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HIGHLIGHTS

® An optimisation strategy that controls both the energy supply and the energy demand.
® Artificial neural networks predict the energy demand and renewable energy supply.

® An error management stage adjusts the solution to react to prediction errors.

® Resulted in a 52.92% increase in profit while reducing CO, emissions by 3.75%.

ARTICLE INFO ABSTRACT

Decentralisation of energy generation and distribution to local districts or microgrids is viewed as an important
strategy to increase energy efficiency, incorporate more small-scale renewable sources and reduce greenhouse
gas emissions. To achieve these goals, an intelligent, context-aware, adaptive energy management platform is
required. This paper will demonstrate two district energy management optimisation strategies; one that opti-
mises district heat generation from a multi-vector energy centre and a second that directly controls building
demand via the heating set point temperature in addition to the heat generation. Several Artificial Neural
Networks are used to predict variables such as building demand, solar photovoltaic generation, and indoor
temperature. These predictions are utilised within a Genetic Algorithm to determine the optimal operating
schedules of the heat generation equipment, thermal storage, and the heating set point temperature. Optimising
the generation of heat for the district led to a 44.88% increase in profit compared to a rule-based, priority order
baseline strategy. An additional 8.04% increase in profit was achieved when the optimisation could also directly
control a proportion of building demand. These results demonstrates the potential gain when energy can be
managed in a more holistic manner considering multiple energy vectors as well as both supply and demand.
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1. Introduction connected to existing national scale energy networks but may have the

capacity to operate independently in so called ‘islanded’ mode. It is

Building energy consumption is an important sector in both the
current and future energy landscapes given that it is estimated to ac-
count for 40% of the total EU energy consumption [1]. Buildings are
also at the forefront of large changes in the overall energy system due to
significant growth in the deployment of renewable resources such as
solar photovoltaics (PV) and solar thermal panels. The increased pe-
netration of renewable energy generation and alternate energy sources
has led to a paradigm shift in the way energy is deployed and managed.
This is one of the key drivers towards the concept of the microgrid
which aims to decentralise energy generation and control closer to the
communities in which the energy is utilised. Microgrids are commonly
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theorised that the future of energy generation will be devolved to a
collection of interconnected microgrids operating within a wider ‘smart
grid’ [2].

Management of the smart grid has become increasingly challenging
as energy supply is only partially controllable due to fluctuating gen-
eration from renewable sources. There is also an increasing trend to-
wards multi-vector energy systems. These feature multiple sources of
primary input energy, convert it through various technologies, and
output the energy vector required by the user. This could include a CHP
which converts gas to electricity and heat, a heat pump to convert
electricity to heat, or a power to gas system which converts electricity
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Nomenclature

Variables

heat demand (kWh)

nominal efficiency of controllable generation units (%)
capacity of controllable generation (kWh)

specific heat capacity of water (kg m%/°C s?)

CO,, produced (kg)

electrical energy (kWh)

primary fuel consumption (kWh)

net cost (fitness) (£)

income (£)

load percentage of controllable generation (%)

mass (kg)

tariff price of fuel (£/kWh)

heat generated (kWh)

relative efficiency of controllable generation units (%)
load percentage of thermal storage (%)

temperature (°C)

cost of primary fuel (£)

CO,, conversion ratio (kg/kWh)
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Subscripts

el electrical

t timestep

th thermal

Superscripts

Apar apartment building

CHP combined heat and power
FIT feed in tariff

GB gas boiler

Hosp hospital building

Hot hotel building

HP heat pump

i indoor temperature

PV solar photovoltaics

RHI Renewable Heat Incentive
S thermal storage

Sch school building

sp set point temperature

U generation unit

to hydrogen or synthetic natural gas. Therefore, multi-vector energy
systems must be managed and holistically optimised, as optimisation of
a single energy vector without consideration of the others may lead to
an overall sub-optimal solution [3]. To tackle this challenge, simulta-
neous control of both energy supply, demand and storage will be re-
quired to ensure stable, cost-effective and efficient energy supply that
maximises the use of renewable resources. At the same time, there has
been an increase in the amount of data available through technological
advancements such as the Internet of Things (IoT). If contextual in-
formation can be leveraged from these data sources, combined with
weather services and existing Building Management Systems (BMS),
then a step change can be achieved in the field of building and district
energy management. This provides an opportunity for the use of Arti-
ficial Intelligence (AI) techniques to be deployed to enhance building
and district energy management strategies. Rather than relying on re-
active, rule-based controls, Al can pave the way for a new generation of
predictive, context-aware energy management tools [4]. In view of this
context, this work aims to address the following research questions:

e In a multi-vector district energy system with several energy con-
version technologies, how can the optimal operation of these tech-
nologies be determined?

e How can the resulting optimal schedule be adjusted to account for
prediction uncertainties?

e Can partially controlling building energy demand in addition to
district energy supply reduce total district energy costs and emis-
sions?

1.1. Related work

Several studies found in the literature aim to optimise the supply of
energy to a microgrid of buildings from multiple generation sources. A
leading approach to model the energy interactions within multi-vector
microgrids is the ‘Energy Hub’ concept outlined in [5]. This approach
reduces the energy generation and conversion into a single input-output
model with all the mathematical modelling of specific units contained
within the Energy Hub. Energy Hub modelling has been utilised in
conjunction with optimisation strategies. These studies utilised linear
programming techniques [6], dynamic particle swarm optimisation [7]
and a network of energy hubs [8]. However, these papers assume the
future building demand and renewable supply is known a priori.
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A complex, multi-vector, microgrid system containing micro gas
turbines, solar PV, concentrating solar powered systems, an absorption
chiller and energy storage capacity is optimised using a model pre-
dictive control approach in [9]. Renewable supply and building de-
mand was forecast, from which an optimal operating schedule of the
dispatchable energy generators and the energy storage units were
produced. Chaouachi et al. [10] combined a fuzzy logic optimisation
strategy with Al-based prediction of the electricity produced by a wind
turbine and solar PV array as well as the load demand. Using this fra-
mework, a simulation-based case study showed a small reduction in
cost and emissions compared to a baseline strategy. However, this study
assumes that the forecasts produced by the artificial neural networks
(ANN) are entirely accurate therefore do not include an error-man-
agement procedure to match the actual generation and load between
optimisation timesteps. Mallol-Poyato et al. [11] used a Hyper-heuristic
algorithm to optimally control the charging and discharging of an
electrical energy storage (EES) system. Two case studies showed that
the inclusion of EES produced significant cost savings and im-
plementing the optimisation framework increased the savings further.
Once again, this study failed to consider the impact of generation and
demand forecasting errors.

Zhang et al. [12] used a Mixed-Integer Linear Programming (MILP)
optimisation procedure applied to a multi-vector district energy system.
The study aims to schedule renewable supply, EES, and a CHP. Case
study results showed that operating as Model Predictive Control (MPC)
rather than day-ahead control made better use of the energy storage
device providing the consumer significant savings. Ma et al. [13] pro-
duced an MPC-based microgrid central controller to manage distributed
generation and energy storage. Whilst the controller effectively shifts
some load away from peak pricing periods, the control horizon is only
one hour and the demand profile is perfectly predicted. A MILP-MPC
strategy for managing the heat and electrical supply to a group of re-
sidential buildings in a microgrid setting was developed in [14]. Shared
energy generation and storage are best utilised to flatten peak loads and
hence reduce the cost of energy for the district as a whole. The co-
ordination of a series of centralised heat pumps supplying buildings in a
district is addressed in [15]. The authors display a cooperative opti-
misation strategy that exploits the flexibility provided by sharing cen-
tralised resources. The larger building in the district is able to achieve
cost savings of 15% however the smaller buildings receive a small rise
in cost raising issues of fairness. Furthermore, the buildings’ thermal
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dynamics are modelled using fairly simplistic state space models that
does not take into account internal equipment gains or occupancy.
Razmara et al. [16] developed a bi-level optimisation that aimed to
control building thermal energy demand and then checks the given
solutions to ensure they do not breach district-level constraints. If these
constraints are breached a second, district-level, optimisation strategy
is carried out which feeds back results to the building-level optimisa-
tion. A case study based on a university campus with a ground source
heat pump demonstrates a 25% reduction in cost without breaching
grid constraints.

All of the previous papers aimed to optimise the energy supply to a
consumer. However, they have failed to consider any level of demand-
side flexibility from the buildings supplied by the microgrid. Building-
level optimisation strategies have been proven to adapt building de-
mand around dynamic pricing strategies and/or renewable energy
generation. For example, a zone-level building set-point optimisation is
carried out using a genetic algorithm and an ANN in [17]. This opti-
misation framework was shown to be adaptable to different occupancy
patterns, time-of-use (TOU) energy pricing and weather conditions.
Similarly a multi-stage optimisation procedure combining a genetic
algorithm, fuzzy logic control, and ANN was successfully applied to a
Greek hospital in [18]. Lee et al. [19], used an ANN based MPC strategy
to control a zone Air Handling Unit (AHU). It aimed to calculate the
optimal AHU cooling operation over the next 24h to minimise the
energy cost and maintain thermal comfort using Mixed Integer Non-
Linear Programming, MINLP. The ANN accurately predicted indoor
temperature and energy consumption, but the application was limited
to only a single zone within a building. An ANN based controller was
also developed in [20]. The ANN predicted the change in indoor con-
ditions including temperature, relative humidity and the PMV. These
predictions are subsequently used to control heating, cooling, humidi-
fying and dehumidifying devices to minimise over or undershoots often
found in non-predictive, conventional control. Whilst this approach
provided better thermal comfort compared to conventional controllers,
it did not consider the minimisation of energy consumption as an ob-
jective in its control scheme.

Grey-box, resistor-capacitance (RC) models were applied in con-
junction with an MPC optimisation in [21]. This study aimed to control
the supply water temperature to a university building to minimise the
energy consumption. This study effectively demonstrated that a more
context-aware building control system can be flexible to external en-
ergy systems. Oldewurtel et al. [22], adapted traditional MPC to Sto-
chastic MPC. Essentially, this means the MPC strategy took into con-
sideration uncertainties in forecasts when carrying out the
optimisation. This resulted in a slightly more cautious optimisation that
did not go so close to the comfort boundaries whilst still achieving good
energy savings. Mahendra et al. [23], also aimed to address the pro-
blems that stem from forecasting uncertainties produced by a RC
model. This solution runs a reactive algorithm in between the MPC time
steps that can take swift action if the forecasts are clearly incorrect due
to an unexpected spike in occupancy for example.

Given that buildings form such a crucial component of a microgrid
energy system, it is pivotal that they are included as active participants
within a district optimisation strategy. Several studies aim to achieve
this by creating an internal energy market within a microgrid. Anees
and Chen [24] controlled the electricity demand of a group of smart
buildings equipped with smart appliances which are scheduled via a
community controller accessing real-time energy pricing. Another dis-
trict energy management strategy was developed in [25]. Consumers
were required to optimise their own power profiles that satisfied their
comfort constraints and submit these to the district controller a day
ahead. Then during the day, a system of energy trading and balancing is
implemented to manage deviations from the stated power profile. A
multi-agent approach is utilised in [26]. Aggregated consumer loads
were represented by an agent which initially tried to meet it’'s demand
and then calculate spare capacity or the energy deficit. Energy buyers
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and sellers then submitted bids to a central market agent to determine
the energy trade between microgrids and consumers.

Abdulaal et al. [27] developed a demand response optimisation
framework aimed at the industrial sector. A two-stage approach is used
where stage one identifies the amount of load to be shifted over the next
two hours and stage two then tries to follow that strategy with minimal
loss of comfort to the user. However, the study makes the assumption
that any load shed in hour one must be consumed in hour two and vice
versa. This assumption may be applicable for some consuming devices
but significantly oversimplifies the thermal dynamics of a building.
Razmara et al. [28] effectively demonstrates the benefits of a combined
supply and demand optimisation. The optimisation strategy receives
weather and energy cost forecasts from which it determines the optimal
energy supply strategy to minimise energy costs whilst keeping the
building at a comfortable temperature. An additional stage then checks
the feasibility with respect to the electrical network. However, this
work only considers optimisation of one energy vector, electricity, and
uses a relatively simplistic RC model to calculate the heat dynamics of
the building. Xu et al. [29] developed an optimisation framework which
combined optimisation at a building level whilst coordinating energy
exchange between buildings at a wider district level. This is achieved
through applying Lagrangian Relaxation to decentralise a stochastic
mixed integer programming problem. Whilst producing significant cost
savings at a building and district level, this study again only considers
electricity and uses a simplistic state space model of a room to calculate
the indoor temperature of the buildings. Furthermore, these studies fail
to consider the impact of the demand side optimisation on the price of
energy provided by the utility.

1.2. Contribution

Previous studies rarely aimed to fully integrate demand and supply-
side optimisation. Often demand-side optimisation may consider a dy-
namic energy pricing tariff, however, they fail to consider that the
demand-side optimisation can impact these tariffs. If energy generation
is localised at a microgrid level, peak load shifting could have a direct
consequence on energy supply cost, as expensive backup generation
units may not be utilised. Similarly, supply-side optimisation often
considers known and inflexible demand. Studies that do consider the
flexibility provided by buildings, model this in a very simplified way
that may not fully capture the thermal dynamics within a building and
therefore the impact on occupant comfort. The majority of the literature
reviewed in the previous section failed to consider a multi-energy
vector district with most only aiming to optimise a completely electrical
system. This paper’s contribution lies in the combination of the fol-
lowing features:

® A holistic optimisation that manages the operation of supply gen-
eration units, thermal energy storage and building demand through
control of the heating set point temperature.

e Optimisation of a multi-vector energy system including natural gas,
electricity, and heat.

e Utilisation of multiple ANN to predict variables such as building
energy consumption, indoor temperature and PV generation.

e An intermediate, real-time control adaptation is included to adjust
the optimal solution to account for prediction errors that ensures a
feasible solution.

® A clear comparison between optimisation of just energy supply and
optimisation of both energy supply and demand demonstrates the
potential savings when exploiting building thermal flexibility.

Following this section, a description of the case study district is
provided in Section 2. The modelling of the case study district is given
in Section 3 and optimisation strategy of the supply-side is shown in
Section 4. The adaptations to include demand-side optimisation are
discussed in Section 5. A comparison of the results produced by the two
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optimisation strategies compared to baseline operation is given in
Section 6. These results are discussed alongside the limitations of this
study and future objectives in Section 7. Finally, the conclusion is
provided in Section 8.

2. Case study district description

The analysis carried out in this study is based on a virtual, simu-
lated, eco-district containing mixed-use buildings alongside an energy
centre producing heat, delivered by a district heating network. The
district is designed to be based in the city of Cardiff, UK, with real
historical weather files used as inputs to simulation models. This district
has been inspired by the authors’ involvement with real eco-districts,
including “The Works” district in Ebbw Vale, Wales (UK) [30]. How-
ever, a fully simulated district has been used for a number of reasons. It
allows freedom with respect to scenario generation such as the type of
buildings and generation technologies included. A simulated district
also allows like-for-like comparison using different strategies but
maintaining the same user behaviour and weather conditions. Where
there are data availability issues at a pilot site, these can be filled from
alternate sources. However, at all stages, the authors have endeavoured
to make the virtual eco-district as realistic as possible using a combi-
nation of detailed simulation models and environmental data from real
pilot sites to model the case study district.

2.1. Demand-side design

District energy demand is modelled at a building level using the
established building energy simulation tool, EnergyPlus [31]. In order
to make the demand-side simulation as realistic as possible, Commer-
cial Reference Building Models have been directly downloaded from the
US Department of Energy’s website [32]. Using these models ensures a
rigorously verified, realistic model of a modern, energy efficient
building without arbitrary parameters introduced based on a particular
modellers perception. It also has the added benefit of allowing this
work to be open, reproducible and directly comparable to any future
energy optimisation platform. Specifically, the buildings chosen to be
represented in the virtual eco-district are the Large Office, Secondary
School, Hospital, Large Hotel, and High-Rise Apartment. Both the
hospital and hotel provide a considerable and steady baseload with the
school and office generating daily peaks forming and interesting sche-
duling challenge for facility managers. The overall district heating
consumption over a typical winter week is shown in Fig. 1.

2.2. Supply-side design

To increase the resilience, flexibility and efficiency, and given the
nature of the demand presented in Section 2.1, the district energy
supplied from the energy centre will come from multiple sources and
multiple generation units. The relatively large and consistent baseload
makes a combined heat and power (CHP) unit highly attractive as it
achieves very high combined efficiency provided it can maintain op-
eration for long periods. In this case, the CHP has been sized to be
operational for 5000-6000 h per annum in line with current standards
[33]. It was found that a CHP size of around 200-225 kW, fulfilled this
specification and therefore the CHP was modelled on a Power Box
138SNG with a nominal thermal and electrical capacity of 207 kW and
138 kW respectively.

In addition to the CHP providing a base load, a heat pump (HP) has
been included to provide additional, more flexible heat output. The HP
has been sized relative the CHP to allow the maximum CHP electrical
output to be similar to the maximum electrical input of the HP. In
reality, a HP of this size is likely to be a water-source HP and due to the
relatively high district heating supply temperature of 80 °C, the HP
coefficient of performance (COP) is likely to be a relatively low 3 [34].
Therefore, in this case study, a HP with a nominal thermal capacity of
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400kWh is included.

To provide crucial flexibility and resilience a series of gas boilers are
included to provide the peak load capacity. The total gas boiler capacity
has been sized to meet the maximum possible demand of 2400 kW. This
has been split into four separate units 600 kW gas boilers modelled on
the Rehema gas 310 eco pro 650. Whilst natural gas remains a pol-
luting, non-renewable, fossil fuel, it is currently viewed as the least
worst option during the transition to a clean, renewable future [35] and
is therefore used in this case study. However, it is likely that in the near
future, natural gas boilers and CHP could be modified or replaced to
utilise biomass, synthetic natural gas or biogas. The optimisation
strategy and modelling procedure outlined in this study is equally ap-
plicable in such a scenario.

Renewable energy generation in the form of solar photovoltaic (PV)
panels are included in the simulated eco-district. The modelling of solar
PV generation will be based on the historical data of a real pilot site,
namely “St Teilo’s School” in Cardiff [36]. The modelled solar PV ca-
pacity is 250 kWp. Finally, a thermal storage tank has been included to
increase the generation flexibility and providing the opportunity for an
intelligent management system to capitalise on this. Note that this
storage tank goes beyond the traditional buffer or mixing tanks which
are commonplace in a district heating system with multiple generation
sources. The thermal storage tank considered in this study is actively
controlled and can be ‘charged’ by increasing the water temperature
above that of the district supply temperature. A schematic representa-
tion of the virtual eco-district considered in this work is presented in
Fig. 2. Note that in this study, the district heating network has not been
explicitly modelled and it is expected that for a modern network, the
heat loss during distribution will be small (around 1-2% during normal
operating conditions [37]). However, it is proposed that if this control
strategy was deployed in reality, the heating network characteristics
such as heat losses, thermal lag and return temperatures would need to
be modelled. Based on the observed district heating characteristics, the
heat demand of each building relative to the energy centre would need
to be adjusted. It is expected that the predicted building demand would
need to be increased due to distribution losses and the demand would
need to be brought forward to account for the propagation time. The
proposed methodology is flexible to incorporate almost any form of
district heating simulation model (computational time permitting)
whereas traditional linear or gradient-based methods will always re-
quire simplified models. District heating distribution modelling will be
addressed in future work and calibrated once sufficient data has been
collected from pilot sites.
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3. District modelling

The complete district model is made up of several sub-components
including controllable generation units (CHP, HP and gas boilers), a
thermal storage hot water tank, uncontrollable energy generation from
solar PV panels, and demand from the connected buildings. This section
will outline how each of these components is modelled for use in the
optimisation strategy.

3.1. Controllable generation units

The heat energy generated by the production units is simply cal-
culated by multiplying their percentage load (an optimisation decision
variable) and the nominal thermal capacity of the production unit.
=LV xcf

QY €h)

where QY is the heat generated by production unit U at time t due to the
load percentage L and the nominal thermal capacity CY.

The electricity produced by the CHP is calculated in a similar
manner in Eq. (2).

EtCHP — LtU X CeCl‘HP

(2)

where EFT represents the electrical load produced at time t by a CHP
with a nominal electrical capacity of C$*’.

The raw fuel consumption of each generation unit is calculated
based on the percentage load, nominal efficiency and part load factor.
Crucially, this optimisation has the capacity to include non-linear part
load functions which would need to be calculated experimentally or
from data provided by manufacturers. These non-linearities are often
ignored by optimisation methods commonly found in the literature
such as MILP. In this study we have considered a polynomial regression
equation relating relative efficiency and load percentage shown in Eq.
(3) similar to that found in [38]. However, this optimisation metho-
dology would be flexible to include a variety of part-load efficiency
computations such as relationships with outdoor temperature, atmo-
spheric pressure or calculation via a black box model.
Relp? = a- (LYY + b-(LY) + ¢ )
where RelnIU is the relative efficiency of generation unit U at time t and
a, b and c are regression coefficients.

Finally, the raw fuel consumption is calculated in Eq. (4).
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where FU is the fuel consumption (e.g. gas or electricity) of generation
unit U at time t and 7Y is the nominal thermal efficiency of the gen-
eration unit and RelnIU is the relative thermal efficiency due to part load
characteristics. Note that in the case of a HP, the coefficient of per-
formance (COP) will be used in the place of the nominal thermal effi-
ciency. Due to the size of the HP simulated in this case study, it is
assumed to be modular. Therefore, part-load factors are not applicable
in the case of the HP as modules will either operate on or off, and to
vary the output of the HP the number of operating modules will vary.

The cost of the generation, V;, is simply the multiplication of the fuel
consumed at time, t, and the energy tariff at that hour, P, as shown in
Eq. (5)

V,=F/ xR G))

As well as cost, the district can receive income, I, through govern-
ment subsidies such as the Renewable Heat Incentive (RHI) and feed-in
tariff. RHI income is related to the energy provided from sources such
as biomass, heat pumps and solar thermal systems. The feed-in tariff is
the price at which electricity can be sold back to the national grid. They
are calculated as shown in Egs. (6) and (7) respectively.

RHI U RHI
I =0Q XP

(6)

ItFIT — EtU X PtFIT

)

The final objective function to be minimised, f, is the total cost of
generation minus the income from RHI and the feed-in tariff calculated
using Eq. (8).

24 24
=S v->1

mrv ®

Despite not being an explicit objective of the optimisation, the CO,
emissions resulting from each control strategy will be calculated to
provide additional comparison. The CO, emissions of each scenario was
calculated using Eq. (9), which multiplies the raw fuel consumption by
their respective CO, emission factors, X. The emission factors have been
taken from UK government statistics [39]. The electricity factor in
particular would vary from country to country and year to year de-
pending on the make-up of electricity generation in each specific case.

coY = FY x xV )
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For reference, a complete list of the constant parameters is included
in Table 1. A time of use electricity tariff has been used with data re-
trieved from the ‘Octopus Energy Agile Tariff’ [40] with varying half-
hourly prices linked to the wholesale electricity market.

3.2. Thermal storage

A thermal hot water storage tank is modelled relatively simply in
this study as a percentage of its maximum energy capacity. The max-
imum thermal capacity of the storage tank is assumed calculated via Eq.
(10).

thl = m'cp'(Triax - TDH) (10)

where Cjj is the maximum energy available in the storage tank, m is the
mass of water, c, is the specific heat capacity of water, T, is the
maximum temperature of the storage tank and TP¥ is the district
heating supply temperature, assumed to be a constant 80 °C in this
work. Therefore it is evident that the only variable in determining the
‘charge’ of the storage tank is the tank temperature (assuming a con-
stant ¢;).

The net heat energy taken from, or supplied to, the storage tank, Q°,
is determined in Eq. (11) by computing the difference between current
and previous tank storage percentage, S, multiplied by the maximum
capacity of the storage tank, Cj, and the charging and discharging ef-
ficiency 7°.

QF = (S — Si_)n*-Ci an

Note that modelling the thermal storage in this way assumes a
uniform tank temperature and constant district heating temperature. It
also lumps ambient heat losses from the storage tank with losses due to
discharging and charging and is held constant in this study. However, it
is likely that the ambient heat losses from the thermal storage would be
related to the storage tank temperature, so Eq. (11) could be adapted
with an additional term to include this if the effect could be quantified
through experimental data.

3.3. Uncontrollable generation

As discussed in Section 2, a solar PV field of 250 kWp capacity is
considered in the studied case study district. The PV generation mod-
elling will be scaled up based on data from a real installation based in
Cardiff with half-hourly recorded data over a period of two years from
2015 to 2016. The available length of data makes this scenario prime
for the use of machine learning models to predict the next 24-h of PV
power output. Throughout this paper, back-propagation Artificial
Neural Networks (ANN) will be trained to predict several key variables
using MATLAB’s ‘Neural Network Toolbox’. Their effectiveness in the
building and energy domain has been well demonstrated in the litera-
ture. They have been shown to achieve high accuracy, computationally
efficient, and require no knowledge of the physical relationships be-
tween inputs and outputs. Due to a lack of space within this paper,
interested readers are referred to [41] for a detailed explanation of how
an ANN works and their applicability to the building and energy do-
main.

In brief, an ANN is made up of a number of layers, each of which
contains a number of neurons. They have an input layer, a number of
hidden layers, and the output layer. Each neuron within each layer is
connected to every neuron within the following layer. Each connection
is assigned a weight, and each neuron has a bias term. During the
training phase, the ANN is given a large amount of training data for
which both inputs and outputs are known to the ANN. The training
algorithm then iteratively changes the internal weights and biases until
the mean squared error between the ANN predicted outputs and the
target outputs is minimised. Once complete, the weights and biases are
fixed and unseen testing inputs are provided to assess the true perfor-
mance of the trained ANN.
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In the case of the solar PV model, the possible inputs were as fol-
lows; forecast outdoor dry-bulb temperature, relative humidity, solar
radiation, wind speed, atmospheric pressure, the hour of the day, the
day of the year, the month and the PV output at the same time on the
previous day. The ANN output was hourly PV electricity generation in
kWh. The complete dataset was split randomly, 70% for training, 15%
for validation and 15% for testing. Throughout this paper, an iterative,
stepwise searching approach to training the ANN was taken to find the
best combination of input variables and ANN architecture parameters
such as the number of hidden neurons, transfer and training functions.
This approach is described and validated in [42]. Following the offline
tuning of the ANN architecture, several inputs were found to be re-
dundant and hence not used in the final PV ANN architecture. The re-
sulting model uses only outdoor temperature, relative humidity, solar
radiation, hour, day, month and the output 24-h ago. It contains two
hidden layers with 15 neurons in each, uses the ‘tansig’ transfer func-
tion and is trained using the Levenberg-Marquardt training algorithm.
The training and testing R? values were 0.9489 and 0.9412 respec-
tively. The prediction performance is displayed graphically for a sample
week in Fig. 3.

3.4. Building demand modelling

ANN were also used to predict the energy consumption for the next
24-h of each building within the district. The EnergyPlus models de-
scribed in Section 2 were run with real Cardiff weather data over two
years over 2015-2016. 15% of the dataset, spread throughout all sea-
sons, was removed to form the testing dataset. The validation dataset
comprised another 15% leaving 70% of the original dataset as training
data. Weather, time, date, occupancy, and previous energy consump-
tion values were tested as inputs, and the heating energy consumption
was the output. Independent ANN were created for each building to
capture the particular characteristics of each energy demand profile.
Once again, several possible inputs reduced the prediction performance
of the ANN (e.g. wind speed) and hence were removed as ANN inputs.
The resulting models used only the following variables as inputs; the
hour of the day, outdoor temperature, relative humidity, day of the
week, energy consumption at the same timestep the previous day, and
energy consumption at the same timestep the previous week. The
output of each model was the hourly heating energy consumption of
each building. The resulting ANN architecture is shown in Fig. 4. Due to
a lack of space and given that the aggregated total heat demand is the
input to the optimisation; only a comparison between the aggregated
predicted and actual demand has been shown for two test weeks in

Table 1
Summary of optimisation constants.

Symbol Parameter description Unit Value
cgHp CHP thermal capacity kw 207
CeczHP CHP electrical capacity kw 138
clir HP thermal capacity kw 400
cﬁB Gas boiler thermal capacity kw 2400

c Heat storage thermal capacity kWh 500
UtﬁHP CHP nominal thermal efficiency % 52.8
netl‘HP CHP nominal electrical efficiency % 35.2
,7[{[”’ HP COP - 3
nlgB Gas boiler nominal thermal efficiency % 95.75

,)[fl Thermal storage charging efficiency % 95
pFIT PV feed-in tariff p/kWh 1.82
PpRHI HP RHI tariff p/kWh 4.17
pGas Gas tariff p/kWh 1.837
xGas Gas CO, conversion ratio kgCO,/kWh 0.18396
XEL Electricity CO, conversion ratio kgCO,/kWh 0.28307
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Fig. 3. Test data comparing solar PV generation (a) ANN prediction vs actual data, (b) absolute error between the two.

Fig. 5. The figure demonstrates excellent agreement between prediction
and target reinforced by R? values of 0.9745 and 0.9660 for training
and testing respectively.

4. Supply-side optimisation methodology

This section will outline the methods used to optimise the energy
generation set point schedule for the proposed eco-district. The objec-
tive of the optimisation is to maximise the operational profit (note this
excludes maintenance and capital costs) to the district energy hub while
meeting the thermal demands of the district. This study will use a ge-
netic algorithm (GA) in Model Predictive Control (MPC) format to
complete the optimisation. Therefore, this section will also give an in-
troduction to the theory behind MPC and GA’s and how they are im-
plemented in this scenario.

4.1. Model predictive control

MPC is a branch of control that has been extensively applied in the
literature to building and district energy management problems. MPC
solves an optimisation problem over a pre-determined optimisation
horizon, in our scenario 24 h. This means that the optimisation de-
termines the optimal decision variables over that entire period split into
optimisation timesteps, in our case 1 h. Once the optimisation is com-
plete, only the decision variables of the first timestep are implemented,
the optimisation horizon shifts forward by one hour and starts again.

Input Layer

outdoor Tempy —()

MPC is well suited to these types of problems as it is predictive in
nature, takes outside disturbances into account, and reacts to fore-
casting errors by re-optimising every timestep [43]. Fig. 6 illustrates the
generic structure of an MPC process. Measurements from the system
along with any other necessary external inputs are provided to the MPC
controller. Within the controller the optimisation algorithm runs in
conjunction with an internal model that aims to replicate the actual
system. This model may be used to determine the optimal solution or
check feasibility constraints. Once the optimisation is complete the set
points are passed to the system and time is allowed to pass for one
increment before restarting the whole process with updated measure-
ments and external signals.

4.2. Genetic algorithms

GA'’s are a branch of meta-heuristic algorithm inspired by the pro-
cess of evolution present in the natural world. Recent reviews demon-
strate that GA’s are one of the most popular techniques applied within
the field of building and energy optimisation [44]. Meta-heuristic op-
timisation techniques have the advantage of being able to find a near-
optimal solution in cases where exact, deterministic, mathematical
modelling of the objective with respect to the decision variables is not
possible (such as the use of black-box models) and for non-continuous
decision variables. Furthermore, they are suitable in applications with a
large search space and tend not to get stuck in local minima [45]. A GA
typically consists of the following steps or functions; an initialisation

Hidden Layers
with n Neurons

Output Layer

Fig. 4. Overview of the ANN architecture for predicting building energy demand.
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Fig. 6. A generic schematic of model predictive control operation.

stage driven by a creation function, a fitness function, selection,
crossover and mutation. During the initialisation procedure, a popula-
tion of randomly generated feasible solutions is produced. Each solution
within the population is called an ‘individual’ and the decision variables
are encoded to each individual as a vector of ‘chromosomes’, with each
chromosome representing one decision variable. In our scenario, each
chromosome represents the operating percentage of a specific genera-
tion unit at a specific hourly time step. Once the population of solutions
has been generated, each solution is evaluated for fitness, in our case
this is related to the profit (or loss) each solution would lead to. Based
on the fitness of each individual the population is ranked in order of
best to worst. This ranking is used by the selection function to de-
termine the likeliness that each solution will proceed to the crossover
and mutation step. During the crossover stage, two ‘parent’ individuals
are chosen via the selection function and recombined, mixing chro-
mosomes from each parent, to form a ‘child’ solution. Some individuals
pass through the mutation process whereby single chromosomes of an
individual ‘mutate’ to another random feasible solution to produce the
child solution. Note the exact method of recombination in both cross-
over and mutation can vary depending on the type of function used.
Some GAs also use the concept of ‘elitism’ which takes the best solution
(s) from the previous generation and automatically places them in the
next generation without passing through either crossover or mutation.
The process of generating population after population continues until a
pre-defined stopping criterion has been met. The stopping criteria can
relate to the optimisation time, number of generations, the best solu-
tions fitness or the deviation between previous and current optimal
solution.
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4.3. Fitness calculation

As described in Section 4.2, the fitness of each individual solution
within the GA needs to be computed. An overview of the fitness cal-
culation procedure is shown in Algorithm 1. This procedure starts by
retrieving the predicted heat demand, renewable generation, energy
price tariffs and decision variables for the following 24 h in 1h time-
steps. The decision variables in this case are the percentage load output
of the CHP and HP as well as the percentage charge of the thermal
storage tank at each hour of the day giving a total of 72 decision
variables. From this, the output energy of each unit is calculated as well
as the primary energy input. Following this, the difference between the
predicted heat demand and the heat produced from the CHP, HP and
storage is calculated. Any hour in which the production does not meet
the demand is automatically met by the gas boilers which provide the
flexible reserve. The fitness function is modelled in this way for a
number of reasons. It allows a reduction in the number of required
decision variables by 24 as the gas boilers are not explicitly modelled as
decision variables but implicitly controlled as their consumption will
still have a significant impact on the fitness of each solution. It removes
the requirement for constraint handling and penalisation of solutions
which fail to meet the demand [46]. In this fitness formulation, the
predicted demand is always met and this constraint cannot be breached.
Note that oversupply is not explicitly punished in the fitness calculation
and it is assumed that excess heat can be dumped, it is presumed that
oversupply will naturally be curtailed by the optimisation as it is not
economical.

Finally, the cost of primary input energy including natural gas and
electricity is calculated by multiplying consumption by the relevant
tariff. The income provided by the Renewable Heat Incentive (RHI)
associated with the HP is calculated, along with the income received
through selling excess electricity to the grid. Note that only delivered
heat is eligible for RHI income, which is a government subsidy aimed at
encouraging low carbon heating. Any heat that is dumped is deducted
from heat eligible to gain RHI income, preventing any ‘gaming’ of the
system by the optimisation. The optimisation objective (and final fit-
ness) is to minimise the total cost of primary energy consumption minus
the income from RHI and selling excess electricity to the grid.

Algorithm 1. Procedure to calculate the fitness of each individual
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. 7CHP
Input : Ly 0,,

Output: f

for All Individuals do

fort =ttot+23 do

Calculate Q¢HP QP Q7 ;

if QTotal — QCHP _ QHP _ % > 0 then
| Set QP to cover underproduction ;

end

Calculate F“** and net FF! ;

Calculate V; and I, ;

end

Calculate final fitness, [ ;

end

HP
Lt7t+23’

PV Total :
St—ty23, By 03, Q7' Tariffs, Sy

// Using eqgs. (1) and (11)

// Using eqs. (2) to (4)
// Using eqgs. (5) to (7)

// Using eq. (8)

4.4. Constraint handling, bounds and GA settings

Due to the nature of the decision variables used in this study some
adaptations were required to ensure all decision variables remained
within bounds. Due to technical constraints, the CHP was modelled as
having a lower operating bound of 70% of maximum capacity.
Therefore, the only valid values for the decision variable to take would
be 0 (off) or 70-100%. This discontinuity could not be modelled within
MATLAB’s pre-existing GA functions and custom creation and mutation
functions were required. During the creation function, individuals are
randomly generated. For the 24 decision variables relating to the CHP,
the function produces a random integer between 69 and 100 re-
presenting the load percentage of the CHP. Then any of these decision
variables with a value of 69 was changed to 0. The remaining 48 de-
cision variables relating to the HP and the thermal storage could take
any value between 0 and 100.

The crossover function used is MATLAB’s ‘crossoverscattered’
function as this recombines two parent solutions, mixing the existing
decision variables and hence ensuring all solutions remain feasible with
respect to the operating constraints. A custom mutation function was
required for the same reason as the custom creation function. In the
mutation function, each decision variable within the individual has a
constant 5% probability of mutating. If the variable does mutate then it
follows the same procedure outlined for the creation function. If the
decision variable relates to the CHP, a random integer between 69 and
100 is generated and then, if the value is 69, it is changed to 0. These
custom functions ensure that every individual remains a feasible solu-
tion throughout the optimisation procedure. Ensuring that every in-
dividual remains a feasible solution throughout the optimisation pro-
cedure mitigates the intrinsic discontinuity of the search space brought
by the CHP’s technical specificity and consequently makes the GA less
likely to get stuck in a local optimum. The remainder of the GA para-
meter settings include an elite count of 5% of the population, a tour-
nament selection function, a crossover fraction of 80%, a population
size of 200, and a function tolerance of 1e — 7. Note that for all results
discussed throughout this work, the GA exited each optimisation due to
the function tolerance rather than the maximum number of generations
or time limits, this ensured that the optimisation was well converged.

4.5. Real-time control adaptation

As discussed earlier in this section, this optimisation will run as MPC
meaning it will re-optimise every hour with updated information such
as weather conditions, building demand prediction, generation unit
failures, etc. Operating as MPC contributes significantly towards
managing the errors between predictions and reality as the most up to
date information is always used. It also allows the optimisation to adapt
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to unforeseen circumstances and change course within a relatively short
period of time.

However, despite operating as MPC, small errors between predic-
tion and reality are to be expected and must be handled between each
hourly optimisation step. To tackle this, a rule-based schedule adapter
has been developed to adjust the optimal set points to meet the actual
demand. Firstly, this algorithm calculates if there is an energy deficit or
surplus between the net predicted heat demand and actual net demand.
If there is an energy deficit, i.e. observed demand is higher than that
predicted, the algorithm enacts the following steps until the deficit
becomes zero:

1. Increase the supply percentage from the lead heat supplier (the CHP
or HP depending on which has a higher percentage load)

. Increase the supply from the secondary supplier

. Increase the supply from the gas boilers

Alternatively, if there is an energy surplus, which is the case when
the predicted demand is higher than the actual demand, the following
steps are taken until the remaining energy surplus is zero:

1. Reduce the energy supply from the gas boiler

2. Increase the energy stored within the thermal storage tank

. Reduce the secondary supplier (the CHP or HP depending on which
has a lower percentage load)

. Reduce the heat production from the lead supplier

The philosophy behind this adjustment algorithm is to make
minimal changes to the optimal set point schedule provided by the GA.
Whilst it may not achieve the absolute optimal result, it is intended as a
quick and simple method to be implemented between each optimisation
timestep.

5. Combined supply and demand optimisation

To extend the current state of the art beyond a supply-side opti-
misation only, this study will also aim to leverage the flexibility
available through a building’s thermal mass. This section will discuss
how the optimisation described in Section 4 is adapted to simulta-
neously optimise at a building level and district level. In this scenario,
the heating temperature set point of the office building is also included
as a decision variable alongside the percentage load output of the CHP,
the HP, and the thermal storage. The inclusion of building temperature
control may give the optimisation some scope to shift some of the
heating demand (through pre-heating) away from hours where the
production of that heat generation is more expensive. To trial this
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Fig. 7. A two-week sample of ANN prediction of (a) energy consumption and (b) indoor temperature compared to target values.

hypothesis, the office building alone has been chosen as it is expected to
have the most thermal flexibility in comparison to a hospital, hotel,
school and apartment block.

5.1. Controllable building modelling

To model the controllable office building additional ANN models
must be produced. Note that these office specific models are not the
same as the office energy consumption ANN developed in Section 3.4,
as this model must take the decision variable (heating temperature set
point) as an input. Furthermore, to ensure the office remains comfor-
table to the occupants, it is also necessary to produce a prediction
model of the average indoor temperature. Other measures of indoor
comfort, such as Predicted Mean Vote (PMV) or the Predicted Percen-
tage Dissatisfied (PPD) are available, but here the volume weighted
average indoor temperature has been chosen as a proxy measurement of
thermal comfort as it is cheaper and more simple to measure within a
building. The building level ANN models used for the controllable office
building are similar to those used successfully in the authors’ previous
work [17].

The office building model was run using weather data recorded in
Cardiff in 2016. However, due to the relatively high insulation and the
large amount of internal gains, many of the zones such as the core’s,
data centres and the bottom level zones are cooling dominated and do
not require heating. As no heating system is simulated in these zones,
they are not controlled by the optimisation and their temperatures have
been excluded from the average temperature calculation. To generate
the training data, the EnergyPlus model was run ten times each with a
different heating set point schedule. These set point schedules were
generated by adding random numbers from a normalised distribution to
the original, baseline heating set point temperature schedule. The aim
of this methodology was to adequately cover the potential search space
with little manual intervention that could be applied to other buildings
in the future. A separate simulation using 2017 weather data and a
different set point schedule was carried out to produce the testing data
by which the ANN prediction performance could be measured.

The inputs and ANN architecture were selected using the same
methods described in Section 3.4 and will not be repeated here for the
sake of brevity. The resulting models receive the predicted outdoor
temperature, solar irradiance, hour, day type, occupancy, the tem-
perature set point and the indoor temperature at the previous hour as
inputs. Each ANN has 2 hidden layers with 15 neurons in each layer, the
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training function is Levenberg-Marquardt and the transfer function
between each layer is the ‘tansig’ function. One ANN outputs the pre-
dicted hourly energy consumption, the other predicts the hourly
average indoor temperature. All of these variables, except the previous
hour indoor temperature, are retrieved for the next 24 h. In the case of
the previous indoor temperature input, the first value can be retrieved
from the building BMS system. The first hour inputs are passed to the
ANN which predicts the indoor temperature at time t. This predicted
value of indoor temperature is then used as the input to predict the
indoor temperature at time ¢t + 1 and so on until the complete 24-h
profile has been predicted. This full range of inputs is then used to
predict the 24-h profile of the energy consumption.

The ANN developed using this method and implemented through
the rest of this paper have a high accuracy to predict office energy
consumption and average indoor temperature. For energy consumption,
an R? value of 0.9712 and 0.9561 is achieved for training and testing
data respectively. For temperature prediction, an R® of 0.9805 and
0.9679 has been achieved for training and testing data respectively. The
relatively modest fall between training and testing shows no obvious
signs of overfitting. A two-week sample of the ANN prediction com-
pared to the target values is shown in Fig. 7. This figure demonstrates
the ANN has effectively learned the trends within the training data and
can effectively model the building characteristics.

5.2. Optimisation methodology

To include building level demand control alongside district level
supply optimisation a number of adaptations need to be made to the GA
procedure outlined in Section 4. The complete optimisation procedure
is shown in Algorithm 2. The decision variable matrix now contains 96
values, 24 relating to the percentage load of the CHP, HP and the
thermal storage, as well as 24 related to the heating set point tem-
perature of the office. The procedure requires an additional step com-
pared to the supply side optimisation. Firstly, the additional variables
such as the forecast weather conditions, time, date, occupancy and
energy tariffs are retrieved. Then the day-long, hourly load predictions
of the solar panels and the heat demand of the four non-directly con-
trolled buildings are made using the various ANN described previously.
The GA parameters are provided, and the GA is initialised.

Algorithm 2. Procedure to integrate building and district-level
optimisation
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Input : Weather, ¢, Day, Tariffs, S; 1, T},
Output: L{HP [HP [GB 2P
fort =t to t.,q do
fort =ttot+23 do
Predict: Q", Q7°", Q{'*", Q{'*', ETV ;
end
Run GA;
while GA state = Running do
for All Individuals do
Predict: Q"¢ and T} ;
Sum predicted demand Q7! ;
Calculate Fitness, f;
end
end

Input 7;” to BCVTB to calculate actual Q2"

if Predicted Q7o' £ Actual Q7' then
| Run Error Manager Algorithm ;

end

t=t+1

end

& T} ;

// Using ANN Models in Section 3.4

// Using ANN Models in Section 5.1

// Using Algorithm 1

// As Described in Section 4.5

5.2.1. Fitness function

Within the fitness function, the initial stage retrieves the in-
dividual’s heating set point schedule, T*?, and from this determines the
24-h indoor temperature, T, and energy consumption profile Q2¢, To
ensure occupant comfort is met, any solution which leads to an hour
where the indoor temperature is below 19.5°C or above 24 °C is dis-
couraged. This is done through penalising the individual by overriding
that hour’s energy consumption to 10,000 kWh. This penalty is very
harsh and is intended to ensure that all solutions that breach the
comfort bounds are discarded through the GA process. Note that the
comfort bounds of 19.5 °C and 24 °C could be altered depending on user
preference and the specific building in question. Once the adjusted
energy consumption profile has been calculated it is added to the pre-
dicted demand of the other four buildings and the remainder of the
fitness function is identical to that explained in Section 4.3 and shown
in Algorithm 1.

5.2.2. Constraint handling, bounds and GA settings

When optimising both building demand and district supply, the GA
parameter settings have remained the same as that described in Section
4. The creation and mutation of the CHP, HP and thermal storage
variables is also identical. The set point temperature upper bound is

Initialisation Stage Optimisation Stage

held constant at 24 °C whereas the lower bound is 19.5 °C for the oc-
cupied hours (between 6 am and 10 pm) and 12 °C during the hours
outside this.

5.3. Real-time control adaptation

To demonstrate how the optimisation procedure would operate in
real-time, this study is using the Building Controls Virtual Test Bed
(BCVTB) [47]. BCVTB is a software designed to allow coupling between
simulation software such as EnergyPlus and external software such as
MATLAB. Each timestep of the optimisation is simulated to run on the
hour, every hour of the day. The optimisation is expected to complete
within 10 min. Once the optimisation is complete, the optimum set
point temperature at that timestep is passed, via BCVTB, to be im-
plemented in the EnergyPlus simulation model of the office building.
The simulation model is run for the remainder of that hour with the
optimal set point temperature until the next optimisation starts at the
beginning of the next hour. During this time, the EnergyPlus simulation
model has been recording the weighted average indoor temperature of
the office building. The hourly average temperature is passed to MA-
TLAB to be utilised in the next optimisation timestep. As well as the

Real-Time Control
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Fig. 8. Flowchart outlining the complete optimisation procedure incorporating control of energy supply, energy demand and error management.
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Fig. 9. Heat generation schedule for three sample test days showing: (a) baseline solution, (b) supply-side optimisation.
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Fig. 10. Baseline vs optimised results for the office building for three sample test days showing: (a) energy consumption, (b) indoor temperature.

average indoor temperature, the sum of the energy consumption over
that hour is also sent to MATLAB and combined with the actual energy
consumption of the other four buildings. This information is used by the
same error management algorithm described in Section 4.5. BCVTB is
used to recreate as close to real-world conditions as possible, but if
deployed on a real case study it would not be required. Instead, an
intermediary connection between the optimisation and the BMS would
be used as the BMS has the actuation and measurement capabilities
required by the proposed optimisation strategy. The complete optimi-
sation strategy including the management of energy supply and energy
demand via the controllable office building is illustrated in Fig. 8.

6. Results

The optimisation strategies described in Sections 4 and 5 were ap-
plied to the simulated case study district described in Section 2 over a
winter test week from the 8th to the 13th of February 2016 (note that
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Sunday is not included as the office is unoccupied) using real weather
data for the city of Cardiff. To provide a comparison for both optimi-
sation strategies a baseline, reactive, rule-based, control strategy has
been developed. This strategy will not actively control the office
building demand or the thermal storage. Instead, it will follow a
priority order generation strategy. Firstly, the CHP will be used to
provide the base load as it is the least flexible generator. If demand is
greater than the CHP capacity then the HP will be used. If the heat load
exceeds this, then the gas boilers will be utilised to meet these peak
loads.

6.1. Supply-side optimisation

The behaviour of the supply-side optimisation in comparison to the
baseline solution is shown in Fig. 9. For clarity, only a sample 3 days of
results are shown and discussed, but the optimisation makes similar
decisions on all case study days. These results demonstrate a consistent
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Scenario Average Load/kW Electricity income/£ Electricity cost/£ Gas cost/£ RHI income/£
CHP HP GB
Baseline 207.00 371.01 299.58 75.38 0 1940.96 2227.83
Supply only 200.56 394.22 283.52 8.42 22.87 1861.12 2361.12
Supply and demand 204.14 397.31 278.09 48.87 7.54 1861.13 2375.03

Table 3
Summary of results for the test week.
Scenario Profit (£) Change in CO, Production Change in
profit (%) (kg) CO; (%)
Baseline 362.25 - 19437.05 -
Supply only 524.85 44.88 18708.67 -3.75
Supply and 553.96 52.92 18660.55 -3.99
demand

pattern, the optimisation chooses to charge the thermal storage during
the early hours, during the saddle point in the middle of the day, and
during the evening. The thermal storage energy is generally used to
displace the gas boiler generation as this the most costly form of heat
generation for the district. The result of the decisions taken by the
optimisation leads to an overall reduction in CHP and gas boiler output,
by 3.1% and 5.4% respectively, offset by a 6.3% increase in HP output.
These changes have a number of financial implications to the district. In
the baseline scenario the district buys no electricity from the national
grid, however in the optimised scenario, a modest total of 254 kWh is
required over the week. The optimised scenario also sells less electricity
back to the national grid, suggesting the optimisation balances the CHP
and PV electricity output and HP input as it is economically advanta-
geous to utilise electricity locally rather than sell to the national grid at
relatively low prices. The increased electricity costs in the optimised
scenario is outweighed by a significant increase in the income from the
government RHI incentive for the HP. Over the test week, the profit
generated whilst fulfilling the heat demands of the district is increased
from £362.25 to £524.85. As well as achieving an economic benefit the
optimisation has also resulted in an environmental benefit in terms of a
3.75% reduction in CO, emissions. These results show that in this
scenario the objective of minimising cost and reducing CO, emissions
are mutual as both objectives are achieved through reducing the gas
boiler usage with thermal energy storage scheduling. The average time
to complete an optimisation was 143 s per timestep using a 4-core, Intel
i7-6700 2.60 GHz, 16 GB RAM PC.

6.2. Combined supply and demand optimisation

The combined optimisation strategy described in Section 5 was run
for the same test week and is compared against both the baseline
strategy and the supply only optimisation. To understand the solution
generated by this optimisation strategy the energy consumption and
indoor temperature of the controlled office building is compared with
the baseline heating strategy in Fig. 10. The baseline heating set point
schedule uses the same schedule every day, maintaining a temperature
of 21 °C during occupied hours. The results demonstrate an attempt to
pre-heat in the early hours of the morning to reduce the morning peak
load. It maintains a lower setpoint temperature between 7 and 10 am
and then raises the temperature during the midday period where dis-
trict demand is lower. This is a cheaper time for the district to provide
heat and also reduces the afternoon energy peak.

Despite consuming similar amounts of energy during the displayed
day, the inclusion of the demand-side control has provided additional
flexibility to the optimisation. A detailed breakdown of the three
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scenarios is given in Table 2. The statistics contained in this table show
the average load from the three generation technologies over the course
of the week. In addition it shows the total costs of buying electricity and
gas over the test week and the income received from selling electricity
to the grid and the RHI from the heat pump. Evident from the results in
the table, both the supply only and supply and demand optimisations
reduce the amount of electricity sold to the grid and increase the
amount of electricity bought with respect to the baseline scenario. This
is reflected in the lower average CHP loads but offset by an increased
heat pump load. The use of the thermal storage allows a reduction in
the reliance on the gas boilers hence a reduction in total gas cost. The
increase in heat pump RHI income and the reduction in gas cost more
than offsets the loss of income from selling electricity to the grid at
relatively low prices. The differences between the supply only and the
supply and demand optimisation is a further decrease in gas boiler
usage, reduced electricity costs and greater electricity income. This is
achieved through the intelligent load shifting of the office building
heating consumption and the additional flexibility provided by directly
controlling the office.

A macro-level comparison of the overall net profit and the CO,
emissions associated with each scenario is shown in Table 3. Over the
course of the entire week, the additional flexibility provided by con-
trolling the combined supply and demand optimisation achieves a
52.92% increase in profit compared to the baseline control strategy
which is 8% higher than optimising just the energy supply. As well as
an increase in profit compared to the baseline and the supply only
optimisation, this strategy also results in the lowest CO, emissions of
the three scenarios. Once again the reduction in CO, emissions is lar-
gely as a result of reduced gas boiler consumption. The average time to
complete an optimisation was 145 s per timestep using a 4-core, Intel
i7-6700 2.60 GHz, 16 GB RAM PC which is well below the foreseen
10 min limit.

7. Discussion

The outcomes shown in Section 6 demonstrate that including
building level, demand-side flexibility at a district level, energy supply
optimisation problem can lead to increased benefits to the district both
financially and environmentally. The combined supply and demand
optimisation outperforms the supply only optimisation by an additional
8% despite only being able to control a proportion of one out of five
buildings in the district. For an optimisation framework, like that de-
scribed in this paper, to be deployed on a real site, a wider management
and communication infrastructure would be required. The energy
management platform would have to integrate contextualised in-
formation from several external sources such as dynamic energy tariffs,
weather forecasting services, and sensor data from building manage-
ment systems (BMS) and generation units. Furthermore, the platform
would require several distinct modules including prediction, optimisa-
tion, time-series database store and connection with existing BMS for
data retrieval and actuation. The authors envisage that this would be
achieved within a semantically enriched environment whereby an un-
derpinning semantic model could describe the diverse components
within the district and their inter-relationships. This type of modelling
could lead the way for additional modules built on top of this
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architecture such as automatic feature extraction for prediction models
or automatic fault detection within critical systems. The contextual
nature of such an architecture could allow a scalable and robust system
that is more widely applicable to additional sites.

The case study results reflect the optimisation performance within
the specific context of this case study district. It is not possible to ex-
trapolate the performance of the optimisation to districts with a dif-
ferent energy configuration. However, in the authors’ opinion, an op-
timisation-based approach is significantly more flexible than static rules
implemented by a facility manager. Whereas it may take a human ex-
pert several months to adjust to new pricing tariffs or the addition of
new equipment, the optimisation can adjust immediately if appro-
priately programmed. Furthermore, the optimisation is free to assess
the feasibility of unintuitive solutions, for example the displayed results
show an increase in electricity purchased from the grid actually led to
an overall increase in profit. Nevertheless, future work will aim to
implement the control methodology on a wider range of scenarios with
different gas and electricity prices as well as additional energy con-
version technologies such as biomass, solar thermal, and power-to-gas.
The prediction of building energy demand has been achieved by run-
ning energy simulation models to build a bank of historical training
data. In practice, generating calibrated simulation models of buildings
may be prohibitive in terms of time, cost and expertise. A possible al-
ternative could be provided by ‘unsupervised’ learning. Essentially, this
is a form of machine learning where data is not labeled as inputs and
outputs, instead the algorithm assesses the entire dataset with the aim
of constructing it’s own relationships between different variables.
Developments in this field could reduce the modelling and training
barrier that is currently required for this work.

The case study district optimised in this study is a centralised dis-
trict where it is assumed the heat energy required by each building is
produced and distributed from a central energy centre where the
buildings have no alternate means of producing energy. It also assumes
the controller of the energy centre would have direct control over the
buildings within the district which may be the case for a single owner
business park, university or municipal centre. This has led to a cen-
tralised optimisation approach that is not necessarily adaptable to
districts with different ownership structures and also poses issues of
scalability if there are additional controllable generation sources or
more directly controllable buildings. Therefore, future work will aim to
develop a more decentralised optimisation framework where local,
building level optimisation would interact iteratively with a district
level supply optimisation. The district would effectively request de-
mand flexibility from buildings through a real time pricing mechanism
which would trigger a building level optimisation similar to that shown
in this study. The shifted load would lead to overall lower costs for the
district which could then pass on a proportion of the savings to the
building to reward the flexibility provided. These buildings are likely to
be ‘prosumers’ in the near future, and there could be scope for bi-di-
rectional energy transfer depending on the capability of the smart
building and the pricing incentives set by the district controller. A de-
centralised optimisation would be more scalable and appropriate to a
wider category of district energy system or microgrid.

This study has aimed to predict the key variables such as building
demand and PV generation without assuming known loads beforehand
at 100% accuracy. However, the input weather forecasts have been
assumed to be completely accurate. This was due to a lack of historical
record of weather forecasts alongside the actual measured weather data
that was available. The accuracy of short-term weather predictions is
generally very high and accessible from modern weather services
companies, therefore, an assessment of how weather forecasting errors
effect ANN prediction was considered beyond the scope of this study
but will be assessed during future work.
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8. Conclusion

This paper has illustrated the development of two optimisation
strategies for the management of a multi-vector energy network at a
district level. The first optimisation strategy optimises the generation of
heat to meet building demand at minimal cost. The second optimisation
strategy extends the first by also aiming to control the demand of the
office building by managing the heating set point temperature. Both
optimisation strategies use ANN to predict the building demand over
the next 24-h as well as solar PV generation. From this, a GA is used to
set the percentage output of the gas CHP, HP, and thermal storage. In
between timesteps a rule-based error management algorithm is used to
adjust the optimal solution based on the forecasting error between
predicted demand and actual demand with minimal impact on the
optimised schedule. The optimisation is run in a sliding window MPC
fashion whereby it re-optimises every hour with a 24-h time horizon to
allow quick reaction to unforeseen circumstances or forecasting errors.
The outcomes of the control strategy were:

e Supply-side only optimisation strategy increased profit by 44.88%
over the baseline by using thermal storage to shift load away from
high cost periods.

e Combined supply and demand optimisation strategy increased profit
by 52.92% compared to the baseline by utilising the thermal de-
mand and flexibility of the office building.

® Both strategies decreased the CO, emissions by around 4% com-
pared to the baseline due to decreased consumption by the gas
boilers.

Future work will aim to decrease the timestep from 1h to 30 or
15min. This will likely make the optimisation more realistic as the
variations in hourly load are not currently considered in this work. The
authors will also aim to assess the benefits of using more advanced
machine learning models compared to the back-propagation ANN used
in this work. Recent advances in deep learning models and ensemble-
based algorithms could improve the prediction accuracy and hence
improve the optimisation. Future work will also aim to deploy this
optimisation methodology at real pilot sites to assess the impact of the
modelling assumptions and simplifications.
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