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Recognition of host Clr-b by the inhibitory NKR-P1B
receptor provides a basis for missing-self
recognition
Gautham R. Balaji 1,2, Oscar A. Aguilar 3,4,5,6, Miho Tanaka3,4, Miguel A. Shingu-Vazquez1,2, Zhihui Fu1,2,

Benjamin S. Gully1,2, Lewis L. Lanier 5,6, James R. Carlyle3,4, Jamie Rossjohn 1,2,7 & Richard Berry 1,2

The interaction between natural killer (NK) cell inhibitory receptors and their cognate ligands

constitutes a key mechanism by which healthy tissues are protected from NK cell-mediated

lysis. However, self-ligand recognition remains poorly understood within the prototypical

NKR-P1 receptor family. Here we report the structure of the inhibitory NKR-P1B receptor

bound to its cognate host ligand, Clr-b. NKR-P1B and Clr-b interact via a head-to-head

docking mode through an interface that includes a large array of polar interactions. NKR-P1B:

Clr-b recognition is extremely sensitive to mutations at the heterodimeric interface, with

most mutations severely impacting both Clr-b binding and NKR-P1B receptor function to

implicate a low affinity interaction. Within the structure, two NKR-P1B:Clr-b complexes are

cross-linked by a non-classic NKR-P1B homodimer, and the disruption of homodimer for-

mation abrogates Clr-b recognition. These data provide an insight into a fundamental

missing-self recognition system and suggest an avidity-based mechanism underpins NKR-P1B

receptor function.
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Natural killer (NK) cells are a subset of innate lymphocytes
(ILC) that act as sentinels focused on the early detection
of pathogens or transformed self. NK cells recognize

virally-infected, stressed, allogeneic, and cancerous cells via an
array of germline-encoded cell surface receptors1. NK cell function
is governed by a variety of distinct mechanisms, with the overall
response being determined by the integration of receptor signals
received upon engagement of host- or virally-encoded ligands. For
example, inhibitory NK cell receptors (NKR) typically recognize
self-ligands, which are often downregulated during viral infection
or transformation, resulting in NK cell disinhibition that enables
missing-self recognition2,3. In contrast, stimulatory NKR recog-
nize altered or non-self ligands that are upregulated during these
same pathological conditions, resulting in NK cell activation via
induced-self or foreign antigen recognition.

Many NKR are encoded by genes that are concentrated within
defined regions of the genome, such as the leukocyte receptor
complex (LRC) and the natural killer gene complex (NKC). In
mice, the NKC is located on chromosome 6 and includes the
Ly49, the CD94/NKG2, and the NKR-P1 receptors4. Each of these
receptor families are architecturally similar, being type II trans-
membrane proteins that possess C-type lectin-like domains
(CTLD). However, they differ in the type of ligands they recog-
nize, which span classic MHC class I (Ly49)5,6, non-classic MHC
(CD94/NKG2 and Ly49)7–11, MHC-I-like (NKG2D and Ly49)12–
14, and the Clr proteins (NKR-P1)15. While we have an under-
standing of NKR-mediated missing-self recognition of MHC and
MHC-I like molecules, precisely how NKR recognize non-MHC-
related ligands is much less clear.

In mice, the NKR-P1 family consists of five members, which
include three stimulatory (NKR-P1A, NKR-P1C, and NKR-P1F)
and two inhibitory (NKR-P1B and NKR-P1G) members16. Of
these, NKR-P1B, NKR-P1F, and NKR-P1G recognize host-
encoded Clr molecules, which like their receptor counterparts
are C-type lectin-related type II transmembrane proteins that
form disulfide-linked dimers via cysteine residues within their
membrane-proximal stalks17. Notably, while the Clr ligands form
homodimers whose architecture is conserved among other
CTLD-containing proteins (herein termed classic homodimers),
the mode of NKR-P1 receptor self-association is less clear. Within
this axis, the most studied interaction is that of NKR-P1B with
Clr-b. While the expression of most Clr molecules is tissue-spe-
cific, Clr-b transcripts have been identified in most tissues except
brain, suggesting this molecule may represent a broad marker of
healthy-self. Indeed, downregulation of Clr-b has been implicated
in missing-self recognition of virally infected, cancerous, and
allogeneic cells18–24. Notably, NKR-P1B, along with the stimu-
latory NKR-P1A and NKR-P1C receptors, has recently been
identified to be targeted by a mouse cytomegalovirus-encoded
decoy ligand, m1218. m12 possesses an immunoglobulin-like
scaffold that is unrelated to the CTLD fold of Clr-b. Nevertheless,
m12 binds to NKR-P1B via a polar claw style docking mode and
this interaction dampens the NK cell response to infected cells
both in vitro and in vivo18. However, the mechanistic basis for the
NKR-P1B:Clr-b interaction remains unknown.

Here we report the crystal structure of NKR-P1B bound to its
host-encoded ligand, Clr-b. We demonstrate that Clr-b forms
classic homodimers, whereas NKR-P1B forms an alternate
dimeric arrangement that has the capacity to cross-link two NKR-
P1B:Clrb complexes. Data from mutating the NKR-P1B:Clr-b
interface suggest the interaction to be of weak affinity. Moreover,
disruption of the NKR-P1B dimer interface impacts signaling in
response to the host ligand Clr-b, but not to the viral decoy, m12.
Collectively, this study provides broad insight into the mechan-
isms of MHC-I-independent missing-self recognition and NKR-
P1B receptor function.

Results
Structure determination. To understand the molecular basis
underpinning recognition of Clr-b by NKR-P1B, we expressed
their corresponding CTLDs and determined the structure of the
co-complex to 2.9 Å resolution (Table 1). The crystallographic
asymmetric unit comprised eight protomers of NKR-P1B and
sixteen protomers of Clr-b, which together formed eight highly
similar NKR-P1B:Clr-b complexes (root mean square deviation
(r.m.s.d) ~ 0.5 Å overall Cα atoms) (Supplementary Fig. 1).
Within the crystal lattice, the molecules were tightly packed with
no significant unaccounted electron density. Indeed, the structure
refined very well, to Rfac and Rfree values of 20.6 and 22.5
respectively, and continuous electron density was visible for the
entire Clr-b chain (residues 74–194) and the vast majority of
NKR-P1B (residues 91–215) (Supplementary Fig. 2) with the
exception of a single loop (residues 177–179) that was distal to
the Clr-b binding site. Clear electron density was also observed
for a single N-acetlyglucosamine (GlcNAc) moiety attached to
Asn169 of NKR-P1B (Fig. 1). This sugar chain did not impact any
of the interactions discussed below. Surprisingly, each NKR-P1B:
Clr-b complex was comprised of a single NKR-P1B monomer
bound to a Clr-b homodimer, although a higher-order assembly
was also apparent (discussed below).

Structures of NKR-P1B and Clr-b. Both NKR-P1B and Clr-b
adopted the classic CTLD fold comprising two central antiparallel
β-sheets flanked by two α-helices (α1 and α2) (Fig. 1). Each of the
β-sheets was comprised of four β-strands, which we denote β0,
β1, β5, β1′ and β2′, β2, β3, β4 based on a strand assignment
described previously25. The two intramolecular disulfide bonds
that are highly conserved throughout CTLDs are present in NKR-
P1B (Cys122–Cys210 and Cys189-202), whereas Clr-b only

Table 1 X-ray data collection statistics

Data collection statistics

Temperature (K) 100
X-ray source MX2 Australian Synchrotron
Spacegroup P1
Cell dimensions (Å) 66.9, 122.1, 131.6

73.1, 82.1, 84.5
Resolution (Å) 66.1-2.9 (3.06–2.9)
Total number of observations 233,422 (34,352)
No. of unique observations 80,841 (12,101)
Multiplicity 2.9 (2.8)
Data completeness 92.8 (95.4)
I/σI 6.3 (2.2)
1Rmerge (%) 0.176 (0.545)
Rpim (%) 0.114 (0.363)
Refinement statistics
Non-hydrogen atoms

Protein 22828
Sugar 157
Water 8

2Rfactor (%) 20.6
Rfree (%) 22.5
r.m.s.d from ideality

Bond lengths (Å) 0.01
Bond angles (°) 1.13

Ramachandran plot
Favored regions (%) 93.2
Allowed regions (%) 6.1
Disallowed regions (%) 0.7

B factor, all atoms (Å2) 52.0
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contains the former (Cys108–Cys190). Both NKR-P1B and Clr-b
also possessed an additional disulfide bond (Cys94–Cys105 in
NKR-P1B and Cys81–Cys91 in Clr-b) that tethered the N-
terminus to the β1-strand. A structural similarity search using the
Dali server revealed that NKR-P1B was most similar to members
of the human CLEC family, including CLEC9A26 and CLEC5A27

(Z-score ≈ 20.2, r.m.s.d ≈ 1.6 Å over 119 aligned Cα residues), but
also displayed considerable structural homology to other CTLD-
containing proteins including human LOX-128, dectin-129, and
mouse NKR-P1A30 (Z-score= 18.2, r.m.s.d= 1.7 Å over 121
aligned Cα residues) (Fig. 1). In contrast, Clr-b was most similar
to the closely related family member Clr-g31, and also displayed
considerable structural homology to the human NKR-P1A ligand
LLT-132 (Z-score ≈ 22.8, r.m.s.d ≈ 1.0 Å over 117 aligned Cα
residues). Notably, NKR-P1B and Clr-b were highly structurally
similar to each other (r.m.s.d 1.6 Å over 87 aligned Cα atoms),
with the main distinction being a reorientation of the α2-helix of
NKR-P1B by ~10° (Supplementary Fig. 3A). Altogether, the
structures of NKR-P1B and Clr-b highlight the conserved nature

of this receptor-ligand pair, which are encoded within the same
region of the NKC and likely arose by gene duplication from a
common ancestral precursor.

NKR-P1B and Clr-b self-association. Both NKR-P1B and some
Clr molecules have been reported to form disulfide-linked dimers
on the cell surface15. Indeed, within the crystal lattice, Clr-b
formed homodimers such that the N-termini were positioned in a
manner that would enable the lateral association of two mono-
mers in cis (within the plane of the same membrane) (Fig. 2a).
The architecture of the Clr-b homodimer is reminiscent of that
observed for a number of related proteins including Clr-g31,
LLT-132, and KACL33, and thus could be described as a classic
homodimer for CTLD-containing proteins. A similar arrange-
ment has also been observed for some Ly49 receptors (e.g.
Ly49A), where it is referred to as the closed conformation6.

Upon self-association, the two Clr-b monomers bury a total
solvent accessible surface area (BSA) of ~1900 Å2, which is large
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compared to that of other classic CTLD homodimers such as
KACL (1300 Å2) or Clr-g (1740 Å2)31,33. The interaction inter-
face is comprised of three main segments that are analogous to
head, body and tail regions. The central body stems from the
β0 strands of each monomer, which associate via two main-chain
hydrogen bonds between Ile85 and Gly86 to form an extended
antiparallel β-sheet (Fig. 2a and Supplementary Table 1). These
interactions are solidified by the head that is derived from the C-
termini of the α2-helices. Here, Arg129 adopts a planar
conformation that stacks against Tyr130 (Fig. 2a). The head
and body interactions, which are relatively rich in H-bonds and
symmetrical in nature, are further complemented by extensive
hydrophobic interactions within the membrane proximal tails of

Clr-b (Asn74-Trp84) that are asymmetric but account for 44% of
the total BSA (Fig. 2a).

Unlike Clr-b, NKR-P1B was not observed to form a classic
homodimer, most likely due to the orientation of the α2-helix,
which protruded in a fashion that would sterically clash with a
neighboring NKR-P1B protomer (Supplementary Fig. 3A).
Indeed, an analysis of other related receptors and ligands for
which structural data are available revealed that the extent to
which the α2-helix protruded was directly correlated with the
capacity of the molecule to form a classic CTLD homodimer
(Supplementary Fig. 3B). Accordingly, this structural feature may
be a key determinant governing oligomerization within CTLD-
containing proteins.
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Instead, two symmetry-related NKR-P1B molecules packed
together to form a distinct non-classic homodimer (Fig. 2b). The
NKR-P1B homodimer interface was modest in size (BSA ~700 Å2),
with the interaction surface confined to the β2–β2′ loop, which
primarily formed contacts with residues from the α1-helix
(Supplementary Table 2). Here, Asp162 formed a salt-bridge
interaction with Arg119, whereas Thr161, which was located at the
tip of the β2–β2′ loop, was tightly packed at the juncture of the β2/
β3 strands and the α1-helix (Fig. 2b). Within the NKR-P1B
homodimer, the N-termini extend outwards within the same plane,
but are not directly juxtaposed. Thus, it is possible that these
remodel somewhat within the context of the native cysteine-
containing stalk. Notably, within the NKp65:KACL crystal
structure, the NKp65 receptor also formed a related homodimer
via a similar interface (Supplementary Fig. 3C)33.

In order to assess the oligomeric status of NKR-P1B and Clr-
b in solution, we performed analytical ultracentrifugation
experiments at a range of protein concentrations. At low
concentrations (~3–12 μM) Clr-b was evident as a single species
at ~ 1.9S whose sedimentation profile correlated well with that
of a monomer (frictional ratio (f/f0)= 1.15)) (Fig. 2c). However,
at higher concentrations (25–200 μM), an additional species,
representing a dimeric form of Clr-b was visible at ~2.7S (f/f0=
1.28). In contrast, NKR-P1B was primarily monomeric (~ 2.1S)
with only a small proportion of a dimeric species (~3.6S) being
visible at the highest concentrations tested (100–200 μM)
(Fig. 2d). Thus, Clr-b forms a relatively stable homodimer,
while the potential self-assembly of NKR-P1B is likely to be
extremely weak, at least in the absence of the membrane
environment.

NKR-P1B:Clr-b stoichiometry and higher-order assembly.
NKR-P1B engaged Clr-b via a head-to-head docking mode such
that the N-terminus of each molecule protruded from opposite
ends of the complex (Fig. 3a). This arrangement is consistent with
a trans interaction, where NKR-P1B and Clr-b would be present
on opposing cellular membranes. Surprisingly, a single NKR-P1B
protomer engaged one half of the Clr-b homodimer, making
contacts exclusively with only one Clr-b monomer (Fig. 3a and
Supplementary Table 3). This unusual trimeric 1 NKR-P1B: 2
Clr-b stoichiometry was conserved in all eight of the complexes
present within the crystallographic asymmetric unit (Supple-
mentary Fig. 1A), and differs from the 2:2 stoichiometry observed
for the related human NKp65:KACL complex, despite similarities
in overall docking mode (Fig. 3b). The inability of Clr-b to be
fully saturated by NKR-P1B was not due to differences in the
conformation of the molecules, since both free and bound Clr-b
were closely structurally homologous (r.m.s.d 0.4 Å over 112
aligned Cα atoms), with the exception of some side chain rear-
rangements that likely represent an induced-fit style mode of
interaction (discussed below). Although an additional NKR-P1B
molecule could potentially be accommodated within the NKR-
P1B:Clr-b complex (Fig. 3c), the packing of molecules within the
broader crystal lattice precluded this arrangement.

Within the crystal, two trimeric NKR-P1B:Clr-b complexes
were bridged via an NKR-P1B dimer to produce a hexameric
arrangement (Fig. 3d) Here, each of the Clr-b N-termini lay
planar to each other, indicating that these molecules could
potentially be arranged in cis within a single target cell
membrane. Notably, modeling of higher-order assemblies formed
via full saturation of NKR-P1B:Clr-b binding sites results in a
distinctly non-planar arrangement (Supplementary Fig. 4). Thus
the largest arrangement that could be accommodated within a
cellular membrane is the hexameric assembly observed within the
crystal lattice.

The NKR-P1B:Clr-b interface. NKR-P1B and Clr-b interacted
via an imperfect interface that was modest in size, burying a total
solvent accessible surface area of 1450 Å2, and characterized by
poor shape complementarity ((Sc)= 0.55, where 1 indicates a
geometrically perfect fit)34. Despite this, the interface was densely
packed with a large number of highly specific, polar interactions
that included 18 H-bonds and 8 salt-bridges (Supplementary
Table 3). The main interaction site (site I) comprised the β4–β5
loop of NKR-P1B, where a string of residues (Ser203-Arg207) lay
on top of one of the Clr-b β-sheets in a perpendicular fashion,
making extensive contacts with a variety of structural elements,
including the β3 and β4 strands, and the β2′–β3 loop (Fig. 3e).
Here, Asp205 of NKR-P1B played a central role. In addition to
the 3 H-bonds that anchored its backbone, the side chain made
multiple salt-bridge interactions with Arg164 and H-bonds to
Asn173, Asn175, and Ser178 of Clr-b. Arg207 of NKR-P1B
appeared equally important, forming a number of salt-bridge
interactions with Clr-b residue Asp135. In addition, the hydroxyl
groups of Ser203 and Ser204 of NKR-P1B both formed H-bonds
with the Clr-b backbone whilst Asn206 bent downwards in order
to facilitate an interaction with Arg186. The second, more per-
ipheral interaction site (site II) was centered on the Clr-b β4–β5
loop which contacts the β2′–β3 loop as well as the β3 and
β4 strands of NKR-P1B (Fig. 3f). In particular, four Clr-b resi-
dues, Arg181, Tyr183, Ser184, and Arg186 projected upwards,
making hydrophilic interactions with NKR-P1B. Here, Arg181
and Tyr183 of Clr-b formed a multitude of H-bonds with the
NKR-P1B main chain (including Thr184, Ser199, and Gly201) as
well as the side chain of Ser188, while Ser184 and Arg186 flanked
Asp200 from the NKR-P1B β4 strand. Notably, the interactions
within site II were characteristic of an induced-fit style binding
mode. In particular, Arg181 and Tyr183 of Clr-b moved toward
NKR-P1B, which remodeled its β2′-β3 loop (compared to the
m12-bound form) in order to accommodate these bulky residues
(Supplementary Fig. 5).

Structural comparisons. The overall structure of the NKR-P1B:
Clr-b complex is similar to that of the related NKp65:KACL
receptor-ligand pair (r.m.s.d 1.9 Å over 218 aligned Cα atoms)
(Fig. 3a–c), suggesting that an evolutionarily conserved docking
topology underpins ligand recognition by both inhibitory and
stimulatory members of the NKR-P1 family. However, a closer
inspection of the molecular interactions reveals some differences.
Notably, the NKR-P1B:Clr-b interface is considerably less ideal
than that of NKp65:KACL, exhibiting poorer shape com-
plementarity (Sc 0.55 versus 0.69) and burying 14% less surface
area (Fig. 4a). The major points of difference are the loop pre-
ceding the β2 strand (residues 131-4 in NKp65) and the β3–β4
loop, both of which are tightly packed against KACL forming a
multitude of H-bond and Van der Waals interactions (Fig. 4b, c).
In comparison, the same regions in NKR-P1B are withdrawn
from Clr-b, such that the only contacts are derived from Tyr149
(Fig. 4). Despite being structurally dissimilar to Clr-b, the viral
m12 ligand also targets the same NKR-P1B surface (Fig. 4a),
although it does so more robustly than Clr-b, via an extensive
surface (BSA 2,180 Å2) that exhibits high shape complementarity
(Sc 0.69). Overall, these structural observations explain why
binding of m12 (KD ~ 6 μM) and KACL (KD ~ 0.7 nM) are
relatively tight, while recognition of Clr-b by NKR-P1B is extre-
mely weak (see below).

The NKR-P1B:Clr-b interaction is extremely weak. Next, we
sought to define the affinity of the NKR-P1B:Clr-b interaction
using surface plasmon resonance (SPR). However, at the con-
centration range used, neither mammalian (570 μM) nor E. coli
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(200 μM) expressed Clr-b bound appreciably to NKR-P1B that
was immobilized onto streptavidin-coated chips via a C-terminal
BirA tag (Supplementary Fig. 6A). The absence of an interaction
was not due to geometric constraints of the experimental setup,
because m12, which interacts with the same surface of NKR-P1B,
bound robustly in this assay. We also observed no interaction
using extended forms of Clr-b (250 μM) and NKR-P1B that
included the native cysteine residues involved in disulfide-
mediated homodimerization (Supplementary Fig. 6B), although
the latter did not form a homo-dimer despite containing two
cysteine residues within the membrane proximal stalk (Supple-
mentary Fig. 6C). Similar results were obtained using a different

experimental setup (akin to that in described in ref. 35), whereby
NKR-P1B tetramers were passed over immobilized Clr-b (Sup-
plementary Fig. 6B). We did however observe a small fraction
(6% of total) of a species consistent with a 1 NKR-P1B: 2 Clr-b
complex (S20,w= 4.2, f/f0= 1.2) using AUC (Supplementary
Fig. 6D), although we cannot exclude the possibility that a 2:2
complex could also form at higher protein concentrations. Taken
together, our data indicate that the NKR-P1B:Clr-b interaction
was potentially extremely weak in solution. Notably, this is not
the first example of a bona fide immune receptor-ligand inter-
action whose affinity lies outside of the detection limit of standard
biophysical approaches36,37.
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NKR-P1B:Clr-b binding is highly sensitive to mutation.
Despite little/no apparent interaction in solution, NKR-P1B tet-
ramers robustly stained both BWZ cells transduced with Clr-b, as
well as HEK293T cells transfected with a Clr-b-expressing vector
(Fig. 5a), in accordance with previous findings15. Thus, we uti-
lized this assay to interrogate the energetic basis of the NKR-P1B:
Clr-b interaction. To this end, we generated tetrameric forms of a
panel of 15 individual NKR-P1B mutants, focusing on key amino
acid residues located at the NKR-P1B:Clr-b interface. As a
negative control, we mutated Asn150, which was close to the
interface but did not directly contact Clr-b. Here, an N150A
mutation did not impact NKR-P1B staining compared to wild
type (Fig. 5b). As a positive control, we introduced a large, bulky
charged residue into the central region of the interface (S204R).
This non-conservative mutation completely abolished binding to
the Clr-b transfectants (Fig. 5b). Of the remaining NKR-P1B
residues examined, the vast majority (T184A, S188A, S199A,
E200A, S203A, S204A, D205A, N206A, R207A) of mutant tet-
ramers failed to stain HEK293T transfectants when substituted to
alanine. Notably, all of these residues were centrally located at the
interface and formed multiple contacts with Clr-b (Figs. 3, 5b). In
contrast, mutation of residues at the periphery of the interface
either had no effect (N113A and V183A) or reduced staining to a
lesser extent (Y149A).

Secondly, we assessed the impact of the same NKR-P1B
mutants in a cellular context using BWZ reporter assays. To
this end, we generated a chimeric receptor expressing the
extracellular domain of Clr-b fused with an intracellular CD3ζ
signaling domain, and transduced BWZ.36 cells expressing β-
galactosidase under NFAT elements with this construct38.
These cells were sorted for high Clr-b expression using the anti-
Clr-b antibody, 4A6 (Fig. 5a). To test these interactions, we
then used site-directed mutagenesis to clone the panel of NKR-

P1B mutants described above into the pIRES2-EGFP mamma-
lian expression vector, transfected these constructs into
HEK293T, and used these transfectants as stimulators for
BWZ.CD3ζ/Clr-b reporters. Using this approach, we observed a
similar pattern as described above for the tetramer staining
experiments. More specifically, N113A, N150A, and V183A had
no effect on binding, whereas weak interactions with the T184A
and S204A mutants were observed (~ 60% reduction compared
to wild type) (Fig. 5c). On the other hand, the Y149A, S188A,
S199A, E200A, S203A, D205A, N206A, R207A, and the positive
control S204R, all abolished the interaction (Fig. 5c). Impor-
tantly, all the NKR-P1B mutants were abundantly expressed at
the cell surface as judged by anti-NKR-P1B mAb staining,
although the levels of N206A and R207A were comparatively
lower (Supplementary Fig. 7). Thus, both tetramer staining and
cellular reporter data fully support the X-ray crystal structure,
and demonstrate that the NKR-P1B:Clr-b interaction is
underpinned by polar interactions that are uniquely sensitive
to alterations, in line with the weak intrinsic affinity of the
interaction.

The NKR-P1B homodimer is critical for Clr-b recognition.
Finally, we sought to determine the importance of the NKR-P1B
homodimer for receptor function. To this end, we generated two
mutants (T161W and D162A) in residues located at the NKR-
P1B homodimer interface and assessed their capacity to stimulate
BWZ.Clr-b reporters. These transfectants resulted in a total loss
(D162A) or dramatic reduction (T161W) in BWZ.Clr-b reporter
signaling, indicating that the NKR-P1B homodimer was an
important factor in the response to host Clr-b. To further support
this conclusion, we also mutated the cysteine residues (Cys75 and
Cys 88) within the NKR-P1B stalk region that have been
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implicated in the formation of disulfide-linked NKR-P1B
homodimers on the cell surface. Here, mutation of both cysteine
residues within the NKR-P1B stalk resulted in a total ablation of
Clr-b reporter cell signaling, whereas mutation of either cysteine
alone had little effect (Fig. 5e), indicating that both of the cysteine
residues within the NKR-P1B stalk are involved in inter-
molecular disulfide bond formation. Notably, all of the NKR-
P1B dimer mutants tested had little to no effect on signaling from

BWZ.m12 reporters relative to wild type (Fig. 5d, e), despite their
moderately decreased level of expression on the cell surface, as
judged by mAb staining (Supplementary Fig. 7). Thus, the non-
classic NKR-P1B homodimer is critical for signaling in response
to the weak affinity host-encoded Clr-b ligand, but is somewhat
dispensable for signaling in response to the viral m12 decoy,
which exhibits relatively high affinity for a single NKR-P1B
molecule (Fig. 6).
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Discussion
Missing-self recognition is a central way by which NK cells dis-
tinguish healthy cells from those that are foreign, infected or
otherwise abnormal. This process is dependent on inhibitory
receptors and is best understood within the context of MHC-I
recognition. Structural insights into KIR:pHLA39,40, LIR:pHLA
and Ly49:pMHC-I have provided profound insights into how
these receptors bind to one the most polymorphic molecules
encoded within the human genome6. In these examples, the
receptors either engage a relatively conserved region of MHC-I
(e.g. Ly49 and LIR), and/or are highly polymorphic themselves
(e.g. KIR), thereby facilitating recognition of a broad range of
MHC allotypes. Moreover, their binding modes are tailored such
that variations in the anchored peptide sequence have little to no
impact on the interaction.

However, alternate MHC-I-independent missing-self recogni-
tion systems have emerged as important regulators of NK cell
function. Among these, the NKR-P1:Clr axis is fundamentally
distinct from the MHC-centric systems, most notably in the
nature of the ligand, which is essentially monomorphic and does
not associate with peptide. However, the molecular basis for this
pivotal recognition event has remained unknown. Here, we
determined the structure of an inhibitory NKR-P1 receptor
bound to a host-encoded ligand. Our structural analysis revealed
that Clr-b formed a homodimer that was classic of CTLD-
containing proteins, while NKR-P1B did not. Instead, our data
suggest the existence of a non-classic NKR-P1B homodimer, the
architecture of which differs to that suggested for other CTLD-
containing proteins, including mouse NKR-P1A41 and BDCA242.
While it is unanticipated that related receptors with common
tertiary structures adopt differing quaternary arrangements, this
phenomenon is not without precedent6,43. Notably, a similar
homo-dimer interface to that observed for NKR-P1B is also
evident between symmetry-related NKp65 molecules within the
NKp65:KACL structure33. Although the significance of this

arrangement remains untested within the context of NKp65,
targeted mutations at the NKR-P1B homodimer interface abro-
gated the signal generated by Clr-b reporters, suggesting that this
arrangement was physiologically important, despite its apparent
weak affinity in solution. Similar results were obtained when both
cysteine residues within the NKR-P1B stalk region were mutated
to alanine, indicating that the NKR-P1B stalk region may play an
important role in stabilization of the potentially transient NKR-
P1B dimer via an inter-molecular disulfide bridge.

Unexpectedly, we were unable to measure an affinity for the
NKR-P1B:Clr-b interaction in solution using SPR or AUC, and
this observation was independent of the glycosylation status of
Clr-b. NKR-P1B tetramers also failed to bind Clr-b in our SPR
assay, but did bind robustly to Clr-b transfectants. Thus the
increased avidity conferred by NKR-P1B tetramers may require
that the ligand is able to diffuse laterally within the plane of the
membrane. This proposition is supported by previous observa-
tions that interactions between proteins in solution (3D affinity)
differ from those at contacts between two cells (2D affinity)44,45.
The weak nature of the NKR-P1B:Clr-b interaction was particu-
larly surprising given the extremely high affinity of the NKp65:
KACL interaction (~nM range), which docked in a similar con-
figuration. However, subtle differences at the NKp65:KACL
interface resulted in an interaction zone that appeared con-
siderably more energetically favorable. Notably, although the
NKp65:KACL interaction was particularly high affinity, this does
not appear to be a defining feature associated with the NKR-P1
family46,47. Indeed, within the sphere of immune recognition,
many interactions are characterized by extremely low affinity
binding36,48.

Taken together, our data suggest that the imperfect NKR-P1B:
Clr-b interface alone is insufficient to promote the formation of a
stable receptor:ligand complex. Instead, productive interactions
may require additional avidity conferred by the non-classic NKR-
P1B homodimer, which may be necessary to supplement the
weak NKR-P1B:Clr-b interaction. This proposition is supported
by the NKR-P1B dimer mutants, which resulted in a drastic
ablation of BWZ.Clr-b reporter signal, despite these mutations
being distal to the Clr-b binding site. In the future, it would be
informative to test the impact of these NKR-P1B mutants in an
in vivo setting. Notably, a similar avidity-based mechanism has
also been proposed to be involved in cadherin-mediated cell
adhesion49. Within this theme, it is interesting to note that unlike
NKR-P1B and other C-type lectin-like NK cell receptors, NKp65
does not form a disulfide-linked dimer on cells50. Thus, the
extremely high affinity of NKp65 for KACL may have evolved to
overcome the need for receptor dimerization to initiate signaling.
Surprisingly, the NKR-P1B homodimer was not necessary for the
interaction with the virally-encoded m12 ligand, suggesting that

Fig. 5 Energetic basis of the NKR-P1B:Clr-b interaction. a BWZ cells (top) or HEK293T cells (bottom) were transduced or transfected, respectively, with
empty vector (dashed line) or Clr-b-expressing vector (shaded gray), and stained using anti-Clr-b antibody (left) or NKR-P1B tetramers (right) and
analyzed by flow cytometry. b HEK293T cells were transfected with vector expressing Clr-b (pIRES2-EGFP), and 48 h later were stained with NKR-P1B
mutant tetramers. The GFP expression measures transfection efficiency and PE measures binding by PE-tetramers. Gates were set up using untransfected
cells (HEK293T) and cells transfected with empty pIRES2-EGFP (Vector) that were stained with NKR-P1B tetramer (WT) or Streptavidin-PE (SA-PE).
Labels on the top left correspond to point mutation on the NKR-P1B molecule, whereas italicized numbers correspond to mean fluorescence intensity of
NKR-P1B. c Cells were transfected with constructs expressing NKR-P1B mutants, and 48 h later were used as stimulators to BWZ.CD3ζ/Clr-b reporters.
Co-cultures were setup using a 1:1 stimulators: reporters ratio, and the next day were assayed for production of β-galactosidase using colorimetric assay. d,
e NKR-P1B dimer mutants were transfected into HEK293T cells and used in BWZ assays using 3-fold dilutions of stimulators against BWZ.CD3ζ/Clr-b
reporters (left) or BWZ.CD3ζ/m12Smith reporters (right). Significant differences are shown between the WT and mutant allele for each graph. Data were
analyzed using (c) one-way ANOVA [F(15,48)= 51.88, p < 0.0001], (d) two-way ANOVA (Z.Clr-b: [F(12,40)= 64.14, p < 0.0001]; Z.m12: [F(12,40)=
21.71, p < 0.0001], or (e) two-way ANOVA (Z.Clr-b: [F(16,64)= 389.3, p < 0.0001]; Z.m12: [F(16,80)= 1297, p < 0.0001] with Bonferroni post-hoc tests.
Significance intervals are depicted as ***p < 0.001. (b) is representative of 2 independent experiments. All other data are representative of at least 3
independent biological replicates. Data are presented as mean ± SEM
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the relatively strong affinity of this interaction alone is sufficient
to drive the formation of stable NKR-P1B:m12 complexes.
Modeling of m12 onto the structure of the NKR-P1B homodimer
suggested that two m12 molecules could not be simultaneously
accommodated, perhaps explaining why the NKR-P1B homo-
dimer was not evident in the m12:NKR-P1B crystal structure.
Thus, our studies indicate that NKR-P1B receptor function is
governed by distinct mechanisms (avidity versus affinity driven)
that apply in a ligand-specific manner.

Methods
Protein expression and purification. The B6 (C57BL/6) allele of Klrb1b encoding
NKR-P1B, as well as an extended version containing the membrane proximal stalk
(starting from Gln72) was codon optimized and cloned into the pHLSec expression
vector51 upstream of a His tag (for structural and AUC experiments). For SPR and
tetramer studies, a biotin protein ligase consensus sequence was included directly 5′
of the His tag. NKR-P1B constructs were expressed in HEK-293S cells by transient
transfection using PEI. Media containing secreted protein was harvested and dia-
lyzed/concentrated using tangential flow filtration prior to purification using Ni-
NTA agarose (ThermoFisher Scientific) and Superdex 200 columns 16/60 (GE
Healthcare). For structural studies, the gene encoding residues 74–194 of mouse
Clec2d encoding Clr-b was codon optimized for expression in E. coli and synthe-
sized by Integrated DNA Technologies prior to cloning into the Nde I and Xho I
restriction sites of the pET30 expression vector (EMD Biosciences). For some of the
SPR studies, Clr-b was also expressed with an N-terminal BirA tag. Clr-b was
expressed as inclusion bodies at 37 °C in TonA−BL-21 E. coli cells. Protein was
extracted from inclusion bodies using 6M guanidine hydrochloride and refolded
by dilution in 5M urea, 0.4 M L-arginine, 0.1 M EDTA, 0.1 M Tris-HCl pH 8.0, 5
mM reduced glutathione, and 1 mM oxidized glutathione overnight at 4 °C.
Refolded Clr-b was then dialyzed in 10 mM Tris-HCl pH 8.0 and purified using a
combination of anion-exchange (DEAE) and size exclusion chromatography using
a Superdex200 16/60 column (GE Healthcare) in 10 mM Tris pH 8.0 and 150 mM
NaCl. For some SPR and AUC studies, an equivalent region of Clr-b, or a C-
terminally extended version (terminating at Ser207) was cloned into the pHLSec
vector upstream of a His tag, expressed in HEK-293S cells, and purified as
described above for NKR-P1B.

Crystallization and data collection. For crystallization, the ectodomains of Clr-b
and NKR-P1BB6 were mixed in a 1:1 molar ratio at a final protein concentration of
5 mgml−1. Crystals were obtained by the hanging drop vapor-diffusion method
from a solution containing 21% (w/v) PEG 3350, 0.1 M Bis/Tris pH 5.9, 5% gly-
cerol (v/v) and 0.2 M ammonium sulfate at 20 °C. Crystals were cryoprotected by
the addition of PEG 3350 to a final concentration of 35% (w/v), flash cooled using
liquid nitrogen and X-ray diffraction data were recorded on a Quantum-315 CCD
detector at the MX2 beamline of the Australian Synchrotron. Data were integrated
using iMOSFLM and scaled using SCALA from the CCP4 program suite. Details of
the data processing statistics are given in Table 1.

Structure determination and refinement. The structure was solved by molecular
replacement using Molrep52 within the CCP4 program suite. The initial search
models were monomeric forms of mouse Clr-g (PDB ID: 3RS1) and mouse NKR-
P1B (PDB ID: 5TZN). The structure was refined using iterative cycles of model
building in Coot and refinement using Buster. Details of the refinement statistics
are provided in Table 1.

Analytical ultracentrifugation. Self-association of NKR-P1B and Clr-b in solution
was assessed by performing sedimentation velocity experiments on an Optima
analytical ultracentrifuge (Beckman Coulter). 380 μl protein samples (3.1–200 μM
for Clr-b, or 6.2–200 μM for NKR-P1B) were diluted in TBS buffer (10 mM Tris-
HCl pH 8.0 and 0.15M NaCl) and loaded into dual-compartment cells next to 400
μl reference solution. In a separate experiment, we loaded 120 μM each (both alone
and in combination) of extended Clr-b and NKR-P1B constructs. All experiments
were performed using an 8-hole rotor at 42,000 RPM at 20 °C and the sedi-
mentation velocity profiles were collected at wavelengths ranging from 230–310
nm. The collected data were analysed in SEDFIT with a c(s) distribution model
with a maximum entropy regularization of P= 0.68. The buffer density (1.0047 g
ml−1) and viscosity (0.01002 centipoise) as well as sample frictional ratio (f/f0) were
calculated from the SEDNTERP program using the primary amino acid sequence
of the relevant protein constructs.

Surface plasmon resonance. SPR experiments were performed at 25 °C on a
Biacore 3000 using a running buffer comprised of 10 mM Tris pH 8.0, 150 mM
NaCl and 0.005% P20. ~800 response units of NKR-P1B constructs were coupled
onto streptavidin-coated sensor chips prior to blocking of free sites using D-biotin.
The analyte was injected over the flow cells (see figure legends for concentrations)
was injected over the flow cells at a rate of 10 μl per second and the final response

was calculated following subtraction of the response from an empty flow cell. All
affinity measurements were calculated from two independent experiments, each
performed in duplicate. In separate experiments, E.coli and HEK-293S produced
Clr-b were immobilized onto streptavidin-coupled or CM5 sensor chips, respec-
tively. Tetramers of biotinylated NKR-P1B coupled to streptavidin were purified on
a Superdex 200 16/60 size exclusion chromatography column (GE Healthcare) and
injected over the immobilized ligands at a concentration of 200 μM. Alternatively,
NKR-P1B tetramers (200 μM) were also injected over biotinylated E.coli produced
Clr-b immobilized onto streptavidin-coated sensor chips (GE Healthcare). In all
cases, the amount of material immobilized on the chips was ~800 response units.

Cells. HEK-293T and HEK293S cells were obtained from the ATCC and BWZ.3653

were obtained from Dr. Nilabh Shastri (University of California, Berkeley). HEK-
293T and BWZ.36 cells were cultured in supplemented DMEM-HG (2 mM glu-
tamine, 100 U ml−1 penicillin, 100 µg ml−1 streptomycin, 50 µg ml−1 gentamicin,
110 µg ml−1 sodium pyruvate, 50 µM 2-mercaptoethanol, 10 mM HEPES, and 10%
FCS) and were maintained in incubator at 37 °C, 5% CO2. All cell lines were tested
for mycoplasma prior to experiments.

Site-directed mutagenesis using PCR cloning. Site-directed mutagenesis of
NKR-P1BB6 was performed by gene splicing by overlap extension (geneSOE) or
traditional PCR techniques using Q5 High-Fidelity DNA polymerase (New Eng-
land Biolabs). PCR amplicons were digested with XhoI and PstI (Nkrp1b mutants),
purified, and ligated into pIRES2-EGFP (Clontech) mammalian vector. All vectors
were sequenced to confirm intended mutations prior to conducting experiments. A
list of all primers used is provided in Supplementary Table 4.

Transfections. HEK293T cells were transfected using Lipofectamine2000 (Thermo
Fisher Scientific) according to manufacturer’s protocol, and used for experiments
48 h post-transfection. Transfection efficiency was consistently above 50% for all
experiments (averaging at around 70% GFP+).

BWZ reporter assays. Chimeric CD3ζ–Clr-b fusions were generated by cloning
the extracellular domain of Clr-b into the retroviral type II MSCV vector down-
stream of a chimeric construct containing the intracellular and transmembrane
domains of CD3ζ and NKR-P1B, respectively38. BWZ.CD3ζ/Clr-b reporter cells
were then produced by transfecting these retroviral vectors into HEK293T in
combination with packaging vectors (Gag/Pol and VSV-envelope), and using this
virus to transduce BWZ.36 cells. These cells were then sorted for GFP+ and cell
surface expression of Clr-b using anti-Clr-b mAb, 4A620.

Reporter assays were conducted by plating stimulator cells (transfected
HEK293T) in 3-fold dilutions starting at 5 × 104 per well in flat-bottom 96-well
plate. BWZ reporter cells (5 × 104 per well) were then co-cultured with stimulators
and incubated overnight. Media- and PMA+ ionomycin-treated reporters were
used to measure negative and positive controls, respectively. The next day, these
cells were washed with PBS, then lysed with 150 µL of CPRG buffer (90 mg l−1

chlorophenol-red-β-D-galactopyranoside (Sigma), 9 mM MgCl2, 0.1% NP-40),
allowed to develop, and read using a Varioskan (Thermo Fisher Scientific) using
OD 595-655. Data are presented as % Receptor Specific Stimulation that is defined
as:

% receptor specific stimulation ¼ ðstimulator� negativeÞ
ðpositive� negativeÞ ´ 100

Antibodies, tetramers, and flow cytometry. Cells were stained in flow buffer
(HBSS, 0.5% BSA and 0.03% NaN3) on ice with primary antibodies for 25–30 min
or with tetramers for 1 h, washed between incubations, resuspended in flow buffer
with DAPI or propidium iodide, and then analyzed using a FACSCanto II or LSR II
(BD Biosciences). Cells were gated based on forward and side light scatter prop-
erties, doublet excluded, and DAPI– for live cells, then according to the markers of
interest (Supplementary Fig. 8). Flow cytometric data were analyzed using FlowJo
software. The 4A6 (anti-Clr-b) and 2D12 (anti-NKR-P1BB6) monoclonal anti-
bodies have previously been described15,20. Anti-FLAG (M2) mAb was purchased
from Sigma-Aldrich. R-phycoerythrin-conjugated (SA-PE) (ThermoFisher,
Cat#866), and allophycocyanin-conjugated (SA-APC) (ThermoFisher, Cat#:S868)
streptavidin were purchased from Thermo Fisher Scientific. All antibodies were
used at a dilution factor of 1:200. Tetramers were generated by incubating bioti-
nylated NKR-P1B monomeric protein with SA-PE in a 4:1 molar ratio, aliquoted in
1/10th volumes over a period of 3 h at 4 °C.

Statistics. Where statistics were applied, data were visualized using Prism 6 soft-
ware (GraphPad) and presented as mean ± SEM. Data were confirmed to have
normal distribution using Shapiro–Wilk tests. Sample sizes were selected based on
previous experiments that demonstrated sufficient power and consistency to detect
the effect sizes between experiments18. Data were analyzed for statistical differences
using one-way or two-way ANOVA with Bonferroni post-hoc tests, see figure
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legends for details. Statistical significance is defined as: *p < 0.05; **p < 0.01; ***p <
0.001.

Data availability
The refined coordinate and structure factors files for the X-ray crystal structure of
the NKR-P1B:Clr-b complex has been validated by the Protein Data Base
validation site and the coordinates relating to the data reported in this study were
deposited in the protein data bank (www.rcsb.org) with the identification code
6E7D. All remaining data are available within the article and its Supplementary
Information files and from the corresponding authors on reasonable request.
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