
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/117342/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Liu, Han , Chen, Shyi-Ming and Cocea, Mihaela 2019. Heuristic target class selection for advancing
performance of coverage-based rule learning. Information Sciences 479 , pp. 164-179.

10.1016/j.ins.2018.12.001 

Publishers page: https://doi.org/10.1016/j.ins.2018.12.001 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Heuristic target class selection for advancing
performance of coverage-based rule learning

Han Liua, Shyi-Ming Chenb,∗, Mihaela Coceac

aSchool of Computer Science and Informatics, Cardiff University, Queen’s Buildings, 5 The
Parade, Cardiff, CF24 3AA, United Kingdom

bDepartment of Computer Science and Information Engineering, National Taiwan
University of Science and Technology, Taipei, Taiwan

cSchool of Computing, University of Portsmouth, Buckingham Building, Lion Terrace,
Portsmouth, PO1 3HE, United Kingdom

Abstract

Rule learning is a popular branch of machine learning, which can provide

accurate and interpretable classification results. In general, two main strategies

of rule learning are referred to as ‘divide and conquer’ and ‘separate and con-

quer’. Decision tree generation that follows the former strategy has a serious

drawback, which is known as the replicated sub-tree problem, resulting from the

constraint that all branches of a decision tree must have one or more common

attributes. The above problem is likely to result in high computational com-

plexity and the risk of overfitting, which leads to the necessity to develop rule

learning algorithms (e.g., Prism) that follow the separate and conquer strategy.

The replicated sub-tree problem can be effectively solved using the Prism algo-

rithm, but the trained models are still complex due to the need of training an

independent rule set for each selected target class. In order to reduce the risk

of overfitting and the model complexity, we propose in this paper a variant of

the Prism algorithm referred to as PrismCTC. The experimental results show

that the PrismCTC algorithm leads to advances in classification performance

and reduction of model complexity, in comparison with the C4.5 and Prism

algorithms.

∗Corresponding author
Email addresses: liuh48@cardiff.ac.uk (Han Liu), smchen@mail.ntust.edu.tw

(Shyi-Ming Chen), mihaela.cocea@port.ac.uk (Mihaela Cocea)

Preprint submitted to Elsevier December 3, 2018



Keywords: Machine learning, Rule based systems, Rule based classification,

Decision tree learning, Rule learning, Prism

1. Introduction

Rule learning is a popular form of machine learning approaches, which es-

sentially aims at production of rule based systems [32]. In general, rule learning

is undertaken through two well-known strategies, namely, ‘divide and conquer’

(DAC), and ‘separate and conquer’ (SAC). The DAC strategy is also known

as Top-Down Induction of Decision Trees (TDIDT), since this strategy aims at

generation of a decision tree that can be directly converted into a set of if-then

rules. For example, ID3 [41] and C4.5 [43] are commonly known algorithms of

TDIDT with high popularity in real-world applications. On the other hand, the

SAC strategy is also referred to as the covering approach, since this strategy

aims at learning a rule that covers some training instances that should then

be deleted before the learning of the next rule is initiated. The representative

of the covering approach is the Prism algorithm [5]. Due to the fact that the

DAC strategy produces rules that are automatically represented in the form of

a decision tree and rules in the form of ‘if-then’ can be directly generated from

training instances through the SAC strategy [26], thus the former strategy is

referred to as ‘decision tree learning’ and the latter strategy is referred to as

‘rule learning’ (in a narrow sense) in the rest of this paper.

The nature of decision tree learning leads to parallel growth of different

branches that can be converted into several rules, i.e., the DAC strategy enables

different rules to be learned in parallel. Since decision tree learning starts from

attribute selection for the root node, all rules must have this selected attribute

as the common attribute. The constraint on the common attribute is likely to

result in a decision tree containing redundant parts (i.e., the replicated sub-tree

problem) [5]. In this case, after the decision tree is transformed into a set of

rules, some of these rules would have redundant terms. In order to achieve

the elimination of replicated sub-trees, it has become necessary to develop rule

2



learning algorithms that follow the SAC strategy [18]. Although the use of the

Prism algorithm can effectively lead to the elimination of the model redundancy

(replicated sub-trees), the model trained by using this algorithm still shows high

complexity, i.e., the model consists of a large number of complex rules, because

of the nature of the Prism algorithm that training an independent set of rules

is required for each selected target class.

In this paper, we propose a new version of the Prism algorithm, which is

referred to as PrismCTC. The acronym ‘CTC’ stands for competitive target

class. The key feature of the proposed PrismCTC algorithm is the involvement

of a trained strategy of the selection of the target class ci for learning each rule

ri (that is added into the final rule set as the ith rule) through the competi-

tion among all classes c[t], whereas the Prism algorithm simply involves a fixed

strategy of the target class selection, i.e., each of the k classes in a data set is

selected as the target class for learning independently one of the k required sets

of rules. This paper has the following contributions:

• We propose a variant of the Prism algorithm, i.e., PrismCTC, which em-

ploys statistical measures as heuristics for target class selection in a trained

strategy.

• We compare the PrismCTC algorithm with the Prism and C4.5 algorithms

in terms of classification accuracy and model complexity. The experi-

mental results show that the PrismCTC algorithm leads to considerable

advances in classification accuracy compared with the C4.5 and Prism

algorithms.

• We analyze in depth the difference between Prism and PrismCTC in terms

of the impacts of their learning strategies on the model complexity. The ex-

perimental results prove that the PrismCTC algorithm involving a trained

strategy of the target class selection leads to reduction of the model com-

plexity, i.e., the PrismCTC algorithm produces a smaller number of sim-

pler rules, in comparison with both C4.5 and Prism.

3



The rest of this paper is organized as follows. In Section 2, we provide the

theoretical preliminaries on the essence of decision tree learning and rule learn-

ing. Several popular measures of rule quality are also introduced in this section.

In Section 3, we provide a review of related work on heuristic learning of decision

trees and if-then rules, and analyze in depth the advantages and disadvantages

of some popular algorithms. In Section 4, we give detailed description of the

procedure of the proposed PrismCTC algorithm, which is based on the heuristic

functions of several rule quality measures. In Section 5, we conduct experiments

to validate the proposed PrismCTC algorithm and show experimental results for

evaluation of the algorithm performance. In Section 6, this paper is concluded

by giving a summary of the contributions and providing some suggestions on

further directions.

2. Preliminaries

In this section, we introduce concepts of rule based systems and illustrate

the essence of decision tree learning and rule learning. Several measures of rule

quality [32] are explained in depth.

2.1. Rule based systems

A rule based system is essentially a set of rules. In general, rule based systems

can be used in the machine learning context for various practical tasks, such

as classification, regression and association. Therefore, the type of rules can

be specialized into classification rules, regression rules and association rules,

depending on the type of machine learning tasks. The following rule based

system, which is made up of four classification rules, is provided below for

illustrative purpose:

• Rule 1: x1 = 0 ∧ x2 = 0→ class = 0;

• Rule 2: x1 = 0 ∧ x2 = 1→ class = 0;

• Rule 3: x1 = 1 ∧ x2 = 0→ class = 0;

4



• Rule 4: x1 = 1 ∧ x2 = 1→ class = 1;

Each rule consists of two main parts: rule antecedent and rule consequent.

According to the above example, the left hand side (before the arrow symbol) of

each rule is the rule antecedent, e.g., ‘x1 = 0 ∧ x2 = 0’, whereas the right hand

side (after the arrow symbol) of each rule is the rule consequent, e.g., ‘class = 0’.

On the other hand, each rule antecedent is expressed as a single rule term or a

conjunction of multiple rule terms, e.g., ‘x1 = 0’ and ‘x2 = 0’ are the two rule

terms that make up the antecedent of Rule 1 in the form of ‘x1 = 0 ∧ x2 = 0’.

In other words, each of the rule terms shown in the rule antecedent indicates a

condition for this rule to fire, and the rule consequent indicates the classification

outcome when all the conditions are met. For example, Rule 1 implies that an

unseen instance would be classified to the class ‘0’ if the instance meets the two

conditions ‘x1 = 0’ and ‘x2 = 0’. In machine learning, each learned rule would

cover some training instances, which generally means that each of the instances

meets all the conditions shown in the antecedent of the rule.

Moreover, since rule based operations can be involved in different kinds of

machine learning tasks, such as classification, regression and association, there

are different constraints for different kinds of rules in terms of the rule an-

tecedent and consequent. In particular, for a classification rule, the antecedent

can involve a single rule term or a conjunction of multiple rule terms, but

the consequent of this rule can only involve one rule term that reflects a dis-

crete output, i.e., the output is the class label that is assigned to an unseen

instance which meets all the conditions shown in the rule antecedent. The

same constraint also applies to regression rules with the only difference that

the output indicated in the rule consequent must be continuous (numerical).

Association rules can be viewed as the generalization of classification and re-

gression rules, since both the antecedent and the consequent of an association

rule can involve a single rule term or a conjunction of multiple rule terms (e.g.,

x1 = 1 ∧ x2 = 1 → y1 = 1 ∧ y2 = 0), i.e., an association rule has no specific

constraint in terms of its antecedent and consequent.

5



2.2. Procedure of decision tree learning

Decision tree learning essentially involves a recursive process of attribute

selection. In particular, the training of a decision tree starts from selecting an

attribute to label the root node, leading to n branches, where n is the number of

values of the selected attribute. Each of the n branches may end at an internal

node towards growing the tree by recursively training a sub-tree in the same

way as the attribute selection for the root node. Also, each branch may end at

a leaf node that is provided with a class label. The leaf node indicates that the

growth of this branch should be terminated, due to the case that the last growth

of this branch has made it achieved that all the training instances covered by

this branch belong to the same class.

In fact, the attribute selection for the root node would lead to the division of

the training set into its n subsets, and each subset contains instances that meet

the condition expressed as an attribute-value pair. For example, if attribute

a, which has two values 1 and 2, is selected for the root node, then the root

node would lead to two branches and the training set would be partitioned into

two subsets s1 and s2. In this context, s1 contains all instances that meet the

condition ‘a = 1’ and all instances in s2 meet the condition ‘a = 2’. Similarly,

for each internal node, the attribute selection would also lead to partitioning of

the corresponding training subset into its several sub-subsets.

When a branch appears to have a leaf node, it typically indicates that the

stopping criteria of growing this branch has been normally satisfied, and this

branch can already be converted into a consistent rule that covers training

instances all belonging to the same class. In real-world applications, it could

happen that a tree branch gets a leaf node without meeting the above criteria,

due to the case that the maximum length of the branch has been reached, i.e.,

the length of each branch cannot be higher than the data dimensionality (the

number of attributes given in a data set). When the maximum length of a

tree branch has been reached, it usually means that each of the attributes has

been selected for partitioning a training subset and labelling the corresponding

internal node in this branch, but unfortunately it is still not achievable to make

6



Fig. 1. Decision tree learning algorithm [19]

this rule cover training instances of the same class. In this case, the leaf node

is labelled with the majority class (i.e., labelling the leaf node with the class to

which the majority of the covered training instances belong) and the growth of

this branch is then terminated by setting the stopping criteria as satisfied. The

whole procedure of the decision tree learning algorithm is shown in Fig. 1.

In terms of the heuristic attribute selection indicated in line 5 of the de-

cision tree learning algorithm shown in Fig. 1, entropy [28] and information

gain [26] are popularly used as the heuristics for the ID3 and C4.5 algorithms.

In this context, the best attribute selected for each node needs to be capable of

contributing to minimizing the entropy and maximizing the information gain.

2.3. Procedure of rule learning

Rule learning involves the selection of attribute-value pairs on an iterative

basis. In particular, at each iteration of learning a single rule, an attribute-

7



value pair is selected to specialize the rule antecedent, i.e., the specialization of

the rule antecedent is achieved by adding the selected attribute-value pair (rule

term) as a part of the rule antecedent until the stopping criteria of learning

this rule has been satisfied. Once the rule antecedent has been finalized after

the above specialization, the rule would normally have covered some training

instances that belong to the same class. In this case, the learning of the above

rule is considered as completed, and it is then required to find all the instances

that are covered by this rule and delete these instances from the training set, in

order to initiate the learning of the next rule from the remaining instances. All

the learned rules need to be added into a rule set that is eventually used as a

rule based classifier. In this context, the production of the rule set is considered

as completed, when each instance in the training set has been covered by one

or more of the rules in the rule set. The whole procedure of the rule learning

algorithm is shown in Fig. 2.

Fig. 2. Rule learning algorithm[19]

The step shown in line 2 of the rule learning algorithm shown in Fig. 2

indicates that each rule is learned through iteratively selecting an attribute-value

pair towards specializing the antecedent of this rule. The ‘if-then’ statement

shown in line 4 indicates that the quality of the learned rule is not yet good

8



enough, but the learning of the rule has to be stopped due to the case that

the maximum length of the rule has been reached, i.e., the length of a rule is

essentially the number of rule terms that make up the rule antecedent, which

must not be higher than the data dimensionality (the number of attributes

in the data set). When the maximum length of a rule is really reached, it

would usually indicate that all the attribute-value pairs have been evaluated for

specializing the antecedent of this rule, but this rule still cannot fulfill to cover

some training instances that belong to the same class. In this case, it is an usual

practice to provide the rule consequent with the majority class, i.e., the class

shown in the rule consequent is the one to which the majority of the covered

training instances belong, and the learning of this rule is then completed by

setting the stopping criteria as satisfied, similar to the setting of the stopping

criteria of growing a decision tree branch when the maximum length of a branch

is reached.

The nature of rule learning driven by the Prism algorithm is to iteratively

select an attribute-value pair ‘Ai = vi.j ’ for specializing the antecedent of a rule,

while the rule consequent is predefined by assigning a target class ct.

In terms of the heuristic selection of attribute-value pairs, the conditional

probability P (class = ct|Ai = vi.j) is incorporated into the Prism algorithm

as the heuristic for iteratively selecting an attribute-value pair. In particular,

while the target class ct is assigned as the rule consequent, the attribute-value

pair ‘Ai = vi.j ’, which is selected to specialize the rule antecedent, needs to be

capable of maximizing the conditional probability P (class = ct|Ai = vi.j).

In the whole procedure of the Prism algorithm shown in Fig. 3, T repre-

sents the original training set and T ′ is a subset of T . Each instance in T is

expressed as e; AS represents an attribute set that contains d attributes; Ai

represents an attribute in AS, where i is the attribute index; each value of at-

tribute Ai is expressed as vi.j , where j is the attribute-value index; ct represents

one of the k classes predefined in the training set T ; pmax represents the maxi-

mum conditional probability of the target class ct obtained by selecting the best

attribute-value pair ‘Aw = vw.b’; RS represents a set of rules that is finally used

9



Fig. 3. Prism algorithm [26]

as a rule based classifier; T” represents the result set of instances covered by

rule R in the rule set RS.

We illustrate the procedure of the Prism algorithm by using the Weather

10



data set1 – see Table 1.

We replaced the original attribute values and the original class labels with

specific symbols for the Weather data set. In particular, the attribute ‘Outlook’

has three values, namely, ‘sunny’, ‘overcast’ and ‘rain’, which are replaced with

the three symbols ‘1’, ‘2’ and ‘3’, respectively. The attribute ‘Temperature’ has

three values, namely, ‘hot’, ‘mild’ and ‘cool’, which are replaced with the three

symbols ‘1’, ‘2’ and ‘3’, respectively. The attribute ‘Humidity’ has two values,

namely, ‘high’ and ‘normal’, which are replaced with the two symbols ‘1’ and ‘2’,

respectively. The attribute ‘Windy’ has two values, namely, ‘true’ and ‘false’,

Table 1

Weather data set

Outlook Temperature Humidity Windy Play?

1 1 1 0 N

1 1 1 1 N

2 1 1 0 Y

3 2 1 0 Y

3 3 2 0 Y

3 3 2 1 N

2 3 2 1 Y

1 2 1 0 N

1 3 2 0 Y

3 2 2 0 Y

1 2 2 1 Y

2 2 1 1 Y

2 1 2 0 Y

3 2 1 1 N

1http://storm.cis.fordham.edu/~gweiss/data-mining/weka-data/weather.nominal.

arff

11

http://storm.cis.fordham.edu/~gweiss/data-mining/weka-data/weather.nominal.arff
http://storm.cis.fordham.edu/~gweiss/data-mining/weka-data/weather.nominal.arff


which are placed with the two symbols ‘1’ and ‘0’, respectively. The two class

labels ‘Yes’ and ‘No’ are replaced with the two symbols ‘Y’ and ‘N’, respectively.

The ‘for’ loop shown in line 2 of the Prism algorithm [5] shown in Fig. 3

indicates the need to select a target class at each iteration of producing the

final rule set, in order to learn an independent set of rules for the selected

target class at each iteration. The Weather data set contains instances which

each belongs to one of the two classes (‘Y’ and ‘N’), so two independent sets

of rules need to be trained for the two classes, respectively, by using the Prism

algorithm. In other words, one rule set consists of rules assigned the class ‘Y’

as the rule consequent, whereas the other rule set consists of rules assigned the

class ‘N’ as the rule consequent.

In accordance with Table 1, a frequency table needs to be created for each

attribute, i.e., there are totally four frequency tables (Tables 2-5) created, re-

spectively, for the four attributes, namely, ‘Outlook’, ‘Temperature’, ‘Humidity’

and ‘Windy’.

Table 2

Frequency table for the attribute ‘Outlook’

Class label Outlook= 1 Outlook= 2 Outlook= 3

Y 2 4 3

N 3 0 2

Total 5 4 5

Table 3

Frequency table for the attribute ‘Temperature’

Class label Temperature= 1 Temperature= 2 Temperature= 3

Y 2 4 3

N 2 2 1

Total 4 6 4

On the basis of the above frequency tables, the conditional probability of

the target class can be calculated, when a specific attribute-value pair is given

12



Table 4

Frequency table for the attribute ‘Humidity’

Class label Humidity= 1 Humidity= 2

Y 3 6

N 4 1

Total 7 7

Table 5

Frequency table for the attribute ‘Windy’

Class label Windy= 1 Windy= 0

Y 3 6

N 3 2

Total 6 8

as the condition.

In accordance with Table 2, the conditional probability of each of the two

target classes (‘Y’ and ‘N’) needs to be derived, when each of the three attribute-

value pairs (Outlook = 1, Outlook = 2 and Outlook = 3) is given as the

condition.

P (Class = Y |Outlook = 1) = 0.40

P (Class = Y |Outlook = 2) = 1.00

P (Class = Y |Outlook = 3) = 0.60

P (Class = N |Outlook = 1) = 0.60

P (Class = N |Outlook = 2) = 0

P (Class = N |Outlook = 3) = 0.40

In accordance with Table 3, the conditional probability of each of the two

target classes (‘Y’ and ‘N’) needs to be derived, when each of the three attribute-

value pairs (Temperature = 1, Temperature = 2 and Temperature = 3) is

given as the condition.

P (Class = Y |Temperature = 1) = 0.50

13



P (Class = Y |Temperature = 2) = 0.67

P (Class = Y |Temperature = 3) = 0.75

P (Class = N |Temperature = 1) = 0.50

P (Class = N |Temperature = 2) = 0.33

P (Class = N |Temperature = 3) = 0.25

In accordance with Table 4, the conditional probability of each of the two

target classes (‘Y’ and ‘N’) needs to be derived, when each of the two attribute-

value pairs (Humidity = 1 and Humidity = 2) is given as the condition.

P (Class = Y |Humidity = 1) = 0.43

P (Class = Y |Humidity = 2) = 0.86

P (Class = N |Humidity = 1) = 0.57

P (Class = N |Humidity = 2) = 0.14

In accordance with Table 5, the conditional probability of each of the two

target classes (‘Y’ and ‘N’) needs to be derived, when each of the two attribute-

value pairs (Windy = 1 and Windy = 0) is given as the condition.

P (Class = Y |Windy = 1) = 0.50

P (Class = Y |Windy = 0) = 0.75

P (Class = N |Windy = 1) = 0.50

P (Class = N |Windy = 0) = 0.25

If the class ‘Y’ is selected as the target class, the attribute-value pair ‘Outlook =

2’ leads to the maximized conditional probability, i.e., P (Class = Y |Outlook =

2) = 1. At this point, the uncertainty has been reduced to 0, since the condi-

tional probability of 1 is obtained. Therefore, the stopping criteria is satisfied,

which indicates that the antecedent of the first learned rule has been finalized.

The expression of the learned rule is shown as: Outlook = 2→ class = Y .

The first rule covers four instances, i.e., there are four instances that meet

the condition ‘Outlook = 2’. Therefore, the four instances should be deleted

from the training set, such that it can be initiated to learn the second rule from

the updated training set (excluding the above four instances), while the target

14



class is still the class ‘Y’. Finally, a complete set of rules for the target class ‘Y’

is obtained when each instance that belongs to the class has been covered by

one or more of the trained rules.

If the class ‘N’ is selected as the target class, the first learned rule is expressed

as Outlook = 1 ∧ Humidity = 1 → class = N . Finally, the Prism algorithm

leads to a complete set of rules that cover the instances of the target class ‘N’.

The final rule set, which is used as a whole rule based classifier, is obtained by

merging the two independent sets of rules trained for the two target classes ‘Y’

and ‘N’, respectively.

2.4. Measures of rule quality

Popularly used rule quality measures include confidence [1], J-measure [45],

lift [4] and leverage [39].

Confidence aims at measuring the degree that the consequent of the rule

holds when the rule antecedent is satisfied, i.e., the percentage of training in-

stances that satisfy the conditions reflected from the antecedent of this rule but

also belong to the class shown in the rule consequent. The calculation of the

rule confidence is shown in Eq. (1)

Confidence =
P (x, y)

P (x)
(1)

where the term P (x, y) represents the joint occurrence rate (joint probability)

of the rule antecedent and the rule consequent and the term P (x) represents

the independent occurrence rate of the rule antecedent.

J-measure aims at measuring the quantity of the average information content

covered by a learned rule. The essence of J-measure is the dot product of two

terms as defined in Eq. (2).

J(Y,X = x) = P (x) · j(Y,X = x) (2)

The first term, which aims at measuring the simplicity of a rule [45], rep-

resents the independent occurrence rate of the rule antecedent X = x, since

15



a simpler rule generally leads to a higher value of P (x). The second term is

referred to as j-measure, which aims at measuring how well a single rule fits

the training data and is also known as cross entropy [45]. The calculation of

j-measure is shown in Eq. (3).

j(Y,X = x) = P (y|x) · log2

P (y|x)

P (y)
+ (1− P (y|x)) · log2

1− P (y|x)

1− P (y)
(3)

where the term P (y|x) represents the posterior probability that the rule conse-

quent y occurs when the rule antecedent X = x is satisfied, and the term P (y)

represents the prior probability that the rule antecedent y occurs without any

specific preconditions.

Lift is a measure of the degree to which the joint occurrence of the an-

tecedent and the consequent of a rule is higher than expected, given that they

are statistically independent [4]. The calculation of the lift of a rule is shown in

Eq. (4).

Lift =
P (x, y)

P (x) · P (y)
(4)

Leverage aims at measuring the difference between the actual joint prob-

ability and the expected joint probability in terms of the event that the rule

antecedent and the rule consequent both occur [39]. The calculation of the

leverage of a rule is shown in Eq. (5).

Leverage = P (x, y)− P (x) · P (y) (5)

3. Related work

Decision tree learning approaches have been adopted very popularly in ma-

chine learning tasks, because of the fact that this kind of learning approaches

usually enable the generation of models with high accuracy and interpretability.

In other words, a transparent process of reasoning is shown through using deci-

sion tree models, such that people can clearly identify how an output is mapped

from an input [29].

16



On the other hand, decision tree learning has been very competitive to other

popular machine learning approaches in terms of the algorithmic strengths, be-

cause the ID3 algorithm was developed in [41] demonstrating very high accuracy

of classification especially on the chess end games data set [40]. Furthermore,

due to the lack of the direct handling of continuous attributes in the ID3 al-

gorithm, the C4.5 algorithm was thus developed as a successor of ID3 for the

effective handling of continuous attributes and the replacement of missing val-

ues [43, 44].

In order to avoid the case of overfitting of a decision tree on training data,

the development of pruning methods [42] has become necessary for simplify-

ing decision trees. An empirical study was made in [16] for comparing different

pruning methods. In addition, ensemble learning approaches have been adopted

to create decision tree ensembles for advancing the overall performance of clas-

sification. Bagging [3] and Boosting [17] are two popular ensemble learning

approaches, which have been used respectively for creating Random Forests

and Gradient Boosted Trees as decision tree ensembles. On the other hand,

some researchers have extended decision tree learning algorithms by modifying

the heuristic functions for attribute selection. For example, cost functions could

be incorporated for advancing the heuristic attribute selection, such that the

risk of getting classification errors can be minimized. Some more recent works

on cost functions based decision tree learning can be found in [22, 50]. Also, the

heuristic attribute selection can be done in the setting of fuzzy logic. In par-

ticular, continuous attributes can be fuzzified for learning fuzzy decision trees

through fuzzy information granulation [21].

It is guaranteed that a decision tree learned from a data set can be trans-

formed into a set of non-overlapping rules, i.e., the rules mentioned above cover

disjoint sets of training instances. The representation of a decision tree con-

strains that at least one attribute needs to appear at each branch, i.e., the

attribute appears at the root node is the common attribute for all the branches

of the decision tree. The above constraint usually results in the trained decision

tree being complex and thus difficult to enable people to follow the information

17



Fig. 4. Cendrowska’s example of the replicated sub-tree problem [26, 33]

extracted from the tree [18]. For the purpose of reducing the complexity of

decision trees, the use of pruning methods was investigated theoretically and

experimentally in [42], such as the reduced error pruning method [15]. Unfor-

tunately, even if pruning methods are used for simplifying decision trees, it is

still difficult to avoid the generation of cumbersome, complex and inscrutable

decision trees, leading to the difficulty in providing insight into a domain as

applied knowledge [18, 43]. Also, for the purpose of the overfitting avoidance,

simple rules are usually preferred to complex rules [18]. Moreover, it was argued

in [5] that the adoption of decision tree learning algorithms is difficult to avoid

the generation of a decision tree with replicated sub-trees shown in Fig. 4, due

to the above mentioned constraint on having one or more common attributes

appearing at all the branches of a decision tree. It is also argued in [5] that the

existence of replicated sub-trees could result in the need of a complete traver-

sal of a decision tree in the worst case for extraction of rules about a single

classification, leading to an increased difficulty in the manipulation of expert

systems.

In order to fulfill the need of solving the replicated sub-tree problem, it has

been proposed to generate if-then rules directly through the SAC strategy. In

18



particular, the Prism algorithm [5] has been developed leading to more follow-

up research on the SAC strategy based rule learning. A comprehensive review

of the SAC strategy based rule learning algorithms can be found in [18]. For

the Prism algorithm, the key feature is the need to learn an independent set of

rules for each selected target class. For example, in a classification task that

involves the two classes ‘positive’ and ‘negative’, the Prism algorithm would lead

to training the first set of rules for identifying instances of the selected target

class ‘positive’ and then training the second set of rules for identifying instances

of the selected target class ‘negative’. However, the above fixed strategy of the

target class selection usually leads to the uncertainty on whether the selected

target class provides a good basis for producing a high quality rule based on

a given training sample. In fact, in compliance with the SAC strategy, rules

are learned sequentially for each target class, i.e., the learning of one rule is

started after the learning of the last rule has been completed, while the two

rules are learned by selecting the same target class. In this context, if a low

quality rule is learned, then it would result in a negative impact on learning all

the subsequent rules, leading to low quality rules as the likely outcomes. From

the above point of view, if the selected target class does not provide a good basis

for getting a high quality rule learned, the Prism-driven rule learning strategy

could even lead to an inconsistent rule being produced covering instances of

different classes [26, 28]. In this case, the subsequent rules are likely to be poorly

trained, due to the unexpected situation that the previously trained rule cannot

cover instances of the same class. The above description indicates that the

fixed strategy of the target class selection leads to a selection bias affecting the

performance of rule learning driven by the Prism algorithm, i.e., a low quality

rule is likely to be produced due to the ineffective target class selection for

learning this rule, which indicates the need to develop a more effective strategy

of the target class selection.

19



4. Rule learning driven by PrismCTC

In this section, we provide the description of the proposed PrismCTC al-

gorithm on its essence and illustrate its procedure using the weather data set

shown in Table 1. We also give a theoretical justification on the suitability

of the PrismCTC algorithm for reducing both the risk of overfitting and the

model complexity, through analyzing the main difference between Prism and

PrismCTC in terms of their strategies of the target class selection.

4.1. Key features

As mentioned in Section 1, PrismCTC is essentially a variant of the Prism

algorithm, and the key difference between the two algorithms is in terms of

their strategies of the target class selection. In particular, the Prism algorithm

involves a fixed strategy of the target class selection, whereas the PrismCTC

algorithm involves a trained strategy, i.e., the target class selection through

the PrismCTC algorithm is based on the outcome of the quality evaluation of

rules trained for different classes. In this context, at each iteration of producing

the final rule set, k rules are trained as the candidates for competition towards

selecting the best target class from the k classes predefined in the training set,

i.e., one of the k rules would become the successful candidate and is thus added

into the final rule set. Therefore, the consequent of each rule shows a different

target class. The quality of the k candidate rules should be evaluated by using

one of the statistical measures defined in Eqs. (1)- (5), such that the rule of

the highest quality can be found. Following the above evaluation of the rules

quality, the target class shown in the consequent of the highest quality rule (the

successful candidate) is judged as the best one. Overall, at each iteration of

producing the final rule set, only the successful candidate is added into the final

rule set, but the successful candidates (rules) identified at different iterations

may show different rule consequent (i.e., different classes are selected as the

target classes for these rules), e.g., the class ‘Yes’ is selected as the best target

class leading to the first successful candidate added into the final rule set, but

20



Fig. 5. The proposed PrismCTC algorithm

the second successful candidate results from selecting the class ‘No’ as the best

target class.

21



In the whole procedure of the proposed PrismCTC algorithm shown in Fig. 5,

T represents the original training set and T ′ is a subset of T ; each instance in

T is expressed as e; AS represents an attribute set that contains d attributes;

Ai represents an attribute in AS, where i is the attribute index; each value of

the attribute Ai is expressed as vi.j , where j is the attribute-value index; ct

represents the target class selected from the k classes predefined in the original

training set T ; pmax represents the maximum conditional probability of the

target class ct obtained by selecting the best attribute-value pair ‘Aw = vw.b’;

Rt represents a candidate rule trained when selecting ct as the target class,

and qt represents the quality of rule Rt; Rbest represents the best (successful)

candidate rule, and qbest represents the quality of the successful candidate Rbest;

RS represents a set of rules that is finally used as a rule based classifier; CS

consists of the candidate rules and each one is trained for a specific one of the

k classes; T” represents the result set of instances covered by the successful

candidate rule Rbest identified at each iteration.

We illustrate the proposed PrismCTC algorithm by following the illustration

of the Prism algorithm on the Weather data set. In particular, as shown in

Section 2.3, the first rule trained for the class ‘Y’ is expressed as: Outlook =

2 → class = Y , whereas the first rule trained for the class ‘N’ is expressed as:

Outlook = 1 ∧Humidity = 1→ class = N . For the PrismCTC algorithm, the

quality of the above two rules need to be evaluated and one of them is selected

as the successful candidate at the first iteration and is added into the final rule

set. For illustrative purpose, we choose to measure the confidence (see Eq. (1))

of the two rules as follows:

The Weather data set contains 14 instances. For the rule of the class ‘Y’,

there are 4 instances that meet the condition ‘Outlook = 2’, so P (x) = 4
14 =

0.29. Also, all of the four instances belong to the class ‘Y’, so P (x, y) = 4
14 =

0.29, which indicates that the confidence equals 1.

For the rule of the class ‘N’, there are 3 instances that meet the two conditions

‘Outlook = 1’ and ‘Humidity = 1’, so P (x) = 3
14 = 0.21. Also, all of the three

instances belong to the class ‘N’, so P (x, y) = 3
14 = 0.21, which indicates that

22



the confidence equals 1 as well.

Since both rules obtain the confidence of 1, we need to measure the support

of each rule according to Eq. (6). In this way, we can see that the rule of the class

‘Y’ obtains a higher value (0.29) of the support, so this rule would be selected as

the successful candidate that gets into the final rule set and the best target class

identified at the first iteration is thus the class ‘Y’. The four instances covered

by the rule of the class ‘Y’ should be deleted from the training set, such that

the above procedure of rule learning can be repeated for the second iteration,

by learning two rules (one for the class ‘Y’ and the other one for the class ‘N’)

separately from the other 10 instances.

Support = P (x, y) (6)

4.2. Justification

The designs of both the Prism and PrismCTC algorithms involve the adop-

tion of granular computing concepts in an information processing paradigm [36,

37, 38]. The role of granular computing is to enable the effective thinking in a

structured way at the philosophical level but granular computing can also act as

a role leading to intelligent problem solving in a structured way at the practical

level [48].

In practice, granular computing techniques generally need to involve granula-

tion and organization as the two main operations [48]. The former is essentially

an operation of transforming a whole into multiple parts, i.e., top-down infor-

mation processing, whereas the latter is an operation of integrating multiple

parts into a whole, i.e., bottom-up information processing [24, 25, 47].

What is actually processed through granulation and organization is referred

to as an information granule, which can be seen as a collection of smaller parti-

cles forming a larger unit. Due to the difference in the sizes of different granules,

the concept of information granularity is thus needed, which is aimed for each

granule to be located at a suitable level of granularity according to the actual

size of the granule.

23



In the setting of rule learning driven by the Prism algorithm, an independent

set of rules needs to be learned for each predefined class. When there are k

classes and each one should be selected as a target class, k independent rule

sets would be trained to form a rule based classifier (granule at the top level of

granularity) and each of the k rule sets is viewed as a sub-classifier (sub-granule)

of the rule based classifier. Also, each rule in one of the k rule sets is viewed

as a sub-sub-granule, because it is a part of a sub-classifier of the rule based

classifier.

In the setting of information granularity, the Prism algorithm is designed to

undertake the rule learning task in the sub-classifier level, which could result in

the case that the rule set trained for each target class contains some but not

all of the rules of high quality. In order to make the quality of each single rule

as high as possible, the PrismCTC algorithm is designed to undertake the rule

learning task in the rule level (in more depth), which manages to evaluate at

each iteration the quality of all the rules trained for the given target classes.

As argued in Section 3, rule learning driven by the Prism algorithm leads

to the target class selection bias, since the selection is done in a fixed strategy

by selecting a target class from the k predefined classes in the training set and

then learning rules continuously for the same class until each of the instances

of this class has been covered by one or more of the learned rules. However,

at each iteration of producing the final rule set, the best target class that leads

to the highest quality rule may not be the same one. Since it is impossible to

identify at each iteration which one of the k class is the best target class without

having a rule trained for each of the k classes, the PrismCTC algorithm is thus

designed to let each class be the target class leading to a candidate rule and

evaluating the quality of all the candidate rules, as illustrated in Fig. 5. In the

above way, it can ensure that a rule of as high quality as possible is trained and

identified at each iteration and is then added into the final rule set that will be

used as a rule base classifier.

24



5. Experimental results

In this section, experiments are conducted for evaluating the proposed Prism-

CTC algorithm by comparing its performance with the performance of the C4.5

algorithm [43] and the Prism algorithm [5], in terms of the classification accu-

racy and the model complexity.

Table 6

Data sets.

Data sets Attribute types No. of at-

tributes

No. of in-

stances

No. of

classes

Anneal discrete, continuous 38 898 6

Balance-scale discrete 4 625 3

Breast-cancer discrete 9 286 2

Breast-w continuous 9 699 2

Credit-a discrete, continuous 15 690 2

Credit-g discrete, continuous 20 1000 2

Cylinder-bands discrete, continuous 39 540 2

Dermatology discrete, continuous 34 366 6

Diabetes discrete, continuous 8 768 2

Hepatitis discrete, continuous 19 155 2

Ionosphere continuous 34 351 2

Iris continuous 4 150 3

kr-vs-kp discrete 36 3196 2

Labor discrete, continuous 16 57 2

Lymph discrete, continuous 18 148 4

Sponge discrete 45 76 3

Tae discrete, continuous 5 151 3

Vote discrete 16 435 2

Wine continuous 13 178 3

Zoo discrete, continuous 17 101 7

25



In order to measure the classification accuracy obtained by using each learn-

ing algorithm, each data set is partitioned into two subsets (i.e., 70% for training

and 30% for testing), for the conduct of the experiments. The data partition-

ing is repeated 100 times on each data set and the average accuracy obtained

through the 100 runs of the experiments is taken for comparison. The model

complexity is measured by counting the rules and the terms in a rule set. In

particular, a rule based classifier is trained on each whole data set towards

counting the rules and the terms that make up the classifier. In terms of rule

quality evaluation, confidence, J-measure, lift and leverage are adopted, respec-

tively, for the effective identification of the best quality rule resulting from the

best target class, at each iteration of the rule set learning.

There are 20 UCI data sets [23] used by following the above procedures, for

the performance evaluation against the above three learning algorithms. The

descriptions of the 20 data sets are given in Table 6 to show their characteristics,

such as the number of attributes.

5.1. Accuracy comparison

Table 7 shows the results on the classification accuracy. The four headers

of Table 7 ‘PrismCTC1’, ‘PrismCTC2’, ‘PrismCTC3’ and ‘PrismCTC4’ repre-

sent that the four statistical measures (confidence, J-measure, lift and leverage)

shown in Eqs (1)-(5) are used, respectively, for the heuristic evaluation of the

quality of each single rule, immediately after the rule has been learned by using

the proposed PrismCTC algorithm. In other words, the PrismCTC algorithm is

considered as parametric, where each of the above four statistical measures can

be used as a parameter for rule quality evaluation, e.g., PrismCTC1 represents

the case of choosing the statistical measure ‘confidence’ as the parameter for

evaluating each rule learned by using the PrismCTC algorithm.

In comparison with C4.5, PrismCTC1 leads to better classification accuracy

in 11 out of 20 cases. In the other 9 cases, PrismCTC1 performs the same as

or very close to C4.5, with exceptions on the ‘Credit-a’ and ‘Zoo’ data sets.

PrismCTC2 leads to better classification accuracy in 10 out of 20 cases. In the

26



Table 7

Classification accuracy.

Data sets C4.5 Prism PrismCTC1 PrismCTC2 PrismCTC3 PrismCTC4

Anneal 0.98 0.98 0.99 0.99 0.99 0.98

Balance-scale 0.78 0.83 0.85 0.85 0.84 0.85

Breast-cancer 0.67 0.67 0.66 0.65 0.64 0.67

Breast-w 0.94 0.93 0.95 0.95 0.95 0.95

Credit-a 0.83 0.80 0.77 0.77 0.78 0.81

Credit-g 0.68 0.74 0.70 0.68 0.68 0.70

Cylinder-bands 0.58 0.69 0.70 0.70 0.69 0.72

Dermatology 0.94 0.84 0.90 0.91 0.88 0.85

Diabetes 0.72 0.70 0.70 0.69 0.70 0.73

Hepatitis 0.76 0.76 0.82 0.81 0.78 0.83

Ionosphere 0.89 0.90 0.92 0.92 0.92 0.92

Iris 0.94 0.88 0.94 0.94 0.93 0.92

Kr-vs-kp 0.99 0.98 0.98 0.99 0.99 0.98

Labor 0.80 0.88 0.81 0.85 0.87 0.84

Lymph 0.76 0.78 0.79 0.77 0.78 0.76

Sponge 0.93 0.91 0.90 0.93 0.93 0.92

Tae 0.53 0.49 0.59 0.57 0.58 0.45

Vote 0.95 0.93 0.94 0.94 0.94 0.90

Wine 0.91 0.84 0.93 0.93 0.90 0.94

Zoo 0.92 0.61 0.80 0.86 0.63 0.86

other 10 cases, PrismCTC2 performs the same as or very close to C4.5, with

exceptions on the ‘Credit-a’ and ‘Zoo’ data sets. PrismCTC3 leads to better

classification accuracy in 9 out of 20 cases. In the other 11 cases, PrismCTC3

performs the same as or very close to C4.5, with exceptions on the ‘Credit-a’,

‘Dermatology’ and ‘Zoo’ data sets. PrismCTC4 leads to better classification

accuracy in 9 out of 20 cases. In the other 11 cases, PrismCTC4 performs the

27



same as or very close to C4.5, with exceptions on the ‘dermatology’, ‘Tae’, ‘Vote’

and ‘Zoo’ data sets.

In comparison with Prism, PrismCTC1 leads to better classification accuracy

in 13 out of 20 cases. In the other 7 cases, PrismCTC1 performs the same as

or very close to Prism, with an exception on the ‘Labor’ data set. PrismCTC2

leads to better classification accuracy in 14 out of 20 cases. In the other 6 cases,

PrismCTC2 performs the same as or very close to Prism, with an exception on

the ‘Credit-g’ data set. PrismCTC3 leads to better classification accuracy in

13 out of 20 cases. In the other 7 cases, PrismCTC3 performs the same as or

very close to Prism, with an exception on the ‘Credit-g’ data set. PrismCTC4

leads to better classification accuracy in 12 out of 20 cases. In the other 8 cases,

PrismCTC4 performs the same as or very close to Prism.

Overall, the results shown in Table 7 indicate that in 10 out of 20 cases at

least one of the four rule quality measures leads to the PrismCTC algorithm

outperforming both C4.5 and Prism in terms of the classification accuracy. In

the other 10 cases, the best performance of the PrismCTC algorithm achieved

using one of the four rule quality measures is equal to or slightly worse than the

performance of the best performing one of the other two algorithms (C4.5 and

Prism), with an exception on the ‘Zoo’ data set.

To further evaluate the performance of the PrismCTC algorithm, the Wilcoxon

sign rank test is applied to identify wheather the average accuracy obtained by

using PrismCTC is higher than the average ones obtained by using C4.5 and

Prism, respectively. As shown in [14], it would be more appropriate to use the

Wilcoxon sign rank test than to use the paired t-test.

Table 8 displays the Wilcoxon’s test details when comparing Prism with

the different versions of PrismCTC; PrismCTCBest takes the best performance

from the four versions of PrismCTC. The results of the comparison between

C4.5 and the different versions of PrismCTC are displayed in Table 9.

N denotes the number of cases (data sets), which are divided into three pos-

sibilities: negative ranks, positive ranks and ties. The negative ranks indicate

the number of cases in which the second algorithm outperforms the first one,

28



Table 8

Wilcoxon sign rank tests for average accuracy – Prism vs PrismCTC.

Compared classifiers Ranks N Mean ranks Sum of ranks z-score p-value

Prism vs PrismCTC1 Negative ranks 13 9.77 127.00 -1.79 p=3.70%

Positive ranks 5 8.80 44.00

Ties 2

Total 20

Prism vs PrismCTC2 Negative ranks 14 10.86 152.00 -1.76 p=4.00%

Positive ranks 6 9.67 58.00

Ties 0

Total 20

Prism vs PrismCTC3 Negative ranks 13 8.73 113.50 -1.73 p=4.20%

Positive ranks 4 9.88 39.50

Ties 3

Total 20

Prism vs PrismCTC4 Negative ranks 12 8.42 101.00 -1.14 p=12.80%

Positive ranks 5 10.40 52.00

Ties 3

Total 20

Prism vs PrismCTCBest Negative ranks 17 10.18 173.00 -3.14 p=0.10%

Positive ranks 2 8.50 17.00

Ties 1

Total 20

while the positive ranks indicate the opposite; ties are cases in which the algo-

rithms have the same accuracy. The sum of ranks (i.e., mean ranks × N) allows

the comparison of the two classifiers, i.e., similar sums for the negative and

positive ranks indicate a negligible difference, i.e., the algorithms have similar

performance; when one of the sums is considerably higher than the other one, it

indicates a significant difference between the two algorithms. The z-test is used

29



Table 9

Wilcoxon sign rank tests for average accuracy – C4.5 vs PrismCTC.

Compared classifiers Ranks N Mean ranks Sum of ranks z-score p-value

C4.5 vs PrismCTC1 Negative ranks 11 10.32 113.50 -0.75 p=22.80%

Positive ranks 8 9.56 76.50

Ties 1

Total 20

C4.5 vs PrismCTC2 Negative ranks 10 8.55 85.50 -0.91 p=18.30%

Positive ranks 6 8.42 50.50

Ties 4

Total 20

C4.5 vs PrismCTC3 Negative ranks 9 9.61 86.50 -0.45 p=32.60%

Positive ranks 8 8.31 66.50

Ties 3

Total 20

C4.5 vs PrismCTC4 Negative ranks 9 9.11 82.00 -0.24 p=40.60%

Positive ranks 8 8.88 71.00

Ties 3

Total 20

C4.5 vs PrismCTCBest Negative ranks 12 9.04 108.50 -2.09 p=1.80%

Positive ranks 4 6.88 27.50

Ties 4

Total 20

to calculate the level of significance of the difference between the algorithms –

in general, a p-value lower than 0.05 indicates significance.

For example, when comparing Prism with PrismCTC1, the sum of negative

ranks, i.e., 127.00, (indicating PrismCTC1 outperforms Prism), is much higher

than the sum of positive ranks, i.e., 44.00, (indicating that Prism outperforms

PrismCTC1). The z-score (-1.79) and it’s corresponding p-value (3.70%) indi-

30



cate that PrismCTC significantly outperforms Prism. The mean ranks, sum of

ranks, z-scores and p-values are rounded to 2 decimal places.

The Wilcoxon rank test results indicate that, with the exception of Prism-

CTC4, all versions of PrismCTC significantly outperform Prism. The com-

parison between C4.5 and the different versions of PrismCTC indicate a similar

performance, with the exception of PrismCTCBest. This indicates the proposed

PrismCTC algorithm performs as well as C4.5, and that there is potential for

this algorithm (through joint use of the different rule quality measures) to out-

perform established algorithms such as C4.5.

5.2. Model complexity comparison

In terms of model complexity, the results on the number of rules are shown

in Table 10, whereas the results on the number of terms are shown in Table 11.

In comparison with C4.5, the PrismCTC algorithm leads to a simpler rule

based classifier in 19 out of 20 cases, when using any one of the four rule quality

measures, according to the results on the number of terms shown in Table 11.

In other words, although the PrismCTC algorithm leads to more rules being

produced than C4.5 in most cases as shown in Table 10, the number of terms

impacts the model complexity more significantly, as argued in [26].

In comparison with Prism, the PrismCTC algorithm leads to a smaller num-

ber of rules in 17 out of 20 cases, when using any one of the four rule quality

measures. In the other 3 cases (on the ‘Credit-a’, ‘Tae’ and ‘Vote’ data sets),

the PrismCTC algorithm just leads to the same or a marginally higher number

of rules, when using some of the four rule quality measures. On the other hand,

the PrismCTC algorithm leads to fewer terms being generated in all of the 20

cases, when using any one of the four rule quality measures.

The above description indicates that the PrismCTC algorithm can effectively

leads to reduction of the model complexity, in comparison with C4.5 and Prism.

In practice, the reduction of the model complexity could not only reduce the

risk of overfitting, but also leads to a faster process of rule based classification,

31



Table 10

A comparison of the number of rules generated by different algorithms for different data sets.

Data sets C4.5 Prism PrismCTC1 PrismCTC2 PrismCTC3 PrismCTC4

Anneal 53 48 31 20 19 16

Balance-scale 60 109 106 101 121 83

Breast-cancer 152 110 107 103 96 44

Breast-w 23 36 30 27 28 15

Credit-a 101 148 148 142 110 77

Credit-g 359 310 214 280 248 181

Cylinder-bands 430 310 160 177 160 168

Dermatology 33 48 35 37 33 24

Diabetes 22 223 173 203 172 103

Hepatitis 16 30 23 24 19 15

Ionosphere 18 39 21 20 19 17

Iris 5 16 6 6 6 6

Kr-vs-kp 43 101 77 67 52 51

Labor 13 12 6 5 5 5

Lymph 23 32 23 26 28 15

Sponge 14 10 9 5 5 5

Tae 35 44 57 61 65 21

Vote 19 27 28 27 27 16

Wine 5 16 8 6 10 6

Zoo 9 35 15 10 30 10

since it is essential to check rule by rule in an outer loop and to check term

by term in an inner loop, towards finding a rule that fires for classifying an

unseen instance. Moreover, a simpler model is easier to interpret – one of the

reasons for the popularity of decision trees is the ability to inspect the model

and understand the reasoning based on which the classification is made. Thus,

PrismCTC has the potential to lead to models that are easier to interpret than

32



Table 11

A comparison of the number of terms generated by different algorithms for different data sets.

Data sets C4.5 Prism PrismCTC1 PrismCTC2 PrismCTC3 PrismCTC4

Anneal 400 81 40 29 27 24

Balance-scale 419 359 308 292 322 258

Breast-cancer 645 329 248 220 210 115

Breast-w 124 87 42 40 39 26

Credit-a 542 392 197 188 187 180

Credit-g 2261 882 457 355 385 413

Cylinder-bands 432 312 160 177 160 168

Dermatology 141 95 40 42 45 25

Diabetes 120 680 305 261 243 216

Hepatitis 81 51 31 27 33 18

Ionosphere 121 92 23 22 21 19

Iris 14 35 8 8 8 7

Kr-vs-kp 380 387 195 134 136 130

Labor 44 15 7 5 6 5

Lymph 93 74 36 42 52 27

Sponge 40 10 9 5 5 5

Tae 242 115 105 95 113 51

Vote 97 88 74 80 83 40

Wine 12 21 9 6 11 6

Zoo 38 35 15 10 30 10

decision trees.

6. Conclusions

In this paper, we have proposed a new version of the Prism algorithm re-

ferred to as PrismCTC, and the experimental results show that the proposed

PrismCTC algorithm outperforms the C4.5 and Prism algorithms, in terms of

33



classification accuracy and model complexity.

We have proved through the experiments that the incorporation of the

heuristic target class selection into the PrismCTC algorithm through a trained

strategy leads to effective reduction of the model complexity, by means of pro-

ducing a smaller number of simpler rules, comparing with the original Prism

algorithm that involves the target class selection in a fixed strategy. Also, the

trained strategy of the target class selection involved in the PrismCTC algorithm

can also lead to reduction of overfitting, in comparison with the fixed strategy

involved in the original Prism algorithm. In particular, confidence, J-measure,

lift and leverage are incorporated into the PrismCTC algorithm, respectively,

for evaluating the quality of each single rule, such that it is achievable to identify

at each iteration which class is the best option for being the target class leading

to the best quality rule. In this way, each rule, which is trained at a specific

iteration and is finally added into the rule set, would be of as high quality as

possible. In contrast, the original Prism algorithm simply chooses each of the

predefined classes as the target class for training an independent set of rules

until each of the instances of the target class has been covered by one or more

of the already trained rules. In this way, it is usually difficult to achieve that

the trained rule set contains all rules of high quality, i.e., the quality of some

rules in the rule set are low.

In future, we will investigate in more depth how to measure the rule qual-

ity more effectively. For example, multiple measures of rule quality can be

used jointly towards reduction of the bias resulting from a single measure and

improvements of the effectiveness of the rule quality evaluation [30]. It is also

worth to investigate granular computing techniques [2, 12, 27, 31] towards multi-

granularity rule learning [25]. In addition, the fuzzy set theory [49] has been

applied to deal with many applications [7, 11, 13, 20, 35, 46]. The adoption of

the fuzzy set theory will be explored for learning of fuzzy rules [6, 8, 9, 10, 34]

to deal with data with high fuzziness, e.g., textual data.

34



Acknowledgements

This work is supported by the University of Portsmouth, UK, under the

Research Development Fund, and is supported by the Ministry of Science and

Technology, Republic of China, under Grant MOST 107-2221-E-011-122 -MY2.

References

[1] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets

of items in large databases, in: ACM SIGMOD international conference on

Management of data, vol. 13, Washington, D.C., USA, 207–216, 1993.

[2] M. Antonelli, P. Ducange, B. Lazzerini, F. Marcelloni, Multi-objective evo-

lutionary design of granular rule-based classifiers, Granular Computing

1 (1) (2016) 37–58.

[3] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.

[4] S. Brin, R. Motwani, J. D. Ullman, S. Tsur, Dynamic itemset counting and

implication rules for market basket data, in: ACM SIGMOD international

conference on Management of data, Tucson, Arizona, USA, 255–264, 1997.

[5] J. Cendrowska, Prism: An algorithm for inducing modular rules, Interna-

tional Journal of Man-Machine Studies 27 (4) (1987) 349–370.

[6] S. M. Chen, A fuzzy reasoning approach for rule-based systems based on

fuzzy logics, IEEE Transactions on Systems, Man and Cybernetics - Part

B: Cybernetics 26 (5) (1996) 769–778.

[7] S. M. Chen, Aggregating fuzzy opinions in the group decision-making en-

vironment, Cybernetics and Systems 29 (4) (1998) 363–376.

[8] S. M. Chen, Y. C. Chang, Weighted fuzzy rule interpolation based on GA-

based weight-learning techniques, IEEE Transactions on Fuzzy Systems

19 (4) (2011) 729–744.

35



[9] S. M. Chen, Y. C. Chang, J. S. Pan, Fuzzy rules interpolation for sparse

fuzzy rule-based systems based on interval type-2 Gaussian fuzzy sets and

genetic algorithms, IEEE Transactions on Fuzzy Systems 21 (3) (2013)

412–425.

[10] S. M. Chen, S. H. Lee, C. H. Lee, A new method for generating fuzzy rules

from numerical data for handling classification problems, Applied Artificial

Intelligence 15 (7) (2001) 645–664.

[11] S. M. Chen, A. Munif, G. S. Chen, H. C. Liu, B. C. Kuo, Fuzzy risk analysis

based on ranking generalized fuzzy numbers with different left heights and

right heights, Expert Systems with Applications 39 (7) (2012) 6320–6334.

[12] S. M. Chen, K. Tanuwijaya, Fuzzy forecasting based on high-order fuzzy

logical relationships and automatic clustering techniques, Expert Systems

with Applications 38 (12) (2011) 15425–15437.

[13] H. S. Chiang, M. Y. Chen, Z. W. Wu, Applying fuzzy petri nets for evaluat-

ing the impact of bedtime behaviors on sleep quality, Granular Computing

3 (4) (2018) 321–332.

[14] J. Demšar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine learning research 7 (2006) 1–30.

[15] T. Elomaa, M. Kaariainen, An analysis of reduced error pruning, Journal

of Artificial Intelligence Research 15 (1) (2001) 163–187.

[16] F. Esposito, D. Malerba, G. Semeraro, Simplifying decision trees by pruning

and grafting: New results, in: European Conference on Machine Learning,

vol. 912, Crete, Greece, 287–290, 1995.

[17] Y. Freund, R. E. Schapire, Experiments with a new boosting algorithm, in:

International Conference on Machine Learning, Bari, Italy, 148–156, 1996.

[18] J. Furnkranz, Separate-and-conquer rule learning, Artificial Intelligence Re-

view 13 (1) (1999) 3–54.

36



[19] I. Kononenko, M. Kukar, Machine Learning and Data Mining: Introduction

to Principles and Algorithms, Horwood Publishing Limited, Chichester,

West Sussex, 2007.

[20] Y. F. Lai, M. Y. Chen, H. S. Chiang, Constructing the lie detection system

with fuzzy reasoning approach, Granular Computing 3 (2) (2018) 169–176.

[21] Y. Lertworaprachaya, Y. Yang, R. John, Interval-valued fuzzy decision trees

with optimal neighbourhood perimeter, Applied Soft Computing 24 (2014)

851–866.

[22] X. Li, H. Zhao, W. Zhu, A cost sensitive decision tree algorithm with two

adaptive mechanisms, Knowledge-Based Systems 88 (2015) 24–33.

[23] M. Lichman, UCI Machine Learning Repository,

http://archive.ics.uci.edu/ml, 2013.

[24] H. Liu, M. Cocea, Fuzzy information granulation towards interpretable

sentiment analysis, Granular Computing 2 (4) (2017) 289–302.

[25] H. Liu, M. Cocea, Granular Computing Based Machine Learning: A Big

Data Processing Approach, Springer, Berlin, 2018.

[26] H. Liu, M. Cocea, Induction of classification rules by Gini-Index based rule

generation, Information Sciences 436-437 (2018) 227–246.

[27] H. Liu, M. Cocea, Granular computing based approach of rule learning for

binary classification, Granular Computing 4 (2).

[28] H. Liu, A. Gegov, Induction of modular classification rules by information

entropy based rule generation, in: V. Sgurev, R. R. Yager, J. Kacprzyk,

V. Jotsov (Eds.), Innovative Issues in Intelligent Systems, vol. 623, 217–230,

2016.

[29] H. Liu, A. Gegov, M. Cocea, Network based rule representation for knowl-

edge discovery and predictive modelling, in: IEEE International Conference

on Fuzzy Systems, Istanbul, Turkey, 1–8, 2015.

37



[30] H. Liu, A. Gegov, M. Cocea, Collaborative rule generation: An ensemble

learning approach, Journal of Intelligent and Fuzzy Systems 30 (4) (2016)

2277–2287.

[31] H. Liu, A. Gegov, M. Cocea, Rule based systems: A granular computing

perspective, Granular Computing 1 (4) (2016) 259–274.

[32] H. Liu, A. Gegov, M. Cocea, Rule Based Systems for Big Data: A Machine

Learning Approach, Springer, Switzerland, 2016.

[33] H. Liu, A. Gegov, F. Stahl, J-measure based hybrid pruning for complexity

reduction in classification rules, WSEAS Transactions on Systems 12 (9)

(2013) 433–446.

[34] H. Liu, L. Zhang, Fuzzy rule-based systems for recognition intensive classi-

fication in granular computing context, Granular Computing 3 (4) (2018)

355–365.

[35] S. Liu, Z. Xu, J. Gao, A fuzzy compromise programming model based on

the modified S-curve membership functions for supplier selection, Granular

Computing 3 (4) (2018) 275–283.

[36] W. Pedrycz, S. M. Chen, Granular Computing and Intelligent Systems: De-

sign with Information Granules of Higher Order and Higher Type, Springer,

Heidelberg, 2011.

[37] W. Pedrycz, S. M. Chen, Granular Computing and Decision-Making: In-

teractive and Iterative Approaches, Springer, Heidelberg, 2015.

[38] W. Pedrycz, S. M. Chen, Information Granularity, Big Data, and Compu-

tational Intelligence, Springer, Heidelberg, 2015.

[39] G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules,

in: G. Piatetsky-Shapiro, W. J. Frawley (Eds.), Knowledge Discovery in

Databases, AAAI/MIT Press, Cambridge, 229–248, 1991.

38



[40] J. R. Quinlan, Learning efficient classification procedures and their appli-

cation to chess end games, in: R. S. Michalski, J. G. Carbonell, T. M.

Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach,

463–482, 1983.

[41] J. R. Quinlan, Induction of decision trees, Machine Learning 1 (1) (1986)

81–106.

[42] J. R. Quinlan, Simplifying decision trees, International Journal of Man-

Machine Studies 27 (3) (1987) 221–234.

[43] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann

Publishers, San Francisco, 1993.

[44] J. R. Quinlan, Improved use of continuous attributes in C4.5, Journal of

Artificial Intelligence Research 4 (1) (1996) 77–90.

[45] P. Symth, R. M. Goodman, An information theoretic approach to rule

induction from databases, IEEE Transactions on Knowledge and Data En-

gineering 4 (4) (1992) 301–316.

[46] H. Y. Wang, S. M. Chen, Evaluating students’ answerscripts using fuzzy

numbers associated with degrees of confidence, IEEE Transactions on Fuzzy

Systems 16 (2) (2008) 403–415.

[47] J. Yao, Information granulation and granular relationships, in: IEEE In-

ternational Conference on Granular Computing, Beijing, China, 326–329,

2005.

[48] Y. Yao, Perspectives of granular computing, in: IEEE International Con-

ference on Granular Computing, Beijing, China, 85–90, 2005.

[49] L. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338–353.

[50] H. Zhao, X. Li, A cost sensitive decision tree algorithm based on weighted

class distribution with batch deleting attribute mechanism, Information

Sciences 378 (2017) 303–316.

39


	Introduction
	Preliminaries
	Rule based systems
	Procedure of decision tree learning
	Procedure of rule learning
	Measures of rule quality

	Related work
	Rule learning driven by PrismCTC
	Key features
	Justification

	Experimental results
	Accuracy comparison
	Model complexity comparison

	Conclusions

