (Han et al. 2014). 

In zebrafish, CYFIP2 deletion increases the activity of spiral fibre neurons resulting in 

enhanced startle sensitivity (Marsden et al. 2018). CYFIP1 and CYFIP2 have distinct 

roles in the axon of retinal ganglion cell in zebrafish. CYFIP2 controls filamentous 

actin dynamics in the growth cone upon axon-axon contact which mediates axon 

guidance whereas CYFIP1 regulates axon growth (Cioni et al. 2018). The presynaptic 

function of CYFIP2 has not been studied in the mouse, which makes it difficult to 
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argue that divergent functions of CYFIP1 and CYFIP2 are a presynaptic feature or 

specific to zebrafish. 

Cyfip2 overexpression phenocopies structural and functional changes found by 

Cyfip1 overexpression indicating an overlap of CYFIP1 and CYFIP2 functions 

(Pathania et al. 2014; Davenport et al. 2018). Nevertheless, Cyfip2 is not 

compensating the embryonic lethal consequences of homozygous Cyfip1 deletion in 

the mouse (Bozdagi et al. 2012; Pathania et al. 2014) and fly (Schenck et al. 2003; 

Zhao et al. 2013). This could be due to the fact that Cyfip1 and Cyfip2 have non-

overlapping expression patterns in cell populations vital to the developing embryo. 

 

 

 

1.5 Behaviour of mice heterozygous for Cyfip1 

In human, CYFIP1 is encoded in the chromosome 15q11.2 which can be affected by 

microdeletions leading to neurological symptoms (section 1.1). The mouse 

orthologue of CYFIP1 is located on chromosome 7 (Chai et al. 2003). For the study 

of Cyfip1 function and consequences of Cyfip1 deletion, mutant mice for Cyfip1 have 

been generated. Homozygous knockout of Cyfip1 was reported to be embryonically 

lethal in the mouse (Bozdagi et al. 2012; Pathania et al. 2014) and fly (Schenck et al. 

2003; Zhao et al. 2013). Therefore, mouse mutants heterozygous for Cyfip1 

(Cyfip1+/- ) have been generated and used for molecular and cellular experiments as 

well as for behavioural assessments. The behavioural characterisation of two 

independently generated mouse lines with Cyfip1 haploinsufficiency is summarised 

in this chapter. 

Embryonic stem cells (129SvEvBrd strain) were targeted in order to insert a trapping 

cassette inserted into intron 1 of one Cyfip1 allele. Successfully targeted stem cells 
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were delivered into preimplantation stage embryos and obtained mosaic mice were 

backcrossed to a C57Bl/6Tac background. Generated male Cyfip1+/- mice were 

assessed at four months of age for their behaviours (Bozdagi et al. 2012). The only 

phenotype reported by this study is that Cyfip1+/- mice showed enhanced extinction 

of inhibitory avoidance compared to wild type mice in a fear conditioning test. The 

general locomotor behaviour in the open-field was similar compared to wild type 

control mice. The behaviour in an elevated zero maze and transitions between light 

and dark compartments were comparable between Cyfip1+/- and wild type mice. 

Cyfip1+/- and wild type mice showed similar behaviours in a Morris Water maze and a 

contextual fear conditioning paradigm, indicating that hippocampus-dependent 

learning was intact in Cyfip1+/- mice. 

Independently, Cyfip1 was targeted in AB2.1 embryonic stem cells with a construct 

containing exon 5 of Cyfip1 and a puromycin selection cassette. The generated 

chimaeras were bread and backcrossed to C57BL/6J for more than 7 generations 

(Chung et al. 2015). Behavioural assessment of the obtained Cyfip1+/- mice was 

performed between 2 and 3 months of age. The focus of this study was on the 

comparison of the maternal and paternal contribution of Cyfip1. In an open-field 

assay, Cyfip1 mutation with maternal origin caused hypoactivity compared to wild 

type controls, without affecting anxiety or hippocampus-dependant learning. Mice 

with a paternal Cyfip1 deletion showed increased anxiety and increased fear-

conditioning compared to wild type mice, but no alteration of their activity behaviour. 

In an elevated zero paradigm paternal Cyfip1+/- mutants showed less incomplete 

transitions between open and closed arms compared to wild type mice. However, this 

phenotype seems subtle since the time spent in the open arms and completed 

transitions were comparable between paternal Cyfip1+/- mutant and wild type mice. In 

addition, the phenotype seems to be driven by the wild type control mice used as a 

control for the paternal Cyfip1+/- mutants. These control mice seem to show more 

incomplete transitions compared to paternal and maternal Cyfip1+/- mutants and wild 
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types controls used for maternal Cyfip1+/- mutants. Fear conditioning and contextual 

fear responses were similar between Cyfip1+/- mutant mice independent from the 

parental Cyfip1 origin and wild type mice. However, paternal Cyfip1+/- mutants 

showed increased freezing behaviour during cued fear testing compared to wild type 

control mice (Chung et al. 2015). 

In summary, the behaviour of the independently generated Cyfip1+/- mutants is not 

grossly altered and does not highlight a shared phenotypic behaviour. 

 

 

 

1.6 Aims and objectives 

The aim of this PhD project was to characterise the behavioural and molecular 

phenotypes of Cyfip1+/- mice. To achieve this aim we first investigated the impact of 

Cyfip1 haploinsufficiency on Cyfip1 mRNA and CYFIP1 protein levels in different 

anatomical brain regions. Next, we assessed the social behaviour of male and female 

Cyfip1+/- mice which has not been done despite the association of CYFIP1 with ASD 

in human (Nishimura et al. 2007; Van Der Zwaag et al. 2010; Leblond et al. 2012; 

Pinto et al. 2014). In addition, we characterised the activity and anxiety behaviour of 

Cyfip1+/- mice. In human, impaired motor learning behaviour can be a comorbidity of 

ASD (Moraes et al. 2017). To test for a reminiscent motor learning phenotype in a 

mouse model for ASD, our study aimed to assess the motor learning behaviour of 

male and female Cyfip1+/- mice over the development. 

Following the behavioural characterisation of Cyfip1+/- mice, we investigated the 

molecular consequences of Cyfip1 haploinsufficiency in specific brain regions 

including the motor cortex, striatum, hippocampus and cerebellum. Using in vivo 

techniques we studied effects of Cyfip1 haploinsufficiency on the protein synthesis 

rate and dendritic spine dynamics. The dendritic spine density has already been 
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studied in Cyfip1+/- mice but the underlying spine dynamics remained unknown 

(Pathania et al. 2014; Davenport et al. 2018). Therefore, we analysed the neuronal 

phenotype of Cyfip1+/- mice in vivo and in particular quantified the dendritic spine 

turnover at baseline and upon motor training in the motor cortex.  
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2.1 Animal husbandry and legislation 

All animals were maintained on a 12 h light/dark cycle (beginning of light cycle 06.00, 

end of light cycle 18.00). The holding room temperature was maintained at 21°C. All 

animals had free access to food and water and were housed with at least one 

cardboard tube, one wooden chew stick and nesting material. Animals were weaned 

between P28 and P30. Health checks were made on a regular basis and only healthy 

animals were used for behavioural testing or tissue collection and subsequent 

analysis. Animal husbandry and experiments were performed in compliance with the 

Animal Scientific Procedures Act (ASPA, Home Office 1986). 

The Cyfip1tm2a(EUCOMM)Wtsi (EUCOMM) mouse line was either bred with C57Bl/6 mice 

(The Jackson Laboratory) to obtain Cyfip1+/- and Cyfip1+/+ mice (wild type mice) and 

or crossed with Tg(Thy1-EGFP)MJrs/J (The Jackson Laboratory) to obtain Thy1-

EGFP-Cyfip1+/- and Thy1-EGFP-Cyfip1+/+ mice. 

 

2.2 Genotyping 

Upon weaning ear notches were collected and stored at -20°C or processed on the 

same day. For DNA extraction the ear notch biopsies were incubated in 150 μl NaOH 

50 mM for 1 h at 90°C. 50 μl Tris 1 M, EDTA 4 mM pH 7.5 were added to the 

suspension. For a PCR reaction of 25 μl, 1.5 μl of the extraction suspension were 

mixed with 2.5 μl 10x Standard Taq Buffer (NEB), 0.5 μl 10 mM deoxynucleotides 

(dNTPs) (Promega), 0.5 μl 10 μM of each primer (Table 2.1), 0.125 μl 5`000 U/ml Taq 

DNA polymerase and 19.375 μl water. PCR was performed using a T100 Thermal 
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Cycler (Biorad) with the according thermocycler program (Table 2.1). After completion 

of the thermocycler programme the reaction mixtures were loaded on a 2% agarose 

gel in 1x TBE buffer (5x stock: 54 Tris base, 27.5 g boric acid, 20 ml of 0.5 M EDTA 

pH 8.0) containing 5 μl SaveView nucleic acid stain (NBS Biologicals) per 50 ml gel 

for visualisation of the DNA products. Agarose gel electrophoresis was performed at 

100 V for ~25 min. Reactions with DNA extracts originating from animals from the 

Cyfip1+/- colony revealed either only wild type band at 273 bp, determined as wild 

type, or a mutant band at 146 bp and a wild type band at 273 bp determined as 

heterozygous for Cyfp1. Animals of the Cyfip1-Thy1EGFP line were additionally 

tested for the expression of Thy1-EGFP by testing for the transgene band at 415 bp 

whereas a positive control was included with a band size of 324 bp. 

Target Primer 5`-3` 
Programme Band 

Temp. Time size 
Cyfip1 Wild type forward: 

CAGGCTGTCTTTTCCTCCTG 

Wild type reverse: 

ACTGCAAACATCCCCTTCAG 

Mutant reverse: 

GAACTTCGGAATAGGAACTTCG 

1) 95°C 

2) 95°C 

3) 60°C 

4) 68°C 

5) 2)-4) 

6) 68°C 

7) 4°C 

1 min 

30 s 

40 s 

1 min 

40 x 

5 min 

Hold 

Mutant:

146 bp 

 

WT:  

273 bp  

Thy1-EGFP Transgene forward: 

CTAGGCCACAGAATTGAAAGATCT 

Transgene reverse: 

CGGTGGTGCAGATGAACTT 

Internal control forward: 

CTAGGCCACAGAATTGAAAGATC 

Internal control reverse: 

GTAGGTGGAAATTCTAGCATCAT 

1) 95°C 

2) 95°C 

3) 60°C 

4) 68°C 

5) 2)-4) 

6) 68°C 

7) 4°C 

1 min 

30 s 

40 s 

1 min 

34 x 

5 min 

Hold 

Mutant:

415 bp 

 

Control:

324 bp 

 

Table 2.1 Primers and thermocycler programmes for used for genotyping. 
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2.3 Behaviour 

All behaviours were assessed during the light cycle. Test animals were handled to 

the same standard that mice could be hold in open hands. All mice were habituated 

for at least 30 min to the testing room prior to behavioural testing. Not more than one 

behaviour test was performed on a day with exception of marble burying followed by 

open-field testing with at least 2 h in between. All experimental equipment was 

cleaned between testing of individual animals. The experimenter was blind to the 

genotype during the behavioural testing and during the scoring of pictures or video 

recordings. Tested animals were not older than 12 weeks of age. 

 

2.3.1 Interest for social odours 

Before the behavioural testing, social odours were collected by scraping the bottom 

of a home cage with a cotton swap. Social odours were collected from cages 

containing male C57Bl/6 mice unfamiliar to the subject mouse. For the behavioural 

testing the subject mouse was habituated for 2 min to a clean cotton swab in the test 

arena (40 cm x 20 cm). After 2 min the clean cotton swab was removed and a social 

odour was presented twice for 2 min in sequence with a 30 s delay. For the second 

presentation of the social odour a different cotton swab with the same social odour 

was used. The mice were able to move freely during the test phase. The behaviour 

was video recorded and the time the animals explored the odour with nose contact 

was manually scored. The procedure was adapted from (Yang & Crawley 2009). 

 

2.3.2 Social odour discrimination 

Based on the three chamber assay for social discrimination (Moy et al. 2004) and the 

ability of mice to discriminate between different social odours (Mihalick et al. 2000; 

Ferkin & Li 2005; Arbuckle et al. 2015) we developed a social discrimination task 

relying on social odours. Before the behavioural testing, social odours (S1 and S2) 
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were collected from two different cages containing male C57Bl/6 mice unfamiliar to 

the subject mouse. An unfamiliar social odour S1 and a clean cotton swab were 

presented simultaneously for 10 min in opposite corners of the testing arena (40 cm 

x 40 cm). After 10 min mice were returned to their home cage for 30 min. To test for 

the discrimination behaviour, S1 and S2 were presented at the same time over 4 min 

in opposite corners of the arena. The behaviour was recorded using infrared 

illumination from the bottom (Tracksys) and a computer-linked video camera (The 

Imaging Source) placed above the arena. EthoVision XT (Noldus) software was used 

to track and quantification of the total time the animal spent in proximity to the odour, 

which was defined as sixteenth of the entire arena. The mice were tested in the dark 

and were able to freely explore the arena. 

	

2.3.3 Ultrasonic courtship vocalisation 

Prior to the experiment female C57Bl/6 mice in estrus were identified by testing for 

the stage of the estrus cycle. Vaginal smears were stained with modified Giemsa 

solution (fixative, blue/azure dye and xanthene dye, Polysciences Inc.) (Caligioni 

2009). Male mice were first habituated for 3 min to the arena (20 cm x 40 cm). 

Following the habituation, an unfamiliar female mouse in estrus was added to the 

same arena for 3 min. During this time the mice could interact with each other and 

move freely. The vocalisation behaviour was recorded by a preamplifier 

(UltraSoundGate 416H, Avisoft Bioacustics) connected microphone (UltraSoundGate 

CM16, Avisoft Bioacustics) placed above the arena. Vocalisation events within the 

frequency range of 30 hertz – 200 hertz (Holy & Guo 2005) were recorded and 

analysed for the total time of duration of emitted calls using SASLabPro (Avisoft 

Bioacustics). 
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2.3.4 Tube test 

The tube test was initially described as dominance tube (Lindzey et al. 1961) or 

Lindzey tube and has been used to evaluate the social dominance of mice (Wang et 

al. 2011). Social dominance within cages was assessed using the tube test apparatus 

(Noldus). The tube test apparatus consists of a smooth transparent acrylic tube 

(length: 30 cm; internal diameter 3.5 cm) with automatic doors at each end of the tube 

as well as in the centre of the tube. Before hierarchal assessment, all mice were 

trained over 4 days to the same standard to move through the tube without stopping 

or walking backwards. At the beginning of the test mice were placed at opposite ends 

of the tube and the doors at each end of the tube were opened. As soon as both mice 

reached the centre of the tube the door at the tube centre was opened. The two 

mouse encountered each other and aimed to push the opponent out of the tube. The 

mouse that got pushed out of the tube was declared as submissive of that trial 

whereas the mouse that won the direct encounter was declared as dominant. The 

trial was repeated with alternating sides of entry until one of the mice won two 

encounters. The assessment was repeated three times with five days between the 

tests. The total number of wins or the percentage of wins determined as (number of 

wins/total number of encounters) x 100 was used for analysis. 

 

2.3.5 Open-field 

The open-field maze was first used to test rats for anxiety-associated behaviours such 

as locomotor activity (Hall 1934). For this study, the spontaneous locomotor activity 

of mice was tested in an open field arena (40 cm x 40 cm) for 20 min in the dark. The 

mice were able to freely move and explore the environment during the test. The arena 

was infrared illuminated from the bottom (Tracksys) to enable video recordings by a 

computer-linked video camera (The  Imaging Source) placed above the arena. The 

trajectory travelled by each individual subject mouse was tracked and quantified for 

the average velocity in cm/s using the EthoVision XT software (Noldus). 
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Increased anxiety in mice has been associated with the animal`s preference to stay 

close to the walls of the open field arena (Simon et al. 1994), which is also known as 

thigmotaxis. This behaviour can be determined by analysing the time mice spent in 

the centre of the open-field arena. The centre of the open-field area was defined as 

5 cm from the wall. Using this parameter the open-field recordings were re-analysed 

for the time an individual animal spent in the defined area of the open field using 

EthoVision XT (Noldus) software. 

 

2.3.6 Marble burying 

Marble burying has been associated with anxiety (Broekkamp et al. 1986) and 

repetitive behaviour (Thomas et al. 2009). A clean box (28 cm x 17 cm) was 4 cm 

deep filled bedding (same type of bedding as used in the holding cage) to allow 

burying the marbles (1.25 cm in diameter). 20 marbles were arranged in 4 rows of 5 

marbles on top of the bedding. The individual subject mouse was put into the box 

which was closed with a lid. The subject mouse moved freely in the box over the test 

period of 30 min. The testing room used was dimly lit, with equal light distribution for 

all mice that were tested. After the test period the subject mouse was returned to the 

home cage. The bedding was replaced and the box and marbles were cleaned 

between tests. Marbles were manually counted based on photographs of the test box 

taken at the end of a test period. A buried marble was defined as marble with half or 

more of its volume buried in the bedding. 

 

2.3.7 Rotarod 

The rotarod paradigm is based on an accelerating rod which allows testing for motor 

learning (Brooks & Dunnett 2009; Costa et al. 2004). During a trial the rod of the 

apparatus (Ugo Basile 7650) accelerated from 0 rpm to 40 rpm within 5 min. The 

latency to fall off the rod was evaluated over 7 subsequent trials with rests of 5 min in 
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between. During the 5 min between test trial mice were at the base of the apparatus 

and were able to freely move. The latency to fall was determined based on the time 

spent on the rod until the test mouse fell off, gripped to the rod and followed the rod 

for a full rotation or the testing trial end after 5 min. The measured latency to fall was 

used for the analysis. 

 

2.4 Dissections 

Mice were culled by cervical dislocation and confirmed by decapitation in accordance 

to Schedule 1 (ASPA, Home Office 1986). Collected peripheral tissues, liver and 

spleen, were immediately snap frozen in liquid nitrogen and stored at -80°C. The brain 

was placed in brain matrice (Electron Microscopy) on ice and sliced with pre-chilled 

blades (Electron Microscopy). The brain was cut coronally from anterior to posterior. 

The olfactory bulb was cut first following by cuts with the following spacing relative to 

the initial cut: 1.5 mm, 1 mm, 1 mm, 1.5 mm, 1.5 mm, 1.5 mm. The resulting slices 

were micro dissected in PBS on ice as illustrated (Figure 2.1) and snap frozen in liquid 

nitrogen followed by storage at -80°C. 

 

 

 

 

 

 

 
	

	

Figure 2.1 Schematic of microdissection. 
Anatomical brain regions were microdissected as illustrated. The depicted 

nomenclature was used to refer to the given tissue samples. 
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2.5 RNA extraction and quantitative real-time PCR  

Collected tissue (Chapter 2.4.1) was triturated in 1 ml with TRIzol reagent (Thermo 

Fisher Scientific) using a 25 gauge needle and syringe. The suspension was 

centrifuged for 10 s at 12,000 g to pellet the tissue pieces. The liquid was transferred 

into a new tube and 200 μl chlorophorm (Merck) were added. After repeated inverting 

over 15 s, the sample was centrifuged at 12`000 g for 15min at 4°C. The aqueous 

phase was transferred in a new tube and 0.5 ml of 100% isopropanol (Merck) were 

added. After repeated inverting over 15 s, sample was loaded onto a column for 

purification using the RNeasy kit (Qiagen). After an initial centrifugation of 15 s at 

12,000 g the flow through was discarded and 350 μl Buffer RW1 RNeasy kit (Qiagen) 

was added to the column followed by centrifugation for 30 s at 12`000 g. To remove 

DNA from the sample the column was incubated with 75 μl of DNaseI mix (Qiagen) 

(10 μl DNase I stock solution in 70 μl RDD Buffer) for 15 min. The column was washed 

with 350 μl RW1 buffer (RNeasy kit, Qiagen) by centrifugation for 20 s at 12,000 g. A 

second was wash was performed with a volume of 700 μl RW1 buffer. Next, two 

additional washing steps with 500 μl RPE buffer (RNeasy kit, Qiagen) with 

centrifugation for 20 s at 12,000 g in between followed. After a final centrifugation a 

for 1 min at 12,000 g the column bound RNA was eluted using 30 μl RNAse free water 

(Qiagen). After elution RNA was kept on ice and RNA concentration was determined 

using a BioSpectrometer® (Eppendorf). If the concentration was too high to be 

determined the sample was diluted in RNAse free water (Qiagen). Only contamination 

free samples with a 260/280 nm absorbance ratio between 1.8 and 2.0 were used for 

reverse transcription.  

1 mg of extracted RNA were used for reverse transcription using SuperScript® III 

reverse transcriptase (Thermo Fisher Scientific). The RNA was diluted with RNAse 

free water to a final volume of 11 μl and 1 μl Random Hexamer Primers (Promega) 

and 1 μl 1 mM of dNTP mix (prepared from dATP, dCTP, dGTP and dTTP, Promega) 
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were added. The sample was incubated at 65°C for 5 min. 4 μl 5x First-Strand Buffer 

(Thermo Fisher Scientific), 1 μl 0.1 M DTT, 1 μl 20 – 40 U/μl RNasin® Ribonuclease 

Inhibitor (Promega) and 1 μl 200 U/μl SuperScript® III reverse transcriptase were 

prepared as a master mix and added to the sample. This reaction was incubated at 

50°C for 2 h followed by heat inactivation at 70°C for 15 min. The obtained 

complementary DNA (cDNA) was directly used or stored at -20°C if necessary.  

Prior real-time PCR testing of the samples, each primer primer (Table 2.2) was tested 

for specificity and efficiency. To test specificity the melt curve was generated by 

performing a real-time-PCR reaction including a temperature raise of 1°C per minute 

up to 99°C. The melt curve was assessed for a single sharp peak. The efficiency of 

each primer pair was tested by testing for a linearity between obtained cycle of signal 

detection and the logarithm of the amount of cDNA used in the reaction (15 ng – 

125  ng). Linearity was tested by a liner regression data fitting and the slope was 

determined (Excel). The efficiency was calculated as 10((-1/(slope))-1) x 100. Only 

primer pairs with an efficiency of over 65% were used. Primers were designed using 

https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool and tested 

for specificity using https://blast.ncbi.nlm.nih.gov/Blast.cgi unless primer sequences 

were previously published (Table 2.2 Legend). 

For each real-time PCR reaction 15-50 ng cDNA was used. Per reaction the cDNA 

was mixed with 12.5 μl FAST SYBR® Green master mix (Thermo Fisher Scientific), 

0.625 μl 10 μM forward primer (Table 2.2), 0.625 μl 10 μM reverse primer (Table 2.2) 

and water up to a volume of 25 μl. All reaction were prepared as a master mix of 

duplicates or triplicates. Individual reactions were load into a MicroAmp® Fast Optical 

96-well plate (Thermo Fisher Scientific) whereas all plates contained control reactions 

amplifying 18S cDNA. Using StepOnePlus™ Real-Time PCR system (Thermo Fisher 

Scientific) the plate was ran using the following programme: 1) 10 min at 95°C, 2) 30 

sec at 95°C, 3) 30 sec at 57°C, 4) 1 min at 70°C, whereas steps 2) – 4) were repeated 

39 times. The results were analysed by the 2-ΔΔCT method using 18S as a control. 
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Target 
Primer 5`-3` 

Forward Reverse 

18S GTCTGTGATGCCCTTAGATG AGCTTATGACCCGCACTTAC 

Crhr2 GCATCACCACCATCTTCAAC GAATGCACCATCCAATGAAG 

Cyfip1 CTGCATATAAGAGGGCTGCTCA GGCCAGGAACATGGACAGAT 

Cyp2d9 AGTCTCTGGCTTAATTCCTGAT CGCAAGAGTATCGGGAATGC 

Mup4 ATGAAGCTGCTGCTGTGT TCATTCTCGGGCCTTGAG 

Mup6 ATGAAGCTGCTGCTGCTGT TCATTCTCGGGCCTGGAG 

Mup20 CTGCTGCTGTGTTTGGGACT TCTTTTGTCAGTGGCCAGCA 

Table 2.2 Primers for real-time PCR. 
Primers for Cyp2d9 primers (Sato et al. 2017), Primers for Mup20 (Guo et al. 2015) 

 

 

2.6 CYFIP1 immunoprecipitation 

Tissue was triturated in lysis buffer (25 mM Tris-HCl, pH 8, 50 mM KCl, 0.2 mM EDTA, 

1% Triton, supplemented with protease and phosphatase inhibitor cocktails (Merck) 

and 1 μl NaF 1 M and 5 ul NaVO4 100 mM per 1 ml lysis buffer) using a 25 gauge 

needle and syringe. The homogenate was incubated on a rotator for 1 h at 4°C and 

then centrifuged for 10 min at 94 g at 4°C. The supernatant was re-centrifuged for 10 

min at 9,391 g at 4°C. The protein concentration of the lysate was determined using 

the Pierce™ BCA Protein Assay kit (Thermo Fisher Scientific) according to the 

manufacture`s manual and BSA standards ranging from 5.5 mg/ml to 0.5 mg/ml 

including a blank control. Aliquots of the lysate were stored at -20°C and later 

analysed (input). 630 μg of protein lysate were incubated with 4 μg of anti-

PIR121/Sra- 1 antibody (Cat. No 07-531, Millipore) or 4 μg of rabbit IgG (Merck) as a 

negative control on a rotator overnight at 4°C. Prior the precipitation, 20 μl of protein 
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A sepharose beads slurry (nProtein A Sepharose 4 Fast Flow, GE Healthcare) were 

saturated in 1% BSA (Merck) in PBS (Thermo Fisher Scientific) on the rotator for 1 h 

at 4°C. The sepharose beads were then washed twice with 500 μl lysis buffer and 

centrifugation for 2 min at 2,000 g at 4°C. For the precipitation the antibody incubated 

lysates were added to the prepared sepharose beads and incubated on a rotator for 

2h at 4°C. For the elution the samples were centrifuged for 2 min at 2,000g at 4°C. 

The supernatant was removed and the sepharose beads were washed twice with 

500  μl lysis buffer with centrifugation for 2 min at 2`000g at 4°C in between. A final 

wash was made with 500 μl lysis buffer (without Triton) followed by centrifugation for 

2 min at 2,000 g at 4°C. After removal of the supernatant, 25 μl 2x sample buffer (212 

mM Tris HCl, 182 mM Tris base, 4% LDS, 20% Glycerol, 1.02 mM EDTA, 0.44 mM 

Brilliant Blue G250, 0.350 mM Phenol Red, pH 8.5) and 100 mM DTT were added. 

The samples were incubated for 10 min at 70°C. After centrifugation for 2 min at 

2000  g the supernatant was transferred into a new tube and analysed by Western 

blotting (chapter 2.7) at which anti-CYFIP1 (Cat. No ab ab156016, Abcam) was used 

for CYFIP1 detection. 

 

 

 

2.7 Western blotting 

Per mg of tissue, 10ul of lysis buffer (1% sodium dodecyl sulfate, 10mM Hepes, NaF 

1mM, NaVO4 1mM, supplemented with complete protease and phosphatase inhibitor 

cocktails, Merck) was used. The tissue was triturated in the lysis buffer using a 

25  gauge needle and syringe. The homogenate was incubated on a rotator for 1 h at 

4°C and then centrifuged for 15 min at 15`000 g at 4°C. The supernatant was 

transferred into a new tube and mixed with sample buffer (106 mM Tris HCl, 141 mM 

Tris base, 2% LDS, 10% Glycerol, 0.51 mM EDTA, 0.22 mM Brilliant Blue G250, 



31 

0.175 mM Phenol Red, pH 8.5) and 50 mM DTT and boiled for 10 min at 70°C. 

Samples were directly used or stored at -20°C and boiled for 10 min at 70°C prior to 

further processing. Lysates were loaded on NuPAGE™ Novex™ 4-12% Bis-Tris gels 

with 10 wells or 15 wells (lysates subsequently analysed for puromycin were 

exclusively loaded on 10 well gels). Gels were ran in running buffer (50 mM MES, 

50  mM Tris base, 0.1% SDS, 1 mM EDTA, pH 7.3) at 120 V for about 1 h 30 min. To 

transfer the proteins from the gel onto Amersham™ Protan™ 0.2 μm nitrocellulose 

membranes (GE Healthcare) a wet transfer was used. For transfer buffer consisted 

of 25 mM Bicine, 25 mM Bis-Tris, 1 mM EDTA and 20% isopropanol, Merck). After 

the transfer, the membrane was incubated in 5% Blotting-Grade Blocker (Biorad) in 

TBS-T (24.7 mM Tris base, 137 mM NaCl, 2.6 mM KCl, 0.1 % Tween-20, pH 7.5.). 

For immunoprobing, the membrane was incubated in 5% Blotting-Grade Blocker 

(Biorad) in TBS-T containing the primary antibody at given dilution (Table 2.3) 

overnight at 4°C. The membrane was washed three times for 15 min with TBS-T and 

then incubated with the secondary antibody at given dilution (Table 2.4) for 2 h at 

room temperature. The membrane was washed three times for 15 min with TBS-T. 

The membranes were developed using 1 ml Western blotting luminol reagent (Santa 

Cruz biotechnology) or WesternBright™ ECL (Advansta) for an incubation time of 

1  min. The excessive substrate was removed and the signals were detected by a 

digital ChemiDoc™ MP system (Biorad) and the Image Lab™ software (Biorad). All 

signals were acquired without signal saturation. For blots tested for puromycin, 

Pierce™ Reversible Protein Stain Kit (Thermo Fisher Scientific) (Antharavally et al. 

2004) was used as a normaliser and acquired by a GenoSmart2 system (VWR). The 

densitometric analysis of Pierce™ staining was performed using Fiji (Schindelin et al. 

2012). 
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Antibody Type Species Dilution Cat. no Distributor 

anti-βIII-

tubulin 

mAb mouse 1:5‘000 801202 Biolegend 

anti-

CYFIP1 

mAb rabbit 1:1‘000 ab156016 Abcam 

anti-

GAPDH 

pAb chicken 1:5‘000 83956 Abcam 

anti-

WAVE1  

mAb  mouse  1:1‘000  MABN503  Millipore  

anti-

Phospho-

eIF4E 

(Ser209)  

pAb  rabbit  1:1‘000  07-823  Millipore  

Anti-

PIR121/ 

Sra-1 

pAb rabbit 1:1`000 07-531 Millipore 

Anti-

Puromycin 

mAb mouse 1:1‘000 MABE343 Millipore 

Table 2.3 Primary antibodies used for Western blotting. 
Monoclonal (mAb) and polyclonal (pAb) antibodies used for Western blotting. 

 

Antibody Species Dilution Cat. No Distributor 

anti-chicken 

IgY-HRP 

goat 1:20‘000 ab6877 Abcam 

anti-goat IgG-

HRP 

donkey 1:20‘000 sc-2020 Santa Cruz 

anti-mouse 

IgG-HRP 

goat 1:20‘000 W401B Promega 

anti-rabbit 

IgG-HRP 

goat 1:20‘000 W402B Promega 

Table 2.4 Secondary antibodies used for Western blotting. 
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2.8 Puromycin incorporation in vivo 

Male mice were anesthetised using isoflurane (UWH Phamacy) at 5% for induction, 

2.5% for maintenance and head fixed in a stereotaxic frame. An aseptic surgical 

procedure procedures were applied, a heat mat (Vet Tech) was used during the 

surgery and the respiration was monitored by eye. The animal`s head was then 

shaved and the eyes covered with Viscotears® liquid gel (Alcon). The mouse was 

injected subcutaneously with Metacam (100 μl 0.66 mg/ml per 30g body weight, 

Boehringer Ingelheim) and a mid-saggital incision was made to expose the cranium. 

A dental drill, which was connected to the stereotaxic frame, and burr (Cat. no 500 

204, Meisinger), was used to drill a hole into the cranium at the coordinates - 1 mm 

mediolateral and – 0.22 mm anteroposterior relative to bregma (Santini et al. 2013). 

A 5 μl Hamilton microliter syringe (Hamilton) with a 26 gauge needle was lowered by 

2.4 mm relative to the brain surface in order to inject 0.5 μl of 50 μg/μl puromycin into 

the ventricle. After injection, the needle was left in place for 4 min, then withdrawn by 

1.2 mm and left in place for another 4 min before complete removal. The incision was 

closed with three silk sutures. Over the course of the surgery, the mouse was injected 

subcutaneously with 1 ml of saline using a 1 ml syringe and 26 gauge needle. The 

animal recovered in a heated cage and was used for tissue collection (chapter 2.4) 1 

h after the ventricular injection. The tissues were further analysed by Western blotting 

(chapter 2.7). 

 

 

 

2.9 Histology 

Thy1-EGFP-Cyfip1+/- and Thy1-EGFP-Cyfip1+/+ adult male mice (n = 4 for both 

genotypes) were anesthetised with an intraperitoneal injection of 100 µl Euthanal 

(Merial animal health) and perfused with 4% paraformaldehyde (Electron microscopy 
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sciences) in 0.1 M phosphate buffer. Brains were post-fixed overnight in 4% 

paraformaldehyde in 0.1 M phosphate buffer at 4°C and then stored for 1 day in a 

30% sucrose (Merck) in PBS solution. Brains were embedded in OCT (Scigen) and 

stored at -80°C. Using a cryostat (Leica Biosystems) coronal sections of 50 μm were 

cut and mounted on glass slides (VWR). Images of the primary motor and visual 

cortices were acquired by confocal microscopy on a Zeiss LSM700 upright confocal 

microscope (Carl Zeiss) with a 43x water immersion objective (numerical aperture = 

1.3). At least 10 Z-stack images (2048 x 2048 pixels) were acquired with a spacing of 

0.5 μm. The stacks were processed by Y-stack projections of maximum intensity in 

ImageJ (NIH). Focusing on secondary branching, dendrite stretches of 60 μm – 

150  μm were identified and the spines were manually counted. The number of spines 

was determined in 24 dendrites per animal. The spine density was calculated as 

number of spines per 100 μm dendrite. 

	

	

2.10 Craniotomy and structural imaging 

Dendritic spine imaging was performed in awake and head fixed Thy1-EGFP-Cyfip1+/- 

and Thy1-EGFP-Cyfip1+/+ adult male mice with implanted cranial windows. Aseptic 

surgical procedures were conducted based on previously described protocols 

(Goldey et al. 2014; Ranson 2017). Approximately one hour prior to cranial window 

surgery, animals were injected subcutaneously with the antibiotic Baytril (5 mg/kg, 

Henry Schein Animal Health) and the anti-inflammatory drugs Rimadyl (5 mg/kg, 

injected, UWH Phamacy) and Dexafort (0.15 mg/kg, intramuscularly injected, Henry 

Schein Animal Health). Anaesthesia was induced then maintained using Isoflurane 

(UWH Phamacy) at concentrations of 4%, then 1.5% - 2% respectively. After animals 

were secured in a stereotaxic frame, the scalp and periosteum were removed from 

the dorsal surface of the skull, and a custom head plate was attached to the cranium 
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using dental cement (Super Bond C&B), with an aperture approximately centred over 

right M1. A 3 mm circular craniotomy was next performed, centred over the forelimb 

area using stereotaxic coordinates  1.3 mm anterior to the bregma and 1.2 mm 

lateral from the midline. The craniotomy was then closed with a glass insert 

constructed from 3 layers of circular no 1 thickness glass (1 mm x 5 mm, 2 mm x 

3  mm diameter) bonded together with optical adhesive (Norland Products; catalogue 

no. 7106). 

Mice were imaged one week post surgery. Initial dendritic spine imaging was followed 

up after two, seven and nine days. In vivo 2-photon imaging was performed using a 

resonant scanning microscope (Thorlabs, B-Scope) with a 16x objective (numerical 

aperture = 0.8) with 3 mm working distance (Nikon). EGFP was excited at 980 nm 

using a Ti:sapphire laser (Coherent, Chameleon) with a maximum laser power at 

sample of 20 milliwatt. Z stacks were acquired at a frame rate of approximately 

30  hertz, with 20 frames per depth, from 15 depths spaced by 2 µm. Recordings were 

targeted to stretches of dendrite close to parallel to the imaging plane. Cortical surface 

vascular landmarks were used to locate the same stretches of dendrite between 

sessions. During 2-photon imaging animals were free to run on a custom designed 

fixed axis cylindrical treadmill, and data collection was limited to stationary periods to 

avoid locomotion related brain movement. Imaging data was acquired using 

Scanimage 4.1. Imaging data was first corrected for brain motion using an automated 

rigid registration algorithm (Guizar-Sicairos et al. 2008) implemented in Matlab 

(MathWorks). The 20 frames from each depth were then averaged and a maximum 

intensity projection calculated over the Z planes which encompassed the stretch of 

dendrite of interest. 

For baseline spine turnover dendrites of interest were imaged four times over the time 

period of nine days. The same animals were later trained on the rotarod and imaged 

two days after motor training. Formed and eliminated spines were manually counted 
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and normalised to 100 µm of dendrite (Thy1-EGFP-Cyfip1+/- n = 36, from 4 mice; 

Thy1-EGFP-Cyfip1+/+ n = 40, from 4 mice). 

 

 

2.11 Statistical analysis 

Statistical details are attached in the appendix (Table A.1) Statistical analysis was 

performed using SPSS Statistics® 23 software (IBM). For pairwise comparisons the 

data was tested for normal distribution using the Shapiro-Wilk test and equality of 

variances by Levene`s test. Normal distributed data with equal variances was 

analysed by one or two-tailed Student`s t-test. Pairwise comparisons of 

nonparametric data was analysed by the one or two-tailed Mann-Whitney U-test. For 

repeated measures ANOVA data was analysed for normal distribution using the 

Shapiro-Wilk test and for equal variances using the Mauchly`s test of sphericity. 

Violation of Mauchly`s test of sphericity was analysed by Greenhouse-Geisser 

estimate of sphericity and if ε <0.75 Greenhouse-Geisser correction was applied. 

Pillai`s Trace test was used as a multivariate test of repeated measures ANOVA. If 

significant single comparison post hoc test were made using Bonferroni tests. For 

multicomparisons one-way or multi-way ANOVAs were used followed by Bonferroni 

or Sidak`s tests when appropiate. All statistical data is presented as mean ± SEM. 

Power analysis was performed using G*Power (Faul et al. 2007).  
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3.1 Introduction 

The focus of this chapter is on the characterisation of Cyfip1 mRNA and CYFIP1 

protein levels in the Cyfip1+/- mouse model used in this study in comparison to wild 

type littermate mice. We hypothesised that the genetic Cyfip1 haploinsufficiency 

directly compromises Cyfip1 mRNA levels, which consequently diminishes CYFIP1 

protein levels. We quantified Cyfip1 mRNA and CYFIP1 protein levels in tissues from 

adult Cyfip1+/- and wild type mice using quantitative real-time PCR and Western 

blotting techniques following analysis for an effect of genotype on Cyfip1 mRNA and 

CYFIP1 protein levels. 

 

 

3.2 Cyfip1 mRNA levels in Cyfip1+/- mice 

We used quantitative real-time PCR using the 2-DDCT method to quantify Cyfip1 mRNA 

levels in tissues from adult Cyfip1+/- and wild type mice. The normalised Cyfip1 mRNA 

levels in adult Cyfip1+/- mice were significantly decreased in the motor cortex (WT n 

= 11; Cyfip1+/- n = 11; one-tailed Student`s t-test, P = 0.006), striatum (WT n = 12; 

Cyfip1+/- n = 12; one-tailed Mann-Whitney U-test, U = 11.000, P = 0.000) cerebellum 

(WT n = 11; Cyfip1+/- n = 9; one-tailed Student`s t-test, P = 0.006) and liver (WT 

n  =  10; Cyfip1+/- n = 9; one-tailed Mann-Whitney U-test, U = 13.000, P = 0.004) 

compared to normalised Cyfip1 mRNA levels determined in wild type mice (Figure 

3.1). 
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Figure 3.1 Relative Cyfip1 mRNA levels in Cyfip1+/- and wild type tissues. 
Cyfip1 mRNA levels were significantly decreased in the adult Cyfip1+/- motor cortex, 

striatum, cerebellum and liver compared to wild type control tissues. Cyfip1 mRNA 

levels were normalised to 18S mRNA levels. All values presented as mean ± SEM. 

Statistical significance was tested by one-tailed Student`s t-test or one-tailed Mann-

Whitney U-test. **P < 0.01; ***P < 0.001. 
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3.3 CYFIP1 protein levels in Cyfip1+/- mice 

CYFIP1 protein levels in tissues from adult Cyfip1+/- and wild type mice were 

determined by Western blotting using an antibody specific for CYFIP1 and antibodies 

against βIII-Tubulin and GAPDH as loading controls for neuronal and non-neuronal 

tissues respectively. Lysates from the Cyfip1+/- motor cortex (WT n = 20; Cyfip1+/- n = 

20; one-tailed Student`s t-test, F = 0.967, P = 0.017) and hippocampus (WT n = 13; 

Cyfip1+/- n = 12; one-tailed Student`s t-test, F = 2.682, P = 0.002) revealed 

significantly decreased CYFIP1 protein levels compared to wild type control lysates. 

In contrast, similar CYFIP1 protein levels were obtained between Cyfip1+/- and wild 

type tissues in the striatum (WT n = 16; Cyfip1+/- n = 16; one-tailed Mann-Whitney 

U- test, U = 88.000, P = 0.069), thalamus (WT n = 11; Cyfip1+/- n = 9; one-tailed 

Student`s t-test, F = 0.703, P = 0.332), somatosensory cortex (WT n = 5; Cyfip1+/- 

n  =  9; one-tailed Mann-Whitney U-test, U = 22.000, P = 0.500) and cerebellum (WT 

n = 13; Cyfip1+/- n = 12; one-tailed Mann-Whitney U-test, U = 58.000, P = 0.148) 

(Figure 3.2). In addition, CYFIP1 protein levels obtained in the peripheral tissues liver 

and spleen were comparable between Cyfip1+/- and wild type mice (Liver: WT n = 11; 

Cyfip1+/- n = 9; one-tailed Mann-Whitney U-test, U = 48.500, P = 0.471; Spleen: WT 

n = 11; Cyfip1+/- n = 9; one-tailed Student`s t-test, F = 1.721, P = 0.478) (Figure 3.2). 
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Figure 3.2 CYFIP1 protein levels in Cyfip1+/- and wild type tissues. 
A, Wild type and Cyfip1+/- tissue lysates from the motor cortex (mCx), hippocampus 

(Hpc) , striatum (Str), thalamus (Th), somatosensory cortex (sCx), cerebellum (Cb), 

liver (Li) and spleen (Sp) analysed by Western blotting for CYFIP1 and βIII-Tubulin or 

GAPDH as loading controls. B, Quantification of Western blots. CYFIP1 levels were 

normalised to βIII-Tubulin or GAPDH. All values presented as mean ± SEM. Statistical 

significance was tested by one-tailed Student`s t-test or one-tailed Mann-Whitney 

U- test. ns P > 0.05; *P < 0.05; **P < 0.01. 
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3.4 Discussion 

The quantification of Cyfip1 mRNA levels relative to 18S mRNA levels and the 

subsequent comparison between Cyfip1+/- mutant and wild type tissue revealed a 

significant reduction of Cyfip1 mRNA levels across different brain regions, namely the 

motor cortex, striatum and cerebellum. Furthermore, Cyfip1 mRNA levels in the 

peripheral liver tissue were significantly decreased in Cyfip1+/- mice compared to wild 

type mice. In addition, the magnitude of Cyfip1+/- specific reduction in Cyfip1 mRNA 

levels was about 50 per cent across all tested tissues. Taken together, the results 

indicate that Cyfip1 haploinsufficiency leads to reduced Cyfip1 mRNA levels as 

hypothesised. Thus, both Cyfip1 alleles contribute to Cyfip1 mRNA levels suggesting 

a biallelic expression of Cyfip1. 

CYFIP1 protein levels were significantly decreased in the motor cortex and 

hippocampus of Cyfip1+/- mice compared to wild type mice. Surprisingly, CYFIP1 

protein levels were similar between mice heterozygous for Cyfip1 and wild type 

control mice in the striatum, cerebellum, somatosensory cortex and thalamus. 

Similarly, peripheral CYFIP1 protein levels in liver and spleen were comparable 

between Cyfip1+/- and wild type mice. In certain Cyfip1+/- tissues such as the striatum, 

cerebellum, somatosensory cortex, thalamus, liver and spleen there was a 

discrepancy between Cyfip1 mRNA levels, which were reduced by 50%, and CYFIP1 

protein levels which were similar to wild type levels. This highlights an 

uncharacterised post-transcriptional compensatory mechanism, which gave rise to 

wild type CYFIP1 levels despite the underlying Cyfip1 haploinsufficiency. In addition, 

the mechanism seemed not to be mediated by a neuronal network effect since 

CYFIP1 protein levels were also compensated in the peripheral Cyfip1+/- tissues such 

as the liver and spleen. As potential mechanisms, we propose an increased stability 

of Cyfip1 mRNA or CYFIP1 protein due to an altered expression of microRNAs or 

CYFIP1 interaction partners (Fabian et al. 2018; Catalanotto et al. 2016) or an 



42 

increased translation of Cyfip1 mRNA in Cyfip1+/- mice compared to wild type mice 

(Hsiao et al. 2016), which we addressed in vivo (chapter 6). We next assessed 

whether the brain region-specific decrease in CYFIP1 protein levels in Cyfip1+/- mice 

had consequences on the behaviour of Cyfip1+/- mice as presented in the next 

chapter. 
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4.1 Introduction 

This chapter outlines the behavioural characterisation of mice heterozygous for 

Cyfip1. In these experiments, we tested adult Cyfip1+/- and wild type littermate mice 

using behavioural paradigms for social behaviour, repetitive behaviour, anxiety-

related behaviour, activity and motor learning behaviour. 

	

4.2 Social behaviours of Cyfip1+/- mice 

Cyfip1 has been associated with ASD in humans (Leblond et al. 2012; Nowicki et al. 

2007; Nishimura et al. 2007; Van Der Zwaag et al. 2010; Noroozi et al. 2018; Pinto et 

al. 2014) which is characterised by impairments in sociability, verbal communication 

and ritualistic behaviours (Diagnostic and statistical manual of mental disorders. 5th 

ed., Washington, DC). ASD is more prevalent in male than female individuals 

(male/female ratio of 4.5:1) (Christensen et al. 2016). Despite the association of 

Cyfip1 with ASD, the social behaviour of Cyfip1+/- mice has not been characterised 

yet. Social behaviours in mice are differentially manifested between male and female 

mice, for example, territorial and aggressive behaviours are more pronounced in 

males than in females (Wu et al. 2009) which in turn show specific maternal social 

behaviours (Lonstein & De Vries 2000). We therefore analysed the social behaviour 

of male and female mice separately. 

We first tested adult wild type and Cyfip1+/- male mice for their interest in unfamiliar 

social odours collected from wild type male mice. Male wild type mice spent 

significantly more time in proximity to the social odour than a control consisting of the 

odour carrier without any additional odours, whereas Cyfip1+/- male mice spent similar 
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time exploring the control and social odour (WT n = 9; Cyfip1+/- n = 12; repeated 

measures ANOVA, main effect of odour, F2, 18 = 11.177, P = 0.001; interaction odour 

x genotype, F2, 18 = 3.776, P = 0.043, Bonferroni Post-hoc test) (Figure 4.1A). In a 

social discrimination task relying on social odours Cyfip1+/- and wild type male mice 

spent significantly more time with an unfamiliar social odour as opposed to a 

previously presented and therefore familiar social odour (WT n = 9; Cyfip1+/- n = 12; 

repeated measures ANOVA, main effect of odour, F1, 19 = 27.792, P = 0.000, 

interaction odour x genotype, F1, 19 = 0.647, P = 0.428) (Figure 4.1B). Next, Cyfip1+/- 

and wild type male mice were exposed to an unfamiliar adult female wild type mouse 

in estrus and ultrasonic vocalisations were recorded. Recordings analysed for the 

total duration of ultrasonic calls revealed that adult Cyfip1+/- and wild type male mice 

vocalised to similar extents towards the female wild type mouse (WT n = 18; Cyfip1+/- 

n = 10; two-tailed Student`s t-test P = 0.698) (Figure 4.1C). To test for dominance 

behaviour adult Cyfip1+/- and wild type male were assessed in the tube test. Cyfip1+/- 

male mice won 40.74% of the direct encounters with wild type males representing an 

equal distribution of dominance behaviour over the male Cyfip1+/- and wild type 

population (Figure 4.1D). 

In addition, female Cyfip1+/- and wild type mice were tested for their social interest. 

Adult Cyfip1+/- and wild type female mice spent significantly more time in proximity to 

the social odour than to a control (WT n = 8; Cyfip1+/- n = 10; repeated measures 

ANOVA, main effect of odour, F2, 15 = 6.306, P = 0.010; interaction odour x genotype, 

F2, 15 = 0.654, P = 0.534, Bonferroni Post-hoc test) (Figure 4.1E). In contrast to the 

social discrimination behaviour of Cyfip1+/- and wild type male mice, female Cyfip1+/- 

and wild type female mice did not show a preference for an unfamiliar social odour 

over a familiar social odour (WT n = 8; Cyfip1+/- n = 10; repeated measures ANOVA, 

main effect of odour, F1, 16 = 1.601, P = 0.224; interaction odour x genotype, F1, 16 = 

0.031, P  =  0.862, Bonferroni Post-hoc test) (Figure 4.1F). Taken together, the 

assessment of social behaviours of adult Cyfip1+/- mice in comparison to wild type 
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control mice revealed a decreased interest in social odours specifically in Cyfip1+/- 

male mice. 

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	
	
	

	
	

	
	
	

	

	

	

	

	

	

	

	

Figure 4.1 Reduced social interest but normal social discrimination, courtship 
and dominance behaviour of Cyfip1+/- male mice. 
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A, Adult Cyfip1+/- male mice spent less time exploring an unfamiliar social odour than 

wild type male mice. B, Adult Cyfip1+/- and wild type male mice spent more time with 

an unfamiliar social odour than a familiar social odour in a discrimination paradigm. 

C, Adult male Cyfip1+/- and wild type mice vocalised to comparable extends towards 

an adult female mouse in estrus. D, Cyfip1+/- and wild type mice won and lost similar 

number of direct tube test encounters. E, Adult Cyfip1+/- and wild type female mice 

showed interest in social odours. F, Cyfip1+/- and wild type female mice did not 

discriminate between familiar and unfamiliar social odours. Except from D all values 

presented as mean ± SEM. Statistical significance was tested by repeated measures 

ANOVA followed by Bonferroni Post-hoc test (A-B, E-F) or two-tailed Student`s t-test 

(C). ns P > 0.05; *P < 0.05; **P ≤ 0.01; ***P < 0.001. 

	

 

4.3 General locomotor activity and anxiety-related behaviours of 
Cyfip1+/- mice 

In contrast to social behaviours, locomotor activity behaviours of two different Cyfip1+/- 

mouse lines have been reported with different results. Using open-field tests either 

similar activity levels between Cyfip1+/- mutant and wild type mice were reported 

(Bozdagi et al. 2012) or an imprinting specific hypoactivity in maternally heterozygous 

Cyfip1 mice was observed compared to wild type mice (Chung et al. 2015). In 

addition, anxiety-related behaviours were demonstrated to be similar between 

Cyfip1+/- and wild type mice (Bozdagi et al. 2012) with the exception of a subtle effect 

on the anxiety behaviour of paternal Cyfip1+/- mutant mice (Chung et al. 2015). We 

tested adult male Cyfip1+/- and wild type mice in the open-field for their general 

locomotor activity. In addition, anxiety-related behaviours were assessed by the time 

the animals spent in the centre of the open-field arena and the marble burying 

behaviour. Using the same behaviour paradigms we then tested adult female Cyfip1+/- 

and wild type mice.	

The observed activity behaviour of adult Cyfip1+/- male mice was comparable to the 

behaviour of wild type male mice (WT n = 10, Cyfip1+/- n = 17; two-tailed Student`s 
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t- test, P = 0.540) (Figure 4.2A). Moreover, adult Cyfip1+/- and wild type male mice 

spent similar amount of time in the centre of the open-field arena (WT n = 9, Cyfip1+/- 

n = 12; two-tailed Mann-Whitney U-test, U = 47.000, P = 0.651) (Figure 4.2B). In 

addition, the marble burying paradigm revealed that Cyfip1+/- and wild type mice 

buried comparable number of marbles (WT n = 15, Cyfip1+/- n = 15; two-tailed 

Student`s t-test, P = 0.243) (Figure 4.2C).	

Next, female Cyfip1+/- and wild type mice were tested for their behaviours in the open-

field and marble burying paradigm. Adult Cyfip1+/- female mice showed a tendency 

towards a hypoactivity phenotype in the open-field (WT n = 9, Cyfip1+/- n  = 8; two-

tailed Mann-Whitney U-test, U = 18.000, P = 0.093) (Figure 4.2D). Therefore, we 

determined whether an increased number of Cyfip1+/- and wild type female mice 

would allow detecting the assumed difference in activity between Cyfip1+/- and wild 

type mice. Thus, the measured mean velocities, standard deviations and the effect 

size were used as input for a power analysis. The power analysis revealed that a total 

of at least 19 Cyfip1+/- and 19 wild type female mice would be needed for the 

postulated hypoactivity in Cyfip1+/- female mice to reach statistical significance (Mann-

Whitney U-test, two-tailed, P = 0.05, power (1-β) = 0.80). Notably, this power analysis 

underlies the assumption that the experimental data is representative for the entire 

population of Cyfip1+/- and wild type female mice and that female Cyfip1+/- mice are 

indeed hypoactive compared to wild type controls. In addition, female Cyfip1+/- and 

wild type mice spent similar amount time in the centre of the open-field arena (WT n 

= 10, Cyfip1+/- n = 9; two-tailed Student`s t-test, P  =  0.806) (Figure 4.2E). The marble 

burying assay revealed that female Cyfip1+/- and wild type mice buried comparable 

number of marbles (WT n = 15, Cyfip1+/- n  =  15; two-tailed Mann-Whitney U-test, U 

= 102.500, P = 0.683) (Figure 4.2F). In summary, adult Cyfip1+/- male and wild type 

mice have a similar activity and anxiety-related behaviours, whereas adult female 

Cyfip1+/- mice are potentially hypoactive but show anxiety-related behaviours similar 

to wild type female mice.	
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Figure 4.2 Similar activity and anxiety-related behaviours between adult 
Cyfip1+/- and wild type mice. 
A-B, Open-field behaviour of adult male Cyfip1+/- and wild type mice. C, Marble 

burying behaviour of male Cyfip1+/- and wild type mice. D-E, Cyfip1+/- and wild type 

female behaviour in the open-field. F, Marble burying behaviour of female Cyfip1+/- 

and wild type mice. All values presented as mean ± SEM. Statistical significance was 

tested by two-tailed Student`s t-test or two-tailed Mann-Whitney U-test. ns P > 0.05. 
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4.5 Motor learning behaviour of Cyfip1+/- mice 

General locomotor activity and moreover the ability to improve motor accuracy and 

motor coordination is required for motor learning. Motor learning in rat, monkey and 

human is associated with neuronal activity (Debaere et al. 2004; Wise et al. 1998; 

Jenkins et al. 1994) and connectivity (Gandolfo et al. 2000; Karni et al. 1995; Seitz et 

al. 1990). In mice, motor learning has an impact on neuronal activity specifically in 

the motor cortex and striatum (Costa et al. 2004). Interestingly, the motor cortex 

showed decreased CYFIP1 protein levels in adult Cyfip1+/- adult mice compared to 

wild type mice. Using an accelerating rod (rotarod) protocol, that has been 

demonstrated to mediate neuronal activity in the murine motor cortex and striatum 

(Costa et al. 2004). Thus, consequences of Cyfip1 haploinsufficiency on motor 

learning behaviour were assessed. 

Using a rotarod paradigm Cyfip1+/- and wild type male mice were tested for their ability 

to stay on the accelerating rod by analysing the latencies to fall over 7 subsequent 

trials. In order to validate our experimental design as a read-out for motor learning, 

we first we tested whether male wild type mice increased their latencies to fall over 

the seven test trials. As expected, adult male wild type mice increased their 

performance over the sequence of trials significantly (WT n = 17; repeated measure 

ANOVA, main effect of Trial F6, 11 = 16.094, P = 0.000; Bonferroni Post-hoc test). In 

contrast, the performance of adult Cyfip1+/- male mice was unchanged over the trials 

(Cyfip1+/- n = 15; repeated measure ANOVA, main effect of Trial F6, 9 = 1.092, P = 

0.434) (Figure 4.3A) despite a similar baseline performances on trial 1 between male 

Cyfip1+/- and wild type mice (WT n = 17; Cyfip1+/- n = 15; Student`s t-test, two-tailed, 

P = 0.169) (Figure 4.3B). Next, we tested adult female Cyfip1+/- and wild type mice. 

Female wild type mice increased their performances with training (WT n = 12; 

repeated measure ANOVA, main effect of Trial F6, 66 = 15.395, P = 0.000; Bonferroni 

Post-hoc test) as well as Cyfip1+/- female mice (Cyfip1+/- n = 10; repeated measure 
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ANOVA, main effect of Trial F6, 54 = 3.409, P = 0.006; Bonferroni Post-hoc test) 

(Figure 4.3C). Baseline performance during trial 1 were similar between female 

Cyfip1+/- and wild type mice (WT n = 12; Cyfip1+/- n = 10; Student`s t-test, two-tailed, 

P = 0.332) (Figure 4.3D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Impaired motor learning in adult Cyfip1+/- male mice. 
A, Adult male wild type but not adult Cyfip1+/- male mice increased their performances 

over the sequence of seven trials of the rotarod protocol. B, Baseline performances 

during the first trial were similar between male Cyfip1+/- and wild type male mice. 

C,  Adult female Cyfip1+/- and wild type mice increased their latency to fall from the 
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accelerating rod over the seven subsequent trials. D, Cyfip1+/- and wild type female 

mice showed comparable baseline performances during the first trial. All values 

presented as mean ± SEM. Statistical significance was tested by two-tailed Student`s 

t-test (C and D right). or by repeated measures ANOVA followed by Bonferroni Post-

hoc test. ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. 

	

	

	

4.6 Discussion 

We tested for the first time social behaviours of a mouse model for Cyfip1 

haploinsufficiency. Our results revealed a reduced interest in social odours 

specifically in adult Cyfip1+/- male mice. Nevertheless, social discrimination between 

familiar and unfamiliar social odours was intact in adult Cyfip1+/- male mice. In 

addition, dominance behaviour was not affected in Cyfip1+/- male mice. Anxiety-

related behaviours were comparable between Cyfip1+/- and wild type mice. 

The assessment of the activity behaviour revealed a potential hypoactivity specific to 

adult female Cyfip1+/- mice whereas male Cyfip1+/- and wild type mice showed similar 

activity behaviours. Altered social dominance and anxiety behaviours can have an 

effect on other behaviours (Vargas-Pérez et al. 2009; Van Loo et al. 2003). Our 

results allowed us to exclude the possibility of a cascade of behavioural 

consequences due to social or anxiety-related deficits of Cyfip1+/- mutant mice and 

demonstrate specificity of the described phenotypes. In order to test for further 

consequences of activity behaviour, we tested Cyfip1+/- and wild type mice for motor 

learning. Interestingly, we found a significant motor learning impairment specific to 

Cyfip1+/- male mice. Taken together, we found male-specific social and motor learning 

phenotypes in adult Cyfip1+/- mice. 
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4.7 Developmental characterisation of the male-specific Cyfip1+/- motor 
learning impairment 

The phenotypic characterisation of adult Cyfip1+/- and wild type mice revealed a male-

specific motor learning impairment in adult Cyfip1+/- mice. This phenotypic behaviour 

can be specific to adult Cyfip1+/- mice or can arise earlier in development. To test 

between these possibilities we focussed on the developmental assessment of the 

motor learning behaviour in Cyfip1+/- male and wild type mice. 

Rotarod testing of mice earlier in development demonstrated that the postnatal day 

40 (P40) was the earliest time point juvenile animals complied with the rotarod 

protocol. P40 accounts for a developmental time point after weaning and at the onset 

of sexual maturation. Wild type male mice at P40 increased their motor performances 

during the rotarod task (WT n = 7; repeated measures ANOVA, main effect of trial 

F6, 36 = 15.261, P = 0.000, Bonferroni Post-hoc test) (Figure 4.4A). Interestingly, 

Cyfip1+/- male mice at P40 increased their ability to stay on the accelerating rod as 

observed in wild type control mice (Cyfip1+/- n = 10; repeated measures ANOVA, main 

effect of trial F6, 54 = 7.716, P = 0.000, Bonferroni Post-hoc test) (Figure 4.4B). Next, 

the motor learning behaviour of male Cyfip1+/- and wild type mice at P40 was 

compared to the behaviour obtained from rotarod testing of adult Cyfip1+/- male and 

wild type mice at postnatal day 60 (P60). The rotarod behaviour of wild type male 

mice was comparable between the developmental time points P40 and P60 (WT P40 

n = 7; WT P60 n = 17; repeated measures ANOVA, main effect of trial F6, 17 = 23.515, 

P = 0.000, interaction trial x age F6,17 = 0.815, P = 0.573) (Figure 4.4C, data from wild 

type mice at P60 replotted from Figure 4.3A). In contrast, Cyfip1+/- male mice 

performed significantly better at P40 than at P60 (Cyfip1+/- P40 n = 10; Cyfip1+/- P60 

n = 15; repeated measures ANOVA, main effect of Trial F6, 138 = 6.692, P = 0.000, 

Interaction Trial x Age F6, 138 = 3.000, P = 0.009; Bonferroni Post-hoc test) (Figure 

4.4D, data from Cyfip1+/- mice at P60 replotted from Figure 4.3A). 
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Figure 4.4 Cyfip1+/- mice show motor learning behaviour at P40. 
A-B, Wild type and Cyfip1+/- male mice increased their latency to fall off the 

accelerating rod at P40. C, Male wild type mice at P40 and P60 show similar motor 

learning behaviour. D, Male Cyfip1+/- mice performed the rotarod task significantly 

better at P40 than at P60. All values presented as mean ± SEM. Statistical 

significance was tested by repeated measures ANOVA followed by Bonferroni Post-

hoc test. *P < 0.05; **P < 0.01; ***P < 0.001. 
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The motor learning behaviour of Cyfip1+/- male mice was similar to the wild type 

behaviour at P40 whereas adult Cyfip1+/- male mice showed a motor learning 

impairment compare to adult wild type mice. We next assessed whether motor 

learning behaviour acquired during the development had a sustained effect on the 

motor behaviour of adult wild type and Cyfip1+/- male mice. 

Male wild type and Cyfip1+/- mice were trained using the same rotarod protocol at 

postnatal days 40, 50 and 51 (in the following referred to as `trained` mice) and 

retested for their motor behaviour at P60. Testing for the motor behaviour of trained 

wild type male mice at P60 revealed constant performances over the seven test trials 

(Trained WT n = 6; repeated measures ANOVA, main effect of Trial, F6, 36 = 2.053, 

P  =  0.084) (Figure 4.5A). In comparison to rotarod-untrained male wild type mice at 

P60, trained wild type mice showed significantly increased performances on the first 

two trials and similar performance levels on subsequent trials of the rotarod testing at 

P60 (Trained WT n = 7; Untrained WT n = 17; repeated measures ANOVA, main 

effect of Trial F6, 17 = 3.260, P = 0.025; interaction Trial x Training F6, 17 = 2.650, P = 

0.047; Bonferroni Post-hoc test) (Figure 4.5B, data from rotarod untrained wild type 

replotted from Figure 4.3A). Interestingly, trained adult Cyfip1+/- male mice increased 

their motor performance during the rotarod task at P60 (Cyfip1+/- n = 6; repeated 

measures ANOVA, main effect of Trial F6, 30 = 13.465, P = 0.000; Bonferroni Post-hoc 

test) (Figure 4.5C). Compared to rotarod untrained Cyfip1+/- male mice, trained 

Cyfip1+/- male mice increased their performances significantly at P60 (Trained 

Cyfip1+/- n = 6; untrained Cyfip1+/- n = 15; repeated measures ANOVA, main effect of 

Trial F6, 114 = 6.269, P = 0.000; Interaction Trial x Training F6, 114 = 2.872, P = 0.030; 

Bonferroni Post-hoc test) (Figure 4.5D, data from rotarod untrained Cyfip1+/- mice 

replotted from Figure 4.3A). 
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Figure 4.5 Motor training during the development improves Cyfip1+/- motor 
performance at P60. 
A, P40 trained wild type male mice showed similar motor behaviour performance 

during the rotarod task at P60. B, Male wild type mice motor trained at P40 showed 

significantly increased motor performances during the first two trials during the 

behavioural assessment at P60 compared to untrained adult wild type mice. C, P60 
Cyfip1+/- males increased the latency to stay on the rod over seven trials when trained 

earlier in development at P40. D, P40 motor trained Cyfip1+/- male mice in increased 
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their motor performances during the rotarod testing at P60. All values presented as 

mean ± SEM. Statistical significance was tested by repeated measures ANOVA 

followed by Bonferroni Post-hoc test. *P < 0.05; **P < 0.01.  

 

 

 

4.8 Discussion 

Like wild type mice, Cyfip1+/- male mice showed increased rotarod performance at 

P40. This observation is in contrast to the results obtained from adult Cyfip1+/- male 

mice, which revealed a motor learning impairment compared to adult wild type male 

mice. Therefore, we concluded that the Cyfip1+/- male-specific motor learning 

impairment occurs after a certain age, between P40 and P60. 

Next, we tested whether the motor learning of juvenile wild type and Cyfip1+/- male 

mice was sustained over time and had an effect on the motor behaviour of adult wild 

type and Cyfip1+/- male mice. In wild type male mice, developmental motor training 

enabled trained wild type male mice to reach faster high performance levels similar 

to levels observed in untrained wild type mice in the last trials of the paradigm. In 

comparison, the performance of developmentally trained Cyfip1+/- male mice was 

significantly increased and allowed the mice to reach performance maxima that were 

not observed in untrained Cyfip1+/- male mice. Therefore, our results suggest a 

disrupted motor behaviour acquisition as a potential mechanism leading to impaired 

motor learning behaviour of adult Cyfip1+/- male mice. 
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5.1 Effect of sex on Cyfip1 mRNA and CYFIP1 protein levels in adult 
Cyfip1+/- and wild type mice 

5.1.1 Introduction 

The characterisation of CYFIP1 protein levels in adult Cyfip1+/- mice revealed a 

significant decrease in CYFIP1 protein levels the motor cortex and hippocampus 

compared to wild type CYFIP1 levels. The main findings of the behavioural 

assessment of Cyfip1+/- and wild type mice were a motor learning deficit and a 

decreased interest in social odours (chapters 4.2, 4.5 and 4.7). Interestingly, both 

phenotypic behaviours were male-specific whereas female Cyfip1+/- mice behaved 

similarly to female wild type mice. The observed sex-specific Cyfip1+/- phenotypes 

lead to the question whether Cyfip1 expression levels differed between adult male 

and female Cyfip1+/- mice. Therefore, Cyfip1 mRNA and CYFIP1 protein levels were 

first compared between tissues from adult male and female Cyfip1+/- mice and second 

between tissues from adult male and female wild type mice. 

 

 

5.1.2 Results 

Brain tissues from adult Cyfip1+/- male and female mice were analysed for Cyfip1 

mRNA levels by real-time PCR using the 2-DDCT method. Obtained Cyfip1 mRNA levels 

in the male Cyfip1+/- motor cortex were significantly higher compared to the female 

Cyfip1+/- motor cortex (female n = 6; male n = 5; two-tailed Student`s t-test, P = 0.003) 

whereas male and female Cyfip1+/- tissues from the striatum (female n = 6; male 
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n  =  6; two-tailed Mann-Whitney U-test, U = 16.000, P = 0.818), cerebellum (female 

n = 3; male n = 6; two-tailed Student`s t-test, P = 0.643) and liver (female n = 3; male 

n = 6; two-tailed Student`s t-test, P = 0.192) showed similar Cyfip1 mRNA levels 

(Figure 5.1A). In adult wild type mice, motor cortical Cyfip1 mRNA levels were 

significantly increased in male mice compared to females mice (female n = 6; male 

n  = 5; two-tailed Student`s t-test, P = 0.012). In contrast, male and female Cyfip1 

mRNA levels were similar in wild type tissues collected from the striatum (female 

n  =  6; male n = 6; two-tailed Mann-Whitney U-test, U = 10.000, P = 0.240), 

cerebellum (female n = 6; male n = 4; two-tailed Student`s t-test, P = 0.167) and liver 

(female n = 6; male n = 4; two-tailed Student`s t-test, P = 0.596) (Figure 5.1B). 

 

 

 

 

 

 

 

 

 

Figure 5.1 Male and female Cyfip1 mRNA levels across different Cyfip1+/- and 
wild type brain regions. 
A and B, Male and female Cyfip1 mRNA levels in the Cyfip1+/- and wild type motor 

cortex (mCx), striatum (Str), cerebellum (Cb) and liver (Li). Cyfip1 mRNA levels were 

normalised to 18S mRNA levels. All values presented as mean ± SEM. Statistical 

significance was tested by two-tailed Student`s t-test or two-tailed Mann-Whitney 

U- test. ns P > 0.05; *P < 0.05. 
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Male and female CYFIP1 protein levels in Cyfip1+/- brain tissues were determined by 

Western blotting using CYFIP1 and βIII-Tubulin specific antibodies. Male and female 

CYFIP1 protein levels were similar between lysates from the motor cortex (female 

n  = 6; male n = 7; two-tailed Student`s t-test, P = 0.715), striatum (female n = 4; male 

n = 7; two-tailed Mann-Whitney U-test, U = 12.000, P = 0.788), hippocampus (female 

n = 7; male n = 7; two-tailed Student`s t-test, P = 0.182) and cerebellum (female 

n  =  7; male n = 7; two-tailed Mann-Whitney U-test, U = 22.000, P = 0.805) (Figure 

5.2A). CYFIP1 protein levels in wild type mice were comparable between male and 

female brain tissues from the motor cortex (female n = 6; male n = 7; two-tailed Mann-

Whitney, U = 14.000, P = 0.366), striatum (female n = 7; male n = 7; two-tailed 

Student`s t-test, P = 0.261), hippocampus (female n = 7; male n = 7; two-tailed 

Student`s t-test, P = 0.387) and cerebellum (female n = 7; male n = 7; two-tailed 

Student`s t-test, P = 0.749) (Figure 5.2B). 
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Figure 5.2 Male and female CYFIP1 protein levels across different Cyfip1+/- and 
wild type brain regions. 
A and B, Male and female CYFIP1 protein levels in motor cortex (mCx), striatum (Str), 

hippocampus (Hpc) and cerebellum (Cb) of adult Cyfip1+/- and wild type mice. CYFIP1 

levels were normalised to βIII-Tubulin levels. All values presented as mean ± SEM. 

Statistical significance was tested by two-tailed Student`s t-test or two-tailed Mann-

Whitney U-test. ns P > 0.05. 
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5.1.3 Discussion 

Cyfip1 mRNA levels were higher in male than in female mice in the motor cortex 

whereas Cyfip1 mRNA levels were similar between the male and female striatum, 

cerebellum and liver. Similarly, Cyfip1 mRNA levels were increased in the motor 

cortex of wild type male mice compared to wild type female mice and Cyfip1 mRNA 

levels obtained in the male and female striatum, cerebellum and liver were 

comparable. Therefore, the sex had a similar effect on Cyfip1 mRNA levels in Cyfip1+/- 

and wild type mice. 

CYFIP1 protein levels in the Cyfip1+/- and wild type motor cortex, striatum, 

hippocampus and cerebellum were similar between male and female mice. Hence, 

the male-specific increase in Cyfip1 mRNA levels in the Cyfip1+/- and wild type motor 

cortex did not result in a male-biased increase in CYFIP1 protein levels. In summary, 

the obtained results allowed excluding a genotype and sex-specific effect on Cyfip1 

mRNA and CYFIP1 protein level as an underlying of the sex-biased phenotypic 

Cyfip1+/- behaviours. 
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5.2 WAVE1 expression in the CNS of adult Cyfip1+/- mice 

5.2.1 Introduction 

CYFIP1 is a component of the WAVE complex which is involved in promoting actin 

nucleation which mediates cytoskeletal remodelling (Kunda et al. 2003; Eden et al. 

2002; Chen et al. 2010). In the mouse, WAVE1 was confirmed as a CYFIP1 interactor 

by CYFIP1 co-immunoprecipitates (De Rubeis et al. 2013). Moreover structural 

analysis of the WAVE regulatory complex highlighted a direct interaction between the 

C-terminus of WAVE1 and CYFIP1 which is central for the regulation of the WRC 

activity (Chen et al. 2010).  

We assessed WAVE1 protein levels and the CYFIP1-WAVE1 association in order to 

probe for molecular consequences of Cyfip1 haploinsufficiency on WAVE1 protein 

levels and WRC regulation. Cyfip1+/- and wild type brain tissue extracts were analysed 

by CYFIP1 immunoprecipitation and/or Western blotting. 

 

 

 

5.2.2 Results 

In order to test for WAVE1 protein levels we performed biochemical analysis of 

different anatomical brain tissues of adult Cyfip1+/- and wild type mice. Obtained 

WAVE1 protein levels were similar between adult Cyfip1+/- and wild type lysates from 

the motor cortex (WT n = 5; Cyfip1+/- n = 5; two-tailed Student`s t-test, two-tailed 

P  =  0.553), striatum (WT n = 5; Cyfip1+/- n = 5; two-tailed Student`s t-test, two-tailed 

P = 0.957), hippocampus (WT n = 5; Cyfip1+/- n = 3; two-tailed Student`s t-test, two-

tailed P = 0.947) and cerebellum (WT n = 5; Cyfip1+/- n = 5; two-tailed Mann-Whitney 

U- test, U = 7.000, P = 0.310) (Figure 5.3A). In addition, we probed for the CYFIP1-

WAVE1 interaction in the motor cortex using CYFIP1 immunoprecitation. 

Quantification of CYFIP1 co-immuoprecipitated WAVE1 relative to input WAVE1 
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protein levels revealed comparable ratios of co-immunoprecipated WAVE1 from 

motor cortical Cyfip1+/- and wild type lysates (WT n = 2; Cyfip1+/- n = 2) (Figure 5.3B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 WAVE1 protein levels and WAVE1-CYFIP1 association in Cyfip1+/- 
and wild type brain tissues. 
A, Western blots for WAVE1 and βIII-Tubulin of Cyfip1+/- and wild type motor cortex 

(mCx), striatum (Str), hippocampus (Hpc) and cerebellum (Cb) quantified by 

densitometry. Statistical significance was tested by two-tailed Student`s t-test or two-

tailed Mann-Whitney U-test. ns P > 0.05. B, CYFIP1 co-immunoprecipitations of 

CYFIP1 and WAVE1 from Cyfip1+/- and wild type motor cortex. Co-

immunoprecipitated levels of WAVE1 were normalised to WAVE1 levels in the input. 

Values represented as mean ± SEM. 
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5.2.3 Discussion 

Despite a suboptimal quality of the βIII-Tubulin signal for some of the samples 

WAVE1 protein levels in the Cyfip1+/- motor cortex, striatum and hippocampus were 

similar to the WAVE1 protein levels in the corresponding wild type control tissues. 

This suggests that the heterozygous loss of Cyfip1 and the consequently reduced 

CYFIP1 protein levels in the motor cortex, striatum and hippocampus had no effect 

on the WAVE1 protein levels. However, cerebellar WAVE1 levels showed a trend for 

an increase in Cyfip1+/- tissue compared to wild type control tissue but the quality of 

the obtained βIII-Tubulin signal is not sufficient to conclude with certainty that the 

trend does exist. Further experiments would be required to clarify the WAVE1 protein 

levels in the Cyfip1+/- and wild type cerebellum. 

In the motor cortex, similar WAVE1 protein levels were detected in CYFIP1 co-

immunoprecipitates of Cyfip1+/- and wild type tissues. Therefore, the heterozygous 

loss of Cyfip1 had no detectable consequences on the interaction between CYFIP1 

and WAVE1. Therefore, we conclude that CYFIP1 levels in the Cyfip1+/- motor cortex 

are sufficient to maintain a CYFIP1-WAVE1 association similar to the wild type 

condition. Given the complexity and dynamics of the WRC, the intact CYFIP1-WAVE1 

interaction alone does not exclude WRC perturbations or functional consequences 

upon heterozygous Cyfip1 deletion. Therefore testing other components of the WRC 

for their association (Chen et al. 2011) could support the finding of an intact interaction 

between CYIP1 and WAVE1 in Cyfip1+/- mice. 
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6.1 Introduction 

CYFIP1 was identified as a FMRP-interacting protein (Schenck et al. 2001). FMRP is 

a RNA-binding protein (Ashley et al. 1993; Siomi et al. 1993) involved in localisation 

and stabilisation of target RNAs (Kanai et al. 2004; Zalfa et al. 2007). Moreover FMRP 

is a suggested to be a translational repressor (Bassell & Warren 2008; Darnell et al. 

2011; Brown et al. 2001). The role of FMRP as a translational repressor is strongly 

supported by in vivo studies demonstrating an increased protein synthesis rate in 

adult Fmr knockout mice (Qin et al. 2005; Michalon et al. 2012). Consequences of 

Cyfip1+/- deletion on the rate of mRNA translation in vivo has not been characterised 

yet and we hypothesised that reduced CYFIP1 protein levels may lead to a decreased 

repression of mRNA translation resulting in an increased rate of protein synthesis. To 

test this hypothesis we first assessed levels of eIF4E phosphorylation in the adult 

Cyfip1+/- and wild type motor cortex and second determined the protein synthesis rate 

in vivo using adult Cyfip1+/- and wild type male mice. 

Phosphorylation of eIF4E has been reported to correlate with protein synthesis rate, 

at which phosphorylation promoted protein synthesis (Joshi et al. 1995; Lamphear & 

Panniers 1989; Kleijn et al. 1998). Hence, we used eIF4E phosphorylation as an 

indirect read-out for the protein synthesis rate. In addition, we used puromycin 

incorporation as a measure for the bulk protein synthesis rate in vivo (Liu et al. 2012). 

Puromycin is an aminonucleoside antibiotic and a structural analogue of aminoacyl 

tRNAs which is a substrate of the ribosomal machinery synthesising proteins de novo 

(Nathans 1964; Schmidt et al. 2009). Puromycin is randomly incorporated into 

elongating polypeptide chains, which induces termination of mRNA translation. As a 
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result, truncated puromycin labelled peptides are released from the ribosome 

(Nathans 1964). In order to deliver puromycin into the CNS in vivo, we used unilateral 

ventricular injections and allowed puromycin to diffuse and incorporate into nascent 

polypeptide chains across the brain. The levels of puromycin labelled peptides in 

brain tissue extracts from Cyfip1+/- and wild type adult male mice were determined by 

Western blotting, anti-puromycin antibody detection and subsequent quantification by 

densitometry. 

 

 

 

6.2 Results 

Obtained ratios of phosphorylated eIF4E over eIF4E were similar between motor 

cortical tissues for adult Cyfip1+/- and wild type male mice (WT n = 7; Cyfip1+/- n = 7; 

two-tailed Student`s t-test, P = 0.408) (Figure 6.1). 

	

	

	

	

	

	

	

	

	

Figure 6.1 Phosphorylation of eIF4E in Cyfip1+/- and wild type male mice 
Levels of phosphorylated eIF4E (p-eIF4E) were normalised to eIF4E levels. All values 

presented as mean ± SEM. Statistical significance was tested by two-tailed Student`s 

t-test. ns P > 0.05. 
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The obtained levels of puromycin labelling were similar between puromycin injected 

adult Cyfip1+/- and wild type male mice in the motor cortex (WT n = 5; Cyfip1+/- n = 5; 

two-tailed Mann-Whitney U-test, U = 8.000, P = 0.421), striatum (WT n = 5; Cyfip1+/- 

n = 5; two-tailed Student`s t-test, P = 0.866), hippocampus (WT n = 5; Cyfip1+/- n = 5; 

two-tailed Mann-Whitney U-test, U = 7.000, P = 0.310) and cerebellum (WT n = 5; 

Cyfip1+/- n = 5; two-tailed Mann-Whitney U-test, U = 8.000, P = 0.421). Importantly, 

the detected puromycin levels were in all tissues were above the background 

puromycin signal obtained from control tissues of mice that were not injected with 

puromycin. 
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Figure 6.2 Cyfip1+/- and wild type protein synthesis rate in vivo. 
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Brain tissues of puromycin injected adult Cyfip1+/- and wild type male mice were 

analysed by Western blotting. Tissue lysates from a control mouse that had not been 

injected with puromycin served as a negative control (-). The puromycin levels were 

normalised to the Pierce staining which served as a loading control. Except from the 

negative control, values are presented as mean ± SEM. Statistical significance was 

tested by two-tailed Student`s t-test or two-tailed Mann-Whitney U-test. ns P > 0.05. 

 

 

 

 

6.3 Discussion 

Our results revealed similar levels of eIF4E phosphorylation in the adult Cyfip1+/- and 

wild type motor cortex. In addition, baseline protein synthesis rates between adult 

Cyfip1+/- and wild type male mice were similar in the motor cortex, striatum, 

hippocampus and cerebellum. Therefore, we conclude that the basal bulk protein 

synthesis rate was not affected by the heterozygous loss of Cyfip1. Despite 

decreased CYFIP1 protein levels in the Cyfip1+/- motor cortex and hippocampus the 

protein synthesis rate was comparable to the wild type protein synthesis rate. This 

result indicates that the decreased CYFIP1 protein levels were sufficient to regulate 

translation as in the wild type condition. 

From a technical point of view, puromycin incorporation allows concluding on protein 

synthesis only to a certain degree. Puromycin crosses the cell membrane passively 

and is consequently an available substrate for the translation machinery (Nathans 

1964). This mode of action gives rise to the cell-unspecific incorporation of puromycin. 

In tissues with different cellular subpopulations, such as the brain (Masland 2004), 

puromycin incorporation represents the mRNA translation rate of a given cell 

population as a ratio to the mRNA translation rate of the entire cell population. 

Therefore, small cell populations are underrepresented whereas large cell 

populations are overrepresented with regards to the bulk mRNA translation rate. This 
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limitation could mask a cell-specific effect of Cyfip1 haploinsufficiency on the mRNA 

translation rate. Moreover, neurons are highly polarised cells where protein synthesis 

is not only occurring in the cell soma but also in axons and dendrites. RNA transport 

and local translation are thought to be critical for the site-specific regulation of the 

proteome (Steward & Schuman 2003; Glock et al. 2017). A potential effect of Cyfip1 

loss on local translation has not been characterised yet and can`t be ruled out. The 

metabolic labelling allows the quantification of the total rate of protein synthesis. 

However, the total rate of protein synthesis does not take the identity of translated 

mRNA in account. Thus, the heterozygous loss of Cyfip1 might have an effect on the 

identity of translated mRNAs without detectable consequences on the rate of protein 

synthesis. 
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7.1 Introduction 

One of the main findings of the behavioural characterisation of Cyfip1+/- mice was an 

impaired motor learning behaviour in adult Cyfip1+/- male mice. Interestingly, motor 

learning in mice has been correlated with neuronal activity (Costa et al. 2004) and 

structural plasticity (Yang et al. 2009) in the motor cortex. More precisely, Yang et al. 

identified dendritic spine formation of layer V neurons in the forelimb representing 

area of the mouse motor cortex as a cellular correlate for rotarod-related motor 

learning. 

Moreover, Cyfip1 encodes a key regulator of actin dynamics and consequences of 

Cyfip1 haploinsufficiency on actin dynamics and structural dendritic properties have 

been characterised by Pathania et. al 2004. The authors demonstrated increased 

mobile filamentous actin, reduced dendritic complexity, diminished activity-dependent 

changes in spine volume and an increased number of immature spines in cultured 

hippocampal Cyfip1+/- neurons compared to wild type control neurons. In agreement, 

hippocampal slices from Cyfip1+/- mice revealed a decreased dendritic complexity and 

increased numbers of immature spines compared to wild type control slices (Pathania 

et al. 2014). These findings highlight implications of Cyfip1 haploinsufficiency on the 

dendritic spine morphology. We hypothesised that an aberrant dendritic spine 

plasticity in adult Cyfip1+/- males could underlie the observed motor learning 

impairment. 

The aim was to assess first the dendritic spine density, with the help of a rotation 

student in the laboratory, and second to assess the dendritic spine plasticity in the 
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motor cortex of Cyfip1+/- and wild type male mice. To achieve this aim, we crossed 

Cyfip1+/- mice with animals from the Thy1-EGFP M-line to obtain Cyfip1+/-Thy1EGFP 

and Cyfip1+/+Thy1EGFP offspring with sparsely enhanced green fluorescent (EGFP) 

labelled neurons. Cortical dendrites from adult Cyfip1+/-Thy1EGFP and 

Cyfip1+/+Thy1EGFP male mice were imaged ex vivo and in vivo and analysed for 

spine density and structural plasticity. 

 

 

 

7.2 Dendritic spine density and structural plasticity in adult Cyfip1+/- 
male mice 

To investigate the dendritic spine organisation, we first analysed paraformaldehyde 

fixed tissue from different brain regions of adult Cyfip1+/-Thy1EGFP and 

Cyfip1+/+Thy1EGFP male mice for dendritic spine density by histology and fluorescent 

microscopy (Figure 7.1A). The dendritic spine density in the primary motor cortex 

(M1) was significantly decreased in adult Cyfip1+/-Thy1EGFP male mice compared to 

Cyfip1+/+Thy1EGFP mice (Cyfip1+/+Thy1EGFP n = 24 dendrites from 4 mice, Cyfip1+/-

Thy1EGFP n = 24 dendrites from 4 mice; two-tailed Student`s t-test, P = 0.008). In 

contrast, dendritic spine densities were similar between Cyfip1+/-Thy1EGFP and 

Cyfip1+/+Thy1EGFP mice in the primary visual area (V1) of the visual cortex 

(Cyfip1+/+Thy1EGFP n = 24 dendrites from 4 mice, Cyfip1+/-Thy1EGFP n = 24 

dendrites from 4 mice; two-tailed Mann Whitney U-test, U = 166.000, P = 0.174), in 

the hippocampal CA1 area (Cyfip1+/+Thy1EGFP n = 20 dendrites from 4 mice, 

Cyfip1+/-Thy1EGFP n = 21 dendrites from 4 mice; two-tailed Student`s t-test, 

P  =  0.376) and in the hippocampal CA3 area (Cyfip1+/+Thy1EGFP n = 20 dendrites 

from 4 mice, Cyfip1+/-Thy1EGFP n = 20 dendrites from 4 mice; two-tailed Student`s 

t-test, P = 0.067) (Figure 7.1A). 
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The reduced spine density in the adult Cyfip1+/-Thy1EGFP motor cortex could be due 

to a deficit in forming new spines. Thus, the structural spine plasticity was assessed 

in vivo. In awake Cyfip1+/-Thy1EGFP and Cyfip1+/+Thy1EGFP mice, EGFP positive 

dendrites from layer V neurons in the forelimb representing area of the motor cortex 

were imaged. Two-photon microscopy over the period of nine days allowed 

determining the number of newly formed and eliminated dendritic spines (Figure 

7.1B). The analysis revealed a significant increase in dendritic spine turnover, with 

increased formation (1.63 fold) and elimination (1.40 fold) of dendritic spines in the 

motor cortex of Cyfip1+/-Thy1EGFP males compared to Cyfip1+/+Thy1EGFP male 

mice (Cyfip1+/+Thy1EGFP n = 40 dendrites from 4 mice, Cyfip1+/-Thy1EGFP n = 36 

dendrites from 4 mice; two-way ANOVA, main effect of genotype F1, 148 = 4.718, P = 

0.031) (Figure 7.1C). 
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Figure 7.1 Reduced spine density and increased dendritic spine turnover in the 
male Cyfip1+/-Thy1EGFP motor cortex. 
A, Histologic preparations from adult Cyfip1+/-Thy1EGFP (annotated as Cyfip1+/-) and 

Cyfip1+/+Thy1EGFP (annotated as WT) imaged for EGFP positive neurons in the 

primary motor cortex (M1), primary visual cortex (V1) and the hippocampal areas CA1 

and CA3 and quantified for the number of spines per 100 µm of dendrite. Scale bar, 
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10 µm. B Repeated in vivo two-photo imaging of EGFP positive apical dendrite from 

layer V neuron in the forelimb representing area of the adult motor cortex over two 

days. Arrowheads indicate newly formed spines. Scale bar, 2 µm. C, Analysis of 

dendritic spine formation and elimination per 100 µm of dendrite over nine days for 

Cyfip1+/-Thy1EGFP and Cyfip1+/+Thy1EGFP male mice. Values represented as mean 

± SEM. Statistical significance was tested by two-tailed Student`s t-test (B) or two-

way ANOVA (D). ns > 0.05; ** P < 0.01. 

 

 

 

7.3 Motor learning mediated structural plasticity in adult Cyfip1+/- male 
mice 

According to the behavioural characterisation, adult male wild type mice increased 

their rotarod performance with training whereas Cyfip1+/- showed a motor learning 

deficit (Chapter 4.5). This observation led to the hypothesis that wild type neurons 

associated with motor learning form new spines whereas Cyfip1+/- neurons fail to form 

new spines. 

Cyfip1+/-Thy1EGFP and Cyfip1+/+Thy1EGFP mice were trained using the rotarod 

protocol and structural imaging of apical dendrites from layer V neurons were 

acquired two days later. Image analysis and spine counting of Cyfip1+/+Thy1EGFP 

dendrites revealed a 3.73 fold increase in dendritic spine formation upon rotarod 

training (Baseline 0.209 ± 0.038; after training 0.780 ± 0.163 n = 40 dendrites from 

4  mice) whereas Cyfip1+/-Thy1EGFP dendrites showed a 3.047 fold increase in 

dendritic spine formation following the rotarod paradigm (Baseline Cyfip1+/-

Thy1EGFP 0.341 ± 0.078; after training 1.039 ± 0.179; n = 36 dendrites from 4 mice) 

(Repeated measures ANOVA, main effect of spine formation F1, 74 = 25.737, P = 

0.000) (Figure 7.2A). Dendritic spine formation within each individual Cyfip1+/-

Thy1EGFP and Cyfip1+/+Thy1EGFP mouse showed a trend for an increase upon 

rotarod training except for one Cyfip1+/+Thy1EGFP animal. (Figure 7.2B). Motor 

training had no effect on spine elimination of Cyfip1+/-Thy1EGFP (Baseline: 0.404 ± 
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0.063; after training 0.532 ± 0.116, n = 40 dendrites from 4 mice) and 

Cyfip1+/+Thy1EGFP dendrites (Baseline: 0.288 ± 0.044 after training 0.217 ± 0.077, n 

= 36 dendrites from 4 mice) (Repeated measures ANOVA, main effect of spine 

elimination F1, 74 = 0.135, P = 0.715) (Figure 7.2C). On the level of the individual 

Cyfip1+/-Thy1EGFP mice three out of four animals showed no trend of a changed 

spine elimination following training whereas spine elimination within 

Cyfip1+/+Thy1EGFP mice was not detected or unchanged upon rotarod training 

(Figure 7.2D). In summary, rotarod training increased dendritic spine formation of 

layer V neurons in the forelimb representing area of the male Cyfip1+/-Thy1EGFP and 

Cyfip1+/+Thy1EGFP motor cortex whereas spine elimination was not affected by 

motor learning. 
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Figure 7.2 Motor learning increased dendritic spine formation in the male 
Cyfip1+/-Thy1EGFP and Cyfip1+/+Thy1EGFP forelimb representation of the 
motor cortex. 
A, Increased spine formation of Cyfip1+/-Thy1EGFP (annotated as Cyfip1+/-) and 

Cyfip1+/+Thy1EGFP (annotated as WT) dendrites following the motor learning. B, 
Majority of analysed dendrites within individual animals increased spine formation 

upon motor learning. C, Rotarod training had no effect on spine elimination in Cyfip1+/-

Thy1EGFP and Cyfip1+/+Thy1EGFP mice. D, Spine elimination was unchanged in the 

majority of analysed dendrites following motor learning. Values in A and C 

represented as mean per dendrite ± SEM and values in B and D as mean of per 
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animal ± SEM. Statistical significance of A and C was tested by repeated measures 

ANOVA. 

 

 

 

7.4 Discussion 

Histological analysis of motor cortical sections revealed a decreased dendritic spine 

density in Cyfip1+/-Thy1EGFP male mice compared to Cyfip1+/+Thy1EGFP mice in the 

primary motor cortex but not in the V1 of the visual cortex and the hippocampal areas 

CA1 and CA3. These findings suggest that heterozygous Cyfip1 loss had a brain 

region-specific effect on the dendritic spine density in adult mice. To characterise the 

dynamics underlying the decreased spine density in the primary motor cortex we 

performed structural imaging of apical dendrites originating from layer V neurons in 

the in the forelimb representing area of the motor cortex. The obtained results 

indicated an increased dendritic spine formation and elimination of Cyfip1+/-

Thy1EGFP layer V neurons compared to Cyfip1+/-Thy1EGFP control neurons. Thus, 

the aberrant dendritic spine density in the motor cortex of Cyfip1+/- mice is explained 

by the absence of dendritic spine stability and not by a defect in the formation of new 

spines. Reminiscent to our observations, reduced synaptic stability in the cortex 

associated with experience-dependent and learning-induced spine remodelling was 

reported in a mouse model lacking FMRP (Nakai et al. 2018). 

  



79 

 

8.1 Introduction 

A collaborative project with other PhD students of the lab was aiming to determine 

the effect of social environment on the behaviour and physiology of mouse models 

for autism and wild type mice (Kalbassi et al. 2017). For this project, we used a model 

of nonsyndromic ASD in which mice lack the X-linked gene Nlgn3, coding for the 

postsynaptic adhesion protein Neuroligin-3 exclusively expressed in the brain 

(Tanaka et al. 2010; Baudouin et al. 2012). In humans, NLGN3 deletion is associated 

with nonsyndromic ASD (Jamain et al. 2003; Ylisaukko-oja et al. 2005; Levy et al. 

2011; Sanders et al. 2011; Yuen et al. 2017). The deletion of Nlgn3 in mice leads to 

distinct measurable phenotypes, including social behaviour and courtship deficits 

(Radyushkin et al. 2009; Rothwell et al. 2014; Baudouin et al. 2012; Fischer & 

Hammerschmidt 2011). To investigate the role of the social environment on mouse 

behaviour and physiology, we analysed the behaviour of mice from litters consisting 

of both genotypes (mixed genotype housing, MGH) in comparison to litters in which 

male mice were all of the same Nlgn3y/+ genotype (single genotype housing, SGH). 

In this context, I analysed the expression level of pheromones in these differently 

housed Nlgn3y/+ and wild type mice. In particular, I investigated major urinary proteins 

(MUPs), which are pheromone proteins synthesised in the liver and excreted in the 

urine (Sheehan et al. 2016). 

	

	

	



80 

8.2 Social environment of Nlgn3y/- male mice 

The adult male behaviour was analysed using males from litters consisting of Nlgn3y/- 

and Nlgn3y/+ mice (mixed genotype housing, MGH) in comparison to litters in which 

all mice from the same genotype (Nlgn3y/- or Nlgn3y/+) (single genotype housing, 

SGH). The assessment of social environmental effects on social behaviour included 

the use of behavioural assays such as the tube test and the ultrasonic courtship 

vocalisation paradigm. 

We used the tube test as a paradigm to test Nlgn3y/+ and Nlgn3y/- male mice from 

MGH for their social dominance behaviour. Direct encounters between Nlgn3y/- and 

Nlgn3y/+ mice from MGH revealed that Nlgn3y/- mice lost more frequently encounters 

with Nlgn3y/+ mice (Nlgn3y/+ 72.9% ± 9.8%; Nlgn3y/- 29.4% ± 10.3%; P = 0.007) 

(Figure 8.1A). Tube test wins were demonstrated to be a measure for social 

dominance whereas losing in the tube test was associated with social submission 

(Wang et al. 2011). Ranks in tube test behaviour and courtship vocalisation were 

described to correlate in group-housed mice with stable social hierarchies. More 

precisely the dominant animal with highest level of courtship vocalisation wins the 

tube test whereas the most submissive mouse vocalises the least and loses in tube 

test encounters (Wang et al. 2011). Therefore, we tested Nlgn3y/- male mice from 

MGH and SGH for their courtship vocalisation and tube test behaviour. Results from 

MGH and SGH were analysed separately for correlation between rank in courtship 

vocalisation and tube test behaviour. In cages of SGH Nlgn3y/- male mice observed 

ranks in courtship vocalisation and tube test behaviour correlated (13 cages; 

correlation test, r2 = 0.90) whereas no correlation was obtained in MGH Nlgn3y/- male 

mice (6 cages; correlation test, r2 = 0.25) (Figure 8.1B). 
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Figure 8.1 Social submission and unstable social hierarchy in Nlgn3y/- MGH 
mice. 
A, Nlgn3y/- mice form MGH lost more frequently direct encounters against their 

Nlgn3y/+ littermates. B, Nlgn3y/- MGH specific absence of correlation between rank in 

the tube test and rank of courtship vocalisation. All values are represented as mean 

± SEM. Statistical significance was tested by two-tailed Mann-Whitney U-test. ** P < 

0.01. 
	

	

	

8.3 Effect of social environment on gene expression in Nlgn3y/- male 
mice 

The social environment modulated social behaviours and ultimately the social 

hierarchy of adult male Nlgn3y/- mice. We next addressed whether the social 

environment modified the expression of genes encoding pheromones. Major urinary 

proteins (MUPs) are pheromones representing important social cues for mice. 

In order to assess Mup4, Mup6 and Mup20 (also known as Darcin) mRNA levels 

quantitative real-time PCR was performed using the 2-DDCT method. Obtained Mup4, 

Mup6 and Mup20 mRNA levels relative to 18S mRNA levels were higher in the liver 

of Nlgn3y/+ MGH mice compared to Nlgn3y/+ SGH mice. In contrast, relative Mup4, 
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Mup6 and Mup20 mRNA levels were similar in the liver of Nlgn3y/- from SGH and 

MGH (SGH: Nlgn3y/+ n = 8 and Nlgn3y/- n = 7; MGH: Nlgn3y/+ n = 8 and Nlgn3y/- n = 7;	

two-way ANOVA, main effect of housing, F1, 78 = 6.30, P = 0.014, interaction housing 

x genotype, F1, 78 = 4.15, P	= 0.045, Sidak’s post hoc test) (Figure 8.2A). Corticotropin 

release hormone receptor 2 (Crhr2) mRNA levels in liver tissues from adult male 

Nlgn3y/+ and Nlgn3y/- mice from MGH and SGH and 18S ribosomal RNA (rRNA) 

specific primers were used to perform quantitative real-time PCR. The obtained Crhr2 

mRNA levels were normalised to the 18S mRNA levels and analysed for effects of 

genotype and housing condition. The normalised Crhr2 mRNA levels were 

significantly increased in the liver of Nlgn3y/+ and Nlgn3y/- mice from MGH compared 

to Nlgn3y/+ and Nlgn3y/- from SGH (SGH: Nlgn3y/+ n = 8 and Nlgn3y/-n = 6; MGH: 

Nlgn3y/+ n = 5 and Nlgn3y/- n = 5; Two-way ANOVA, main effect of housing F1, 20 = 4.9, 

P  = 0.038) (Figure 8.2B). In addition, cytochrome P450 2D9 (Cyp2d9) was used as 

a marker for effects of the social environment on sexual dimorphism of the liver. 

Hepatic Cyp2d9 mRNA levels were determined in Nlgn3y/+ and Nlgn3y/- male mice 

from MGH and SGH. Cyfp2d9 mRNA levels relative to 18S mRNA levels were similar 

between Nlgn3y/+ and Nlgn3y/- male mice from MGH and SGH (SGH: Nlgn3y/+ n = 7 

and Nlgn3y/-n = 6; MGH: Nlgn3y/+ n = 5 and Nlgn3y/- n = 5; one-way ANOVA P > 0.05) 

(Figure 8.2C). In summary, the social environment had an effect on Mup4, Mup6 and 

Mup20 mRNA levels in Nlgn3y/+ mice and on Crhr2 mRNA levels of Nlgn3y/+ and 

Nlgn3y/- mice whereas Cyp2d9 mRNA levels were similar between the tested 

genotypes and housing conditions. 
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Figure 8.2 Effect of housing on hepatic mRNA levels in Nlgn3y/+ and Nlgn3y/- 
mice. 
A, Hepatic Mup4, Mup6 and Mup20 mRNA levels were reduced in Nlgn3y/+ mice from 

SGH compared to Nlgn3y/+ from SGH and Nlgn3y/- mice from SGH and MGH. B, 

Nlgn3y/+ and Nlgn3y/- mice from MGH had increased hepatic Crhr2 mRNA levels 

compared to Nlgn3y/+ and Nlgn3y/- mice from SGH C, Hepatic Cyp2d9 mRNA levels 

were similar between mice from MGH and SGH. All values are represented as mean 

± SEM. Statistical significance was tested by one-way or two-way ANOVA. * P < 0.05, 

** P < 0.01.  
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8.4 Discussion 

Our results demonstrate a submissive phenotype of adult Nlgn3y/- male mice in litters 

with Nlgn3y/- and Nlgn3y/+ male mice and an absence in structured social hierarchy 

within litters of Nlgn3y/- and Nlgn3y/+ male mice. In addition, the social environment of 

male Nlgn3y/- and Nlgn3y/+ regulated the mRNA levels of hepatic Crhr2. Moreover, 

Mup4, Mup6 and Mup20 mRNA levels were modified by the social environment in 

Nlgn3y/+ mice. These findings contribute to the characterisation of the Nlgn3y/- mouse 

model and further highlight the importance of the social environment. 

Social paradigms have been widely used to characterise mouse models for 

psychiatric conditions. However, the social environment can have fundamental 

consequences on behaviour and physiology (Vargas-Pérez et al. 2009; Van Loo et 

al. 2003). In order to generalise these observations made in Nlgn3y/- mice, we 

considered testing whether the social environment had effects on the social behaviour 

of Cyfip1+/- mice. However, the phenotypic characterisation of Cyfip1+/- mice revealed 

tube test and courtship vocalisation behaviours similar to wild type control mice 

(Chapter 4.2). 

Social environments are not standardised for experimental mice, which according to 

the presented results can affect the physiology of mice. Therefore, refined laboratory 

practice should take the social environment in account by including controls from 

different housing conditions. 
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9.1 Summary of results 

Taken together, the obtained results showed that Cyfip1 haploinsufficiency leads to 

sex-specific defects in motor learning and social behaviour accompanied by alteration 

of dendritic spine stability, providing new insights to understand the relationship 

between cellular and behavioural phenotypes in mouse models for ASD. 

Adult male Cyfip1+/- mice showed a significantly decreased interest in social odours 

compared to control wild type mice. However, the discrimination of social odours, 

courtship vocalization and dominance behaviour were comparable between adult 

Cyfip1+/- and wild type male mice. Adult female Cyfip1+/- and wild type mice showed 

similar interest towards social odours but Cyfip1+/- and wild type mice did not 

discriminate social odours. This indicated a male-specific defect in social interest. 

General locomotor activity, anxiety and repetitive behaviours were comparable 

between Cyfip1+/- and wild type mice. In contrast, motor learning behaviour of adult 

Cyfip1+/- male mice was impaired. On the other hand, adult female Cyfip1+/- and wild 

type mice showed similar motor learning behaviours. Interestingly, earlier in 

development at P40 male Cyfip1+/- mice showed motor learning behaviour similar to 

age-matched wild type male mice. The motor learning performance of male Cyfip1+/- 

at P40 was higher than the performance of adult Cyfip1+/- male mice. Repeated motor 

training at P40, P50 and P51 increased the motor performance of male Cyfip1+/- and 

wild type mice when the animals were retested at early adulthood (P60). Hence, the 

adult Cyfip1+/- male-specific motor learning deficit is manifested in a critical window at 

the beginning of adolescence. Intact motor learning earlier in the development of 

Cyfip1+/- mice results in sustained motor ability up to the adult stage. This result also 
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indicates that the effect of Cyfip1 haploinsufficiency on motor learning can be partially 

compensated by training of the mice. 

In neurons, we found that the dendritic spine density in the Cyfip1+/- primary motor 

cortex was reduced compared to wild type controls whereas dendritic densities in the 

V1 area of the visual cortex and in the hippocampal areas CA1 and CA3 were 

comparable between Cyfip1+/- and wild type tissues. Further analysis of the underlying 

structural plasticity in the motor cortex revealed an increased spine turnover in 

Cyfip1+/- mice compared to wild type controls. In addition, motor learning induced 

spine formation in Cyfip1+/- and wild type. Thus, motor cortical Cyfip1+/- neurons have 

the potential to form new spines but the dendritic spine turnover is increased. In 

addition, we did not detect any major change in the protein synthesis rate or any 

defect of association between CYFIP1 and WAVE1, suggesting that the association 

between CYFIP1 and FMRP or the WAVE regulatory complex are not grossly affected 

by Cyfip1 haploinsufficiency. 

Interestingly, we found that although Cyfip1 haploinsufficiency led to a significant 

reduction of Cyfip1 mRNA levels in all analysed brain regions, CYFIP1 protein levels 

were significantly reduced in motor cortex and hippocampus but not in other brain 

regions and organs at the periphery. These results suggest an uncharacterised post-

translational compensation of CYFIP1 protein levels in the motor cortex and 

hippocampus, through a yet uncharacterized mechanism.  

In the following subchapters we discuss the potential molecular mechanisms 

underlying the neuronal phenotype, its implication in the behaviour phenotype, the 

impact of this results on the study of ASD and present potential future development 

of this work. 
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9.2 Molecular mechanisms underlying dendritic spine instability 

In vivo imaging analysis revealed a decreased stability of dendritic spines based on 

increased spine formation and elimination of motor cortical Cyfip1+/- neurons. This 

finding is consistent with that of Pathania et al. showing that defects of dendritic spine 

morphology in hippocampal neurons of Cyfip1+/- mice. The working model in the 

following is an attempt to link CYFIP1 associated functions and mechanisms with the 

dendritic phenotype associated with Cyfip1 haploinsufficiency (Figure 9.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 Model of defective spine maturation in Cyfip1+/- mice. 
Filopodium formation occurs independently from Arp2/3 and CYFIP1 whereas the 

actin network of the immature spine is prematurely stable which prevents further spine 

maturation. 
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The Rho family of GTPases comprises different signalling G proteins such as RhoA, 

Cdc42 and Rac1. Rac1 has numerous downstream effectors but CYFIP1 is 

exclusively activated by GTP-Rac1 (Kobayashi et al. 1998). CYFIP1 activation 

downstream of Rac1 abolishes CYFIP1 mediated inhibition of the WAVE regulatory 

complex. Accordingly, Cyfip1 deletion or reduced CYFIP1 levels can lead to 

disinhibition of the WAVE regulatory complex (Chen et al. 2011). Enhanced WRC 

activity consequently enhances actin nucleation through Arp2/3 (Takenawa & 

Suetsugu 2007). Increased actin polymerisation can facilitate morphological changes 

including spine formation (Cingolani & Goda 2008). This mechanism can explain the 

observed increased dynamics of spine formation and increased number of newly 

formed spines in Cyfip1+/- neurons (Pathania et al. 2014). As illustrated at the 

presynapse, CYFIP1 controls also protein synthesis and neuronal activity (Hsiao et 

al. 2016) which might affect formation and stabilisation of Cyfip1+/- dendritic spines. 

Our results from whole tissue lysates did not reveal a gross defect in protein synthesis 

rate. Nevertheless, technical limitations don`t allow excluding cell-specific changes in 

protein synthesis, altered rates of local translation or dysregulation of FMRP targets 

following Cyfip1 haploinsufficiency. 

Histologic analysis revealed a decreased dendritic spine density in the Cyfip1+/- motor 

cortex. Contrasting with this result, hippocampal Cyfip1+/- neurons in culture and in 

histologic preparations show similar spine densities compared to wild type control 

neurons (Pathania et al. 2014). Importantly, CYFIP protein levels were significantly 

decreased in these two brain regions. This suggests that depending on the brain 

region or the cell type, increased spine immaturity can have different consequences 

on the dendritic spine density. Results obtained from hippocampal neurons in culture 

suggest that decreased spine stability is largely independent of the physiological 

context and therefore cell autonomous (Pathania et al. 2014). It would be interesting 

to determine whether neurons from the motor cortex show a similar phenotype in 

culture, and in particular if the spine density is affected in these neurons. This would 
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allow determining if the decreased spine density is a phenotype dependent on the 

neuronal identity or the physiological context of the brain region. 

Interestingly, hippocampal Cyfip1+/- neurons were demonstrated to show an altered 

dendritic spine morphology associated with spine immaturity (Pathania et al. 2014). 

The authors concluded that heterozygous Cyfip1 deletion leads to an increased ratio 

immature over mature dendritic spines whereas the net spine density remains 

unchanged. Performing structural in vivo imaging we found an increased spine 

turnover in neurons of the Cyfip1+/- motor cortex. The increased spine turnover might 

explain an increased proportion of immature spines. However, the direct link between 

increased spine turnover in the motor cortex and immaturity related morphology of 

dendritic spines observed in the hippocampus remains elusive. Structural imaging in 

vivo is restricted to technically accessible brain regions excluding the hippocampus 

as a compatible structure of interest. Alternatively, classification of morphological 

spine subtypes in the motor cortex is technically feasible using super-resolution 

imaging (Wijetunge et al. 2014) but such experiments were not done. 

Structural in vivo imaging revealed that cortical Cyfip1+/- neurons form new spines but 

yet show a decreased spine density. This suggests that actin filament nucleation for 

the formation of new filopodia is intact in Cyfip1+/- mice whereas spine stability is 

altered. Filopodia formation requires unbranched actin filaments which are nucleated 

by mammalian Diaphanous-related (mDia) formins (Hotulainen et al. 2009). On the 

other hand, networks of branched actin stabilise spines and promote spine growth 

downstream of Arp2/3. (Wegner et al. 2008; Hotulainen et al. 2009). Hence, the 

maturation of a filopodium to mature spine goes through a transition from mDia to 

Arp2/3 mediated actin nucleation. This indicates that filopodium formation is 

independent of Arp2/3 and its upstream regulator CYFIP1. However, Arp2/3 is crucial 

for the formation of branched actin filaments. Since CYFIP1 regulates Arp2/3 activity 

we propose that later stages of spine formation are affected in Cyfip1+/- spines. The 

loss of Arp2/3 inhibition in Cyfip1+/- spines leads to an increased network of branched 
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actin. This may lead to a premature increase in spine stability which in turn may 

compromise structural plasticity required for further maturation. This mechanism can 

interfere with spine maturation and could lead to spine elimination.  

In addition, presynaptic functions such as neuronal activity or bouton formation in 

Cyfip1+/- mice might also contribute to the increased spine instability (Bury & Sabo 

2015; Rust & Maritzen 2015; Hsiao et al. 2016). Moreover, Cyfip1 is expressed in 

non-neuronal cells and possibly in microglia (Kobayashi et al. 1998; Davenport et al. 

2018). Microglia are involved in synaptic pruning which is important for the control of 

synaptic maturation (Paolicelli et al. 2011). Microglial activity and control of spine 

elimination might be altered in Cyfip1+/- mice. Increased synaptic pruning may allow 

filopodia formation but would eliminate dendritic spines explaining the decreased 

spine density. Neuronal activity can promote microglial activity (Hung et al. 2010) 

which might lead to brain region-specific spine elimination. 

 

 

 

9.3 Dendritic spines and motor learning 

Motor learning was demonstrated to mediate structural plasticity in wild type mice. 

Rotarod training induced a 2.61 fold increase in spine formation whereas spine 

elimination remained unchanged. We replicated the increase in dendritic spine 

formation in layer V neurons and validated our experimental design combining the 

motor learning paradigm with structural in vivo imaging of dendritic plasticity. More 

specifically, we found a significant 3.73 fold increase in spine formation and no 

significant effect on spine elimination in adult Cyfip1+/+Thy1EGFP male mice, 

comparable to the reported 2.61 fold increase found by (Yang et al. 2009). In their 

studies, Yang et al reported that stably maintained dendritic spines are associated 

with lifelong memories. This finding may implicate that motor learning is dependent 
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on the formation of new dendritic spines. Cyfip1+/- male mice show an absence in 

motor learning and so we thought to address this question and hypothesised that the 

absence of motor learning found in Cyfip1+/- mice would be associated with an 

absence of dendritic spine formation. We found that dendritic spine formation was 

significantly increased where dendritic spine elimination was unchanged in rotarod 

trained adult Cyfip1+/-Thy1EGFP mice. This observation indicates that formation of 

dendritic spines in layer V neurons can still occur in mice showing an absence of 

motor learning on the rotarod. The molecular and cellular events triggering dendritic 

spine formation upon rotarod training in the motor cortex of Cyfip1+/- mice remain 

unknown. Nevertheless, these results lead us to speculate that the increased Cyfip1+/- 

spine turnover at baseline could lead to the motor learning impairment. The spine 

turnover at baseline could have consequences on the neuronal circuitry. Changes in 

the circuitry could result in an altered behavioural output.  

This result has important consequences for the design of therapeutic strategies. The 

objective of a treatment would be to stabilise spines and not to promote their 

formation. Interestingly, female mice and young mice do not show such behavioural 

phenotype. The comparison of the cellular and molecular mechanisms controlled by 

Cyfip1 over the development between females to the males could lead to a better 

understanding of the defective mechanism to be targeted. Motor learning in wild type 

mice has been associated with neuronal activity (Costa et al. 2004). Therefore, 

investigating the neuronal activity phenotype of Cyfip1+/- associated with motor 

learning would lead to a broader view on the Cyfip1+/- pathophysiology. Since motor 

training during the development improved the behavioural performance in adult 

Cyfip1+/- mice it would be interesting to test whether physical motor training could be 

mimicked by neuronal stimulation of the motor cortex. The effect of transcranial 

current stimulation (tDCS) on the Cyfip1+/- and wild type motor cortex could be 

investigated as well as the consequences on motor learning behaviour (Pedron et al. 

2014; Waters et al. 2017). In addition, the integration of neuronal activity across the 
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neuronal network is determined by structural connectivity (Roudi et al. 2015; Ocker 

et al. 2017; Peters et al. 2017). Thus, structural connectivity alterations could be 

involved in the observed motor learning deficit. To address this possibility diffusor 

tensor imaging (DTI) (Wu et al. 2013) could be performed on Cyfip1+/- and wild type 

mice. 

Insights on neuronal activity and connectivity by methods such as tDCS and DTI in a 

mouse model of Cyfip1 deletion might be very valuable since the techniques are 

translationally applicable to human. 

 

 

 

9.4 The necessity to better understand the function of Cyfip1 in 
neurons  

The mouse model for Cyfip1 deletion used for the presented experiments is based on 

heterozygous deletion of Cyfip1. This genetic construct gives rise to reduced but not 

fully abolished Cyfip1 expression. The remaining monoallelic Cyfip1 expression can 

still contribute to physiologic CYFIP1 functions. Thus, CYFIP1 functions might not be 

compromised in the model for Cyfip1 haploinsufficiency. In addition, the assessment 

of CYFIP1 protein levels in Cyfip1+/- mice revealed in some brain tissues CYFIP1 

protein levels similar to levels found in wild type controls. Cyfip1 mRNA levels were 

decreased by 50% reflecting the heterozygous deletion. These observations lead to 

the conclusion of a post-transcriptional compensation of CYFIP1 protein levels. As a 

result, CYFIP1 functions in Cyfip1+/- mice can still occur similar to the wild type 

condition due to monoallelic Cyfip1 expression and compensation of CYFIP1 protein 

levels. Thus, the detection of pathological features of the Cyfip1+/- mouse model relies 

on the threshold of Cyfip1 mRNA and CYFIP1 protein levels required for biological 

function. A complete knockout of Cyfip1 would be preferred but the homozygous 
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Cyfip1 deletion was reported to be embryonically lethal in the mouse (Bozdagi et al. 

2012; Pathania et al. 2014) and fly (Schenck et al. 2003; Zhao et al. 2013). A 

conditional Cyfip1 knockout could circumvent early embryonic lethality and the 

limitations of a heterozygous mouse model. However, it remains to be tested which 

cell types are viable upon homozygous Cyfip1 deletion and whether these cells 

underlie a critical developmental window for Cyfip1 expression. Such a 

characterisation by itself would contribute to a better understanding of cell type-

specific CYFIP1 functions. 

Concerning the main findings described here, a conditional knockout of Cyfip1 would 

be beneficial to strengthen the correlation between cellular and behavioural Cyfip1+/- 

phenotypes. Increased dendritic spine turnover in a population of motor cortical 

neurons associated with motor learning was correlated with motor learning 

impairment in adult Cyfip1+/- mice. A selective Cyfip1 knockout specific for layer V 

neurons in the motor cortex would allow demonstrating causality between Cyfip1 loss 

in these particular cells, increased dendritic spine turnover and defective motor 

learning behaviour. 

The Cyfip1+/- mice used for the presented experiments were generated using a 

knockout first allele (Skarnes et al. 2013). This construct has the potential to be turned 

into a floxed allele upon flippase recombination and subsequent manipulation by Cre 

recombination would generate a conditional knockout allele for Cyfip1. Using this 

strategy a conditional Cyfip1 knockout mouse line with a specific Cyfip1 loss in 

excitatory neurons of the neocortex and hippocampus has been recently generated 

(Davenport et al. 2018). However, time constraints limited the generation of a 

conditional Cyfip1 knockout mutant to further investigate the relationship between 

increased dendritic spine turnover and phenotypic motor learning behaviour. 
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9.5 Future directions 

Studies in humans and mouse models have begun to explore the heterogeneity of 

ASD and identified convergent pathophysiological mechanisms, in particular deficits 

in structural and functional plasticity of dendritic spines, the postsynaptic structures 

docking most excitatory synapses. Analyses of post-mortem tissue of individuals with 

idiopathic ASD have shown higher-than-normal spine densities on the apical 

dendrites of layer II pyramidal neurons in frontal, parietal and temporal tissue (Hutsler 

& Zhang 2010; Tang et al. 2014). By contrast, decreased dendritic spine density has 

been consistently reported in human cortical tissue from individuals affected by 

monogenic disorders comorbid with autism, including Fragile-X (Rudelli et al. 1985; 

Hinton et al. 1991; Irwin et al. 2001), Angelman (Jay et al. 1991), and Rett’s 

syndromes (Belichenko et al. 1994; Kaufmann et al. 1997; Chapleau et al. 2009) (for 

comprehensive review see Phillips and Miller (Phillips & Pozzo-Miller 2014)). The 

main finding of the behavioural characterisation of Cyfip1+/- mice was a motor learning 

impairment specific to adult male mice. Investigating the pathophysiology underlying 

the phenotypic Cyfip1+/- motor learning behaviour we observed an increased spine 

formation in described cellular correlates for motor learning (Yang et al. 2009). The 

correlation between aberrant structural plasticity phenotype and defective motor 

learning is an interesting starting point for further dissection of Cyfip1 function and the 

pathophysiologic consequences upon Cyfip1 deletion. CYFIP1 interacts at the 

synapse with Neuroligin-3, which has been associated with ASD. In addition, 

behavioural Cyfip1+/- phenotypes were male-specific in analogy to higher ASD 

prevalence in male individuals that in female individuals. Interestingly, motor deficits 

are comorbid symptoms of ASD (Moraes et al. 2017; Colombo-Dougovito & Reeve 

2017). 
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The Cyfip1+/- male-specific motor learning deficit was instructive for the subsequent 

assessment for potential mechanisms contributing towards the altered behavioural 

output. Following this top-down approach, an increased spine turnover was identified 

in a cell type associated with motor learning. The correlation between motor learning 

deficit and increased spine turn over described here in male Cyfip1+/- mice raises the 

question of causality. Motor learning behaviour in adult female mice was not affected 

by the heterozygous loss of Cyfip1. Therefore, assessing the structural plasticity of 

dendritic spines in Cyfip1+/- and wild type female mice would help to evaluate the 

causality between altered structural plasticity and motor learning phenotype 

described here. Overcoming technical limitations, a mouse line with Cyfip1 deletion 

from layer V neurons associated with motor learning would serve as a powerful model 

to assess the relationship between structural plastic and behavioural consequences. 

Unlike female Cyfip1+/- mice as a model, a cell type-selective Cyfip1 deletion model 

would allow to cell-autonomous effects of structural plasticity on the behaviour 

isolated from potential effects of Cyfip1 deletion on other cell types and neuronal 

circuits. This line of experiments would further outline the contribution of dendritic 

structural plasticity towards the motor learning behaviour. 

Protein synthesis rates obtained from Cyfip1+/- and wild type mice were similar overall. 

Nevertheless, effects of Cyfip1 haploinsufficiency on mRNA translation might occur 

in a confined manner. Increased dendritic spine formation over would suggest a 

higher demand of newly synthesised proteins in accordance with strong evidence 

associating protein synthesis and synaptic plasticity (Zukin et al. 2009). Therefore, 

the interest of the Cyfip1 field of research in mRNA translation could be followed up 

by assessing the local mRNA translation in the identified layer V neurons showing 

increased spine turnover. Techniques involving in vivo labelling of newly synthesised 

proteins and quantification from histological slices (Hinz et al. 2013) would permit a 

refined characterisation of protein synthesis related CYFIP1 function. 
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9.6 Concluding remarks 

Most insights into the function of Cyfip1 and consequences upon its deletion originate 

from studies focussing on cellular aspect. The work presented here contributes to the 

characterisation of phenotypic behaviours of the Cyfip1+/- mice and the evaluation of 

the underlying pathophysiology in vivo. 

The behavioural phenotype of Cyfip1+/- mouse model was characterised, including 

social behaviours. The assessment of social behaviours in Cyfip1+/- mice is an 

important aspect considering the association of CYFIP1 with ASD in human 

(Nishimura et al. 2007; Van Der Zwaag et al. 2010; Leblond et al. 2012; Pinto et al. 

2014). A phenotypic motor learning impairment in male Cyfip1+/- mice was identified 

and potential pathophysiologic mechanisms were evaluated. Importantly the 

identified phenotypic behaviour is reminiscent to symptoms comorbid to ASD (Moraes 

et al. 2017). This finding can be instructive for the clinical assessment of genetic 

predispositions with regards to CYFIP1 deletion given that aspects of neuronal activity 

and connectivity can be translational. 

Moreover, using a Nlgn3y/- mouse line as a model for social submission the 

fundamental effect the social environment on the behaviour and physiology on other 

mice within the same environment was demonstrated. 
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Figure 

Shapiro-Wilk test 

of normality 

Test for 

Equality of variances Type of test Power Sample size 

3.1, Motor 

cortex 

WT: W = 0.931, P = 0.422 

CyfiP1+/-: W = 0.946, P = 0.592 

Levene`s test 

F = 0.980, P = 0.758 

Student`s t-test, one-tailed 

F = 0.098, P = 0.006 

NA WT n = 11 

Cyfip1+/- n = 11 

3.1, Striatum WT: W = 0.674, P = 0.000 

CyfiP1+/-: W = 0.602, P = 0.000 

Levene`s test 

F = 0.910, P = 0.766 

Mann-Whitney, one-tailed 

U = 11.000, P = 0.000 

NA WT n = 12 

Cyfip1+/- n = 12 

3.1, 

Cerebellum 

WT: W = 0.956, P = 0.720 

CyfiP1+/-: W = 0.944, P = 0.624 

Levene`s test 

F = 2.961, P = 0.102 

Student`s t-test, one-tailed 

F = 2.961, P = 0.006 

NA WT n = 11 

Cyfip1+/- n = 9 

3.1, Liver WT: W = 0.926, P = 0.413 

CyfiP1+/-: W = 0.956, P = 0.758 

Levene`s test 

F = 15.906, P = 0.001 

Mann-Whitney, one-tailed 

U = 13.000, P = 0.004 

NA WT n = 10 

Cyfip1+/- n=9 

3.2B, Motor 

cortex 

WT: W = 0.928, P = 0.139 

CyfiP1+/-: W = 0.910, P = 0.064 

Levene`s test 

F = 0.967, P = 0.332 

Student`s t-test, one-tailed 

F = 0.967, P = 0.017 

NA WT n = 20 

Cyfip1+/- n = 20 

3.2B, 

Hippocampus 

WT: W = 0.895, P = 0.116 

CyfiP1+/-: W = 0.916, P = 0.254 

Levene`s test 

F = 2.682, P = 0.115 

Student`s t-test, one-tailed 

F = 2.682, P = 0.002 

NA WT n = 13 

Cyfip1+/-: n = 12 

3.2B, 

Striatum 

WT: W = 0.499, P = 0.396 

CyfiP1+/-: W = 0.881, P = 0.040 

Levene`s test 

F = 0.441, P = 0.512 

Mann-Whitney, one-tailed 

U = 88.000, P = 0.069 

NA WT n = 16 

Cyfip1+/-: n = 16 
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3.2B, 

Thalamus 

WT: W = 0.836, P = 0.091 

CyfiP1+/-: W = 0.840, P = 0.099  

Levene`s test 

F = 0.703, P = 0.418 

Student`s t-test, one-tailed 

F = 0.703, P = 0.332 

NA WT n = 7 

Cyfip1+/- n = 7 

3.2B, 

Somato-

sensory 

cortex 

WT: W = 0.809, P = 0.096 

CyfiP1+/-: W = 0.757, P = 0.007 

Levene`s test 

F = 0.774, P = 0.396 

Mann-Whitney, one-tailed 

U = 22.000, P = 0.500 

NA WT n=5 

Cyfip1+/- n=9 

3.2B, 

Cerebellum 

WT: W = 0.911, P = 0.189 

CyfiP1+/-: W = 0.812, P = 0.013 

Levene`s test 

F = 0.000, P = 0.987 

Mann-Whitney, one-tailed 

U = 58.000, P = 0.148 

NA WT n = 13 

Cyfip1+/-: n = 12 

3.2B, Liver WT: W = 0.838, P = 0.030 

CyfiP1+/-: W = 0.972, P = 0.911  

Levene`s test 

F = 1.447, P = 0.245 

Mann-Whitney, one-tailed 

U = 48.500, P = 0.471 

NA WT n = 11, 

Cyfip1+/- n = 9 

3.2B, Spleen WT: W = 0.905, P = 0.213 

CyfiP1+/-: W = 0.838, P = 0.055 

Levene`s test 

F = 1.721, P = 0.206 

Student`s t-test, one-tailed 

F = 1.721, P = 0.478 

NA WT: n=11 

Cyfip1+/- n = 9 

4.1A  WT 

Control: W = 0.917, P = 0.371 

S1: W = 0.960, P = 0.801 

S2: W = 0.925, P = 0.432 

Cyfip1+/-  

Control: W = 0.924, P = 0.323 

S1: W = 0.835, P = 0.024 

S2: W = 0.937, P = 0.466 

Mauchly`s Test of 

Sphericity 

W = 0.904, 

χ2 = 1.819, 

P = 0.403 

Repeated measures ANOVA 

Pillai`s trance 

Main effect of odour 

F2, 18 = 11.177, P = 0.001 

Interaction odour x genotype 

F2, 18 = 3.776, P = 0.043 

Followed by Bonferroni 

corrected pairwise 

comparison 

 

 

 

0.979 

 

0.612 

 

 

 

WT n = 9 

Cyfip1+/- n = 12 
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4.1B WT 

S1: W = 0.924, P = 0.423 

S2: W = 0.926, P = 0.442 

Cyfip1+/-  

S1: W = 0.927, P = 0.353 

S2: W = 0.931, P = 0.389 

Levene`s test 

F = 3.755, P = 0.019 

 

Repeated measures ANOVA 

Pillai`s trance 

Main effect of odour 

F1, 19 = 27.792, P = 0.000 

Interaction odour x genotype 

F1, 19 = 0.657, P = 0.428 

 

 

0.999 

 

0.657 

 

WT n = 9, 

Cyfip1+/- n = 12 

4.1C WT W = 0.969, P = 0.770 

Cyfip1+/- W = 0.898, P = 0.207 

Levene`s test 

F = 0.367, P = 0.550 

Student`s t-test, two-tailed 

P = 0.698 

NA WT n = 18 

Cyfip1+/- n = 10 

4.1E WT 

Control: W = 0.877, P = 0.176 

S1: W = 0.862, P = 0.125 

S2: W = 0.901, P = 0.297 

Cyfip1+/-  

Control: W = 0.901, P = 0.225 

S1: W = 0.897, P = 0.203 

S2: W = 0.933, P = 0.452 

Mauchly`s Test of 

Sphericity 

W = 0.550, 

χ2 = 8.959, 

P = 0.011 

Greenhouse-Geisser ε 

= 0.690 

Repeated measures ANOVA 

Pillai`s trance 

Main effect of odour 

F2, 15 = 6.306, P = 0.010 

Interaction odour x genotype 

F2, 15 = 0.654, P = 0.534 

 

 

 

 

0.825 

 

0.139 

 

 

WT n = 8, 

Cyfip1+/- n = 10 
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4.1F WT 

S1: W = 0.949, P = 0.698 

S2: W = 0.960, P = 0.816 

Cyfip1+/-  

S1: W = 0.805, P = 0.011 

S2: W = 0.954, P = 0.720 

Levene`s test 

F = 0.338, P = 0.798 

 

Repeated measures ANOVA 

Pillai`s trance 

Main effect of odour 

F1, 16 = 1.601, P = 0.224 

Interaction odour x genotype 

F1, 16 = 0.031, P = 0.862 

 

 

 

0.825 

 

0.139 

WT  

n = 8 for S1 

 

 

Cyfip1+/-  

n = 11 for S1 

4.2A WT; W = 0.939, P = 0.539 

Cyfip1+/-; W = 0.909, P = 0.098 

Levene`s test 

F = 0.005, P = 0.947 

Student`s t-test, two-tailed, 

P = 0.540 

NA WT n = 10 

Cyfip1+/- n = 17 

4.2B WT; W = 0.907, P = 0.296 

Cyfip1+/-; W = 0.887, P = 0.107 

Levene`s test 

F = 5.320, P = 0.033 

Mann-Whitney U-test, two-

tailed 

U = 47.000, P = 0.651 

NA WT n = 9 

Cyfip1+/- n = 12 

4.2C WT; W = 0.917, P = 0.173 

Cyfip1+/-; W = 0.896, P = 0.083 

Levene`s test 

F = 0.502, P = 0.485 

Student`s t-test, two-tailed, 

P = 0.243 

NA WT n = 15 

Cyfip1+/- n = 15 

4.2D WT; W = 0.955, P = 0.747 

Cyfip1+/-; W = 0.811, P = 0.038 

Levene`s test 

F = 1.076, P = 0.316 

Mann-Whitney U-test, two-

tailed 

U = 18.000, P = 0.093 

NA WT n = 9,  

Cyfip1+/- n = 8 

 

4.2E WT; W = 0.919, P = 0.346 

Cyfip1+/-; W = 0.939, P = 0.572 

Levene`s test 

F = 0.015, P = 0.903 

Student`s t-test, two-tailed, 

P = 0.806 

NA WT n = 10 

Cyfip1+/- n = 9 
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4.2F WT; W = 0.880, P = 0.048 

Cyfip1+/-; W = 0.914, P = 0.157 

Levene`s test 

F = 3.817, P = 0.061 

Mann-Whitney U-test, two-

tailed 

U = 102.500, P = 0.683 

NA WT n = 15 

Cyfip1+/- n = 15 

4.3A, WT Trial 1; W = 0.934, P = 0.254 

Trial 2; W = 0.950, P = 0.458 

Trial 3; W = 0.983, P = 0.052 

Trial 4; W = 0.853, P = 0.012 

Trial 5; W = 0.906, P = 0.087 

Trial 6; W = 0.905, P = 0.083 

Trial 7; W = 0.922, P = 0.160 

W = 0.362, χ2 = 

14.018, P = 0.836 

 

Repeated measures ANOVA 

Main effect of Trial, Pillai`s 

Trace 

F6, 11 = 16.094, P = 0.000 

Followed by Bonferroni 

corrected pairwise 

comparison 

 

 

 

 

1.000 

WT n = 17 

 

4.3A, 

Cyfip1+/-
 

Trial 1; W = 0.956, P = 0.628 

Trial 2; W = 0.938, P = 0.359 

Trial 3; W = 0.945, P = 0.445 

Trial 4; W = 0.907, P = 0.124 

Trial 5; W = 0.924, P = 0.219 

Trial 6; W = 0.976, P = 0.938 

Trial 7; W = 0.934, P = 0.312 

W = 0.069, χ2 = 

31.521, P = 0.055 

Repeated measures ANOVA 

Main effect of Trial, Pillai`s 

Trace 

F6, 9 = 1.092, P = 0.434 

 

 

 

0.247 

Cyfip1+/- n = 15 

 

4.3B WT W = 0.934, P = 0.254 

Cyfip1+/- W = 0.956, P = 0.624 

Levene`s test 

F = 0.706, P = 0.407 

Student`s t-test, two-tailed, 

P = 0.169 

NA WT n = 17 

Cyfip1+/- n = 15 

	 	



	

123 

4.3C, WT Trial 1; W = 0.905, P = 0.184 

Trial 2; W = 0.926, P = 0.335 

Trial 3; W = 0.859, P = 0.048 

Trial 4; W = 0.912, P = 0.226 

Trial 5; W = 0.924, P = 0.318 

Trial 6; W = 0.886, P = 0.103 

Trial 7; W = 0.819, P = 0.016 

Mauchly`s Test of 

Sphericity 

 

 

W = 0.025, χ2 = 

32.504, P = 0.048, 

Greenhouse-Geisser ε 

= 0.576 

Repeated measures ANOVA 

Within-Subject Effects 

 

Greenhouse-Geisser 

F6, 66 = 15.395, P = 0.000 

(same values obtained with 

test assuming sphericity) 

Followed by Bonferroni 

corrected pairwise 

comparison 

 

 

 

 

1.000 

 

 

 

WT n = 12 

 

 

 

4.3C 

Cyfip1+/- 

Trial 1; W = 0.932, P = 0.463 

Trial 2; W = 0.991, P = 0.998 

Trial 3; W = 0.947, P = 0.629 

Trial 4; W = 0.851, P = 0.059 

Trial 5; W = 0.886, P = 0.154 

Trial 6; W = 0.877, P = 0.120 

Trial 7; W = 0.918, P = 0.340 

Mauchly`s Test of 

Sphericity 

 

W = 0.024, χ2 = 

25.193, P = 0.239 

Repeated measures ANOVA 

Within-Subject Effects 

 

Sphericity assumed 

F6, 54 = 3.409, P = 0.006 

Followed by Bonferroni 

corrected pairwise 

comparison 

 

 

 

 

0.915 

Cyfip1+/- n = 10 

 

4.3D WT W = 0.905, P = 0.184 

Cyfip1+/- W = 0.932, P = 0.463 

Levene`s test 

F = 0.458, P = 0.506 

Student`s t-test, two-tailed, 

P = 0.332 

NA WT n = 12 

Cyfip1+/- n = 10 
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4.4A Trial 1; W = 0.959, P = 0.809 

Trial 2; W = 0.991, P = 0.994 

Trial 3; W = 0.947, P = 0.629 

Trial 4; W = 0.928, P = 0.537 

Trial 5; W = 0.936, P = 0.605 

Trial 6; W = 0.967, P = 0.873 

Trial 7; W = 0.734, P = 0.009 

Mauchly`s Test of 

Sphericity 

 

W = 0.000, χ2 = 

30.757, P = 0.132 

Repeated measures ANOVA 

Within-Subject Effects 

F6, 36 = 15.261, P = 0.000 

 

 

1.000 

WT = 7  

4.4B Trial 1; W = 0.943, P = 0.702 

Trial 2; W = 0.952, P = 0.574 

Trial 3; W = 0.981, P = 0.629 

Trial 4; W = 0.943, P = 0.546 

Trial 5; W = 0.965, P = 0.605 

Trial 6; W = 0.923, P = 0.068 

Trial 7; W = 0.842, P = 0.080 

Mauchly`s Test of 

Sphericity 

 

W = 0.038, χ2 = 

26.177, P = 0.123 

Repeated measures ANOVA 

Within-Subject Effects 

F6, 54 = 7.716, P = 0.000 

 

 

1.000 

Cyfip1+/- n = 10 

4.4C WT P40: see 4.4A 

WT P60: see 4.3A 

Mauchly`s Test of 

Sphericity 

 

W = 0.389, χ2 = 

18.685, P = 0.548 

Repeated measures ANOVA 

Pillai`s Trace, 

Main effect of trial 

F6, 17 = 23.515, P = 0.000 

Interaction trial x age 

F6, 17 = 0.815, P = 0.573 

 

 

 

1.000 

 

0.238 

WT P40 n = 7, 

WT P60 n = 17 
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4.4D Cyfip1+/- P40: see 4.4B 

Cyfip1+/- P60: see 4.3A 

Mauchly`s Test of 

Sphericity 

 

W = 0.131, χ2 = 

38.218, P = 0.009; 

Greenhouse-Geisser ε 

= 0.602 

Repeated measures ANOVA 

Within-Subject Effects, 

Greenhouse-Geisser test 

main effect of trial 

F6, 138 = 6.692, P = 0.000 

interaction trial x age 

F6, 138 = 3.000, P = 0.009 

Followed by Bonferroni 

corrected pairwise 

comparison 

 

 

 

 

0.998 

 

0.894 

Cyfip1+/-  

P40 n = 8 

 

Cyfip1+/-  

P60 n = 15 

4.5A Trained WT 

Trial 1; W = 0.921, P = 0.514 

Trial 2; W = 0.924, P = 0.537 

Trial 3; W = 0.879, P = 0.264 

Trial 4; W = 0.916, P = 0.479 

Trial 5; W = 0.693, P = 0.005 

Trial 6; W = 0.798, P = 0.057 

Trial 7; W = 0.815, P = 0.080 

Mauchly`s Test of 

Sphericity 

 

W = 0.001 χ2 = 25.109, 

P = 0.344 

Repeated measures ANOVA, 

Pillai`s Trace 

Main effect of Trial, 

F6, 36 = 2.053, P = 0.084 

 

 

 

0.076 

Trained WT 

n = 7 
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4.5B Trained WT see 4.5A 

Untrained WT see 4.5C 

Mauchly`s Test of 

Sphericity 

 

W = 0.597 χ2 = 10.199, 

P = 0.965 

Repeated measures ANOVA, 

Pillai`s Trace 

Main effect of Trial, 

F6, 17 = 3.260, P = 0.025; 

Interaction Trial x Training, 

F6, 17 = 2.650, P = 0.047 

Followed by Bonferroni 

corrected pairwise 

comparison 

 

 

 

0.805 

 

0.723 

Trained  

WT n = 7 

 

Untrained  

WT n = 17 

4.5C Trained Cyfip1+/- 

Trial 1; W = 0.921, P = 0.514 

Trial 2; W = 0.924, P = 0.537 

Trial 3; W = 0.879, P = 0.264 

Trial 4; W = 0.916, P = 0.479 

Trial 5; W = 0.693, P = 0.005 

Trial 6; W = 0.798, P = 0.057 

Trial 7; W = 0.815, P = 0.080 

Mauchly`s Test of 

Sphericity not obtained 

Repeated measures ANOVA 

Within-Subject Effects, 

sphericity assumed 

Main effect of Trial 

F6, 30 = 13.465, P = 0.000 

Followed by Bonferroni 

corrected pairwise 

comparison 

 

 

 

 

1.000 

Trained Cyfip1+/- 

n = 6, 
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4.5D Trained Cyfip1+/- P60: see 4.5C 

Untrained Cyfip1+/- P60: see 

4.3A 

Mauchly`s Test of 

Sphericity 

 

W = 0.133, χ2 = 

33.893, P = 0.029; 

Greenhouse-Geisser ε 

= 0.641 

Repeated measures ANOVA 

Within-Subject Effects, 

Greenhouse-Geisser test 

Main effect of Trial 

F6, 114 = 6.269, P = 0.000 

Interaction Trial x Training 

F6, 114 = 2.872, P = 0.030 

Followed by Bonferroni 

corrected pairwise 

comparison 

 

 

 

 

0.982 

 

0.741 

Trained Cyfip1+/- 

n = 6 

 

Untrained 

Cyfip1+/-  n = 15 

5.1A, Motor 

cortex 

Cyfip1+/-
 

female: W = 0.922, P = 0.520 

male: W = 0.821, P = 0.119 

Levene`s test 

F = 0.958, P = 0.353 

Student`s t-test, two-tailed 

P = 0.003 

NA female: n = 6 

male: n = 5 

5.1A, 

Striatum 

Cyfip1+/-
 

female: W = 0.953, P = 0.761 

male: W = 0.626, P = 0.001 

Levene`s test 

F = 2.776, P = 0.127 

Mann-Whitney, two-tailed  

U = 16.000, P = 0.818 

NA female: n = 6 

male: n = 6 

5.1A, 

Cerebellum 

Cyfip1+/-
 

female: W = 1.000, P = 0.987 

male: W = 0.962, P = 0.832 

Levene`s test 

F = 0.953, P = 0.361 

Student`s t-test, two-tailed 

P = 0.643 

NA female: n = 3 

male: n = 6 

5.1A, Liver 

Cyfip1+/-
 

female: W = 0.999, P = 0.927 

male: W = 0.916, P = 0.478 

Levene`s test 

F = 0.565, P = 0.477 

Student`s t-test, two-tailed 

P = 0.192 

NA female: n = 3 

male: n = 6 
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5.1B, Motor 

cortex WT 

female: W = 0.857, P = 0.178 

male: W = 0.890, P = 0.358 

Levene`s test 

F = 2.798, P = 0.129 

Student`s t-test, two-tailed 

P = 0.012 

NA female: n = 6 

male: n = 5 

5.1B, 

Striatum WT 

female: W = 0.760, P = 0.025 

male: W = 0.993, P = 0.603 

Levene`s test 

F = 4.089, P = 0.071 

Mann-Whitney, two-tailed  

U = 10.000, P = 0.240 

NA female: n = 6 

male: n = 6 

5.1B, 

Cerebellum 

WT 

female: W = 0.931, P = 0.587 

male: W = 0.891, P = 0.362 

Levene`s test 

F = 0.043, P = 0.840 

Student`s t-test, two-tailed 

P = 0.167 

NA female: n = 6 

male: n = 4 

5.1B, Liver 

WT 

female: W = 0.859, P = 0.186 

male: W = 0.959, P = 0.773 

Levene`s test 

F = 0.402, P = 0.544 

Student`s t-test, two-tailed 

P = 0.596 

NA female: n = 6 

male: n = 4 

5.2A, Motor 

cortex 

Cyfip1+/-
 

female: W = 0.892, P = 0.327 

male: W = 0.948, P = 0.713 

Levene`s test 

F = 0.934, P = 0.355 

Student`s t-test, two-tailed 

P = 0.715 

NA female: n = 6 

male: n = 7 

5.2A, 

Striatum 

Cyfip1+/-
 

female: W = 0.712, P = 0.016 

male: W = 0.897, P = 0.316 

Levene`s test 

F = 0.000, P = 0.999 

Mann-Whitney, two-tailed  

U = 12.000, P = 0.788 

NA female: n = 4 

male: n = 7 

5.2A, 

Hippocampus 

Cyfip1+/-
 

female: W = 0.960, P = 0.816 

male: W = 0.863, P = 0.161 

Levene`s test 

F = 0.688, P = 0.423 

Student`s t-test, two-tailed 

P = 0.182 

NA female: n = 7 

male: n = 7 
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5.2A, 

Cerebellum 

Cyfip1+/- 

female: W = 0.791, P = 0.034 

male: W = 0.936, P = 0.606 

Levene`s test 

F = 0.858, P = 0.372 

Mann-Whitney, two-tailed  

U = 22.000, P = 0.805 

NA female: n = 7 

male: n = 7 

5.2B, Motor 

cortex WT 

female: W = 0.849, P = 0.156 

male: W = 0.912, P = 0.413 

Levene`s test 

F = 8.987, P = 0.012 

Mann-Whitney, two-tailed  

U = 14.000, P = 0.366 

NA female: n = 6 

male: n = 7 

5.2B, 

Striatum WT 

female: W = 0.924, P = 0.503 

male: W = 0.951, P = 0.736 

Levene`s test 

F = 0.020, P = 0.889 

Student`s t-test, two-tailed 

P = 0.261 

NA female: n = 7 

male: n = 7 

5.2B, 

Hippocampus 

WT 

female: W = 0.855, P = 0.136 

male: W = 0.946, P = 0.698 

Levene`s test 

F = 2.355, P = 0.151 

Student`s t-test, two-tailed 

P = 0.387 

NA female: n = 7 

male: n = 7 

5.2B, 

Cerebellum 

WT 

female: W = 0.984, P = 0.978 

male: W = 0.852, P = 0.127 

Levene`s test 

F = 0.095, P = 0.763 

Student`s t-test, two-tailed 

P = 0.749 

NA female: n = 7 

male: n = 7 

5.3A, Motor 

cortex 

WT: W = 0.876, P = 0.290 

Cyfip1+/-: W = 0.888, P = 0.347 

Levene`s test 

F = 0.267, P = 0.619 

Student`s t-test, two-tailed  

P = 0.553 

NA WT n = 5 

Cyfip1+/- n = 5 

5.3A, 

Striatum 

WT: W = 0.878, P = 0.299 

Cyfip1+/-: W = 0.936, P = 0.640 

Levene`s test 

F = 1.491, P = 0.257 

Student`s t-test, two-tailed 

P = 0.957 

NA WT n = 5 

Cyfip1+/- n = 5 

5.3A, 

Hippocampus 

WT: W = 0.841, P = 0.166 
Cyfip1+/-: W = 0.969, P =  
0.663 

Levene`s test 
F = 2.711, P = 0.151 

Student`s t-test, two-tailed  
P = 0.947 

NA WT n = 5,  
Cyfip1+/- n = 3 
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5.3A, 

Cerebellum 

WT: W = 0.831, P = 0.142 

Cyfip1+/-: W = 0.824, P = 0.126 

Levene`s test 

F = 7.558, P = 0.025 

Mann-Whitney, two-tailed  

U = 7.000, P = 0.310 

NA WT n = 5 

Cyfip1+/- n = 5 

5.3B NA, too few samples NA, too few samples NA, too few samples NA WT n = 2 

Cyfip1+/- n = 2 

6.1 WT: W = 0.985, P = 0.980 

Cyfip1+/-: W = 0.944, P = 0.672 

Levene`s test 

F = 0.76, P = 0.787 

Student`s t-test, two-tailed 

P = 0.408 

NA WT n = 7, 

Cyfip1+/- n = 7 

6.2, Motor 

cortex 

WT: W = 0.712, P = 0.013 

CyfiP1+/-: W = 0.856, P = 0.214 

Levene`s test 

F = 0.011, P = 0.921 

Mann-Whitney, two-tailed  

U = 8.000, P = 0.421 

NA WT: n = 5,  

Cyfip1+/-: n = 5 

6.2, Striatum WT: W = 0.781, P = 0.056 

CyfiP1+/-: W = 0.904, P = 0.431 

Levene`s test 

F = 1.048, P = 0.336 

Student`s t-test, two-tailed 

P = 0.866 

NA WT: n = 5,  

Cyfip1+/-: n = 5 

6.2, 

Hippocampus 

WT: W = 0.893, P = 0.373 

CyfiP1+/-: W = 0.857, P = 0.217 

Levene`s test 

F = 6.567, P = 0.034 

Mann-Whitney, two-tailed  

U = 7.000, P = 0.310 

NA WT: n = 5,  

Cyfip1+/-: n = 5 

6.2, 

Cerebellum 

WT: W = 0.864, P = 0.243 

CyfiP1+/-: W = 0.741, P = 0.024 

Levene`s test 

F = 0.016, P = 0.903 

Mann-Whitney, two-tailed  

U = 8.000, P = 0.421 

NA WT: n = 5,  

Cyfip1+/-: n = 5 

7.1A, M1 WT: W = 0.969, P = 0.645 

CyfiP1+/-: W = 0.957, P = 0.379 

Levene`s test 

F = 0.028, P = 0.867 

Student`s t-test, two-tailed 

P = 0.008 

NA WT: n = 24,  

Cyfip1+/-: n = 24 

7.1A, V1 WT: W = 0.980, P = 0.935 

CyfiP1+/-: W = 0.972, P = 0.755 

Levene`s test 

F = 4.474, P = 0.041 

Mann-Whitney, two-tailed  

U = 166.000, P = 0.174 

NA WT: n = 24,  

Cyfip1+/-: n = 24 
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7.1A, CA1 WT: W = 0.984, P = 0.977 

CyfiP1+/-: W = 0.963, P = 0.569 

Levene`s test 

F = 2.426, P = 0.127 

Student`s t-test, two-tailed 

P = 0.376 

NA WT: n = 20, 

Cyfip1+/-: n = 21 

7.1A, CA3 WT: W = 0.975, P = 0.855 

CyfiP1+/-: W = 0.960, P = 0.546 

Levene`s test 

F = 3.992, P = 0.053 

Student`s t-test, two-tailed 

P = 0.067 

NA WT: n = 20, 

Cyfip1+/-: n = 20 

7.1C Formation 

WT W = 0.814, P = 0.000 

Cyfip1+/- W = 0.731, P = 0.000 

Elimination 

WT W = 0.877, P = 0.000 

Cyfip1+/- W = 0.894, P = 0.002 

Levene`s test 

F = 2.762, P = 0.044 

Two-way ANOVA 

Main effect of plasticity 

F1, 148 = 1.567, P = 0.213 

Main effect genotype 

F1, 148 = 4.718, P = 0.031 

Interaction plasticity x 

genotype 

F1, 148 = 0.020, P = 0.887 

 

 

0.238 

 

0.578 

 

 

0.020 

WT dendrites 

n = 40 

 

Cyfip1+/- 

dendrites n = 36 

7.2A Base line 

WT W = 0.814, P = 0.000 

Cyfip1+/- W = 0.731, P = 0.000 

After training 

WT W = 0.761, P = 0.000 

Cyfip1+/- W = 0.866, P = 0.000 

Mauchly`s Test of 

Sphericity assumed 

Repeated measures ANOVA 

Main effect of spine formation 

F1, 74 = 25.737, P = 0.000 

Interaction spine formation x 

genotype 

F1, 74 = 0.260, P = 0.612 

 

 

0.999 

 

 

0.079 

WT dendrites 

n = 40 

 

Cyfip1+/- 

dendrites n = 36 

7.2C Base line 

WT W = 0.877, P = 0.000 

Cyfip1+/- W = 0.894, P = 0.002 

Mauchly`s Test of 

Sphericity assumed 

Repeated measures ANOVA 

Main effect of spine 

elimination 

 

 

 

WT dendrites 

n = 40 
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After training 

WT W = 0.515, P = 0.000 

Cyfip1+/- W = 0.774, P = 0.000 

F1, 74 = 0.135, P = 0.715 

Interaction spine elimination x 

genotype 

F1, 74 = 1.649, P = 0.203 

0.065 

 

 

0.245 

Cyfip1+/- 

dendrites n = 36 

8.1A nonparameteric Mann-Whitney NA Nlgn3y/+ 

MGH:17 

Nlgn3y/- MGH:17 

8.1B Unknown Unknown Correlation test NA MGH: 13 cages 

SGH: 6 cages 

8.2A Normal distribution Equal variances Two-way ANOVA 

Effect of housing 

F1, 78 = 6.30, P = 0.014 

Interaction housing x 

genotype 

F1, 78 = 4.150, P = 0.045 

Sidak`s post hoc test 

- Nlgn3y/+ SGH:8 

Nlgn3y/- SGH:7 

Nlgn3y/+ MGH:8 

Nlgn3y/- MGH:7 
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8.2B Normal distribution Equal variances Two-way ANOVA 

Effect of housing 

F1, 20 = 4.900, P = 0.038 

- Nlgn3y/+ SGH:8 

Nlgn3y/- SGH:6 

Nlgn3y/+ MGH:5 

Nlgn3y/- MGH:5 

8.2C Normal distribution Equal variances One-way ANOVA NA Nlgn3y/+ SGH:7 

Nlgn3y/- SGH:6 

Nlgn3y/+ MGH:5 

Nlgn3y/- MGH:5 

    Table A.1 Details of statistical analysis. 


