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Abstract

Shortened leukocyte and placental telomeres associated with gestational diabetes mellitus

(GDM) suggest this exposure triggers telomere attrition contributing to adverse outcomes.

We applied high resolution Single Telomere Length Analysis (STELA) to placenta from

GDM pregnancies with different treatment pathways to determine their effectiveness at pre-

venting telomere attrition. Differences in telomere length between control (N = 69), GDM life-

style intervention (n = 14) and GDM treated with metformin and/or insulin (n = 17) was

tested by Analysis of Covariance (ANCOVA) followed by group comparisons using Fisher’s

least significant difference. For male placenta only, there were differences in mean telomere

length (F(2,54) = 4.98, P = 0.01) and percentage of telomeres under 5 kb (F(2,54) = 4.65, P

= 0.01). Telomeres were shorter in the GDM lifestyle intervention group compared to both

controls (P = 0.02) and medically treated pregnancies (P = 0.003). There were more telo-

meres under 5 kb in the GDM lifestyle intervention group compared to the other two groups

(P = 0.03 and P = 0.004). Although further work is necessary, we suggest that early adoption

of targeted medical treatment of GDM pregnancies where the fetus is known to be male

may be an effective strategy for ameliorating adverse outcomes for children.

Introduction

Gestational diabetes mellitus (GDM) can be defined as any degree of glucose intolerance with

onset or first recognition during pregnancy [1]. One in seven births is affected by gestational

diabetes (GDM) and these numbers are expected to increase in the years ahead, as reported by

the International Diabetes Federation. During a normal pregnancy, the maternal system devel-

ops insulin resistance, increasing progressively towards term, to ensure nutrients are chan-

nelled to the developing foetus. GDM is thought to arise when peripheral insulin resistance

exceeds an appropriate threshold, resulting in hyperglycaemia. The development of GDM

involves both genetic and lifestyle factors, with overweight and obese women at highest risk
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[2]. While GDM can be controlled by diet or drugs, uncontrolled GDM increases the risk of

delivering a large for gestational age baby (birth weight above the 90th percentile) and delivery

by Caesarean section [3]. Women diagnosed with GDM are more likely to experience preg-

nancy related depression [4] and seven times more likely to develop type 2 diabetes mellitus

(T2DM) later in life [5]. Their children are less likely to reach timely developmental milestones

[6] and more likely to be overweight and with a six-fold increased risk of T2DM [7, 8]. Given

the increasing prevalence of maternal obesity worldwide, understanding the consequences of

GDM has even greater significance.

A number of studies report that individuals with T2DM have shorter telomeres [9]. Telo-

meres, which consist of the repeated DNA sequence TTAGGG, acts as caps at the ends of chro-

mosomes [10] to maintain genomic stability [11]. Telomeres shorten with progressive cell

division, due to the inability of conventional DNA polymerase to complete the replication of

chromosome ends. While the ribonucleoprotein enzyme telomerase adds telomere repeats to

mitigate telomere erosion, the majority of somatic cells lack significant telomerase activity [12,

13] consequently telomeres progressively shorten as cells divide and as individuals age. The

presence of shortened telomeres in T2DM patients suggests the possibility that diabetes con-

tributes to telomere erosion. Conversely, individuals may start life with shorter than normal

telomeres that then play a role in the disease progression of diabetes [14], contributing to

impaired glucose management and insulin secretion [15]. The latter possibility is indicated by

the observation that diabetes during pregnancy, is linked to shortened telomere length in

blood leukocytes from exposed children [16, 17], although not all studies report such a link

[18–20]. If individuals exposed in utero to GDM start life with shorter telomeres, this may

explain why they are at higher risk of adverse outcomes such as T2DM later in life. However,

fetal tissues are not easily accessible for measuring properties of DNA and there are consider-

able issues with the use of heterogeneous white blood cell samples [21]. In contrast, the pla-

centa is a fetally-derived tissue exposed to the same environment as the foetus with a limited

cellular heterogeneity [22], in which telomere length can easily be determined. An association

between GDM and shorter telomere length in the placenta has been reported using the fluores-

cence in situ hybridization (FISH) assay on 16 samples [23]. In this study, shortened telomeres

were defined by a weak signal intensity, and further analysis revealed significantly lower telo-

merase expression in these same samples [20]. Despite the clinical importance of GDM, few

studies have examined placental telomeres in relation to GDM, and none have applied higher

resolution assays.

We recently applied Single Telomere Length Analysis (STELA) to placental telomere analy-

sis [24]. STELA is a single-molecule PCR based telomere length analysis technology that deter-

mined the telomere length profiles from single chromosome ends [25]. This high-resolution

technique provides information on individual telomere length which can reveal additional

information such as the remarkable heterogeneity present in term placenta [24]. In conjunc-

tion with University Hospital of Wales and Royal Gwent Hospital, we engaged in a study to

investigate placental telomere from term pregnancies in Welsh women. From these popula-

tions, we collected placenta from uncomplicated and GDM pregnancies making a note of their

treatment pathways, and applied STELA.

Materials and methods

Participant recruitment

Study participants (N = 100) were recruited and consented prior to delivery at University Hos-

pital Wales and Royal Gwent Hospital as described previously [26]. Ethical approval for the

human study “Determining the expression levels of a set of imprinted genes in the term
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placenta from both normal and atypical pregnancies” was obtained via South East Wales

Research Ethics Committee Panel B in 2010, REC number 10/WSE02/10. Sponsor: NHS–Car-

diff and Vale ULHB. Ethical approval for the human study “The Grown in Wales Study: Devel-

oping a placentomic tool for characterising atypical pregnancies and predicting outcomes”

was obtained via Wales Research Ethics Committee 2 2015, REC number 15/WA/0004.

Research was carried in accordance with the principles of the Declaration of Helsinki as

revised in 2008.

Placental biopsies

Term placenta (37–42 weeks) were collected by trained research midwives within two hours of

an elective caesarean section from singleton pregnancies. Unless otherwise stated, chorionic

villous samples were taken 1 cm below the surface from the maternal side of the placenta at 5

different sites midway between the cord insertion and the lateral edge. Samples were washed

three times in phosphate buffered saline and stored in RNAlater at -80˚C until needed.

Subjects

In Cardiff and Vale, high risk women (defined by a BMI over 30, prior history of gestational

diabetes or macrosomic infant, family history of diabetes and Asian, African-Caribbean or

Middle Eastern origins) are routinely offered glucose tolerance testing. Women with either a

fasting plasma glucose level of 5.6 mmol/l or above, or a 2-hour plasma glucose level of 7.8

mmol/l or above, are initially offered dietary advice and recommended to undertake regular

exercise with a common recommendation being at least 150 minutes (2 hours and 30 minutes)

of moderate exercise, such as brisk walking or swimming, per week. If blood sugar levels

remain elevated, women are prescribed medication which is usually metformin but can

involve insulin injections for women who cannot take metformin or whose blood sugar is dan-

gerously high. In this study 31 women with GDM were identified with a note being made of

treatment pathways and 69 women were identified who had undergone GTT with no evidence

of diabetes (Table 1).

Single Telomere Length Analysis (STELA)

STELA was performed as described previously [27]. Briefly, genomic DNA for each sample

was amplified in multiple reactions (usually six reactions per sample) using telorette2, teltail

and telomere specific primer XpYpE2. Amplified telomeric DNA fragments were then

resolved by 0.5% agarose gel electrophoresis, detected by Southern hybridisation using a

TTAGGG repeat probe α-33P dCTP labelled (Perkin Elmer) before visualisation using a

Typhoon FLA 9500 phosphoimager (GE Healthcare Life Sciences). Telomere length distribu-

tions were determined using the ImageQuant software and descriptive statistics generated.

Statistics

All statistical analysis was performed using SPSS 23.0 for Windows. Data are expressed as

means with standard deviation, or as numbers (%). Differences between groups were assessed

using Student’s t test or Mann–Whitney U-test. χ2 test was used for categorical data. Relation-

ships between the main dependent variable and other variables was analysed by simple linear

regression, or by Hierarchical regression allowing the entry of multiple independent variables

if significant at P< 0.05. Differences in telomere length between the control group, the GDM

lifestyle intervention group and the GDM mothers treated with metformin and/or insulin

were tested by Analysis of Covariance (ANCOVA). ANCOVA was conducted to adjust for
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maternal ethnicity and P� 0.05 was considered statistically significant. This was followed by

group comparisons using Fisher’s least significant difference (LSD) method.

Results

Maternal, birth and metabolic characteristics of the study participants

GDM mothers (n = 31) and control mothers (n = 69) were predominantly Caucasian, consis-

tent with the local population (Table 1). As ethnicity [28], maternal age [29] and obesity [30]

are all risk factors for GDM, controls were matched for these characteristics. Other than fasting

plasma glucose and 2 hours plasma glucose levels, only gestational age was significantly differ-

ent between the groups (P = 0.007) with GDM mothers, on average, giving birth one week ear-

lier than controls.

Association between telomere length and potential confounders

We have previously shown, using XpYp STELA, that telomere length and heterogeneity does

not vary with fetal sex, mode of delivery or sampling site in a healthy pregnancy [24]. In this

study, there was no significant relationship (P> 0.1) between placental telomere length and

variables including maternal BMI, weight gain, socio-economic status, maternal age, gesta-

tional age, birth weight and smoking. However, within the control group (n = 69) there was a

significant association between placental telomere length and maternal ethnicity (P = 0.02),

which has been previously described [31].

Telomere length is associated with in utero exposure to poorly controlled

hyperglycaemia in male placenta

The GDM group included 14 mothers who undertook dietary and exercise changes (lifestyle

intervention group) and 17 mothers prescribed insulin and/or metformin (medication group;

Table 1. Maternal, birth and metabolic characteristics. Mean (SD) or number (%) is shown. Note: due to missing

values, some numbers do not add up to 100%. P values were assessed using Student’s t test, Mann–Whitney test or

χ2.test.

Study participants GDM group Control group P VALUE

N = 31 N = 69

Caucasian 26 (84%) 62 (90%) 0.08

Parity: Primiparous 3 (9.7%) 7 (10.1%) 0.88

Parity: Multiparous 17 (54.8%) 51 (74%)

Maternal age 33 (3.9) 31 (5.8) 0.20

Maternal BMI 33 (7.0) 31 (6.3) 0.26

Weight gain 10.9 (8.9) 13.3 (8.3) 0.35

Elective C-section 31 (100%) 69 (100%) NA

Smoking 1 (3.2%) 8 (11.6%) 0.23

Lowest income 2 (6.5%) 9 (13%) 0.76

Fasting plasma glucose (mmol/l) 5.6(1.2) 4.55(0.5) <0.001

2 hours glucose (mmol/l) 8.7(2.1) 5.46(1.3) <0.001

Birth weight (g) 3714 (433.6) 3734 (562.0) 0.86

Gestational age (weeks) 38 (0.6) 39 (0.7) 0.007

Placental weight (g) 701 (131.8) 723 (133.4) 0.43

Infant gender: Male 20 (64.5%) 38 (55.1%) 0.37

Infant gender: Female 11 (35.5%) 31 (44.9%)

https://doi.org/10.1371/journal.pone.0208533.t001
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Table 2). Direct observation of the STELA telomere-length profiles identified GDM partici-

pants with markedly shortened placental telomeres, which were found to be exclusively from

women who did not take medication for GDM (Fig 1).

Telomeres in the lifestyle intervention group were, on average, 1 kb shorter than those in

either the control or medication groups but this was not significant as assessed by ANCOVA

(F(2,96) = 1.66, P = 0.2) (Fig 2A). Similarly, there were 7% more telomeres below 5 kb in the

lifestyle intervention group but again, without significance (Fig 2B). However, when samples

where further separated by foetal sex, this revealed significant mean telomere length differ-

ences in male placenta between control, GDM lifestyle intervention and GDM medication

groups by ANCOVA (F(2,54) = 4.98, P = 0.01). Telomeres were shorter in the GDM lifestyle

intervention group compared to both the control group (P = 0.02) and the GDM medication

group (P = 0.003) (Fig 2C). Consistent with this observation, the percentage of telomeres

under 5 kb was about one-third higher in the GDM lifestyle intervention group compared to

the control group (P = 0.03) and a greater than two-fold compared to the GDM medication

group (P = 0.004) as assessed by ANCOVA (F(2,54) = 4.65, P = 0.01) (Fig 2D). For the placenta

from female infants, fewer samples were available and no significant differences in telomere

length were identified between the three groups (Fig 2E and 2F).

Discussion

There is a growing concern that telomere shortening as a consequence of prenatal adversities

such as GDM contributes to the increased occurrence of chronic diseases later in life such as

T2DM [32]. In this study, we applied high-resolution telomere length analysis to examine pla-

cental telomeres and provide further support for the hypothesis that GDM may exacerbate

telomere shortening. We further show that treatment of GDM mothers with metformin and/

or insulin is not associated with telomere shortening suggesting that this treatment pathway

protects against telomere erosion, an observation with potentially important clinical implica-

tions for longer term outcomes.

Telomere length is inherited from the paternal and maternal gametes and consequently at

fertilisation each chromosomal telomere starts the new generation at one of two possible

lengths. The remarkable telomere heterogeneity we observe in the term placenta arises from

an estimated 36 rounds of cell division during gestation [33] indicating a highly dynamic pro-

cess of telomere maintenance in the placenta. This led us to hypothesise that placental telo-

meres might provide a sensitive tool for assaying prenatal adversity and, potentially, also

measuring the effectiveness of intervention strategies, which we demonstrate here in relation

to GDM. We have not shown, in this study, whether the shortened telomeres were inherited

by the offspring. While some studies suggest that this is the case [16, 17], other studies find no

such association [18–20]. This may be due to the technical challenges imposed by the use of

Table 2. Maternal and birth characteristics in the lifestyle intervention and the medication group. Mean (SD) is shown. P values were assessed using Student’s t test

or Mann–Whitney test.

GDM participants Lifestyle intervention group (GDM) Medication group (GDM+M) P VALUE

N = 14 N = 17

Maternal age 34 (3.6) 32 (3.9) 0.11

Maternal BMI 30 (8.3) 32 (6.01) 0.38

Weight gain 11.2 (13.0) 10.8 (5.5) 0.93

Birth weight (g) 3734 (503) 3697 (382) 0.81

Gestational age (weeks) 38 (0.60) 38 (0.63) 0.98

Placental weight (g) 691 (149.81) 709 (119.12) 0.70

https://doi.org/10.1371/journal.pone.0208533.t002
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leukocyte DNA. We show here that placental telomere measurements by STELA provides an

alternative, sensitive and accurate tool to quantify exposure to GDM.

In this study, we observed shortened telomeres in placenta from women whose GDM was

managed only through exercise and diet. We anticipated was that women with more severe

GDM, in the medication group, would have the shortest placental telomeres. However, the ten

placenta from this group had telomeres in the normal range for a non-diabetic pregnancy.

This suggests treatment with metformin/insulin protects against telomere erosion. Metformin

has already been proposed as a potential anti-aging drug after experiments in rodents indi-

cated the drug alleviates age-related conditions such as inflammation, oxidative damage and

cell senescence [34]. Metformin may function by promoting the upregulation of the telomere

repeat-containing ribonucleic acid (TERRA) [35]. Alternatively, metformin may prevent accu-

mulation of senescent (“old”) cells thus decreasing senescent cell abundance as a function of

total cell number [36]. A third possibility is that metformin acts indirectly by dampening

down the chronic inflammations associated with GDM [37]. Further work is required both to

validate our original findings and to explore mechanisms in detail.

Although we have very small numbers of girls from the GDM lifestyle intervention group,

data from the four placenta analysed revealed similar profiles to the control and medically

treated groups. This is potentially of interest as studies suggest a difference in the response of

male and female offspring to diabetic pregnancies. For example, exposure to GDM is a risk fac-

tor for childhood overweight in boys, but not in girls [38] [39]. Telomere length in blood leu-

kocytes has been reported to be reduced in girls exposed in utero to GDM but not boys [17]. It

Fig 1. Representative STELA comparing placental samples from control, GDM lifestyle intervention (labelled GDM) and GDM

medication (labelled GDM+M) groups. Red dashed line across the STELA profiles indicate the mean. Each sample is analysed with six

STELA reactions. Mean telomere lengths are presented below each sample (±SD).

https://doi.org/10.1371/journal.pone.0208533.g001
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Fig 2. Telomere length differences in placenta from control, GDM and GDM+M groups. Comparison of mean telomere

length between control, GDM and GDM+M groups (N = 69+14+17) (a), in male placenta (N = 38+10+10) (c), and in female

placenta (N = 31+4+7) (e). Differences in percentage of telomeres under 5kb between control, GDM and GDM+M groups

(N = 69+14+17) (b), in male placenta (N = 38+10+10) (d), and in female placenta (N = 31+4+7) (f). Mean telomere length

and percentage under 5kb is presented (±SD). ANCOVA test was used to assess statistical significant differences �p<0.05.

https://doi.org/10.1371/journal.pone.0208533.g002
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may be possible to reconcile these differences if women carrying a male foetus are more likely

to take medication, which has been reported [40]. Further research is required.

While the data from our study is exciting, there are limitations. Due to the smaller number

of placental samples from girls, we cannot conclude the relationship between telomere length,

GDM and medical treatment is restricted to boys. Secondly, while we have statistically con-

trolled for a number of factors which may impact telomere length, questionnaire based studies

are inherently subjective and there may be other factors independent of GDM and medical

treatment influencing telomere length. As we studied term placenta in individual pregnancies,

we do not know when the telomere changes took place and it is possible that the differences in

telomere length were inherited.

In summary, we measured telomere length with respect to gestational diabetes diagnosis

factoring in foetal sex and treatment pathways. Using STELA we were able to generate high-

resolution telomere length profiles from placental samples and we found that placental telo-

mere shortening associated with GDM was prevented by maternal treatment with metformin

and/or insulin. It will now be important to expand on these findings to understanding the

underlying mechanism and long term consequence of different treatment pathways.
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