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Abstract

The rumen microbiome is fundamental for the productivity and health of dairy cattle and diet

is known to influence the rumen microbiota composition. In this study, grape-pomace, a nat-

ural source of polyphenols, and copper sulfate were provided as feed supplementation in 15

Holstein-Friesian calves, including 5 controls. After 75 days of supplementation, genomic

DNA was extracted from the rumen liquor and prepared for 16S rRNA-gene sequencing to

characterize the composition of the rumen microbiota. From this, the rumen metagenome

was predicted to obtain the associated gene functions and metabolic pathways in a cost-

effective manner. Results showed that feed supplementations did alter the rumen micro-

biome of calves. Copper and grape-pomace increased the diversity of the rumen microbiota:

the Shannon’s and Fisher’s alpha indices were significantly different across groups (p-val-

ues 0.045 and 0.039), and Bray-Curtis distances could separate grape-pomace calves from

the other two groups. Differentially abundant taxa were identified: in particular, an uncultured

Bacteroidales UCG-001 genus and OTUs from genus Sarcina were the most differentially

abundant in pomace-supplemented calves compared to controls (p-values 0.003 and

0.0002, respectively). Enriched taxonomies such as Ruminiclostridium and Eubacterium

sp., whose functions are related to degradation of the grape- pomace constituents (e.g. fla-

vonoids or xyloglucan) have been described (p-values 0.027/0.028 and 0.040/0.022 in Pom-

ace vs Copper and Controls, respectively). The most abundant predicted metagenomic

genes belonged to the arginine and proline metabolism and the two- component (sensor/

responder) regulatory system, which were increased in the supplemented groups. Interest-

ingly, the lipopolysaccharide biosynthetic pathway was decreased in the two supplemented

groups, possibly as a result of antimicrobial effects. Methanogenic taxa also responded to

the feed supplementation, and methane metabolism in the rumen was the second most dif-

ferent pathway (up-regulated by feed supplementations) between experimental groups.
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Introduction

The rumen microbiota is a preeminent microbial community in the gastrointestinal tract of

ruminants. This finely regulated ecosystem is what makes it possible for ruminants to digest

fibrous plant material (inedible for other livestock), use it as source of energy and other metab-

olites, and transform it into high-quality food. In dairy cattle, the rumen microbiome plays a

key role in milk production [1], well-being and health of the animals [2, 3]. The development

of culture-independent high-throughput next-generation sequencing techniques provids a

breakthrough in the characterization and analysis of microbiomes [4], with the rumen micro-

biome being no exception [5]. In particular, 16S rRNA gene sequencing [6] is a powerful tech-

nique to identify and quantify (in relative terms) the taxonomic composition of the rumen

microbial population [7]. From metataxonomics results, the associated metagenome and

related metabolic functions can be predicted, based on relative abundances and using a data-

base of microbial genes functional annotations [8, 9]. The variability of the rumen microbiota

across animals and over time has been investigated in a number of studies e.g. [10–13]. The

diet is known to alter the composition of the rumen microbiota [14, 15]. Specific feed supple-

ments have been the object of experimental trials on the rumen microbiome: these include

canola [16], probiotic bacteria [17], organic acids [18, 19]. Mostly, feed supplementations had

the objective of counteracting the effects of the high-energy diets typical of dairy cows on the

rumen pH, the composition of the rumen microbiota, and the health of the animals. Grape-

pomace is the solid residue from grape processing for wine production. It has high content of

tannins and polyphenols e.g. [20, 21], which are known to exert an antioxidant activity and

were previously shown to reduce rumen methane emissions in late-lactation dairy cows milk-

fat yield [22]. Coppers is an essential trace element in the diet of livestock, and was shown to

alter the gastrointestinal microbial composition of lactating cows [23]. It is therefore of interest

to further investigate the role of these two feed supplements on the rumen microbiome com-

position and function.

In this study, we supplemented the daily ration of Holstein calves with either copper or

grape-pomace. A metataxonomic approach was adopted, based on the sequencing of the 16S

ribosomal RNA gene. The rumen microbiome of calves has been characterized, and differ-

ences arising as a consequence of dietary supplementations (copper, pomace) explored. Fur-

thermore, from the quantification of taxonomic relative abundances, the rumen metagenome

has been reconstructed, and its functional profile predicted. In this paper, we adhered to the

terminology for microbiome research proposed by Marchesi and Ravel [24]: microbiota is the

collection of microorganisms in the rumen, metataxonomics their characterization through

16S rRNA gene sequencing, and microbiome is the combination of the microbiota, their

genes, functions and surrounding habitat. This is the first work to specifically look at the effect

of copper and grape-pomace feed supplementation on the rumen microbiota composition and

function, and one of the few reports so far on predictive microbiome profiling in cattle. Grape-

pomace is a byproduct of wine processing, and its use to feed livestock illustrates a potential

application of circular economy to the agri-food industry.

Materials and methods

Animals and experimental treatments

The research work presented here was carried out within the framework of the project

VINCARN (“Miglioramento delle carni bovine, suine e avicole attraverso l’utilizzo di sottopro-

dotti della filiera enologica per fini mangimistici”) approved by “Direzione Politiche Agricole

e di Sviluppo Rurale” (Directorate of Agriculture) of Regione Abruzzo on 13/08/2014
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(determination DH26/40, n. Prot. RA 218995). This research used animals and data from com-

mercial farms which were handled following the national legislation on animal welfare (DL n.

126, 07/07/2011, EC Directive 2008/119/EC), and then slaughtered complying with the EU

Regulation 1099/2009 on the protection of animals at the time of killing.

Fifteen Holstein-Friesian male calves were used in this study. All calves came from the same

dairy herd in central Italy (Casoli, CH, Abruzzo), and were included in the experiment at the

same time, when they were approximately 7 months old. The average starting weight of the

calves was 263 ± 21kg (259 ± 26, 268 ± 17 and 257 ± 21 in the control, grape-pomace and cop-

per groups respectively). Before the supplementation experiment, all calves received a standard

basal diet, which consisted of mainly alfalfa haylage plus a custom-formulated concentrate

(detailed composition in S1 Table) that was offered to the animals ad libitum. From the begin-

ning of the experiment through its completion (75 days), calves received a standard finishing

diet (detailed composition in S2 Table) plus: i) nothing (control group); ii) a 10% DM (Dry

Matter) red grape-pomace supplementation (pomace-group); iii) 3g/100 L of copper supple-

mentation as cupric sulphate in drinking water (copper-group). Details from the feedstuff

analysis of the custom-formulated concentrate and finishing diet are reported in S1 and S2

Tables. The three groups had equal size, consisting of five calves each. After 75 days of dietary

supplementation, calves were slaughtered, at average age 259 ± 2 days (approximately 8.5

months) and average weight 345 ± 26 kg, 350 ± 22 kg and 332± 20 kg in the control, pomace

and copper groups. The rumen liquor was sampled upon slaughtering in the premises of the

abattoir. Following Niu et al. (2016), 500 mL of rumen samples (consisting in a mixture of liq-

uid and solid fractions) from the dorsal, central and ventral region of the rumen of each animal

were collected, pooled and filtered through four layers of cheesecloth, and then collected in 50

mL tubes and stored at -20 Celsius degrees until DNA extraction. Rumen liquor was sampled

within 60-90 minutes from slaughtering. The handling of the animals was carried out follow-

ing EU and national legislation on animal welfare (EU directive 2008/119/EC; DL n. 126, 07/

07/2011; EU Regulation 1099/2009).

DNA extraction and 16S rRNA-gene sequencing

Frozen rumen fluid samples were thawed at room temperature. Five ml of rumen fluid were

centrifuged at 15,000 × g and the supernatant was removed. The DNA was extracted from pel-

lets as previously described [25]. Briefly, bacterial cells were lysed by bead-beating in the pres-

ence of 4% (w/v) sodium dodecyl sulfate (SDS), 500 mM NaCl, and 50 mM EDTA. Impurities

were removed by precipitation with ammonium acetate, and the nucleic acids were recovered

by precipitation with isopropanol. Metagenomic DNA was then purified via sequential diges-

tions with RNase and proteinase K, followed by the use of QIAamp DNA Stool MiniKit col-

umns (Qiagen). The integrity and the concentration of gDNA were verified using a 2200

TapeStation Genomic Screen Tape device (Agilent, Santa Clara, CA, USA) and Qubit (Life

Technologies). Libraries for metataxonomics were prepared according to the Illumina 16S-

metagenomic library-prep-guide using v3 Reagents kit and the NexteraXT indices kit (Illu-

mina, San Diego). Briefly, genomic DNA was normalized to 5 ng/μL, and 2.5 μL were used for

library preparation using primers for the V3-V4 regions of the 16S rRNA-gene [6]. Libraries

size and quality were evaluated with the Agilent TapeStation 2200 and quantified on Qubit

(Life Technologies), and were diluted to 10 pM in hybridization buffer (HT1) for the cluster

generation on the Miseq. In order to reduce unbalanced and biased base compositions, 10% of

PhiX control library was spiked into the amplicon pool. Libraries were sequenced on the

Miseq using a 2x300 paired-end sequencing module (Illumina, San Diego). Sequencing was

carried out in the facilities of PTP Science Park (www.ptp.it).

Calves’ rumen microbiota and feed supplements

PLOS ONE | https://doi.org/10.1371/journal.pone.0205670 November 29, 2018 3 / 20

http://www.ptp.it
https://doi.org/10.1371/journal.pone.0205670


Bioinformatics processing

Demultiplexed paired-end reads from 16S rRNA-gene sequencing were first checked for qual-

ity using FastQC [26] for an initial assessment. Forward and reverse paired-end reads were

joined into single reads using the C++ program SeqPrep [27]. After joining, reads were filtered

for quality based on: i) maximum three consecutive low-quality base calls (Phred< 19)

allowed; ii) fraction of consecutive high-quality base calls (Phred > 19) in a read over total read

length� 0.75; iii) no “N”-labeled bases (missing/uncalled) allowed. Reads that did not match

all the above criteria were filtered out. All remaining reads were combined in a single FASTA

file for the identification and quantification of OTUs (operational taxonomic units). Reads

were aligned against the SILVA closed reference sequence collection release 123, with 97% clus-

ter identity [28, 29], applying the Cd-hit clustering algorithm [30]. A pre-defined taxonomy

map of reference sequences to taxonomies was then used for taxonomic identification along

the main taxa ranks down to the genus level (domain, phylum, class, order, family, genus). By

counting the abundance of each OTU, the OTU table was created and then grouped at each

phylogenetic level. OTUs with total counts lower than 15 in fewer than 2 samples were filtered

out. All of the above steps, except the FastQC reads quality check, were performed with the

QIIME open-source bioinformatics pipeline for microbiome analysis [31]. The command lines

and parameters used to process 16S rRNA-gene sequence data are detailed in S1 Appendix.

Alpha and beta diversity indices

The rumen microbial diversity was assessed within- (alpha diversity) and across- (beta diver-

sity) samples. All indices (alpha and beta diversity) were estimated from the complete OTU

table (at the OTU level), filtered for OTUs with more than 15 total counts distributed in at

least two samples. Besides the number of observed OTUs directly counted from the OTU

table, within-sample microbial richness, diversity and evenness were estimated using the fol-

lowing indices: Chao1 and ACE (Abundance-based coverage Estimator) for richness, Shan-

non, Simpson and Fisher’s alpha for diversity [32–37], Simpson E and Pielou’s J (Shannon’s

evenness) for evenness [38]. The across-sample rumen microbiota diversity was quantified by

calculating Bray-Curtis dissimilarities [39]. Prior to the calculation of the Bray-Curtis dissimi-

larities, OTU counts were normalized for uneven sequencing depth by cumulative sum scaling

(CSS, [40]. Among groups (copper, grape-pomace, control) and pairwise Bray-Curtis dissimi-

larities were evaluated non-parametrically using the permutational analysis of variance

approach (999 permutations; [41]). Details on the calculation of the mentioned alpha- and

beta-diversity indices are reported in S2 Appendix.

Metagenome prediction and functional profiling

From the taxonomic composition of the rumen microbiota it is possible to predict its functional

profile, using a database of precomputed reference genomic profiles. An approach based on

nearest neighbor identification with a minimum sequence similarity was used to link 16S rRNA-

gene sequences and functional annotations of prokaryotic genomes [8], as implemented in the

Tax4Fun R package [42] coupled with the SILVA reference sequence collection. From the pre-

dicted metagenome gene ontologies and metabolic pathways were obtained based on the Kyoto

Encylopedia of Genes and Genomes (KEGG) reference database of genome annotations [43].

Software

Reads from 16S rRNA-gene sequencing were processed with the QIIME pipeline [31], used

also to estimate most diversity indices. The ACE index and sample-base rarefaction were
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estimated using own Python (https://github.com/filippob/Rare-OTUs-ACE.git) and R (https://

github.com/filippob/sampleBasedRarefaction) scripts. The prediction of the metagenome

from metataxonomy and the functional profiling of the rumen microbiome were carried out

using the Tax4Fun R package [42]. Plots were generated using the ggplot2 R package [44].

Additional data handling was performed with the R environment for statistical computing

[45].

Results

Sequencing metrics, rarefaction and taxonomy description

Sequencing the V3-V4 regions of the bacterial 16S rRNA gene produced a total of 8 393 698

reads (joined R1-R2 paired-end reads). After quality filtering, 2 772 892 sequences were

removed, leaving 5 620 806 sequences for subsequent analyses (67% average retention rate,

maximum 70%, minimum 60%). S3 Table reports reports the number of sequences before and

after quality filtering using two quality thresholds: Phred > 3 (the default in the Qiime pipe-

line) and Phred > 19 (the threshold recommended by the Qiime manual and that was used in

this work). A major difference in the number of sequences removed based on the quality score

can be seen: 187 174 vs 2 772 892. However, the number of sequences retained after OTU pick-

ing (and successive filter on number of counts) is rather similar (4 141 362 vs 4 058 283): this

indicates the robustness of the closed-reference OTU picking approach. On average, there

were 475 652 (±236 180) sequences per sample in the control group, 339 125 (±169 147) in the

copper-receiving group and 309383 (±159 021) in the pomace group. The initial number of

OTUs identified was 13 257; after pruning out OTUs with less than 15 counts in at least 2 sam-

ples, 3 691 distinct OTUs were left. To check whether sequencing depth and sample size were

adequate to characterize the composition of the rumen microbiota, sequence-based and sam-

ple-based rarefaction curves were generated from the OTU table before pruning (13257

OTUs). Sequence-based rarefaction curves were obtained from the QIIME pipeline [31]; the

sample-based rarefaction curve was produced with ad hoc R functions (see: https://github.

com/filippob/sampleBasedRarefaction). The observed number of OTUs detected was plotted

as a function of the number of reads (up to 100 000) in each sample, and of the number of sam-

ples (Fig 1). Both curves tend to plateau asymptotically towards a maximum, indicating that

sequencing depth and the number of samples were adequate to characterize the rumen micro-

biota in the present study. Deeper sequencing or the addition of any other samples would

likely not increase significantly the number of new OTUs potentially discovered.

OTUs were grouped taxonomically from the phylum to genus level (phylum, class, order,

family, genus). The 3691 OTUs with more than 15 counts across samples clustered into 19

phyla, 39 classes, 60 orders, 94 families and 302 genera (see Table 1). The Bacteroidetes and

Firmicutes phyla were the most abundant, representing respectively 75.7% (76.2%, 73.8%,

77.1%) and 20.0% (19.9%, 20.9%, 19.1%) of the total rumen microbiota (between brackets the

proportions in the control, copper and grape-pomace groups). They were followed, at large

distance, by Spirochaetes (1.27%: 1.50%/1.59%/0.73%), Proteobacteria (1.14%: 0.89%/1.39%/

1.12%) and the phylum Saccharibacteria (0.42%: 0.23%/0.51%/0.52%). At deeper taxonomic

levels, the rumen microbiota seemed to be dominated by few taxa: the orders Bacteroidales

(75.3%: 75.9%/73.3%/76.7%) and Clostridiales (15.9%: 16.7%/15.9%/15.3%), the families Pre-

votellaceae (43.4%: 44.6%/39.8%/45.8%) and Rikenellaceae (14.4%: 9.45%/15.4%/18.4%), the

genera Prevotella (44.6%: 44.6%/39.8%/45.8%) and Rikenellaceae RC9 gut group (13.7%:

8.90%/14.5%/17.6%). Fig 2 shows the pie chart of relative abundances of phyla in the three

groups. Differences between groups in their rumen taxonomic composition (based on normal-

ized counts) have been observed at the genus level (Table 2 with genera comparisons; Fig 3

Calves’ rumen microbiota and feed supplements
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with differences between groups in terms of relative abundances). Copper supplementation

resulted in three differentially abundant taxa compared to controls, which comprised counts

of the Bacteroidales S24-7 group (p-value = 0.03), Planctomycetaceae p-1088-a5 gut group

(p-value = 0.022) and Azospira (p-value = 0.023). Out of ten genera differentially abundant,

counts of Bacteroidales UCG-001 uncultured bacterium (p-value = 0.003) and of Sarcina
(p-value = 0.000) were the most differentially abundant in the grape-pomace supplemented

rumen compared to controls. Both supplementations shown a difference in the abundance of

the Planctomycetaceae p-1088-a5 gut group counts compared to controls (p-value = 0.022 and

Fig 1. Rarefaction curves. Sequence-based (left) and sample-based (right) rarefaction curves for the sampled rumen microbiotas.

Number of detected OTUs on the y-axis; number of sequences (left) and of samples (right) on the x-axis.

https://doi.org/10.1371/journal.pone.0205670.g001

Table 1. Summary of identified taxonomies and estimated alpha diversity indices in the rumen microbiota of dairy calves from three experimental groups. P-values

for among-group differences from analysis of variance.

taxa control copper pomace total p-value

phylum 13 13 11 19 0.898

class 23 22 21 39 0.947

order 26 28 25 60 0.991

family 42 46 44 94 0.939

genus 130 142 129 302 0.905

observed_otus 2341.80 2369.40 2481.40 0.699

chao1 2648.84 2744.75 2829.40 0.409

ACE 2661.13 2739.26 2850.21 0.407

simpson 0.92 0.95 0.97 0.097

shannon 6.09 6.67 7.07 0.045

fisher_alpha 347.62 370.88 397.50 0.039

equitability 0.55 0.60 0.63 0.083

simpson_e 0.01 0.01 0.01 0.209

Results based on the 3691 distinct OTUs retrieved from the SILVA reference database release 123. ACE: Abundance-based Coverage Estimator; Equitability: Shannon

evenness; Simpson_e: Simpson evenness. �: p-values < 0.1 and ��: p-values< 0.05.

https://doi.org/10.1371/journal.pone.0205670.t001
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p-value = 0.039, respectively). Four genera, all belonging to the phylum Firmicutes, were dif-

ferentially abundant between grape-pomace and copper supplementations.

Diversity indices

The estimated alpha diversity indices for describing the richness, diversity and evenness of the

rumen microbiota in the three experimental groups are reported in Table 1. The richness esti-

mators Chao1 and ACE did not show differences among groups, as well as the average number

of observed OTUs, and the evenness estimator Simpson_e. A mildly significant difference was

observed in the equitability index as a measure of evenness of the microbial communities (p-

value < 0.10). On the contrary, the diversity indices Shannon (p-value < 0.05) and Fisher’s

alpha (p − value< 0.05) showed a significant difference among groups. The rumen microbiota

of grape pomace-fed calves had higher diversity compared to copper-fed calves (intermediate

Fig 2. Relative abundances. Pie-chart of relative abundances for the phyla identified in the 15 calves rumen samples,

grouped by dietary supplementation.

https://doi.org/10.1371/journal.pone.0205670.g002
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Table 2. Comparison of CSS-normalized OTU counts among groups, at the genus taxonomic level.

Comparison Taxonomy p-value SEM

Control vs. Copper Bacteroidales S24-7 group;uncultured rumen bacterium 0.033 0.858

Planctomycetaceae; p-1088-a5 gut group 0.022 0.005

Azospira 0.023 0.000

Control vs. Pomace Bacteroidales RF16 group;uncultured rumen bacterium 0.040 0.800

Bacteroidales UCG-001;uncultured bacterium 0.003 0.034

Sarcina 0.000 0.001

Eubacterium 0.022 0.001

Ruminiclostridium 6 0.040 0.060

Ruminiclostridium 9 0.040 0.022

Planctomycetaceae;p-1088-a5 gut group 0.039 0.005

Phyllobacterium 0.019 0.001

Succinivibrio 0.011 0.004

Pseudomonas 0.019 0.003

Pomace vs. Copper Eubacterium 0.028 0.001

Clostridiales; Family XIII UCG-002 0.016 0.005

Lachnospiraceae;[Eubacterium] ruminantium group 0.015 0.076

Ruminiclostridium 6 0.027 0.032

CSS: cumulative sum-scaling; SEM: standard error of the mean

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ

s2
2

n2

q� �

https://doi.org/10.1371/journal.pone.0205670.t002

Fig 3. Bar-chart of the 14 genera with significant differential abundance in pairwise comparisons. Genera relative abundances in each group –control, copper,

pomace– are reported, and the complete taxonomy of each genus is described.

https://doi.org/10.1371/journal.pone.0205670.g003

Calves’ rumen microbiota and feed supplements

PLOS ONE | https://doi.org/10.1371/journal.pone.0205670 November 29, 2018 8 / 20

https://doi.org/10.1371/journal.pone.0205670.t002
https://doi.org/10.1371/journal.pone.0205670.g003
https://doi.org/10.1371/journal.pone.0205670


alpha diversity) and controls. The Bray-Curtis dissimilarity index was estimated from OTU

counts to measure diversity across samples (beta diversity). The first two dimensions from the

non-metric multidimensional scaling of the Bray-Curtis dissimilarity matrix (Fig 4) reveals a

slightly significant different distance between the three groups (p-value = 0.053, from 999 per-

mutations of the analysis of variance). In particular, a significant difference of the ruminal bac-

terial communities organization has been observed between supplementations (p-value =

0.035), but not between each supplementations and control (p-value > 0.05).

Predictive functional profiling of the rumen microbiota

From the predicted metagenome, 6449 ortholog genes, involved in 280 metabolic pathways

were retrieved. The most abundant genes were the iron-complex outer-membrane receptor

protein, the bacterial ATP-binding cassette (ABC transporter), and the hydrophobic/amphi-

philic exporter-1 (Table 3). Fig 5 reports the most represented (average relative abundance

>1% across samples) metabolic pathways for each calf; pathways are ordered by decreasing

relative abundance (from bottom to top). The top three pathways include ABC transporters

(across-membrane cellular transportation of substrates), the two-component (sensor/

responder) regulatory system, and purine metabolism. For each metabolic pathway and ortho-

log gene, the coefficient of variation of relative abundance across groups (control, copper,

Fig 4. First two dimensions from the (non-metric) multi-dimensional scaling of the Bray-Curtis dissimilarity

matrix. Samples were grouped by experimental unit. PERMANOVA amongst all groups p = 0.053 (using 999

permutations); pairwise PERMANOVA: copper-pomace p = 0.035; copper-control and pomace-control p-

value> 0.05.

https://doi.org/10.1371/journal.pone.0205670.g004

Table 3. Top 10 (most abundant) genes and pathways from metagenome prediction in the 15 calves samples.

KeggID gene name KeggID pathway

K02014 iron complex outermembrane recepter protein KO02010 ABC transporters

K06147 ATP-binding cassette, subfamily B, bacterial KO02020 Two-component system

K03296 hydrophobic/amphiphilic exporter-1 (mainly G- bacteria), HAE1 family KO00230 Purine metabolism

K05349 beta-glucosidase [EC:3.2.1.21] KO00970 Aminoacyl-tRNA biosynthesis

K01190 beta-galactosidase [EC:3.2.1.23] KO00240 Pyrimidine metabolism

K03701 excinuclease ABC subunit A KO00500 Starch and sucrose metabolism

K02004 putative ABC transport system permease protein KO00520 Amino sugar and nucleotide sugar metabolism

K03406 methyl-accepting chemotaxis protein KO03010 Ribosome

K03088 RNA polymerase sigma-70 factor, ECF subfamily KO00051 Fructose and mannose metabolism

K03737 putative pyruvate-flavodoxin oxidoreductase [EC:1.2.7.-] KO00550 Peptidoglycan biosynthesis

https://doi.org/10.1371/journal.pone.0205670.t003
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pomace) was calculated. The metabolic pathways and genes with the largest (top 10) and small-

est (bottom 10) variation among groups are listed in Fig 6: the most variable genes and path-

ways include, respectively: the methyl-accepting chemotaxis protein, the putative ABC

transport system permease protein and the dipeptidyl-peptidase 4; arginine and proline

metabolism, the two-component (sensor/responder) regulatory system, and methane

metabolism.

Discussion

The characterization of the rumen microbiota and its functional profile from 15 calves fed

different dietary supplementations has been presented here. The sequencing of the V3-V4 vari-

able regions of the rRNA gene (16S subunit) appeared to be adequate as shown by the asymp-

totic plateauing of both sequence- and sample-based rarefaction curves (Fig 1). The sensitivity

analysis of sequence quality filtering (comparisons of Phred quality score thresholds: Phred >

3 vs Phred > 19) indicated an overall robustness of results from the closed-reference OTU

picking approach; however, a stricter quality filtering (Phred> 19) is likely to remove most

poor quality sequences and, consequently, most spurious OTUs.

Overall, the prevailing bacterial phyla were Bacteroidetes and Firmicutes, distantly followed

by Spirochaetes and Proteobacteria: this is a common finding from the cattle rumen micro-

biota as reviewed by Morgavi et al. [2] and reported in more recent research results [19, 46]; it

is also in line with the age development of rumen microbial communities in calves, which fea-

ture decreasing Proteobacteria and simultaneously increasing Bacteroidetes and Firmicutes

from birth to weaning [11]. The most abundant genera, Prevotella spp and Rikenellaceae RC9
gut group spp varied substantially across samples (coefficient of variation 40.5% and 96.6%

Fig 5. KEGG metabolic pathways identified from the predicted metagenome for each sample (calf). Only pathways with average relative abundance> 1% across

samples were included.

https://doi.org/10.1371/journal.pone.0205670.g005
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respectively), though no significant difference between groups were observed (p-value > 0.60

in both cases).

Effect of feed supplementation

The main objective of the experiment was to investigate differences in the rumen microbiota

arising as a consequence of different dietary supplementations: the addition of either the

mineral micro-element copper or grape-pomace to the feed ration was compared to unsupple-

mented control animals. Previous works have looked at the effect of different feed supplemen-

tations on the rumen microbiome in dairy cattle. Golder et al. [16] found that the addition of

canola meal to the ration clearly differentiated the rumen microbiota from that of control ani-

mals. De Nardi et al. [19] found higher microbial richness and diversity (Fisher’s alpha index)

when supplementing the ration with dicarboxylic acids or polyphenols. In goats, rhubarb

(Rheum officinale) root meal supplementation was reported to increase the richness of the

rumen microbiota (Chao1 index, [47]). Here, we found that microbial richness in the rumen

was barely affected by supplementations (slightly more richness with grape-pomace, no effect

of copper); on the other hand, microbial diversity (Shannon and Fisher’s alpha indices) clearly

increased with copper and, mainly, grape-pomace supplementation. Between-sample distances

based on the rumen microbiota composition revealed that the grape-pomace group appeared

to be relatively clearly separated from the control and copper groups, which conversely over-

lapped substantially. Moate and collaborators reported a rumen microbiota shift in dried

Fig 6. Differential ortholog genes and metabolic pathways. Most (top, red) and least (bottom, blue) different (measured as across-group coefficient of variation)

ortholog genes (left) and metabolic pathways (right) among the three experimental groups.

https://doi.org/10.1371/journal.pone.0205670.g006
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grape marc or ensiled grape marc supplemented cows compared to control diet, with no differ-

ences reported between the type of supplementation [22]. However, they did not report taxo-

nomic differences from such supplementations trial, as they used the terminal restriction

fragment (T-RF) length polymorphism for characterizing bacterial and archaeal (amongst

other) community structures [48].

When looking at specific taxa (Table 1), unclassified genera from the Bacteroidales S24-7
and RF16 groups were enriched in the microbiota of copper and grape-pomace supplemented

calves, respectively. De Nardi et al. [19] found an enrichment of the order Bacteroidales in the

rumen of polyphenol-supplemented dairy heifers. Recently, Popova and colleagues [49]

observed a reduction in unclassified Bacteroidales S24-7 genera in the rumen of young Charo-

lais bulls receiving a linseed plus nitrate supplementation. OTUs from genus Ruminiclostri-
dium 6 and Eubacterium were more abundant in the rumen of grape-pomace supplemented

calves compared to copper supplementation and controls. Ruminiclostridium cellulyticum has

the ability to degrade branched plant polysaccharide such as xyloglucan [50], which actually is

present in the grape-pomace cell wall [51]. Resulting oligosaccharides were shown to be

imported in the cytoplasm through the ATP-binding cassette (ABC) transporter, to be further

sequentially degraded into a final product of glucose and glucose-1-phosphate [50]. Eubacte-
rium sp. Were shown to degrade flavonoids in human and rat feces [52]. Kasparkova et al. [53]

reported a negative correlation between ruminal Eubacteriaceae counts and levels of the isofla-

vone-extract daidzein, following the administration of isoflavone-rich feed in lactating cows.

The Firmicutes:Bacteroidetes ratio in the gut microbiota is known to play a role in adipo-

genesis: Jami et al [1] observed a strong positive correlation between this ratio and milk-fat

yield. In studies on obesity in mice and humans, it has been related to higher blood and tissue

fat [54, 55]. The role of adipogenesis in the autoimmune Graves’ orbitopathy has been estab-

lished [56], and the relationship between the gut microbiome and fat metabolism in this dis-

ease is object of current research (EU “Indigo” project: www.indigo-iapp.eu/). In the present

study, the Firmicutes to Bacteroidetes ratio was 0.28 in controls, 0.31 in copper-supplemented

calves, and 0.25 in grape-pomace-supplemented calves. The difference is small, but appears to

point to a possible reduction in the ratio between Firmicutes and Bacteroidetes induced by the

supplementation with grape-pomace.

From the metagenome prediction, the majority of genes belonged to membrane transport,

carbohydrate metabolism and replication and repair functions. Similar results were obtained

from a previous report on the functional analysis of the rumen microbiota in dairy cattle [46].

Across experimental groups, the most differentially abundant genes and pathways -with a coef-

ficient of variation� 9% were: the methyl-accepting chemotaxis protein involved in bacterial

motility; the enzyme dipeptidyl-peptidase 4 involved in protein digestion and absorption; the

ABC membrane transport system permease protein, member of a superfamily of transmem-

brane proteins present in all extant phyla, from prokaryotes to mammals; and the arginine and

proline metabolism (higher in the grape-pomace group, followed by the copper and control

groups, see Fig 7). The two-component system -a signal transduction systems that enables bac-

teria to sense, respond, and adapt to changes in their environment- was more abundant in the

copper-supplemented group. Interestingly, the long-chain acyl-CoA synthetase gene, which

plays a role in the lipid metabolism, and the lipopolysaccharide biosynthesis metabolic path-

way were found to be under-represented in the copper and grape-pomace groups: this finding

is consistent with the lower Firmicutes:Bacteroidetes ratio, and may contribute to explain why

the latter is associated with the down-regulation of the fat metabolism. Additionally, a reduc-

tion in the lipopolysaccharide (LPS) biosynthetic pathway may be related to a reduced growth

of possible pathogenic bacteria for humans (e.g. Salmonella, Escherichia coli), as a consequence

of the antimicrobial activity of the supplementations, as suggested also by De-Nardi [19]. A
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reduction in Enterobacteriaceae (including Salmonella, Shigella, E.coli) after grape-pomace

supplementation has been described in lamb fecal samples [57].

Overall, grape-pomace supplementation appeared to induce a larger effect than copper sup-

plementation on the rumen microbiome, in terms of both alpha- and beta-diversity indices,

number of differentially abundant taxa, and functional profile.

Methods for functional profiling of the microbiome

The possibility of predicting the metagenome and associated functional annotations from

16S rRNA gene sequencing data is a major breakthrough in the analysis of microbial

Fig 7. Most variable metabolic pathways among experimental groups. Relative abundances on the y-axis.

https://doi.org/10.1371/journal.pone.0205670.g007
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communities. Deep shotgun metagenomics sequencing is the current golden standard to pre-

cisely characterize communities’ metagenomes [58], especially to detect rare organisms and

genes; however, this approach is often prohibitively expensive, and sometimes challenging to

analyse: therefore, metagenome prediction offer a valid cost-effective alternative for the func-

tional profiling of microbiotas. Aßhauer and Meinicke [8] proposed a method to predict

functional profiles from 16S rRNA data, and implemented it into the R package “Tax4Fun”

[42]. This method and its implementation are based on the SILVA rRNA reference database

[28]. In parallel, an alternative method -named PICRUSt (Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States)- for the predictive functional profil-

ing of microbial communities from 16S rRNA marker gene data has been developed and

implemented in a Python package [9]. PICRUSt is based on the Greengenes 16S rRNA

sequence database [59].

Such a technique has been recently applied also in the description of the functional role of

the rumen and cecal microbiota of Charolais bulls, which were found to be highly similar [49].

In this work, the approach based on Tax4Fun and SILVA was used to predict the metagenome

from metataxonomy, and results have been presented. Alongside, data were re-analysed also

using PICRUSt plus the Greengenes database, and results from the two pipelines were com-

pared. From the Tax4Fun-SILVA pipeline 6449 unique KEGG items (ortholog genes and path-

ways) were retrieved; from PiCrust-Greengenes the number of retrieved unique items was

6909. Across the two sets of results, 5983 items were in common (92.8% relative to the Tax4-

Fun-SILVA pipeline), indicating that the two approaches yielded very similar results. This

gives robustness to the presented functional profiles of the rumen microbiota in calves, and

contributes to increase confidence in the gene functional analysis based on metagenome

prediction.

Methanogenic taxa

Dietary treatments are known to exert an effect on rumen methane production and to alter the

composition of the rumen microbiota (see Negussie et al. [60] for a review—S1 Table). Many

methanogens are known to belong to the Archaea domain [61]. We found a small proportion

of Archaeal taxonomies described from the V3-V4 primers, and calculated the Pearson corre-

lation between rumen bacteria and Archaea counts in the three experimental groups. This

correlation was positive in the control (0.648) and copper (0.672) groups (the more the bacte-

ria, the more the archaea), but negative in the grape-pomace group (-0.231: the larger the bac-

teria counts, the fewer the archaea). Specific methanogenic taxa (taken from a review by Tapio

et al. [62]) like those belonging to the phylum Euryarchaeota, which included methanogens

genera such as Methanomicrococcus and Methanosphaera, have been identified and quantified

(Table 4). Results were somewhat ambiguous: although the minimum count was mostly

observed in the grape-pomace (11 out of 18 times) and, secondarily, the copper (9 out of 18

times) groups, sometimes the control group had the minimum methanogens counts (3 out 18

times). It should be emphasized, though, that Archaea were scarcely represented in the

sequenced reads, accounting for only 64 out of the 13258 detected OTUs, and we resorted to

the unfiltered OTU table to present these results; this was probably due to the choice of the

V3-V4 primers used, not specifically designed to target Archaea. In no case was the difference

among groups statistically significant. Methane metabolism was the second most different

metabolic pathway across experimental groups (coefficient of variation * 6%): this pathway

was overrepresented in the grape-pomace and copper groups, relative to controls. Summariz-

ing, feed supplementations, especially grape-pomace, appear to have an influence on methano-

genic rumen microbial taxa (in line with findings by Moate et al [22]); however, it is not clear
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in which direction, since mixed results were obtained from different analyses (Archaea-bacte-

ria correlations, specific methanogenic taxa, pathway analysis).

Conclusions

The sequencing of the 16S rRNA marker gene constitutes an extraordinary advancement in

the genetic analysis of microbial communities. Coupling metataxonomics with metagenome

prediction gives insights into the genes and metabolic pathways associated with a microbiome,

and is a very powerful technique for the functional profiling of microbial communities. Here,

it was applied to the profiling of the rumen microbiome in dairy calves fed differentially sup-

plemented diets. Copper and grape-pomace feed supplementations appeared to alter the

rumen microbiome, both in terms of species diversity and gene functions. Results were in line

with previous findings in both ruminal, human and murine microbiota. The addition of

grape-pomace, in particular, seemed to modify the rumen microbial population, with an

apparent effect also on methanogenic bacteria and methane metabolism in the rumen. It needs

be emphasized though, that Archaea and methanogenic taxa were not specifically targeted by

the sequencing approach employed in this study, and results should therefore be considered as

indicative.

Overall, although from a small-scale experiment, the results presented here offer an inter-

esting characterization of the rumen microbiota in dairy calves and the effects that copper and

grape-pomace feed supplementation may exert. Grape-pomace, in particular, is a common

byproduct from wine processing, and knowledge of its effects on the rumen microbiome will

be helpful in assessing its potential as feedstuff for livestock. Using local industrial byproducts

as animal feed constitutes a nice example of circular economy applied to the agri-food indus-

try. Further experiments are however needed to confirm the neutral-to-positive effects of

grape-pomace on the bovine rumen microbiome.

Supporting information

S1 Table. Custom-formulated concentrate. Ingredients and nutrient composition of the cus-

tom-formulated concentrate, which was fed to all calves prior to the feed supplementation

experiment.

(PDF)

S2 Table. Finishing diets. Ingredients and nutrient composition of the finishing diets fed to

the three experimental groups (control, grape pomace and copper supplementation).

(PDF)

S3 Table. Sequencing metrics. Number of 16S rRNA gene sequences retained after successive

steps of the bioinformatics processing and filtering: comparison between two quality filtering

thresholds (Phred>3, default in the Qiime pipeline; Phred>19, threshold used in this study).

(PDF)

S1 Appendix. Metataxonomics pipeline command lines. Specific command lines used in the

Qiime bioinformatics pipeline to process 16S rRNA-gene sequencing data.

(PDF)

S2 Appendix. Alpha- and beta-diversity indices. Break out of the calculations involved in the

estimation of the alpha- and beta-diversity indices used in this study.

(PDF)

Calves’ rumen microbiota and feed supplements

PLOS ONE | https://doi.org/10.1371/journal.pone.0205670 November 29, 2018 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205670.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205670.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205670.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205670.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205670.s005
https://doi.org/10.1371/journal.pone.0205670


Acknowledgments

This work is part of the project VINCARN “Miglioramento delle carni bovine, suine e avicole

attraverso l’utilizzo di sottoprodotti della filiera enologica per fini mangimistici” supported by

a grant from the Rural Development Plan 2007–2013—MISURA 1.2.4—Regione Abruzzo—

Italy (Project manager Prof. Giuseppe Martino). The authors are grateful to the company

“Mario Maesa”, Casoli (CH), Italy, for the kind cooperation. The work of FB and G. Masetti

was supported by the EU- FP7 project INDIGO, in the framework of People Marie Skło-

dowska-Curie Actions, Marie Curie Industry-Academia Partnerships and Pathways (grant

agreement number: 612116).

Author Contributions

Conceptualization: Lisa Grotta, Angelo Cichelli, Giuseppe Martino.

Data curation: Filippo Biscarini, Fiorentina Palazzo, Lisa Grotta.

Formal analysis: Filippo Biscarini, Giulia Masetti.

Funding acquisition: Giuseppe Martino.

Investigation: Federica Castellani, Giuseppe Martino.

Methodology: Filippo Biscarini, Fiorentina Palazzo, Giulia Masetti.

Project administration: Angelo Cichelli, Giuseppe Martino.

Resources: Fiorentina Palazzo, Federica Castellani, Lisa Grotta, Giuseppe Martino.

Software: Filippo Biscarini.

Supervision: Giuseppe Martino.

Writing – original draft: Filippo Biscarini, Fiorentina Palazzo.

Writing – review & editing: Filippo Biscarini, Fiorentina Palazzo, Federica Castellani, Giulia

Masetti, Angelo Cichelli, Giuseppe Martino.

References
1. Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composi-

tion and feed efficiency. PLoS ONE. 2014; 9(1):e85423. https://doi.org/10.1371/journal.pone.0085423

PMID: 24465556

2. Morgavi DP, Kelly WJ, Janssen PH, Attwood GT. Rumen microbial (meta)genomics and its application

to ruminant production. animal. 2013; 7(s1):184–201. https://doi.org/10.1017/S1751731112000419

PMID: 23031271

3. Khafipour E, Li S, Plaizier JC, Krause DO. Rumen microbiome composition determined using two

nutritional models of subacute ruminal acidosis. Applied and environmental microbiology. 2009;

75(22):7115–24. https://doi.org/10.1128/AEM.00739-09 PMID: 19783747

4. Morgan XC, Huttenhower C, Butler R, Choudhuri J, Chuang H. Chapter 12: Human Microbiome Analy-

sis. PLoS Computational Biology. 2012; 8(12):e1002808. https://doi.org/10.1371/journal.pcbi.1002808

PMID: 23300406

5. Chaucheyras-Durand F, Ossa F. Review: The rumen microbiome: Composition, abundance, diversity,

and new investigative tools. Professional Animal Scientist. 2014; 30(1):1–12. https://doi.org/10.15232/

S1080-7446(15)30076-0

6. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribo-

somal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.

Nucleic Acids Research. 2013; 41(1):e1. https://doi.org/10.1093/nar/gks808 PMID: 22933715

7. Joshua C McCann TAW, Loor JJ. High-throughput Methods Redefine the Rumen Microbiome and Its

Relationship with Nutrition and Metabolism. Bioinformatics and Biology Insights. 2014;(8):109–125.

https://doi.org/10.4137/BBI.S15389 PMID: 24940050

Calves’ rumen microbiota and feed supplements

PLOS ONE | https://doi.org/10.1371/journal.pone.0205670 November 29, 2018 17 / 20

https://doi.org/10.1371/journal.pone.0085423
http://www.ncbi.nlm.nih.gov/pubmed/24465556
https://doi.org/10.1017/S1751731112000419
http://www.ncbi.nlm.nih.gov/pubmed/23031271
https://doi.org/10.1128/AEM.00739-09
http://www.ncbi.nlm.nih.gov/pubmed/19783747
https://doi.org/10.1371/journal.pcbi.1002808
http://www.ncbi.nlm.nih.gov/pubmed/23300406
https://doi.org/10.15232/S1080-7446(15)30076-0
https://doi.org/10.15232/S1080-7446(15)30076-0
https://doi.org/10.1093/nar/gks808
http://www.ncbi.nlm.nih.gov/pubmed/22933715
https://doi.org/10.4137/BBI.S15389
http://www.ncbi.nlm.nih.gov/pubmed/24940050
https://doi.org/10.1371/journal.pone.0205670


8. Aßhauer KP, Meinicke P. On the estimation of metabolic profiles in metagenomics; 2013. Available

from: http://drops.dagstuhl.de/opus/volltexte/2013/4238/.

9. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional

profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology.

2013; 31(9):814–821. https://doi.org/10.1038/nbt.2676 PMID: 23975157

10. Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals.

PloS one. 2012;. https://doi.org/10.1371/journal.pone.0033306

11. Jami E, Israel A, Kotser A, Mizrahi I. Exploring the bovine rumen bacterial community from birth to adult-

hood. The ISME journal. 2013; 7(6):1069–79. https://doi.org/10.1038/ismej.2013.2 PMID: 23426008

12. Kim M, Yu Z. Variations in 16S rRNA-based microbiome profiling between pyrosequencing runs and

between pyrosequencing facilities. Journal of Microbiology. 2014; 52(5):355–365. https://doi.org/10.

1007/s12275-014-3443-3

13. Lima FS, Oikonomou G, Lima SF, Bicalho MLS, Ganda EK, de Oliveira Filho JC, et al. Prepartum and

postpartum rumen fluid microbiomes: Characterization and correlation with production traits in dairy

cows. Applied and Environmental Microbiology. 2015; 81(4):1327–1337. https://doi.org/10.1128/AEM.

03138-14 PMID: 25501481

14. Petri RM, Schwaiger T, Penner GB, Beauchemin KA, Forster RJ, McKinnon JJ, et al. Characterization

of the Core Rumen Microbiome in Cattle during Transition from Forage to Concentrate as Well as during

and after an Acidotic Challenge. PLoS ONE. 2013; 8(12):e83424. https://doi.org/10.1371/journal.pone.

0083424 PMID: 24391765

15. Thoetkiattikul H, Mhuantong W, Laothanachareon T, Tangphatsornruang S, Pattarajinda V, Eurwilai-

chitr L, et al. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by

tagged 16S rRNA gene pyrosequencing. Current Microbiology. 2013; 67(2):130–137. https://doi.org/10.

1007/s00284-013-0336-3 PMID: 23471692

16. Golder HM, Denman SE, McSweeney C, Wales WJ, Auldist MJ, Wright MM, et al. Effects of partial

mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bac-

terial communities, and ruminal acidosis. Journal of dairy science. 2014; 97(9):5763–5785. https://doi.

org/10.3168/jds.2014-8049 PMID: 24997657

17. Long M, Feng WJ, Li P, Zhang Y, He RX, Yu LH, et al. Effects of the acid-tolerant engineered bacterial

strain Megasphaera elsdenii H6F32 on ruminal pH and the lactic acid concentration of simulated rumen

acidosis in vitro. Research in Veterinary Science. 2014; 96(1):28–29. https://doi.org/10.1016/j.rvsc.

2013.11.013 PMID: 24360648

18. Nisbet DJ, Callaway TR, Edrington TS, Anderson RC, Krueger N. Effects of the Dicarboxylic Acids

Malate and Fumarate on E. coli O157:H7 and Salmonella enterica Typhimurium Populations in Pure

Culture and in Mixed Ruminal Microorganism Fermentations. Current Microbiology. 2009; 58(5):488–

492. https://doi.org/10.1007/s00284-008-9351-1 PMID: 19194750

19. De Nardi R, Marchesini G, Li S, Khafipour E, Plaizier KJC, Gianesella M, et al. Metagenomic analysis of

rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or

polyphenols. BMC veterinary research. 2016; 12(1):29. https://doi.org/10.1186/s12917-016-0653-4

PMID: 26896166

20. Spanghero M, Salem AZM, Robinson PH. Chemical composition, including secondary metabolites, and

rumen fermentability of seeds and pulp of Californian (USA) and Italian grape pomaces. Animal Feed

Science and Technology. 2009; 152(3-4):243–255. https://doi.org/10.1016/j.anifeedsci.2009.04.015

21. Lu Y, Yeap Foo L. The polyphenol constituents of grape pomace. Food Chemistry. 1999; 65(1):1–8.

https://doi.org/10.1016/S0308-8146(98)00245-3

22. Moate PJ, Williams SRO, Torok VA, Hannah MC, Ribaux BE, Tavendale MH, et al. Grape marc reduces

methane emissions when fed to dairy cows. Journal of Dairy Science. 2014; 97(8):5073–5087. https://

doi.org/10.3168/jds.2013-7588 PMID: 24952778

23. Faulkner MJ, Wenner BA, Solden LM, Weiss WP. Source of supplemental dietary copper, zinc, and

manganese affects fecal microbial relative abundance in lactating dairy cows. Journal of Dairy Science.

2017; 100(2):1037–1044. https://doi.org/10.3168/jds.2016-11680 PMID: 27988129

24. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015; 3(1):31.

https://doi.org/10.1186/s40168-015-0094-5 PMID: 26229597

25. Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples.

BioTechniques. 2004; 36(5):808–812. https://doi.org/10.2144/04365ST04 PMID: 15152600

26. Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics.

2010;.

27. John JA. SeqPrep v1.1—Tool for stripping adaptors and/or merging paired reads with overlap into sin-

gle reads; 2011. Available from: https://github.com/jstjohn/SeqPrep.

Calves’ rumen microbiota and feed supplements

PLOS ONE | https://doi.org/10.1371/journal.pone.0205670 November 29, 2018 18 / 20

http://drops.dagstuhl.de/opus/volltexte/2013/4238/
https://doi.org/10.1038/nbt.2676
http://www.ncbi.nlm.nih.gov/pubmed/23975157
https://doi.org/10.1371/journal.pone.0033306
https://doi.org/10.1038/ismej.2013.2
http://www.ncbi.nlm.nih.gov/pubmed/23426008
https://doi.org/10.1007/s12275-014-3443-3
https://doi.org/10.1007/s12275-014-3443-3
https://doi.org/10.1128/AEM.03138-14
https://doi.org/10.1128/AEM.03138-14
http://www.ncbi.nlm.nih.gov/pubmed/25501481
https://doi.org/10.1371/journal.pone.0083424
https://doi.org/10.1371/journal.pone.0083424
http://www.ncbi.nlm.nih.gov/pubmed/24391765
https://doi.org/10.1007/s00284-013-0336-3
https://doi.org/10.1007/s00284-013-0336-3
http://www.ncbi.nlm.nih.gov/pubmed/23471692
https://doi.org/10.3168/jds.2014-8049
https://doi.org/10.3168/jds.2014-8049
http://www.ncbi.nlm.nih.gov/pubmed/24997657
https://doi.org/10.1016/j.rvsc.2013.11.013
https://doi.org/10.1016/j.rvsc.2013.11.013
http://www.ncbi.nlm.nih.gov/pubmed/24360648
https://doi.org/10.1007/s00284-008-9351-1
http://www.ncbi.nlm.nih.gov/pubmed/19194750
https://doi.org/10.1186/s12917-016-0653-4
http://www.ncbi.nlm.nih.gov/pubmed/26896166
https://doi.org/10.1016/j.anifeedsci.2009.04.015
https://doi.org/10.1016/S0308-8146(98)00245-3
https://doi.org/10.3168/jds.2013-7588
https://doi.org/10.3168/jds.2013-7588
http://www.ncbi.nlm.nih.gov/pubmed/24952778
https://doi.org/10.3168/jds.2016-11680
http://www.ncbi.nlm.nih.gov/pubmed/27988129
https://doi.org/10.1186/s40168-015-0094-5
http://www.ncbi.nlm.nih.gov/pubmed/26229597
https://doi.org/10.2144/04365ST04
http://www.ncbi.nlm.nih.gov/pubmed/15152600
https://github.com/jstjohn/SeqPrep
https://doi.org/10.1371/journal.pone.0205670


28. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J and Glöckner FO. The SILVA
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