
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/117432/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Wyatt, Hayley, Safar, Alexander, Clarke, Alastair , Evans, Samuel and Mihai, L. Angela 2019. Nonlinear
scaling effects in the stiffness of soft cellular structures. Royal Society Open Science 6 (1) , 181361. 

Publishers page: https://doi.org/10.1098/rsos.181361 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



royalsocietypublishing.org/journal/rsos
Research
Cite this article: Wyatt H, Safar A, Clarke A,

Evans SL, Mihai LA. 2019 Nonlinear scaling

effects in the stiffness of soft cellular structures.

R. Soc. open sci. 6: 181361.

http://dx.doi.org/10.1098/rsos.181361
Received: 29 August 2018

Accepted: 5 December 2018
Subject Category:
Engineering

Subject Areas:
materials science/applied mathematics

Keywords:
cellular solids, neo-Hookean cell wall material,

large-strain stretching, experimental testing,

digital image correlation, finite element

simulation
Author for correspondence:
Hayley Wyatt

e-mail: wyatthl@cardiff.ac.uk
& 2019 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.figshare.

c.4335932.
Nonlinear scaling effects
in the stiffness of soft
cellular structures
Hayley Wyatt1, Alexander Safar2, Alastair Clarke1,

Sam L. Evans1 and L. Angela Mihai2

1School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK
2School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK

HW, 0000-0001-6893-1977; LAM, 0000-0003-0863-3729

For cellular structures with uniform geometry, cell size and

distribution, made from a neo-Hookean material, we

demonstrate experimentally that large stretching causes

nonlinear scaling effects governed by the microstructural

architecture and the large strains at the cell level, which are

not predicted by the linear elastic theory. For this purpose,

three honeycomb-like structures with uniform square cells in

stacked distribution were designed, where the number of

cells varied, while the material volume and the ratio between

the thickness and the length of the cell walls were fixed.

These structures were manufactured from silicone rubber and

tested under large uniaxial tension in a bespoke test fixture.

Optical strain measurements were used to assess the

deformation by capturing both the global displacements of

the structure and the local deformations in the form of a

strain map. The experimental results showed that, under

sufficiently large strains, there was an increase in the stiffness

of the structure when the same volume of material was

arranged as many small cells compared to when it was

organized as fewer larger cells. Finite element simulations

confirmed our experimental findings. This study sheds light

upon the nonlinear elastic responses of cellular structures in

large-strain deformations, which cannot be captured within

the linear elasticity framework.
1. Introduction
The design and assessment of cellular structures undergoing large

elastic deformations is central in many industrial and biomedical

applications, and their mathematical modelling and mechanical

analysis pose many theoretical and computational challenges

[1–5]. In particular, soft cellular structures are the subject of

important research efforts in regenerative applications, such as

soft tissue scaffolds, for which a better understanding of the
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mechanical behaviour is necessary to optimize their functional performance [6–13]. Cellular structures

can also be found in both load-carrying and non-load-carrying matter, in nature and several industrial

areas (e.g. impact protection, aerospace, microelectronics, pharmaceutical and food processes) [14–18].

Therefore, by studying the fundamental mechanical responses of cellular structures, important insights

can be gained for the development of many areas of research.

For natural and man-made cellular structures, several key factors determine the magnitude of the

enhancement of stress level in the cellular body, including the cell geometry, the cell wall thickness

and the number of cells [1,2,4,5,19]. For two different structures made from the same volume of solid

material, which is distributed uniformly as a small number of large cells or as a larger number of

smaller cells, if the ratio between the thickness and the length of the cell walls is the same in both

structures, then the stiffness of the structures under small strain elastic deformations is the same [15].

While this is valid for many cellular structures with linear elastic cell walls, and similarly, for

structures with nonlinear elastic walls in the small strain regime, in many cellular solids, the cell size

is expected to have a more independent effect on the elastic responses, even though this effect is

typically obscured by other structural properties [20,21].

In this study, for cellular structures with uniform geometry, cell size and distribution, and a neo-

Hookean hyperelastic cell-wall material [22,23], we demonstrate experimentally that sufficiently large

stretching causes nonlinear elastic effects which are governed by the microstructural architecture and

the large strains at the cell level, and are not predicted by the linear elasticity theory. For this purpose,

three honeycomb-like structures with uniform square cells in stacked distribution were designed,

where the number of cells varies, while the total material volume and the ratio between the thickness

and the length of the cell walls are fixed. These structures were manufactured from silicone rubber

and tested under large uniaxial tension in a bespoke test fixture. Optical strain measurement

techniques were used to assess the deformation by capturing both the global displacements of the

structure and the local deformations in the form of a strain map [24–28]. The experimental results

showed that, under large strains, there was an increase in the stiffness of the structure when the same

volume of material was arranged as many small cells compared to when it was organized as fewer

larger cells. This behaviour is also captured by our finite element simulations of cellular structures

with similar geometries and cell-wall material properties.

This study sheds light upon the nonlinear elastic responses [3,29–34] of soft cellular structures,

which cannot be captured by the classical linear elastic theory. In particular, we show that, under

sufficiently large strains, the stiffness of the structures with nonlinear elastic cell walls varies with the

cell size [2,4], in contrast to the results predicted for structures with linear elastic cell walls [15], given

that the same volume of material is used for each structure, and that the thickness-to-length ratio for

the cell walls remains the same. This has important implications for the optimal design of cellular

materials in various applications, and in particular, for stretch-dominated architectures, which are

structurally more efficient, due to a higher stiffness-to-weight ratio, than the bending-dominated ones

[3–5,15,19,35].
2. Experimental material and methods
2.1. Structure design and manufacture
Three periodic honeycomb-like structures with a different number of square cells in stacked

distribution were designed and manufactured, ensuring that the overall volume of solid material

used and the ratio between the thickness and the length of the cell walls are the same for all

structures, while the number of cells varies. The geometric parameters for the designed structures

are summarized in table 1 and illustrated on a single structure in figure 1. In this figure, the tabs

seen at the top and the bottom of the structure allow for the physical structure to be mounted in

the bespoke test fixture, as described in detail in the next section which focuses on the experimental

set-up.

Individual aluminium moulds were created for each of the structures, and the structures were then

cast out of Tech-Sil 25 silicone. This silicone is a two-part silicone, mixed as per the manufacturer’s

instructions, which underwent a two-part degassing process, first after the initial mixing and second

after the casting, then allowed 24 h to cure. The material behaviour of this silicone is characterized by

a neo-Hookean hyperelastic model, described by equation (4.1), with Young’s modulus E ¼ 0.74 MPa

and Poisson’s ratio n ¼ 0.48 under infinitesimal deformations. The neo-Hookean model is the simplest
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Figure 1. Geometry of cellular structure with 5 � 5 cells.

Table 1. Geometric parameters of the undeformed cellular structures tested experimentally.

cellular

structure

overall

height,

H (mm)

structure

width,

Lx (mm)

structure

height,

Ly (mm)

structure

depth,

Lz (mm)

cell-wall

length,

L (mm)

cell-wall

thickness,

t (mm)

cell-wall

thickness-to-

length ratio,

t/L

3 � 3 cells 170.833 100 100 10 25.000 8.333 3.000

5 � 5 cells 142.500 100 100 10 15.000 5.000 3.000

9 � 9 cells 127.667 100 100 10 8.333 2.778 3.000
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nonlinear hyperelastic model, originally proposed to characterize the nonlinear elastic behaviour of

rubberlike material in [22,23]. Our parameter values were obtained through uniaxial tensile and

compression testing, using the process of inverse analysis, prior to the manufacturing of the

structures. A total of six structures were manufactured, two of each structure type.
2.2. Experimental set-up
To conduct the uniaxial tensile testing of each structure, a bespoke fixture was designed (figure 2). This

allowed for the (top and bottom) ends of the structure to slide horizontally, while the structure was

loaded vertically, meaning that all the initially straight and vertical cell walls remained almost straight

and vertical throughout the testing, avoiding the unwanted bending of the side walls, which is

commonly seen during more traditional tensile tests whereby the ends of a structure are clamped.

This was achieved through the use of dowel rods and needle roller bearings, where the friction within

the system was minimized through polishing of the contact surfaces. When the coefficient of friction

was experimentally measured for the system, a resulting mean CoF of 0.02+0.003 was found,

demonstrating minimal friction within the bespoke test fixture.

Uniaxial tensile tests were conducted using a Zwick–Roell Z050 tensile testing machine, with a 2 kN

load cell to measure tensile force. Initially, loading and unloading tests were carried out to verify that the



Figure 2. Bespoke test fixture allowing the structure to slide in the horizontal direction and create a straight edge during tension.
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structures were elastically deformed, i.e. all the changes in the deformed structures were reversible. For

this, each structure was subjected to a 60 N tensile load in 10 N increments and unloaded to 0 N after each

increment. To measure their local and global deformations, the structures were subjected to a maximum

tensile load of 50 N. To capture quasi-static deformations, the tests were performed at a velocity of

2 mm s21, and a pre-load of 1 N was used to remove slack from the experimental set-up. Tests were

conducted twice for each structure type (n ¼ 2).
2.3. Digital image correlation
Digital image correlation (DIC) is a non-contact optical measurement technique measuring specimen

displacement. A high-contrast pattern is applied to the surface of the specimen, which provides

unique points of identification to allow the software to track the displacement of the specimen. The

specimen is imaged in its unloaded state, and this acts as a point of reference for the software. The

specimen is then imaged throughout loading, either through video or through a series of camera

images. The software will then use the captured images to track the unique points within the high-

contrast pattern, measuring the displacement of the specimen. From the displacement, strain can

then be computed using the parameter of the affine transformation and the gradients of the

deformation [24–28]. Within this study, two DIC systems were used, the first was the Imetrum

Video Gauge system. This was used to capture the global deformation of the structure through the

application of virtual strain gauges. The second system was a Q-400 Dantec Dynamic system used to

create a two-dimensional map of the strains at a local level, focusing solely on the centre cell of each

structure.



Table 2. Parameters for the DIC data capture and processing.

experimental technique used 3 � 3 cell structure 5 � 5 cell structure 9 � 9 cell structure

calibration residuum ,0.1 ,0.1 ,0.1

speckle pattern size 0.45 – 1.2 mm 0.35 – 1.2 mm 0.25 – 0.6 mm

subset 17 pixels 17 pixels 17 pixels

step size 17 pixels 17 pixels 17 pixels

spatial resolution 1.33 mm 1.02 mm 0.697 mm

total number of images 15 15 15

displacement

displacement noise 0.005 mm 0.015 mm 0.020 mm

strain

smoothing method none none none

strain noise 20 mstrain 20 mstrain 20 mstrain
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2.3.1. Measuring global deformation

A video strain gauge system (Imetrum) was used to capture the global deformation of the structure

during tensile tests. The system was used with a single camera with a general-purpose lens and

calibrated using markers of a known distance apart within the field of view, as per the manufacturer’s

instructions. Markers were applied to the surface of the specimen to allow the software, provided as

part of the system, to track the deformation of the structure. These were applied to the structure using

a black marker pen, with markers applied to the intersections and the mid-wall of the cells. When

processing the data, virtual strain gauges were applied to the structure, using markers that maximized

the length of the gauge, thus reducing errors within the system. For the purpose of this study, a

limited number of points were selected to validate the new loading fixture, although there is a

potential for further exploiting results obtained from these data.
2.3.2. Measuring local deformation

The Q-400 (Dantec Dynamics) system was used to capture the local deformation of the structures and to

validate the finite element models (FEMs). The system consisted of the necessary software, Instra4D, a

HiLis light source and a data logging system to connect the cameras to the laptop. The HiLis light

source is a high-intensity LED illumination system which provides cool and homogeneous

illumination. Two digital cameras were used with the system and were mounted onto a tripod with

the HiLis light source positioned between them. The two cameras were connected to a data logging

system, which, in turn, was connected to the laptop. Following this, the aperture and focus of both

cameras were adjusted, focusing on the high-contrast speckle pattern applied to the surface of the

silicone specimen [27]. This high-contrast speckle pattern was applied using white and black face

paint (Snazaroo). Three different camera set-ups were required, due to the differences in structure

geometry, ensuring the most appropriate set-up for each structure in terms of the field of view. Each

camera set-up differed in terms of their field of view only, with the same equipment including

calibration target and camera lenses used for each. Following the set-up of the DIC system, it was

necessary to conduct a calibration. This determined the position and orientation of each of the

cameras with respect to the surface of the specimen and related the pixel size of the object image to

the metric scale. To calibrate the system, a series of eight calibration images were taken of a

calibration target. The calibration target used for this study was a 9 � 9 grid, 40 � 40 mm (Dantec

Dynamics). The target was rotated and tilted for each image to allow the software to determine the

required parameters. A calibration residuum of less than 0.1 was considered acceptable [27]. Data

were processed within the DIC software, Instra4D, with the parameters from data capture and

processing displayed in table 2. For each structure, two polygons were drawn over the surface of the

struts, one covering the vertical strut and one covering the horizontal strut. In both cases, the joints

were excluded from the analysis. For the polygon, mean values of the strain over the surface were

exported. Throughout this study, the Green–Lagrange strain is used [3,30,33].
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3. Experimental results
3.1. Global deformation of structures
To validate the new loading fixture (figure 2), and thus ensure that the boundary conditions achieved are

as expected, the global behaviour of each structure was analysed using the Imetrum video strain gauge

system. Virtual strain gauges were added to the structure, as shown in figure 3a, with the red dots

depicting the marks made on the physical structure. Struts 1, 2 and 3 were compared to verify that

the strain was the same for each of these struts, thus ensuring that no end-effects were present in the

structure. The results can be seen in figure 3b, where the struts exhibit almost identical mean vertical

strains at loads up to around 80 N. Throughout the paper, strains are presented as millistrain or

mstrain. Struts 2 and 5 were analysed to ensure that the new loading fixture created symmetrical

boundary conditions, as seen in figure 3c, where the mean vertical strains for these two struts are

almost identical.

In addition to the vertical strain of different struts, the horizontal strain was also analysed. Virtual

strain gauges were added to the structure as shown in figure 4a, with the red dots depicting the

marks made on the physical structure. Struts 7 and 8 were compared to verify that the strain was the

same for each strut, thus ensuring that no end-effects were present within the deformed structure.

These results are illustrated in figure 4b, where the struts exhibit almost identical mean horizontal

strains at loads up to around 80 N. Struts 8 and 9 were analysed to ensure that the loading fixture

created symmetrical boundary conditions, as seen in figure 4c, where the mean horizontal strains for

these two struts are almost identical.

Although the reported results correspond to the structure with 5 � 5 cells, similar results were

obtained for the structures with 3 � 3 and 9 � 9 cells, thus validating the new loading fixture in

creating the desired boundary conditions for uniaxial tensile testing under large strains.

To ensure that all testing remained within the elastic limits of the structures and no plastic

deformation occurred, a series of loading–unloading tests were also performed. The loading

conditions were as described previously, with each structure being subjected to a 60 N tensile load

in 10 N increments and unloaded to 0 N after each increment. Figure 5 shows the results for the

three structures. The data demonstrate no plastic deformation of the structure, with each structure
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clearly remaining within its elastic region, with minimal hysteresis between the loading and unloading

paths.

Additionally, the experimental results demonstrated some variation between different samples of the

same structure (figure 5). Despite these variations, the same trend was seen within the data, with the 9 � 9

structure being stiffer than the 5 � 5 structure which was, in turn, stiffer than the 3 � 3 structure. The

variation between samples could be caused by a number of factors. One possibility is the slight

inconsistencies in the manufacturing process. For example, the silicone used is a two-part silicone and

small variations in the volume of the mixture could influence its mechanical properties. Another

possible explanation for the variation in experimental results is the slight change in the testing

environment, for example, tests were not conducted in a temperature-controlled environment.
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3.2. Local deformation of structures
As all cells in the structure are deformed similarly, for our analysis, we focus on the central cell. In

figures 6–8, we show the strain maps within the three different structures under three different loads

each. The same strain map scale was used for the three structures within each image, but varied for
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the different loading stages. At 10 N tensile load, there appears to be almost no difference between the

strains in the three structures, as seen from figure 6, but as the load increases, the difference between

the strains in these structures increases. For example, figure 6 suggests that, in the structure with 9 � 9

cells, the vertical strain at 50 N tensile load is greater than that in the 5 � 5 cell structure, which, in

turn, is greater than in the 3 � 3 cell structure.

This observation is confirmed by the results plotted in figure 7, where the force required to stretch the

structure with 9 � 9 cells to a certain magnitude of Lagrange axial strain (or by a certain maximum

vertical displacement) is greater than for the structure with 5 � 5 cells, which, in turn, is greater than

for the structure with 3 � 3 cells. Importantly, it should be noted that figure 7b shows almost no

differences in the strains of the cell walls within the small strain regime (typically, this is classified as

below 4% strain or 40 mstrain). The strain within the cell walls begins to vary at around 150 mstrain,

showing the stiffening effect of the cell arrangements at larger deformations.

To illustrate the orientation of the maximum principal strains in the structures under tensile loads, in

figure 8, the strain orientation in the structure with 3 � 3 cells at a 50 N tensile load is shown. However,

similar trends were also observed in the other structures, although with different magnitudes of strain.

As seen from figure 8, the maximum principal strain is orientated in the vertical direction within the

vertical struts and corresponds to longitudinal tension, whereas in the horizontal walls, the maximum

principal strain is orientated in the horizontal direction and corresponds to longitudinal compression.

At the intersection between the horizontal and vertical walls, the orientation of the maximum

principal strain shows a more curved alignment, highlighting the more complex behaviour that occurs

at these joints.
4. Finite element simulation
4.1. Model set-up
In this section, we assess computationally nonlinear stretching effects in periodic cellular structures with

square cells in stacked distribution and neo-Hookean cell wall material [22,23], similar to those tested

experimentally. Within the finite element simulations, the generalized neo-Hookean model was used,

characterized by the strain energy density function:

vðI1,I2,I3Þ ¼
m

2
ðI1 � 3� ln I3Þ þ

l

2
ðln I1=2

3 Þ
2 ð4:1Þ
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Figure 9. (a) Schematic view of the finite element boundary conditions, with dash lines along AA showing the surfaces fixed using
the symmetry constraint, BB showing the fixed constraint applied in the horizontal and out of plane direction for the inner surface of
the holes and CC showing the location of the rigid rods and the direction of stretch. (b) A three-dimensional view of the finite
element set-up, clearly displaying the location of the rigid rods.
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In equation (4.1), m ¼ E/[2(1 þ n)] . 0 and l ¼ nE/[(1 þ n)(1–2n)] . 0 are constant material parameters,

with E and n denoting the Young’s modulus and Poisson’s ratio, respectively, and m representing the

shear modulus at infinitesimal deformations, and I1,I2,I3 are the principal invariants of the Cauchy–

Green deformation tensors C ¼ FTF and B ¼ FFT, with F denoting the (large-strain) deformation

gradient. The Green–Lagrange strain tensor then takes the form E ¼ (C 2 I)/2, where C is the right

Cauchy–Green deformation tensor defined above and I is the identity tensor (note the boldface

notation for tensors) [3,30,33].

As in the experimental tests, a Young’s modulus, E, of 0.74 MPa and a Poisson’s ratio, n, of 0.48 were

assumed for the cell-wall material. These parameter values were then used to compute the constants m

and l for the neo-Hookean model, given by (4.1), in the finite element simulations. As a Poisson’s ratio of

0.5 corresponds to perfect incompressibility, a Poisson’s ratio of 0.48 represents a condition of slight

compressibility (or near incompressibility).

The modelled structures had the same geometry as those tested experimentally, but the symmetry of

the boundary conditions was used to reduce computational cost, modelling only half of the tested

specimen. To compute the force–displacement responses in the computational structures, cylindrical

metal rods inserted through the hoops at the end of the structure were modelled, mimicking the

physical tests conducted experimentally. The position of these rods can be seen clearly in figure 9.

These rods were modelled as rigid bodies, and the boundary conditions between the rods and the

structure, as rigid interfaces. The rigid rods had prescribed displacement in the positive vertical

direction to create the prescribed vertical stretch of the structure. The internal and external faces of the

structure were allowed to deform freely. The boundary conditions applied to the model are shown

schematically in figure 9.
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Table 3. Final mesh parameters for each structure.

structure total number of elements total number of nodes element type

3 � 3 449 851 98 921 four-node linear tetrahedral

5 � 5 398 165 94 147 four-node linear tetrahedral

9 � 9 267 391 72 971 four-node linear tetrahedral
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The numerical results recorded here were obtained within the finite element for biomechanics (FEBio)

software environment [36]. The model structures were created in SolidWorks and imported into the

FEBio software, and a mesh refinement study was performed for each structure, the results of which

are shown in figure 10, to ensure that the numerical results are independent of the mesh size. To

evaluate the mesh sensitivity, the total reaction force was used as this was a criterion of interest in

evaluating the overall behaviour of each structure. The reaction force was computed within the FEBio

software for each of the rigid rods used in constraining the structures. To calculate the total reaction

force for each structure, the computed forces for each rigid rod were added together and the resulting

reaction force was doubled due to the symmetry assumption applied to the model.

The results were deemed to be independent of meshing parameters once three results in a row were

within 1% of one another. The mesh elements used were four-node linear tetrahedral elements, with the

exact details of the mesh used for each structure found in table 3. An example of the mesh used for the

5 � 5 structure can be seen in figure 11.

4.2. Comparison with experimental data
The numerical results from the computational models were compared with the experimental data. For the

finite element models, the reaction force on the rigid rods was exported, as well as the displacement of the

structure, to compare with the force–displacement data acquired experimentally. The results shown in

figure 12 for the finite element simulation are in qualitative agreement with the experimental data; as

for both the computation and experimental structures, the stiffness clearly increases with the number

of cells. In addition to the force–displacement curves, the vertical strain maps across the computational

and experimental structures with 5 � 5 cells are presented, at the same scale, in figure 13. In this

figure, the magnitudes of the strains found computationally and experimentally are similar.

For all structures, there are slight differences between the finite element simulations and experimental

results. These differences can be attributed to assumptions made within the modelling process. One

example would be the material model representing the silicone used to create the structures. For this
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Figure 11. Example of the mesh for the 5 � 5 structure with (a) showing the front view of the mesh, (b) showing the side-on
view or the elements through the thickness and (c) showing a three-dimensional view of the meshed structure.
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study, a neo-Hookean hyperelastic model was chosen with parameters determined experimentally.

Furthermore, there is a variation in the experimental results between samples making it difficult to

evaluate the difference between finite element simulations and experimental testing. More

experimental testing is required to assess these variations.

4.3. Analysis of finite element models
To understand the difference in behaviour between the different structures investigated as part of this

study, further analysis of the finite element models was conducted. As part of this analysis, it was

found that the joints within the structures exhibit a different nonlinear behaviour compared to the cell

walls (figure 14). The nonlinear behaviour of the joints changes due to the extra constraints; therefore,

when the number and size of the joints change within a structure, the mechanical response of

the structure changes. Figure 14 shows that, in the small strain regime, the difference between the

response of the cell joint and the cell wall is negligible, with the difference increasing outside of the

small strain regime. This trend can be seen in all structures investigated as part of this study.
5. Conclusion
In general, for different cellular structures with linear elastic cell walls, containing the same volume of

solid material, which is distributed either as a small number of large cells or as a larger number of
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smaller cells, when the ratio between the thickness and the length of a wall is the same, the stiffness of

the corresponding structure is expected to be the same [15]. For similar structures of nonlinear elastic

material also, this behaviour appears reasonable under small strains. However, in real structures,

under sufficiently large strains, the cell size is expected to have a more independent effect, even

though this effect may be relatively minor or harder to separate from other mechanical responses

[20,21].

The aim of this paper was to separate the cell size effect from other nonlinear elastic responses when

the size of the cells and the size of the structure are comparable (i.e. the cells are not infinitesimally small

relative to the cellular sample). Specifically, for cellular structures with uniform cell size, shape and

distribution, we demonstrated experimentally, for the first time, that, under large-strain deformations,

the stiffness in cell walls made from an isotropic nonlinear hyperplastic material increases when the

number of cells increases, while the volume of solid material and the ratio between the thickness and

the length of the wall remain fixed. This can be attributed to the nonlinear responses of the elastic

cell-wall joints in addition to that of the cell walls. Therefore, when the number and size of the joints

change, the response of the structure will change. Further investigation is required to understand the

limits of the structures in regard to their stiffness.
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For our experimental tests, we developed a novel loading method for cellular structures under

uniaxial tensile tests, which allows for a structure to be loaded in such a way that the end-effects are

minimal and the boundary conditions are suitable for nonlinear elastic analysis under large strains.

In addition to the experimental study, we constructed computational models which simulate the

physical structures and reproduce the elastic effects observed experimentally. FEMs are suitable for

further investigation of three-dimensional (3D) structures with different cell size or cell wall material

parameters, and subject to different loads [4,5].

Although many natural structures are irregular, cellular structures with regular geometry are easily

reproducible and can be studied systematically to identify the independent influence of different

properties [1,2,4,5,19]. In particular, our analysis offers valuable insights into the independent

mechanical effect of cell size for structures under large elastic strains, which cannot be captured

within the linear elasticity framework. Our results naturally open the door to many new questions

and will inspire further theoretical and experimental investigations.
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