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Field cancerisation was originally described as a basis for multiple head and neck
squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is
frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work
on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+
hair follicle junctional zone keratinocyte stem cell population as the basis for field
cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells
in order to establish persistent infection and induce their proliferation and displacement
resulting in field cancerisation. By review of the HPV literature, we reveal how this
mechanism is conserved as the basis of field cancerisation across many tissues. New
insights have identified the capacity for HPV early region genes to dysregulate adult
tissue stem cell self-renewal pathways ensuring that the expanded population preserve
its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire
additional transforming mutations that can give rise to intraepithelial neoplasia (IEN),
from environmental factors such as sunlight or tobacco induced mutations in skin and
oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with
loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven
carcinomas.
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INTRODUCTION

Human papillomavirus (HPV) infection is associated with oropharyngeal and anogenital cancers
in both men and women. Approximately 90% of all cervical cancers are attributed to high-risk
alpha-genus HPV (α-HPV) infections, also∼60% of squamous cell carcinomas (SCC) of the vulva,
vagina, anus and penis are due to infection of α-HPV (Crow, 2012). HPV infection is considered
to be responsible for the rise in head and neck squamous cell carcinoma (HNSCC), particularly in
cancers of the oropharynx and base of tongue (Marur et al., 2010; Leemans et al., 2011). Cutaneous
HPVs, which are clustered in the evolutionarily distinct β-genus, have been also associated with the
development of cutaneous SCC, especially in the immunosuppressed setting (Howley and Pfister,
2015; Quint et al., 2015).
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Sequential genetic and epigenetic changes occur over
several years and provide the transformational basis for both
intraepithelial neoplasia (IEN) and ensuing epithelial cancers
(carcinoma). The proportion of transformed cells within IEN
can be graded and used to define the risk of invasive disease
(FIGO Committee on Gynecologic Oncology, 2014). Progression
to invasive carcinoma from IEN can take many years and there is
often evidence of IEN at the excised tumor margins (Mao et al.,
1996; Scholes et al., 1998).

As an entity, carcinoma account for over 70% of all
malignancies and over 70% of all cancer mortality (Cancer
Research UK, 20171), hence the American Association for Cancer
Research Task Force on the treatment and prevention of IEN
recognizes the importance of early treatment to prevent invasive
disease (O’Shaughnessy et al., 2002). Intriguingly, IEN can
spontaneously regress. Although more often, IEN will progress
to invasive malignancies (Dakubo et al., 2007). In epithelia
susceptible to HPV infection, HPV early genes can cause IEN,
notably E6 and E7 expression, and is therefore a mechanistic link
to cancer, as such it represents a target for cancer prevention and
is therefore the basis of this review.

FIELD CANCERISATION

Field cancerization, as a concept, was coined by Slaughter et al.
(1953) to explain the occurrence of multiple foci of HNSCC.
In all 783 HNSCC cases studied, the authors noted IEN at the
peripheral margins of the resected primary malignancy. Where
the tumor depth was less than 1 cm, they identified a second
primary SCC focus in 43 of 88 cases. It is now clear that
establishment of a premalignant epithelium, field cancerisation,
is the basis for HNSCC, skin and cervical SCC.

Within field cancerisation, cells harbor a substantial number
of mutations including those within known tumor suppressor
genes, most frequently within the p53 gene (Bartkova et al.,
1995; Ortiz et al., 2001; van Houten et al., 2002; Elgazzar et al.,
2005; Merrick et al., 2006; Hu et al., 2012). In many tissues,
the presence of mutant p53 clones is widely accepted as the
hallmark of field cancerisation (Figure 1) (El-Naggar et al.,
1995; Franklin et al., 1997). However, in cervical IEN, p53
is less frequently mutated (Akasofu and Oda, 1995). Within
the early stage of field cancerisation there are multiple clones,
but with increasing dysplasia severe field cancerisation becomes
monoclonal (Figure 2) (Chung et al., 1995; Enomoto et al., 1997;
Tate et al., 1997). Therefore, field cancerisation at its outset is
polyclonal, implying that multiple cell lineages contribute to its
occurrence as observed in active HPV infection.

Increasing mutational burden and greater dysplasia result
in clonal selection, with a tendency toward mono-clonality
(Figure 2). Clonal selection and expansion may result in a
single clone in continuous epithelia (skin, oral and cervical
tissues) or multiple clones in discontinuous epithelia (breast
and lung) (Prevo et al., 1999; Simon et al., 2001; Larson et al.,
2002; Tabor et al., 2002; Smeds et al., 2005). Within continuous

1http://www.cancerresearchuk.org/health-professional/cancer-statistics/
incidence/common-cancers-compared

FIGURE 1 | HPV infection induced stem cell expansion. Latent HPV infection
persists within epithelial stem cells and, in the case of β-HPV, within hair
follicle keratinocyte stem cells; characterized herein by the presence of viral
episomes (blue circles). Active replication, as occurs after immunosuppression
or trauma, results in proliferation of stem cells beyond the niche; in the case of
the skin into the interfollicular epidermis (IFE). Expansion and displacement of
keratinocyte stem cells into the IFE renders them susceptible to UV induced
transformation, resulting in field cancerisation. The archetypal initial lesion is
clonal p53 mutation expression, within actinic keratoses (red cells).

epithelia, wherein HPV infection occurs, field cancerisation
and ensuing cancers exhibit common epigenetic gene silencing,
chromosomal anomalies, loss of heterozygosity, single nucleotide
polymorphism, mutations, changes in mitochondrial genome,
and altered gene expression (transcripts and proteins) (Ha et al.,
2002; Tabor et al., 2004; Shen et al., 2005; Sui et al., 2006). Hence,
severe IEN (part of the field cancerisation spectrum) that gives
rise to multiple cancer, has limited numbers of clones.

The ensuing SCC that arise within continuous stratified
squamous epithelia are clonal with respect to the underlying field
cancerisation and severe IEN (Figure 2) (Sheu et al., 1995; Kim
et al., 1996; Enomoto et al., 1997; Tate et al., 1997). However, the
proliferative explosion of SCC cells results in multiple evolving
clones, from acquisition of new mutations, which similarly
undergo Darwinian evolutionary selection (McGranahan and
Swanton, 2017). As a consequence, tumors arising from within
IEN are genetically distinct (Nakashima et al., 1995; Shinmura
et al., 1998). Hence, Darwinian evolutionary clonal selection
determines the loss of clones in field cancerisation and
determines the size of multiple clones within the emerging SCC.

HPV INFECTION AND STEM CELL
EXPANSION

Human papillomavirus (HPV) binds epithelial cell heparan
sulfate proteoglycans and cell specific receptors to gain entry
by both clathrin-dependent and -independent endocytosis
(McMillan et al., 1999; Day et al., 2003; Shafti-Keramat et al.,
2003; Spoden et al., 2008; Schelhaas et al., 2012; Day and
Schelhaas, 2014). Infection leads to the establishment of the HPV
circular double-stranded genome as a stable episome within some
cells of the basal layer (Dell et al., 2003). In the case of alpha-HPV,
the viral genome can integrate into the host genome, whereas
for beta-HPV, the viral genome remains episomal (Quint et al.,
2015). Viral replication proteins E1 and E2 are required for the
maintenance of the viral genome in the basal layer (Frattini et al.,
1996; Stubenrauch et al., 1998; McBride, 2013). HPV infection
of epithelial basal cells may be non-selective and by chance may
involve adult tissue stem cells that reside in this layer.
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FIGURE 2 | Field cancerisation in the setting of HPV infection. The
progression from IEN to SCC formation is characterized by the clonal
selection, acquisition of mutations, and loss of HPV replication. Skin is used
here as a HPV susceptible tissue, as we have previously shown that clonal
expansion occurs from the hair follicle junctional zone. In mild IEN there are
many clones, which in the case of p53 mutation susceptible tissues, may
harbor individual distinct mutations as shown (circles with different colors).
Progression of IEN is characterized by the selection and expansion of
individual clones that have gained a proliferative advantage from additional
mutations, culminating in severe IEN with full thickness epidermal dysplasia
that is genetically uniform. With increasing mutational load, epidermal
dysplasia increases and HPV episomes are lost. In the case of β-HPV types,
the entire viral infection is lost, which accounts for the “hit and run”
mechanism of transformation. From within the severe IEN, foci of SCC
develop as shown, resulting in invasion into the underlying tissue.

Most HPV infections are spontaneously cleared. For example,
the risk of α-HPV female genital infection over a lifetime is
up to 80% (Syrjanen et al., 1990), but within 1–2 years most
individuals clear the virus (Rodríguez et al., 2008). Although HPV
may not specifically bind epithelial adult tissue stem cells for
infection, as discussed earlier, persistent and or latent infection
is presumed to involve epithelial adult tissue stem cells, but has
not been determined for all tissues as stem cell markers are
lacking (Schmitt et al., 1996; Boxman et al., 1997; Maglennon
et al., 2011; Kranjec and Doorbar, 2016). Notably, the proposed
reservoir for latent β-HPV infection has been the hair follicles
(Boxman et al., 1997; De Koning et al., 2007; Galloway and
Laimins, 2015; Quint et al., 2015; Hufbauer and Akgül, 2017;
Tommasino, 2017). Animal models substantiated these clinical
findings and moreover showed that the sub-populations of
infected hair follicle cells have increased clonogenic potential,
a hallmark of adult tissue stem cells (Schmitt et al., 1996;
Lanfredini et al., 2017). In the oncogenic β-HPV8 transgenic
mouse model we observed skin thickening (acanthosis), which
was evident from birth and attributable to an expansion of
the Lrig1 hair follicle adult tissue stem population (Lanfredini
et al., 2017). In the absence of overt cutaneous lesions, such as
papilloma or carcinoma, both unsorted and Lrig1+ keratinocytes
demonstrated increased colony forming efficiency (increased
clonogenicity) consistent with an expansion in keratinocyte stem
cell numbers. Similarly, earlier studies on the cottontail rabbit
model of HPV infection had also demonstrated the hair follicle
to be the site of persistent HPV infection and, through similar
colony forming assays, an expansion of the hair follicle junctional
zone keratinocyte stem cells was reported (Schmitt et al., 1996).
In these two studies, papilloma arose as a result of continued
keratinocyte stem cell expansion into the adjacent overlying

epidermis. For example, human benign cutaneous viral warts
similarly result from keratinocyte stem cells expansion (Egawa,
2003). It is possible that the immune privilege provided by the
stem cells niche prevents immune attack, thereby facilitating long
term infection.

HPV-INDUCED EPIDERMAL
PROLIFERATION

In cervical lesions caused by the α-HPVs, the viral oncogenes E6
and E7 increase proliferation of suprabasal epithelial cells. Along
with E1 and E2, viral replication requires E6 and E7 for entry
into S-phase. Upon leaving the basal layer, keratinocytes enter
into a program of terminal differentiation in order to produce
a protective barrier. However, in HPV infection, suprabasal cells
continue to proliferate and are prevented from entering terminal
differentiation (Sherman et al., 1997; Doorbar, 2006). Oncogenic
viruses, including HPV, deregulate cell growth by disruption
of pRb (retinoblastoma protein) binding to the E2F family of
transcription factors though E7 binding pRb. Host p21 and p27
cyclin-dependent kinase inhibitors moderate the ability of E7 to
drive cell proliferation in some cells (Doorbar, 2006; Tomaić,
2016). Inactive complexes with E7 and cyclin E occur within
differentiating keratinocytes that express high levels of p21 and
p27 (Noya et al., 2001; Akgül et al., 2006). In synchrony, high-
risk α-HPV E6 prevent growth arrest or apoptosis by binding
to p53, thus leading to p53 ubiquitination and degradation.
In benign infections, proliferating cells remain in the epithelial
basal layer, including within the hair follicle. As the infected
cell enters the suprabasal cell layers of the epidermis, virus
production is switched on resulting in viron assembly (Peh et al.,
2002).

HPV INFECTION INDUCES STEM CELL
EXPANSION AND SELF-RENEWAL
PATHWAYS

Fluorescent labeling studies in mice using lineage tracing
have concluded that stem cell division is prominently (∼90%)
asymmetric; in which there is renewal of the stem cell and
a daughter cell that is committed to terminal differentiation
(Clayton et al., 2007; Doupé et al., 2012). Stochastic cell division
in basal cells, including stem cells, can lead to HPV infection
clearance. Mathematical modeling together with epidemiological
data suggests that natural stem cell dynamics contributes >80%
toward viral clearance rather than rejection by the immune
system (Ryser et al., 2015). Thus, factors that promote adult tissue
stem cell symmetrical cell division resulting in an increase in
stem cell numbers may perpetuate infection accounting for the
correlation between the increased risk of persistent infections
associated cervical cancer and long-term use of combined oral
contraceptives (Muñoz et al., 2006). This may also explain the
basis for why trauma, ultraviolet light and repetitive exposure to
the virus are essential in maintaining site-specific HPV infection
(Kranjec and Doorbar, 2016).
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Adult tissue stem cell expansion, as proposed for the
mechanism of HPV-induced field cancerisation, is dependent on
symmetrical division of existing stem cells. As discussed, HPV
viral oncogenes will drive proliferation of infected adult tissue
stem cells by targeting p53 or pRb. Importantly, the binding of
E7 to pRb releases repression of both sex determining region
Y-box 2 (Sox2) and octamer-binding transcription factor 4 (Oct4)
(Kareta et al., 2015). Similarly, α-HPV E6 mediated degradation
of p53 results increased Nanog expression, which is normally
transcriptionally repressed by p53 (Lin et al., 2005). Thus, HPV
early region genes promote self-renewal pathways.

In addition, high-risk α-HPV E7 induces expression of the key
transcription factor Oct4 and also directly to enhance activation
of its target genes (Brehm et al., 1997, 1999; Organista-Nava
et al., 2016). Another key transcription factor, Kruppel-like factor
4 (Klf4), is also upregulated and hypoSUMOylated by high
risk α-HPV E6 (Gunasekharan et al., 2016). Simultaneously,
β-HPV E6 blocks differentiation by inhibition of C/EBPα, Notch
signaling and Hes1 upregulation (Tyagi et al., 2016; Kranjec et al.,
2017; Marthaler et al., 2017; Meyers et al., 2017). β-HPV E6
specifically binds to a cellular target MAML1, resulting in the
inhibition of Notch-mediated transcription, which is important
to keep infected keratinocytes in a proliferative state (Meyers
et al., 2017). α-HPV E7 also prevents histone3 Lysine27 (H3K27)
trimethylation and therefore maintains adult tissue stem cells in
a permissive epigenetic state (McLaughlin-Drubin et al., 2011).
Thus, HPV causes proliferation of adult tissue stem cells and
maintains stemness of these cells as they egress from the stem
cell niche, consistent with expression of stem cell proteins and
observations in vitro of increased colony forming efficiency
(Hufbauer et al., 2013; Lindquist et al., 2014).

TRANSITION FROM HPV-INDUCED
STEM CELL EXPANSION TO IEN

The earliest evolution of HPV-induced stem cell expansion into
visible lesions is the presence of dysregulated stratification within
the epidermis, resulting in benign keratoses (the archetypal
lesion in epidermodysplasia verruciformis) or cutaneous
warts. Similarly, mucosal HPV lesions include condyloma or
leukoplakia within the genitalia and oral mucosa (Cubie, 2013).
In addition, persistent infections with high-risk HPV types
simultaneously trigger neoplastic change (Rodríguez et al., 2010).

The transition from benign to premalignant lesion has been
characterized by TP53 immunostaining, resulting from mutation
acquisition, and manifesting as a small micro-clonal expansion
comprising of 60–3000 cells presenting clinically as an actinic
(solar) keratosis or leukoplakia (Jonasson et al., 1996; Ren et al.,
1966; Ponten et al., 1997; Waridel et al., 1997; Garcia et al.,
1999; van Houten et al., 2002). In the skin, these p53 micro-
clonal patches were larger and more frequent in sun-exposed
than sun-shielded areas, suggesting that mutations arise from
UV. In addition, HPV is able to inhibit DNA repair through
E6 protein expression, facilitating acquisition of p53 mutations
(Wallace et al., 2012; Hufbauer et al., 2015; McKinney et al., 2015).
Gain-of-function p53 mutation acquisition results in persistence

of the protein within cells to promote transformation (Caulin
et al., 2007).

Progression of field cancerisation toward severe IEN is
associated with loss of the viral episome. In HPV infection,
such as benign warts, epithelial proliferating cells remain in
the basal layers, with genome amplification and virion assembly
occurring within the suprabasal cell layers (Peh et al., 2002;
Middleton et al., 2003). In the case of the high-risk HPV
types the relative thickness of the basal layers is increased,
presumably due to expansion in the number of adult tissue
stem cells. Progression to IEN is characterized by a loss of
terminal differentiation and therefore the expression of viral
coat proteins is retarded (Figure 2) (Middleton et al., 2003).
For example in cervical IEN, increasing dysplasia is associated
with reduced virion production and loss of viral episomes.
This phenomenon is even more evident in the case of skin
infection by β-HPV types, which do not integrate into the host
genome, and do not maintain viral DNA in the late stages
of skin cancer progression. For example, SCC that develop
within HPV associated Organ Transplant Recipient (OTR) field
cancerisation no longer express β-HPV proteins (Borgogna
et al., 2014) Similarly, HPV expression was lost during actinic
keratosis transformation to SCC in a nude mouse xenograft
model (Borgogna et al., 2018). Hence, the progression to cancer
from IEN occurs independent of virus production, and for the
beta genotypes in the skin, this is referred to as the “hit and run”
mechanism of carcinogenesis (Howley and Pfister, 2015; Quint
et al., 2015).

Field cancerisation emerging from HPV induced
amplification of adult tissue stem cells results from additional
environmental induced mutations. The area of IEN can be
large, in the oral cavity it can be over 7 cm in diameter and is
predisposed to multiple primary HNSCC and therefore poor
prognosis (Tabor et al., 2002, 2004; Baxi et al., 2014). Intriguingly,
HPV associated HNSCC demonstrate a favorable response to
chemotherapy (Hayes et al., 2015; Vokes et al., 2015). Likewise,
HPV and non-HPV vulvar SCC have distinct mutational profiles
and moreover multiple primaries developing from within HPV
IEN demonstrate separate clonal basis (Rosenthal et al., 2002;
Hampl et al., 2007). Hence, HPV-induced adult tissue stem cell
expansion risks the generation of IEN that in turn is predisposed
to further transformation resulting in multiple primary tumors.

HPV INFECTION DRIVEN CANCER STEM
CELLS

Many cancers exhibit hierarchical growth with evidence of
differentiation consistent with the cancer stem cell model
(Colmont et al., 2012). Wherein a subset of cancer cells,
called “cancer stem cells”, which continue to exhibit stem cell
characteristic, serve to promote tumor growth through self-
renewal with symmetric and asymmetric cell division (Patel
et al., 2012; Colmont et al., 2013). There is evidence of
active self-renewal in HPV-induced female genital tract cancers,
cervical and vulval cancers, which characteristically express
the stem cell transcription factors Sox 2, Oct4, and Hes1
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(Brustmann and Brunner, 2013; Kim et al., 2015; Napoletano
et al., 2016; Gut et al., 2018). In cervical cancer, HPV gene E6 can
enhance self-renewal associated hedgehog transcription factor
Gli1 expression and therefore increase cancer stem cell numbers
(Vishnoi et al., 2016).

Head and neck squamous cell carcinoma (HNSCC)
identification and characterisation of cancer stem cells has
been supported by in vitro and in vivo assays (Prince et al.,
2007). Similar to HPV-induced female genital tract cancers,
the self-renewal associated transcription factor Sox2 was found
expressed in HPV associated HNSCC, resulting from HPV E6/7
associated PI3K-AKT pathway activation (Keysar et al., 2016; Xi
et al., 2016). The ensuing HPV-associated HNSCC retain cancer
stem cell markers, CD44, CD24, ALHD1, and functional side
population characteristics (Tang et al., 2013; Lindquist et al.,
2014; Pullos et al., 2015). Overall, HPV associated HNSCC has
favorable outcome compared to non-HPV associated HNSCC,
and intriguingly this has been attributed to reduced cancer stem
cell frequency in HPV HNSCC (Rietbergen et al., 2014; Vlashi
et al., 2016). High numbers of cancer stem cells in HNSCC,
irrespective of HPV status, is associated with poor outcome
and lack of response to both radiotherapy and chemotherapy
(Linge et al., 2016; Modur et al., 2016). Hence, the role of HPV to
cause both normal stem cell and cancer stem cell expansion, may
establish the basis for cancer stem cell driven tumor growth and
influence cancer outcome.

CONCLUSION

This review has focused on HPV infection, notably oncogenic
genotypes from both the alpha and beta genus. Within the tropic
tissue that was breached to allow viral entry, persistent infection
requires that resident adult tissue stem cells are infected. HPV-
infected adult tissue stem cells, similar to other HPV-infected

cells are forced to proliferate, leading to their expansion as
adult tissue stem cells beyond their native niche. This expansion
renders them susceptible to environmental carcinogens. In the
case of skin, β-HPV genotypes induce hair follicle junctional
zone keratinocyte stem cells to proliferate and expand into the
overlying epidermis, whereupon they are susceptible to UV-
induced mutations. Transformational mutations result in field
cancerisation, with additional driver mutations, causing clonal
selection as IEN progresses from mild to severe. Additional
mutations then can give rise to multiple cancers. Hence, HPV-
induced stem cell expansion predisposes to and, through viral
oncogene expression, induces the generation of cancer stem
cells, which in turn can define the fate of tumor and patient
prognosis. Hence, we propose that the ability of oncogenic HPV
infection to manipulate adult tissue stem cells underpin its
ability to drive cancer growth through promotion of cancer stem
cells.
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