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Effect of partial saturation on the stability of 
shallow foundations above the water table 

Brunella Balzano, Alessia Amabile,Gianfranco Urciuoli, and Alessandro 
Tarantino, 

Abstract. Granular ‘cohesionless’ soils above the water table are partially saturat-
ed but are commonly assumed to be dry in geotechnical practice. Accordingly, 
‘drained’ shear strength is calculated by replacing the ‘saturated’ effective stress 
with the total stress. The ‘dry soil’ assumption neglects the effect t of suction on 
shear strength and, as a result, geo-structures are over designed. To investigate the 
implications of this assumption, this paper presents an approach to calculate the 
bearing capacity of shallow foundations above the water table taking into account 
the effects of partial saturation. This approach is based on the upper bound theo-
rem of plasticity. The bearing capacity of a strip foundation in granular soils is 
calculated and the solution obtained by taking into account the effects of partial 
saturation is compared with the solution obtained from the classical ‘dry’ ap-
proach.  

Keywords: partial saturation, shallow foundation, ultimate limit state  

1 Introduction 

Non-clayey ‘cohesionless’ soils above the water table are generally assumed to be 
dry in routine engineering calculations. Nonetheless this is rarely the case. Soils 
above the water table are partially saturated and have shown to exhibit significant-

  

Brunella Balzano 
Università di Napoli Federico II, Napoli, Italy, e-mail: fonbal@hotmail.com 
Alessia Amabile 
Università di Napoli Federico II, Napoli, Italy, e-mail: alessia_ama@hotmail.it 
Ginfranco Urciuoli 
Università di Napoli Federico II, Napoli, Italy, e-mail: gianurci@unina.it 
Alessandro Tarantino 
University of Strahclyde, Glasgow, UK, e-mail: alessandro.tarantino@strath.ac.uk 



2 B. Balzano et al. 

ly higher shear strength than dry soils. Practitioners and academicians find it con-
venient to disregard the contribution of partial saturation to shear strength as this 
leads to conservative design. However, significant costs might be saved if new 
geo-structures are designed to account for the effects of partial saturation. In addi-
tion, geotechnical engineers are often confronted with existing hazardous geo-
structures, e.g. unstable slopes or foundations. In this case, a realistic analysis of 
the current state of stress, including the characterisation of the partially saturated 
zone above the water table, is essential to assess the causes of instability and, 
hence, to design appropriate remedial measures.  

To quantify the effects of partial saturation on the stability of geostructures, 
methods should be developed to analyse collapse conditions in partially saturated 
soils. This paper presents an approach based on the upper bound theorem of plas-
ticity to calculate the bearing capacity of shallow foundations. For the sake of 
simplicity, a simple two-block mechanism is considered and the case of ‘cohesion-
less’ granular materials is analysed. The accuracy of the two-block mechanism is 
first examined by considering the case of dry/saturated soil. Afterwards, the solu-
tion for partially saturated soils above the water table is derived and compared 
with the solution obtained by assuming the soil to be dry above the water table.  

2 Upper bound theorem of plastic collapse  

The upper and lower bound theorems of plastic collapse set limits to the collapse 
load of a structure and can be proved for the case of perfectly plastic materials. In 
the present paper the upper bound has been considered to calculate the bearing ca-
pacity of a foundation under partial saturation conditions.  

To apply the upper bound theorem, firstly a kinematically admissible mecha-
nism needs to be considered and secondly the external work We and the internal 
energy dissipation Wi need to be equated. 

The external work is given by: 

 𝑊௘ = ∑ 𝐹⃗ ∙ 𝛿 (1) 

where Fሬ⃗  are the external forces and δሬ⃗  are the displacements of the application 
points of the forces. 

The internal work is given by: 

 𝑊௜ = ∫ (𝜎 ⋅ 𝜀 + 𝜏 ⋅ 𝛾)
௏

𝑑𝑉 (2) 

where  and  are the normal total stress and the tangential stress respectively,  
and  are the normal and the shear strain respectively, and V is the volume of the 
shear band.  For non-clayey ‘cohesionless’ geomaterials, the shear strength criteri-
on can be written as follows (Tarantino & El Mountassir, 2012): 
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 τ = cᇱ + (σ − 𝑢௪𝑆௥)𝑡𝑎𝑛𝜙′ (3) 

where c’ is the effective cohesion, uw is the pore-water pressure, Sr is the degree of 
saturation, and ’ is the effective angle of shearing resistance. 

Assuming a cohesion c’=0 and developing the integral for Wi, the following 
expression is obtained for the case of planar slip surface: 

 𝑊௜ = −𝛿௧ tan 𝜑′ ∫ 𝑢௪𝑆௥𝑑𝐿
௅

 (4) 

where δ୲ is the component of displacement tangential to the slip surface having 
length L. 

3 Application of upper bound theorem to saturated/dry soils  

The upper bound theorem of limit analysis was first applied to the calculation of 
the bearing capacity of shallow foundation involving saturated or dry soils. For the 
sake of simplicity, the kinematically admissible mechanism considered here con-
sists of only two blocks with planar slip surfaces as shown in Figure 1. 

 
Figure 1. Kinematic mechanism of two blocks and displacement odograph. 
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 𝑊௘ = (𝑞௟௜௠𝐵)𝛿ଵ௩ − (𝑞଴𝑙ଶ)𝛿ଶ௩ + 𝛾𝑆ଵ𝛿ଵ௩ + 𝛾𝑆ଶ𝛿ଶ௩ (5) 

 W୧ = − sin φ′ ൫Uଵδଵ + Uଶδଶ + Uଵ,ଶδଵ,ଶ൯ (6) 

where qlim is the bearing capacity of the foundation, B is the width of the founda-
tion, q0 is the surcharge pressure, δ1v and δ2v are the vertical components of dis-
placements δ1 and δ2, S1 and S2 are the cross-sectional areas of the two blocks, γ is 
the unit weight of the soil, and U1, U2, U1,2 are the water thrusts acting on d1, d2 
and l1 respectively (see Figure 1). The latter are generally expressed as: 

 𝑈 = ∫ 𝑢௪ 𝑆௥𝑑𝐿
௅

 (7) 

where Sr=1 under saturated conditions. If hydrostatic conditions are assumed, uw is 
given by: 

 𝑢௪ = 𝛾௪(𝑧 − 𝐻௪) (8) 

where Hw is water table depth and w is the unit weight of water. By equating 
We=Wi the bearing capacity qlim can be expressed as follows: 

 𝑞௟௜௠ = 𝑁௤𝑞଴ + 𝑁ఊ𝛾
஻

ଶ
+ 𝑁ఊೢ 𝛾௪

஻

ଶ
+ 𝑁ுೢ

𝛾௪𝐻௪  (9) 

The bearing capacity factors Nγ, Nq, Nγw, and NHw are functions of the angles α1, 
β1, β2, and φ’ (see Figure 1). Nγ is the factor associated with the soil unit weight 
under ‘dry’ conditions (q0=0, w=0, Hw=0), Nq is the factor associated with the sur-
charge pressure (=0, w=0, Hw=0), and Nw and NHw are the factors that account 
for the pore-water pressure uw and the position of the water table Hw respectively. 
The bearing capacity factors for the two-block mechanism are given by: 

 𝑁ఊ = − ቀ
௦௜௡ ఈభା௦௜௡ ఉభ

௦௜௡(ఈభାఉభ)
+

௦௜௡ ఈభ(௦௜௡ ఉభ)మ(௦௜௡ ఉమ)మ ௦௜௡(ఈభାఉమିଶఝᇱ) ௦௜௡(ఉమିఈభିఝᇱ)

(௦௜௡(ఈభାఉభ))మ ௦௜௡(ఉమିଶఝᇱ) ௦௜௡(ఉభିఝᇱ) ௦௜௡(ఈభିఉమ)
ቁ (10) 

 𝑁௤ =
ୱ୧୬ ఉభ ୱ୧୬ ఉమ ୱ୧୬൫ఈభାఉభିଶఝᇲ൯ ୱ୧୬൫ఉమିఈభିఝᇲ൯

ୱ୧୬(ఈభାఉభ) ୱ୧୬(ఈభିఉమ) ୱ୧୬(ఉమିଶఝᇲ) ୱ୧୬(ఉభିఝᇲ)
 (11) 

 𝑁ఊೢ = −
ୱ୧୬ ఝᇱ ୱ୧୬ ఈభ ୱ୧୬ ఉభ

ୱ୧୬(ఉభିఝᇱ)(ୱ୧୬(ఈభାఉభ))మ
ቀsin 𝛼ଵ +

ୱ୧୬ ఈభ ୱ୧୬ ఉభ ୱ୧୬(ఈభାఉభିଶఝᇱ)

ୱ୧୬(ఈభିఉమ) ୱ୧୬(ఉమିଶఝᇱ)
+

ୱ୧୬ ఉభ ୱ୧୬(ఈభାఉభିఉమ)

ୱ୧୬(ఉమିଶఝᇱ)
ቁ (12) 

 𝑁ுೢ
=

ୱ୧୬ ఝᇱ

ୱ୧୬(ఉభିఝᇱ) ୱ୧୬(ఈభାఉభ)
ቀsin 𝛼ଵ +

ୱ୧୬ ఈభ ୱ୧୬ ఉభ ୱ୧୬(ఈభାఉభିଶఝᇱ)

ୱ୧୬(ఈభିఉమ) ୱ୧୬(ఉమିଶఝᇱ)
+

ୱ୧୬ ఉభ ୱ୧୬(ఈభାఉభିఉమ)

ୱ୧୬(ఉమିଶఝᇱ)
ቁ (13) 

It can be easily verified that N= -Nw. This confirms that bearing capacity un-
der saturated conditions can be derived from the ‘dry soil’ solution by replacing 
the unit weight γ with the effective unit weight γ’. 
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4 Comparison of the two-block solution with traditional models 
for dry/saturated soils 

The expressions traditionally considered for the factors Nγ and Nq are the ones 
given by Vesic (1975) and the EC7. Vesic and EC7 consider the same expression 
for Nq:  

 𝑁௤ = 𝑘௣𝑒గ ୲ୟ୬ ఝ  (14) 

where kp is the passive earth coefficient. The equations given for Nγ by Vesic 
(1975) and the EC7 respectively are slightly different: 

 𝑁ఊ = 2൫𝑁௤ + 1൯ tan 𝜑ᇱ    (Vesic, 1975) (15) 

 𝑁ఊ = 2൫𝑁௤ − 1൯ tan 𝜑ᇱ    (EC7) (16) 

The coefficients derived for Nq and Nγ by considering the two-block mecha-
nism (see Eq. (10) and (11)) are compared with the EC7 and Vesic’s solutions in 
Figure 2. For the case of the two-block mechanism, the minimum upper bound 
values for Nq and Nγ were derived by minimisation with respect to α1, β1, and β2.  

 
 
Figure 2. Comparison of factors Nγ, Nq derived from the two-block mechanism with the values 

provided by Vesic (1975) and EC7.  

 

As shown in the graphs, the two-block mechanism shows an acceptable accura-
cy at low values of the effective angle of shearing resistance φ’. As the angle of 
shearing resistance increases, the two-block mechanism significantly overesti-
mates the bearing capacity factors. This suggests that the failure mechanism is too 
simplistic for estimating the bearing capacity of shallow foundations. In this pa-
per, the two-block mechanism will therefore only be used in comparative fashion 
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to demonstrate the difference between the ‘dry soil’ and the ‘partially saturated 
soil’ assumptions.  

5 Extension to unsaturated soils 

In unsaturated soils void spaces are partially filled with water and partially filled 
with gas and the degree of saturation ranges between 0 and 1. The degree of satu-
ration Sr is related to the pore-water pressure uw via the water retention function. 
The function proposed by van Genuchten (1980) is adopted here:  

 𝑆௥ = ൜
(1 + (−𝛼𝑢௪)௡)ି௠          (𝑢௪ ≤ 0)

 1                                           (𝑢௪ > 0)
 (17) 

where , n, and m are soil parameters.  
By using Eqs. (7), (8), and (17), the water thrusts U1, U2 and U1,2 can be calcu-

lated and the bearing capacity qlim can be derived by equating the external and in-
ternal works given by Eqs. (5) and (6) respectively. It should be noted that the in-
tegral in Eq. (7) cannot be solved analytically when using the van Genuchten 
function and a numerical solution was therefore obtained. 

Two different soils were considered in this exercise to quantify the effect of 
partial saturation on the bearing capacity of shallow foundations, a natural pyro-
clastic silty sand (Nicotera et al. 2010 and Papa et al. 2008) and a reconstituted silt 
(Geiser et al. 2006). For both soils, the shear strength criterion in Eq. (3) holds as 
shown by Tarantino and El Mountassir (2012). The water retention and shear 
strength parameters for the two soils are reported in Table 1.  

Table 1. Soil parameters 

 γ [kN/m3] φ’  
[°] 

α 
[kPa-1] 

n m 

Silty sand (Nicotera et al. 2010) 15 36.9 0.065 1.67 0.400 
Silt (Geiser et al. 2006) 18 30 0.022 4.05 0.177 
 

A water table depth Hw=4 m and a foundation width B=1 m were considered. 
As a result, the failure mechanism entirely develops above the water table. The 
comparison between the bearing capacity in dry soil (as assumed in routine ge-
otechnical design) and in partially saturated soil is presented in Table 2. The bear-
ing capacity derived under the realistic assumption of partially saturated soil is 
significantly higher than the value obtained by assuming the soil dry (60% and 
98% for the silty sand and silt respectively). 
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Table 2. Comparison of bearing capacity qlim obtained from 2 blocks model 

 
qlim (kPa) qlim (kPa) 

q୳୬ୱୟ୲ − qୢ୰୷

qୢ୰୷
 

 dry unsaturated  
Silty sand (Nicotera et al. 2010) 5698 9112 60% 
Silt (Geiser et al. 2006) 952 1881 98% 

6 Conclusions 

The paper has investigated the effect of partial saturation on the bearing capacity 
of shallow foundations. In particular, the bearing capacity derived by assuming the 
soil partially saturated has been compared with the bearing capacity derived by as-
suming the soil above the water table to be dry, as is generally the case in routing 
geotechnical design.  

The bearing capacity was calculated using the upper bound theorem of plastici-
ty and considering a two-block mechanism. The two-block mechanism significant-
ly overestimates the bearing capacity at relatively high angles of shearing re-
sistance. In this paper, this simplistic mechanism was only used in a comparative 
fashion to investigate the difference between the ‘dry soil’ and the ‘partially satu-
rated soil’ assumptions.  

Preliminary results show that the effect of partial saturation is significant and 
this encourages further experimental and theoretical research on the collapse be-
haviour of geotechnical structures above the water table. 
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