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Arabidopsis RETINOBLASTOMA RELATED directly
regulates DNA damage responses through
functions beyond cell cycle control
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Abstract

The rapidly proliferating cells in plant meristems must be protected
from genome damage. Here, we show that the regulatory role of
the Arabidopsis RETINOBLASTOMA RELATED (RBR) in cell prolifera-
tion can be separated from a novel function in safeguarding genome
integrity. Upon DNA damage, RBR and its binding partner E2FA are
recruited to heterochromatic cH2AX-labelled DNA damage foci in an
ATM- and ATR-dependent manner. These cH2AX-labelled DNA
lesions are more dispersedly occupied by the conserved repair
protein, AtBRCA1, which can also co-localise with RBR foci. RBR and
AtBRCA1 physically interact in vitro and in planta. Genetic interac-
tion between the RBR-silenced amiRBR and Atbrca1 mutants
suggests that RBR and AtBRCA1 may function together in maintain-
ing genome integrity. Together with E2FA, RBR is directly involved in
the transcriptional DNA damage response as well as in the cell
death pathway that is independent of SOG1, the plant functional
analogue of p53. Thus, plant homologs and analogues of major
mammalian tumour suppressor proteins form a regulatory
network that coordinates cell proliferation with cell and genome
integrity.
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Introduction

The continuous post-embryonic growth of plants is supported by

rapidly proliferating cells in meristems. Protection against the accu-

mulation of mutations in dividing cells is not only important to

maintain cellular functions, but additionally to maintain the source

for generative cells throughout plant life (Scheres, 2007; Hu et al,

2016). The Arabidopsis RETINOBLASTOMA RELATED (RBR) is a

conserved regulator of cell proliferation, differentiation, and stem

cell niche maintenance (Harashima & Sugimoto, 2016). RBR regu-

lates cell proliferation by restraining E2F-dependent transcription of

cell cycle genes (Magyar et al, 2005; Gutzat et al, 2012; Kobayashi

et al, 2015; Harashima & Sugimoto, 2016). Mitogenic signals

promote RBR phosphorylation by cyclin-dependent kinases (CDKs)

in association with D-type cyclins, the best characterised being

CYCLIN D3;1 (CYCD3;1) (Dewitte et al, 2003; Magyar et al, 2012).

Upon this RBR phosphorylation, the E2FB transcription factor is

released and promotes cell cycle gene expression and cell prolifera-

tion, while E2FA remains associated with RBR and maintains meris-

tems through repression of differentiation (Harashima et al, 2013;

Kuwabara & Gruissem, 2014; Magyar et al, 2012; Polyn et al, 2015).

The developmental role of RBR is best understood in the root meris-

tem, where slowly dividing quiescent centre (QC) cells maintain

surrounding root stem cells that divide more frequently. The low

rate of cell division in the QC protects cells against DNA damage

while surrounding stem cells are more sensitive (Fulcher &
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Sablowski, 2009; Furukawa et al, 2010). RBR, in complex with the

transcription factor SCARECROW, was shown to regulate specific

stem cell divisions but also impose quiescence, which is important

to protect against replication stress-induced cell death (Cruz-

Ramirez et al, 2012, 2013). RBR is also required during meiosis for

chromosome condensation and synapsis of homologous chromo-

somes, but not for introducing DSBs for homologous recombination

(Chen et al, 2011).

DNA damaging environmental factors, such as ionising radiation,

ultraviolet light, excess of metalloid elements (Br, Al) and internal

damage generated spontaneously during DNA metabolism, can all

impact on genome integrity (Hoeijmakers, 2009). To counteract the

consequences of DNA lesions, organisms have evolved DNA damage

response pathways (DDR). The recognition of DNA damage by

sensor proteins initiates a network of molecular events that recruit

the DNA repair machinery, regulate transcription, control cell cycle

progression, eliminate damaged cells by cell death and enter into

terminal differentiation or senescence (Su, 2006; Cools & De Veylder,

2009; Ciccia & Elledge, 2010; Sherman et al, 2011; Hu et al, 2016).

Depending on whether DNA damage results in exposed single-

strand (SS) or double-strand breaks (DSBs), different signalling

pathways are induced, involving alternative sets of sensors, media-

tors and effectors (Ciccia & Elledge, 2010). The central components

are largely conserved among yeasts, animals and plants, although

kingdom-specific proteins are also involved (Harper & Elledge,

2007; Waterworth et al, 2011; Amiard et al, 2013; Yoshiyama et al,

2013b). The conserved DNA damage sensing kinase ATAXIA-

TELANGIECTASIA MUTATED (ATM) is activated by double-strand

DNA breaks (DSBs) and acts during G1/S and G2/M checkpoints; its

role recently was also implicated in the regulation of oxidative stress

(Shiloh & Ziv, 2013; Shiloh, 2014). The ATAXIA-TELANGIECTASIA-

AND-RAD3 RELATED (ATR) mainly responds to free single-

stranded DNA, formed during processing of blocked replication

forks, at G1/S and intra-S checkpoints (Culligan et al, 2006;

Cimprich & Cortez, 2008; Culligan & Britt, 2008; Flynn & Zou, 2011;

Amiard et al, 2013).

In mammalian systems, the ATM kinase phosphorylates the

histone variant H2AX (cH2AX) upon activation by DSB and initiates

a cascade of events through recruiting numerous signalling proteins

and DNA repair proteins, such as the breast and ovarian cancer

type1 susceptibility protein, BRCA1. Single-stranded DNA, the signal

for replication stress, is sensed and bound by the mammalian repli-

cation protein A (RPA) to form a complex. The resulting complex

activates ATR leading to the phosphorylation of the tumour suppres-

sor protein, p53 and delay of S-phase, allowing the recovery of

collapsed replication forks (Ciccia & Elledge, 2010).

No direct homologs of p53 have been identified in plants

(Yoshiyama et al, 2013b), but the plant-specific transcription factor,

SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) is considered to be

a functional analogue of p53 (Cimprich & Cortez, 2008; Yoshiyama

et al, 2013b). SOG1 is directly phosphorylated and activated by

ATM. Active SOG1 induces transcription of genes related to DNA

damage response and genes that impose cell cycle checkpoint or

repair (Culligan et al, 2006; Ricaud et al, 2007; Yoshiyama et al,

2009). Upon DNA damage, ATM and ATR activate the WEE1 kinase,

which mainly controls the replication checkpoint (De Schutter et al,

2007; Dissmeyer et al, 2009; Cools et al, 2011). The G2/M DNA

damage checkpoint is controlled by the CDKA;1 inhibitors, SIAMESE

RELATED 5 and 7, direct targets of phosphorylated SOG1 upon DNA

damage (Yi et al, 2014).

Here we show that RBR, besides its well-known function during

cell cycle, maintains genome integrity in root meristematic cells.

During DNA damage response, RBR together with E2FA accumu-

lates at distinct heterochromatic foci labelled by cH2AX in an ATM/

ATR-dependent manner. AtBRCA1 is generally recruited to numer-

ous cH2AX-labelled foci upon damage, but less frequently it also

co-localises with RBR. Co-immunoprecipitation and bimolecular

fluorescence complementation (BiFC) studies show that these two

proteins can interact and genetic data support that they act together

in protecting the genome. In addition, RBR/E2FA acts as a transcrip-

tional repressor of AtBRCA1 transcription in parallel to the SOG1-

governed transcription of DDR genes.

Results

The role of RETINOBLASTOMA RELATED in mediating
maintenance of genome integrity is separable from its function
in cell cycle regulation

Reduced RBR levels in the quiescent centre lead to extra cell divi-

sions and sensitivity to genotoxic agents (Cruz-Ramirez et al, 2013).

To investigate whether the observed cell death was associated with

S-phase progression, we quantified DNA synthesis using 5-ethynyl-

20-deoxyuridine (EdU) incorporation and cell death in two Col-0

transgenic lines with reduced RBR levels; the 35Spro:amiGORBR

(amiRBR) line, in which an artificial miRNA against RBR is expressed

constitutively (Cruz-Ramirez et al, 2013), and the RCH1::RBR RNAi

(rRBr) line, in which an antisense RNA is expressed locally in the

root meristem (Wildwater et al, 2005). Both lines conferred similar

phenotypes in the root with respect to extra stem cell divisions

and increased S-phase labelling (Fig 1A and C for amiRBR; Fig EV1A

and B for rRBr), which correlated with accumulating cell death both

in the root tip of amiRBR (Fig 1B and D) and in rRBr (Fig EV1C).

To investigate whether cell death upon RBR silencing was due to a

general deregulation of cell cycle entry, or reflected a specific role of

RBR in cell viability, we analysed CYCD3.1 overexpression, which

promotes cell cycle progression through RBR phosphorylation

(Dewitte et al, 2003, 2007; Magyar et al, 2012; Nowack et al, 2012)

and E2FA and E2FB overexpression, which act downstream of RBR

(De Veylder et al, 2002; Magyar et al, 2005, 2012). For proper compar-

ison of accessions, the Ler line named G54, overexpressing CYCD3.1

(Riou-Khamlichi et al, 1999; Dewitte et al, 2003) was introgressed into

Col-0 (Appendix Supplementary Methods). The introgressed line

showed increased EdU labelling and cell division compared to Col-0

similar to amiRBR (Fig 1A and C). In contrast, no cell death was

observed upon CYCD3.1 overexpression (Fig 1B and D).

Similar to CYCD3.1, the overexpression of E2FA-DPA (De Veylder

et al, 2002) or E2FB-DPA (Magyar et al, 2005; Appendix Supplemen-

tary Methods) in transgenic Col-0 lines led to extra cell divisions in

the stem cell niche and EdU labelling compared to wild-type

controls (Fig EV1D). However, the cell death response remained

comparable to Col-0 (Fig EV1E). Our CYCD3.1 and E2F overexpres-

sion results indicated that the cell death response is not the conse-

quence of deregulated cell proliferation by the RBR pathway but

specifically linked to reduced RBR levels.
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Cell death upon RBR silencing might be a consequence of replica-

tion stress-mediated DNA damage. To visualise DNA damage, we

followed the accumulation of the phosphorylated H2AX (cH2AX)
histone variant. As shown above, the extent of EdU incorporation

was comparable between amiRBR and Col-0(CYCD3.1OE), but the

frequency of nuclei with cH2AX foci was around 4 times higher in

amiRBR (~19%) and twice as much in Col-0(CYCD3.1OE) (~10%)

compared to Col-0 (~5.5%; Fig 1E and F). Collectively, our data indi-

cated that increased DNA damage upon reduction in RBR levels is

separable from cell cycle regulation and associated with cell death.

Because RBR silencing led to spontaneous DNA damage and cell

death, we tested whether the amiRBR line showed increased sensitiv-

ity to genotoxic stresses conferred by the DNA cross-linker mitomycin

(MMC), double-strand break inducer zeocin, and replication stress

inducer hydroxyurea (HU) (Hu et al, 2016). Cell death response both

in rRBr and amiRBR lines were stronger than in Col-0 upon MMC and

zeocin treatments (Fig 2A–C), indicating that genotoxic stress-induced

cell death response is suppressed by RBR. In contrast, HU treatment

neither triggered cell death in Col-0 nor increased the response in

amiRBR (Fig 2D). In line with the cell death response, the number of

cH2AX-positive nuclei upon MMC treatment increased further in the

amiRBR line compared to Col-0 (Fig 2E and F).

DNA stress recruits RBR to cH2AX-labelled heterochromatic foci

The role of RBR in maintaining genome stability and repressing

genotoxic stress-induced DNA damage might involve recruitment of
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Figure 1. Silencing of RBR and CYCD3.1 overexpression both promote
S-phase entry but affect cell death response and DNA damage
accumulation differently.

A Representative confocal laser scanning microscopy (CM) images of whole
mount EdU-labelled roots from 6-day-old (das) seedlings of Col-0, amiRBR
and Col-0(CYCD3.1OE) lines with EdU (green) and DAPI (DNA, blue) staining.
In the amiRBR and Col-0(CYCD3.1OE) lines, the region of extra columella
stem cell layers is labelled with a green bar in merged images. White
vertical bar shows the region of cells where EdU counting was carried out.
Images were taken in single median section, scale bar: 50 lm, arrow: QC
position in each image.

B CM images of propidium iodide (PI)-stained root tips from 12 das seedling;
genotypes indicated as in (A). Images were taken in single median section,
scale bar: 50 lm, arrow: QC position in each image.

C Number of EdU-labelled cells as shown in (A) was counted in the
epidermis, cortex and endodermis cell layers on both sides of the root. In
each case, 10 roots (6 das) were quantified.

D Cell death response in 6 and 12 das seedlings, total number of dead
columella stem cells (CSC) and lateral root cap initials (LRC) and their
descendants were counted in median sections as shown in (B), n > 2,
N > 15. Note that in Col-0(CYCD3.1OE) only 1–2 dead cells were detected in
the analysed population. Quantification of the dead cell area in amiRBR is
shown in Fig 2C.

E Frequency of cH2AX-labelled nuclei per total number of DAPI-positive
nuclei (%), n = 2, N > 6 root of 6 das seedlings, analysed nuclei > 1,000.

F Representative CM images (single section) of cH2AX immune-labelled cells
of root tips from Col-0, amiRBR and Col-0(CYCD3.1OE). DAPI (blue), scale
bar: 5 lm.

Data information: Values represent means with standard deviation (SD). In (C–
E), a indicates significant difference around 1% confidence using Student’s t-
test comparing amiRBR and Col-0(CYCD3.1OE) to Col-0. In (D), b indicates 99%
significance (P < 0.01) between time points and in (E) ab indicates 99%
significance (P < 0.01) to Col-0 and amiRBR. n = biological repeat, N = sample
per biological repeat.

ª 2017 The Authors The EMBO Journal Vol 36 | No 9 | 2017

Beatrix M Horvath et al Role of RBR, E2FA, AtBRCA1 in plant DDR The EMBO Journal

1263

Published online: March 20, 2017 



RBR to DNA damage foci. Without genotoxic stress, RBR is diffusely

localised within nuclei (Magyar et al, 2012; Fig 3A and C, control).

MMC treatment (16 h) induced the accumulation of RBR in typically

few large foci (1–5 foci per nucleus, Fig 3A and C, MMC). Around

17% of the examined nuclei contained RBR foci (total number of

nuclei, N = 845, biological repeat, n = 3), mostly co-localised with

cH2AX-positive sites (Fig 3A). 3D reconstruction of serial sections

revealed a partial co-localisation of RBR and cH2AX foci with a
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Figure 2. Genotoxic stress upon RBR silencing leads to hypersensitive DNA damage response.

A Representative (CM) images of Col-0, rRBr and amiRBR root tips of 6- to 7-day-old seedlings after 16 h of mitomycin (MMC) and 20 h of zeocin treatment
compared to non-treated samples (Control).

B, C Cell death was quantified (B) by the number of the dead columella and lateral root cap stem cells (CSC, LRC) and their daughter cells, and (C) by measuring the
area of dead vasculature above the QC in the presence of MMC for 16 h and zeocin for 20 h.

D Representative (CM) images of Col-0 and amiRBR root tips of 6- to 7-day-old seedlings after 16 h of hydroxyurea (HU) treatment compared to non-treated samples
(control shown in A).

E Representative (CM) images of nuclei (single section) of Col-0 and amiRBR 6 das root tips after 16 h of MMC treatment immune-labelled for cH2AX (green). DAPI
(blue), scale bar: 5 lm.

F Frequency (%) of cH2AX foci-harbouring nuclei compared to total nuclei in 6 das Col-0 and amiRBR root tip after 16 h of MMC treatment compared to non-treated
samples.

Data information: In (A and D), arrows indicate position of QC, scale bar: 50 lm. In (B, C and F), values represent mean with standard error, data are combined from
n = 3 biological repeats, N > 15 roots for (B and C) and N > 5 in (F) of amiRBR and Col-0, total nuclei > 1,000. a indicates significant difference within the 5 to 1%
statistical confidence interval using Student’s t-test between amiRBR and rRBr versus Col-0, and b indicates significant difference between treated versus non-treated
samples. n = biological repeats, N = samples per biological repeat.
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broad correlation range, which is typical for dynamic and transient

protein interactions (Fig 3B and E). A large proportion (80%;

n = 102) of the analysed RBR foci localised in close vicinity of hete-

rochromatin, as confirmed by intensity profiles (Fig EV2A). The

centromeric Histone 3 (CenH3) was also detected together with RBR

foci upon MMC treatment (Fig EV2B).

Consistent with the localisation of tobacco E2F in genotoxic

stress-induced foci (Lang et al, 2012), an E2FA fusion protein

under its native promoter (Henriques et al, 2010) significantly co-

localised with RBR in foci after treatment with genotoxic agents

(Fig 3C and E). To test whether RBR and E2FA localisation to

these foci depends on DNA damage signalling, we used inhibitors

KU55933 for ATM (IATM) and VE-821 for ATR (IATR), which

revealed to be effective in plants by additively inhibiting the MMC-

induced cell death response (Fig 3F). The simultaneous inhibition

of the ATM and ATR kinases by these drugs also abolished both

RBR and E2FA focus formation (Fig 3C, IATM and IATR +MMC).

In support of a role for both RBR and E2FA on DNA damage sites,

RBR-E2FA foci partially co-localised at cH2AX-positive sites

(Fig 3G).

RBR silencing triggers AtBRCA1 recruitment to DNA damage foci
and AtBRCA1 co-localises with RBR foci upon DNA stress

BRCA1 is a pivotal DNA repair protein of double-strand DNA

damage both in mammals (Rosen, 2013) and in Arabidopsis (Block-

Schmidt et al, 2011; Trapp et al, 2011). Atbrca1-1 (Reidt et al, 2006)

and Atbrca1-3 loss of function mutants displayed hypersensitive cell

death response to genotoxic stress (MMC treatment) compared to

Col-0 (Figs 4A and EV3A–E). We generated a genomic AtBRCA1-

GFP construct driven by the endogenous promoter (AtBRCA1-GFP)

(Appendix Supplementary Methods) and transformed it into the

Atbrca1-1 line. The AtBRCA1-GFP construct complemented the cell

death response of the Atbrca1-1 mutant (Figs 4A and EV3D and E).

In untreated Atbrca1-1(AtBRCA1-GFP) root meristems, the GFP

signal was low and diffuse in the nucleus, while the signal increased

upon MMC treatment and accumulated in pronounced speckles of

an increasing number of meristematic nuclei in Atbrca1-1(AtBRCA1-

GFP) (Fig 4A). Upon root meristem-specific silencing of RBR in the

rRBr line, AtBRCA1-GFP also accumulated in nuclear speckles in

and around the stem cell niche area indicating that the localisation

of AtBRCA1 is induced by RBR reduction and is not critically depen-

dent on RBR (Fig 4B).

AtBRCA1-GFP nuclear speckles co-localised with cH2AX foci, after

MMC treatment (Fig 4C), and thus, we investigated whether RBR is

co-recruited with AtBRCA1 at cH2AX foci by triple immunoco-

localisations of RBR, AtBRCA1-GFP and cH2AX in the Atbrca1-1

(BRCA1-GFP) line (Fig 4C). Similar proportions of cH2AX-positive
nuclei showed co-localisation of cH2AX foci either with AtBRCA1-

GFP or RBR (25 and 27%, respectively; Table 1). The AtBRCA1- and

cH2AX-overlapping foci were small and numerous in most nuclei

and well distinguishable from the large and sparse RBR-cH2AX
co-labelled foci. The two different classes of foci rarely coexisted

within the same cell (Fig 4C, Table 1). Foci with RBR and AtBRCA1

together at cH2AX sites appeared at lower frequency (10% of the

cH2AX+ nuclei, N = 452, n = 3; Table 1) and their appearance

resembled the large RBR-cH2AX foci. RBR and AtBRCA1 co-localised

only in the presence of cH2AX. When ATM and ATR kinase inhibi-

tors were applied simultaneously with MMC, these inhibitors reduced

the number of nuclei with cH2AX and AtBRCA1-GFP foci and

abolished the formation of RBR foci (Fig 4C).

To test whether RBR can be recruited to cH2AX foci in the absence

of AtBRCA1, we monitored RBR and cH2AX foci upon MMC treat-

ment in the Atbrca1-1 mutant. We observed co-localisation of RBR

and cH2AX in large and sparse foci as in the control, suggesting that

RBR recruitment is independent of AtBRCA1 (Fig 4D).

To study whether AtBRCA1 and RBR proteins might physically

interact, we translated both proteins in vitro in wheat germ extract

and performed co-immunoprecipitations (Appendix Supplementary

Methods). RBR specifically interacted with AtBRCA1, but was

Figure 3. RBR and E2FA nuclear focus formation depends on ATM/ATR kinases and coincides with cH2AX-positive sites upon MMC and zeocin
treatments.

A Representative CM images (single section) of nuclei with RBR foci at the cH2AX-positive sites in Col-0 upon 16 h of MMC and 3 h of zeocin treatment (white
arrowheads); diffuse nuclear RBR signal is shown in the untreated control (RBR: green, cH2AX: red, DAPI: blue).

B Partial co-localisation of RBR and cH2AX foci shown on Imaris section of the nucleus (RBR: green, cH2AX: red). Main panel (z) shows a single z-stack of the nucleus,
right panel (y-z) shows cross section by y plane perpendicular to z plane in the main panel, lower panel (x-z) illustrates cross section by x plane perpendicular to z
plane in the main panel. Scale bar: 1 lm; scale bar of magnified insets: 0.5 lm.

C Representative CM images (single section) of nuclei showing accumulation of RBR (red) and E2FA-GFP (green) in the same nuclear foci (white arrowheads) after 16 h
of MMC and 3 h of zeocin treatment (RBR: red, E2FA-GFP: green, DAPI: blue). RBR and E2FA-GFP focus formation was not detected in untreated cells (control) or upon
inhibition of ATM and ATR kinases (IATM+IATR+MMC). The activity of IATM and IATR inhibitors was followed on cell death response.

D Imaris section of a nucleus showing co-localisation of RBR (red) and E2FA-GFP (green) in foci (DAPI: blue). Main panel (z) shows a single z-stack of the nucleus, right
panel (y-z) shows cross section by y plane perpendicular to z plane in the main panel, and lower panel (x-z) illustrates cross-section by x plane perpendicular to z
plane in the main panel. Scale bar: 1 lm; scale bar of magnified insets: 0.5 lm.

E The range of Pearson correlation coefficients (PCCs) of RBR/E2FA- and RBR/cH2AX-positive foci formed after 16 h of MMC treatment. PCCs are visualised in quartiles
of ranked data (n = 30). While RBR/E2FA co-localised in foci with high mean value of PCCs = 0.82, the RBR/cH2AX in foci showed PCCs ranging from 0.1 (side by side
co-localisation) to 0.75 (partial co-localisation).

F The effect of IATM and IATR inhibitors on cell death response upon 16 h of MMC treatment in Col-0 was quantified by the number of columella stem cells (CSC)
and lateral cap stem cells (LRC) and their descendants. Values represent mean with standard deviation, n = 2, N > 15 roots for each, a indicates significant
difference within the 5 to 1% statistical confidence interval using Student’s t-test comparing samples treated with inhibitors (single or combined) and MMC to
MMC only.

G Representative CM image (single section) of a nucleus shows localisation of RBR and E2FA to a cH2AX-positive site after 16 h of MMC treatment (white arrowheads,
RBR: violet, cH2AX: red, E2FA-GFP: green, DAPI; blue).

Data information: In the intensity profiles (A, C and G), the x-axis shows length in lm measured from 1 and y-axis illustrates relative intensity. Scale bars: 2 lm.
n = biological repeats, N = samples per biological repeat.
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weaker than the positive control, E2FA (Fig 5A). The observed

direct interaction between RBR and AtBRCA1 was confirmed by

bimolecular fluorescence complementation (BiFC) assays in young,

growing tobacco leaves in the presence or absence of MMC. RBR–

SCARECROW complex formation (Cruz-Ramirez et al, 2012) served

as positive control and AtBRCA1–SCARECROW interaction as
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negative control. RBR and SCARECROW formed a complex within

36 h after infiltration, while RBR and AtBRCA1 complex formation

could be detected after 48 h in the nucleus (Fig 5B). In rare cases,

the interaction was observed in foci. These data indicated that RBR

and AtBRCA1 are independently recruited to DNA damage foci but

have the ability to interact.

1

1

1

C

γ H
2A

X 
+ 

R
B

R
γ H

2A
X 

+ 
B

R
C

A
1

γ H
2A

X 
+ 

R
B

R
   

 +
 B

R
C

A
1

C
ol

oc
al

iz
at

io
n

RBR           γH2AX         BRCA1          DAPI           merge

IA
TM

/IA
TR

 
 M

M
C

B
rRBr;(AtBRCA1:GFP)

A
Atbrca1-1Atbrca1-1Col-0Col-0 Atbrca1-1;

(AtBRCA1:GFP)
Atbrca1-1;
(AtBRCA1:GFP)

Atbrca1-1;
(AtBRCA1:GFP)

RBR             H2AX            DAPI             merge

br
ca
1-
1

γ

1

D

 0 h  16 h MMC  0 h  16 h MMC  0 h          4h               16 h MMC

Figure 4. AtBRCA1 and RBR are recruited to cH2AX foci and partially co-localise upon genotoxic stress, and locate to foci independent of each other.

A Representative CM images of PI-stained root tips of Col-0, Atbrca1-1 (0, 16 h) and Atbrca1-1(AtBRCA1pro:AtBRCA1gen:GFP) seedlings after 0, 4 and 16 h of MMC
treatment. Arrows indicate position of QC, scale bar: 50 lm. Inset in the last image illustrates an enlarged nucleus with pronounced speckles.

B CM images of PI-stained root tips of rRBr;(AtBRCA1:GFP) showing AtBRCA-GFP accumulation into foci in QC and the stem cell niche labelled with green arrowheads.
Top and bottom images represent different root tips. Scale bar: 50 lm.

C Representative CM images of nuclei (single section) with triple immunolabelling for RBR (violet), cH2AX (red) and AtBRCA1 (green) and stained for DAPI (blue)
showing co-localisation of AtBRCA1-GFP with cH2AX (arrowheads), RBR with cH2AX (arrowheads) and RBR, cH2AX and BRCA-GFP (arrowheads) after 16 h of MMC
treatment. In the presence of ATM and ATR inhibitors (IATM+IATR+MMC), the cH2AX and AtBRCA1-GFP nuclear signals and RBR foci formation were abolished. See
also Table 1 for statistics.

D Representative CM image (single section) of RBR foci localised with cH2AX-positive sites (arrowheads) in nuclei of Atbrca1-1 root meristematic cells after 16 h of
MMC treatment (RBR: green, cH2AX: red, DAPI: blue).

Data information: In (C and D) intensity profiles: x-axis shows length in lm measured from 1; y-axis shows relative intensity. Scale bars: 2 lm. N > 3, n = 3.
n = biological repeats, N = samples per biological repeat.
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RBR and AtBRCA1 genetic interaction suggests common roles in
maintaining genome integrity

To study whether RBR and AtBRCA1 might function together, we

studied their genetic interaction. Based on genotyping and segrega-

tion analysis of linked resistance markers, the amiRBR;Atbrca1-1

cross was homozygous for both loci, yet around half of the seedlings

showed strong developmental abnormalities, such as mis-positioned

or missing organs or seedling lethality (Fig EV4A and B), indicating

a variably penetrant window of sensitivity for the lack of AtBRCA1

and compromised RBR level during embryogenesis. The amiRBR;

Atbrca1-1 seedlings that looked largely normal displayed extra stem

cell divisions and increased S-phase entry in the root meristem, both

phenotypic confirmations for the effective RBR silencing (Fig EV4D–

G), and the AtBRCA1 expression could not be induced in the intro-

gressed line confirming the presence of the mutant AtBRCA1-1 allele

(Fig EV4C). The frequency of cH2AX-positive nuclei in the Atbrca1-

1 and amiRBR parents and the amiRBR;Atbrca1-1 cross was similar

(Fig 6A and B), which is consistent with a scenario where RBR and

AtBRCA1 act together in a common pathway to maintain genome

integrity.

We also studied whether AtBRCA1 function is required for the

cell death response observed in the amiRBR, and found that both in

the amiRBR,Atbrca1-1 and amiRBR;Atbrca1-3 crosses, the cell death

was substantially suppressed (Fig 6C), as quantified in the distal

stem cell niche (Fig 6D). The lack of AtBRCA1 function had no

substantial influence on other RBR-regulated processes such as colu-

mella stem cell division or S-phase entry (Fig EV4D–G).

To test whether AtBRCA1 expression is sufficient to induce cell

death, we expressed a myc-tagged genomic AtBRCA1 fusion under

the control of the GVX b-estradiol-inducible promoter (GVX1090pro:

AtBRCA1gen:10xmyc) in the Atbrca1-1 mutant. After 24 h of induc-

tion, no cell death developed, indicating that elevation of AtBRCA1

transcription cannot trigger cell death on its own (Appendix Fig S1

and Appendix Supplementary Methods). These observations indi-

cate that AtBRCA1 is required but not sufficient to trigger a cell

death response when RBR cannot maintain genome integrity.

RBR regulates DDR gene transcription through E2FA

The observed recruitment of RBR together with E2FA as a complex

at DNA lesions might start the signalling process for the

Table 1. Number and ratio of nuclei showing co-localisation of cH2AX, RBR and/or AtBRCA1.

Number of nuclei Ratio

Root 1 Root 2 Root 3 Mean SD Mean (%) SD

cH2AX (total) 156 144 152 151 6.1 100%

cH2AX+ RBR 37 56 45 46 9.5 27% 3%

cH2AX+AtBRCA1 32 42 38 37 5.0 25% 4%

cH2AX+AtBRCA1+RBR 12 14 15 14 1.5 9% 1%

EA-POD

A

GST-E2FA

GST-BRCA1

EA-POD

AB-GST

AB-GST

RBRInput Control B BRCA1-N/RBR-C RBR-N/SCR-C BRCA1-N/SCR-C

Figure 5. RBR and AtBRCA1 proteins can physically interact.

A Co-immunoprecipitation of RBR with AtBRCA1 and E2FA proteins. Control: streptavidin beads, RBR: streptavidin beads bound with RBR-biotin, AB-GST: GST
(anti-glutathione-S-transferase) antibody, EA-POD: Extravidin-POD (peroxidase-conjugated streptavidin) labelling RBR-biotin-containing complexes, GST-BRCA1:
GST-labelled AtBRCA1, and GST-E2FA: GST-labelled E2FA proteins, in the input of the wheat germ extract.

B BiFC assay in planta reveals physical interaction between AtBRCA1 and RBR (BRCA1-N/RBR-C). The RBR-N/SCR-C pair was used as a positive control, and BRCA1-N/
SCR-C pair as a negative control. Young, growing tobacco leaves were infiltrated and analysed 36–48 h after infiltration. Scale bar: 50 lm, SCR: SCARECROW
transcription factor.
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transcriptional regulation of DNA damage response genes. To inves-

tigate transcriptional responses to RBR down-regulation in the root

tip, we performed genomewide transcriptome profiling of the

meristematic region (representative root tips of each time point are

shown in Fig EV1A) in three independent biological replicates

(Appendix Supplementary Methods). We identified 99 differentially

expressed genes between rRBr and Col-0 root tips, of which 82

genes were up- and 17, including RBR, were down-regulated

(Appendix Table S1). Gene ontology (GO) analysis revealed signifi-

cant enrichment for genes encoding nuclear proteins functionally

related to three major processes: (i) nucleosome and chromosome

assembly and maintenance; (ii) replication and cell cycle checkpoint

control; (iii) DNA damage response and repair (Fig 7A,

Appendix Table S1 and Appendix Supplementary Methods). The

transcriptional changes in a set of genes representing different

functional and co-expressional categories (Appendix Table S2,

Appendix Fig S2 and Appendix Supplementary Methods) were con-

firmed by qRT–PCR both in rRBr root tips, where RBR is silenced in

root meristems (Fig 7B and C), and in seedlings from amiRBR where

post-embryonic RBR levels are reduced constitutively using the 35S

promoter (Fig 7D). The transcriptional changes were comparable in

rRBr and amiRBR lines and in full agreement with the micro-array

data. Importantly, AtBRCA1 was among the DDR targets that were

up-regulated upon RBR silencing.
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Figure 6. RBR and AtBRCA1 may act in a common process during DDR.

A Representative (CM) images of nuclei (single section) of amiRBR, Atbrca1-1 and amiRBR;Atbrca1-1 6 das root tips immunolabelled for cH2AX (green) and DAPI (blue).
Scale bar: 5 lm.

B Frequency (%) of cH2AX-labelled nuclei to total DAPI-stained nuclei in Col-0, amiRBR, Atbrca1-1, amiRBR;Atbrca1-1 grown under normal conditions. Values represent
means with SD, n = 3, and total nuclei > 1,000. a indicates significant difference within the 1% statistical confidence interval using Student’s t-test between amiRBR,
Atbrca1-1, amiRBR;Atbrca1-1 versus Col-0.

C CM images of PI-stained root tips from amiRBR, amiRBR;brca1-1 and amiRBR;brca1-3 of 12 das seedlings. Scale bar: 20 lm, arrow: QC position in each image.
D Cell death response of amiRBR, amiRBR;brca1-1, amiRBR;brca1-3 seedlings at 4, 6 and 12 das. Values represent means with SD, N > 15 for each mutant and Col-0

(n = 3–4) a: P < 0.01 between the given genotype and Atbrca1-1, which did not develop cell death at any time point. b: P < 0.01 comparison between cross and
amiRBR. The total number of dead columella stem and daughter cells (CSC), lateral root cap initials and their descendants (LRC) were counted in median sections as
shown in (C).

Data information: n = biological repeats, N = samples per biological repeat.
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The presence of canonical E2F binding sites in the 1-kb promoter

region of the differentially expressed genes (53 out of 99,

summarised in Appendix Table S1 column N, based on Naouar

et al, 2009) suggested that RBR exerts its repressive activity through

E2F proteins. Chromatin immunoprecipitation (ChIP) assays were

carried out on root tissues using RBR-specific antibody (Horvath

et al, 2006) in three independent biological repeats followed by

qRT–PCR on the promoter of the AtBRCA1 (Fig 7F). Significant

enrichment of RBR was detected on distinct regions of the AtBRCA1

promoter. The enrichment on fragment 2 that contained two puta-

tive E2F binding motifs (Fig 7E; �234+:ggggcaa and �151�:tttg-
gcgc) exceeded the enrichment detected on the PCNA1 promoter

used as a positive control (Fig 7F). A reduced level of enrichment

(� 3 times) was also observed in neighbouring regions lacking puta-

tive binding sites, which may be attributed either to the heteroge-

neous size of sonicated fragments (� 300–500 bp) or to E2F binding

to non-consensus sequences.

To address which of the activator E2Fs might partner with RBR

to regulate DDR gene expression, we quantified transcription of

AtBRCA1 in e2fa-1, e2fa-2, e2fb-1 (MPIZ_244, GABI-348E09,

SALK_103138, respectively; Berckmans et al, 2011b) and e2fb-2

(SALK_120959) mutants. Similar to amiRBR, AtBRCA1 expression

increased in e2fa-1 but not in e2fa-2 mutants nor in any of the e2fb

mutants when compared to Col-0 (Fig 8A). The difference in the

AtBRCA1 expression in the two e2fa lines likely relates to the dif-

ferent sites of insertion in the two alleles. Both e2fa mutant alleles

are predicted to encode truncated E2FA proteins that lack the trans-

activation and the canonical RBR binding domains, but retain the

DNA-binding and dimerisation domains. In contrast to e2fa-2, the

e2fa-1 allele also lost the putative “marked box” domain

(Fig EV5A), which was described in mammalian E2Fs to provide a

second interaction interface with Rb’s C-terminal domain (Ianari

et al, 2009; Dick & Rubin, 2013). AtBRCA1 derepression in amiRBR;

e2fa-1 and amiRBR;e2fa-2 double homozygous lines did not exceed

the derepression seen in amiRBR, further validating that RBR

represses AtBRCA1 through the DNA-binding E2FA transcription

factor (Fig 8A). The level of RBR silencing in the double mutants is

shown in Fig EV5B. Among the RBR-repressed DDR-related genes
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Figure 7. Genes regulated by RBR are annotated to nucleosome assembly, replication and DDR; RBR protein is enriched on the AtBRCA1 promoter.

A The pie chart represents the major processes regulated by RBR.
B, C Validation of transcriptome analysis for a selected set of up- and down-regulated genes upon RBR silencing, respectively, using qRT–PCR on dissected root tips of

4-day-old rRBr and Col-0 seedlings.
D Genes showing differential expression upon local RBR silencing are also de-repressed in the constitutively silenced amiRBR line. Graph represents qRT–PCR on 4-

day-old seedling material.
E Schematic representation of the AtBRCA1 promoter; black lines with numbers indicate the position and length of the amplified regions by qPCR analysis, the

position of the start codon (ATG), the stop codon of the upstream neighbouring transcript and the position of putative E2F elements (red arrowheads) on the + and
� strand, at positions �234 and �151, respectively, are indicated. Position of amplified regions: 1: �383 to �248; 2: �238 to �78; and 3: +313 to +455; positions are
numbered from ATG (+1).

F Chromatin immunoprecipitation (ChIP) using RBR antibody; the graph shows fold enrichment calculated as a ratio of chromatin bound to the numbered section of
the promoter with or without antibody. Values represent mean of three biological replicates with standard error, a: P < 0.01 compared to the negative control and
b: P < 0.01 compared to the positive control using Student’s t-test. PCNA1 promoter was used as a positive control and IR (an intergenic region between
At3g03360-70) as a negative control. The enrichment on IR was arbitrarily set to 1. Numbers 1, 2 and 3 on the x-axis refer to the regions labelled in (E).

Data information: In (B–D), values represent mean of fold change normalised to values of the relevant genes from Col-0, and error bars indicate � SD, n = 2, N > 100. All
of the values were in the 1% statistical confidence interval using Student’s t-test. Abbreviations of genes are available in Appendix Table S1 and primers used in this
study in Appendix Table S3. Data information: n = biological repeats, N = samples per biological repeat.
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tested, only SMR4 was similarly regulated as AtBRCA1 by RBR and

E2FA (Fig EV5E). Interestingly, MMC-induced AtBRCA1 expression

was suppressed in e2fa-1 but not in e2fb mutants (Fig 8B), suggest-

ing that E2FA is specifically required for genotoxic stress-induced

AtBRCA1 expression.

RBR represses E2FA activity to inhibit cell death response

To test whether E2FA can directly bind to the AtBRCA1 promoter,

we performed ChIP analysis using AtE2FApro:AtE2FAgen:GFP seed-

lings and 35Spro:GFP controls (Magyar et al, 2012). E2FA-GFP was

highly enriched on the segment of the AtBRCA1 promoter contain-

ing two putative E2F binding sites (Fig 8C) and the enrichment was

reduced when seedlings were treated with MMC (Fig 8C), indicating

that, upon genotoxic stress, RBR-E2FA-mediated repression of

AtBRCA1 is released. To investigate whether the release may rely on

a change in E2FA-RBR interaction upon genotoxic stress, we pulled

down the complex through the E2FA-GFP and quantified known

complex components by label-free mass spectrometry (MS). We

found that the association of RBR with E2FA and the DPs became

stronger upon MMC treatment as indicated by the ratio of the quan-

tified MS spectra of the complex components (Appendix Table S4).

Interestingly, in the E2FA-GFP pull downs we could never detect

any of the components of the multi-protein complex DP, RB-like E2F

and MuvB (DREAM, Sadasivam & DeCaprio, 2013), while with

E2FB-GFP, these proteins were readily pulled down (Appendix

Table S5). This may suggest that E2FA functions in different

complex(es) than the DREAM associated with E2FB and E2FC

(Kobayashi et al, 2015).

As RBR repression acts through E2FA to regulate transcription of

at least two DDR genes, we investigated whether this regulation

functions also in the cell death response. We quantified cell death in

the two e2fa mutant lines alone and in combination with amiRBR.

Neither e2fa-1 nor e2fa-2 showed any cell death response, and root
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Figure 8. Spontaneous cell death upon RBR silencing is suppressed by E2FA and DNA damage response upon genotoxic stress is dependent on E2FA.

A Relative transcript level of AtBRCA1 in amiRBR, e2fa-1, e2fa-2, their double mutants and e2fb-1, e2fb-2 compared to Col-0, where the level of expression was set
arbitrarily to 1.

B Relative transcript level of AtBRCA1 in Col-0, e2fa-1, e2fb-1 and e2fb-2 without and upon 16 h of MMC treatment. All the values are compared to the expression level
measured in non-induced Col-0 which was set to 1.

C ChIP using GFP antibody to chromatin isolated from Col-0(AtE2FA-GFP) seedlings; the graph shows fold enrichment on the AtBRCA1 promoter region 2 without and
upon genotoxic treatment (MMC, 16 h). The graph illustrates a representative experiment. a: P < 0.01 without MMC, b: P < 0.01 in MMC compared to the non-
treated and IR control using Student’s t-test. The enrichment on IR was arbitrarily set to 1.

D Quantitative analysis of cell death response in Col-0, e2fa-1, e2fa-2, amiRBR, amiRBR;e2fa-1 and amiRBR;e2fa-2 mutants at 6 and 12 das. Values represent mean � SD,
at least two biological replicates testing more than 20 seedlings for each mutant. Note the absence and insignificant number of spontaneous cell death in the distal
stem cell niche in Col-0 and e2fa mutants, respectively, at these time points. a: P < 0.05 significance comparing single mutant to Col-0 and b: P < 0.05 comparing
double mutants to amiRBR using Student’s t-test. CSC: columella stem cells, LRC: lateral root cap initials and their descendents.

E CM images of PI-stained root tips in non-treated e2fa-1 mutant, and MMC-treated Col-0 and e2fa-1 (6 das). Images were taken in median section, scale bar: 50 lm.
Arrow: QC position in each image.

Data information: In (A and B), values represent mean � SD, n > 2, N > 100 in each experiment. a: P < 0.05 comparing single mutant to Col-0 and in (B) b: P < 0.05
comparing values upon MMC treatment using Student’s t-test. n = biological repeats, N = samples per biological repeat.
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development was also normal. Importantly, spontaneous cell death

in amiRBR was completely suppressed in the amiRBR;e2fa-1 and

strongly delayed and reduced in the amiRBR;e2fa-2 crosses (Fig 8D)

while RBR silencing remained effective (Fig EV5B), demonstrating

that the RBR silencing-induced cell death response is dependent on

E2FA function. To test whether E2FA is also required for genotoxic

stress-induced cell death, we treated e2fa mutants with MMC. Cell

death upon genotoxic stress was partially suppressed in e2fa-1 and

e2fa-3 (Xiong et al, 2013) lines, but not by e2fa-2 (Fig 8E and quan-

tified in Fig EV5C and D), confirming that the cell death is generally

dependent on E2FA and is mediated through the marked box.

E2FA and RBR are required for genotoxic stress-induced DDR in a
SOG1-independent pathway

SOG1 is a pivotal transcription factor for the induction of DDR genes

upon genotoxic stress. We observed significant overlap between

DNA repair genes regulated by RBR (Appendix Table S1 column B)

and genes with compromised induction by irradiation in the sog1-1

mutant (Appendix Table S1 columns B and L, respectively; ratio:

8/10). The sog1-1 mutation can fully suppress cell death response

upon genotoxic stress (Yoshiyama et al, 2009, 2013a). Based on this

comparison, we asked whether the activation of the DNA damage

response pathway upon RBR silencing is dependent on SOG1 func-

tion. Homozygous sog1-1 plants (Preuss & Britt, 2003) were trans-

formed with the 35Spro:amiGORBR construct (Cruz-Ramirez et al,

2013), and RBR silencing was confirmed in the amiRBR,sog1-1 line

(Fig EV6C). The cell death response in the amiRBR,sog1-1 root

meristem was comparable to the amiRBR line (Fig 9A and B),

demonstrating that cell death induced upon RBR silencing is inde-

pendent of SOG1. In the amiRBR,sog1-1 lines, RBR silencing was

effective (Fig EV6C) and transcription of all the tested DDR genes

also remained elevated as in amiRBR (Fig 9C), showing that the

release of RBR-mediated transcriptional repression is also SOG1

independent. As expected, the genotoxic stress-induced DDR gene

expression (Fig 9D) and cell death response by MMC (Fig EV6A and

D) and zeocin (Fig EV6B) treatments were fully suppressed in the

sog1-1 plants, but not in the amiRBR,sog1-1 lines, further confirming

that RBR acts on a SOG1-independent pathway. HU does not acti-

vate SOG1 to induce DDR (Yoshiyama et al, 2013a), and hence

accordingly did not have any effect in the amiRBR and amiRBR,

sog1-1 lines (Fig EV6B). Taken together, RBR regulates DDR

gene transcription and cell death at least in part through a SOG1-

independent pathway.
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Figure 9. DNA damage response upon RBR silencing is independent of SOG1.

A CM images of PI-stained root tips (12 das seedlings) from the genotypes indicated. Arrow indicates the position of the QC; scale bar: 50 lm.
B Cell death response from 6 and 12 das seedlings, total number of dead columella stem cells (CSC), lateral root cap initials (LRC) and their descendants were counted

as shown in (A). Note that neither Col-0 at 6 das nor sog1-1 at 6 and 12 das showed cell death. a: P < 0.05 at 6 das, b: P < 0.05 at 12 das mutants versus Col-0 using
Student’s t-test. Value represents mean � SD, n > 3, N > 15 for each mutant and Col-0. The genotype legend in the graph also holds for (C and D).

C Relative expression level of DDR genes in sog1-1, amiRBR and amiRBR,sog1-1 lines (6 das) compared to Col-0 (6 das), where the level of expression for each gene was
set arbitrarily to 1. a: P < 0.05, mutants compared to Col-0 using Student’s t-test.

D Transcriptional induction of the indicated genes is depicted as fold change comparing MMC (16 h) to non-treated samples of Col-0, sog1-1, amiRBR and amiRBR,sog1-
1. a: P < 0.05 amiRBR versus Col-0 and b: P < 0.05 amiRBR,sog1-1 to sog1-1 using Student’s t-test.

Data Information: In (C) and (D), 6 das seedlings were analysed and data represent means with � SD. At least three biological replicates were analysed, in each case
around 100 seedlings for each mutant. For amiRBR,sog1-1 the mean was calculated from the analysis of six independent transformants (T2 generation). n = biological
repeats, N = samples per biological repeat.
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Discussion

Here we show that the plant Retinoblastoma homologue, RBR, has a

direct role in maintaining genome integrity. RBR is recruited to a

limited number of large heterochromatic DNA damage foci together

with E2FA in an ATM- and ATR-dependent manner upon DNA

damage. AtBRCA1 and RBR are independently recruited to these

specific damage foci, they interact and our genetic study show that

they partially act together to maintain genome integrity and to

prevent cell death. The accompanying paper of Biedermann et al

(2017) shows that RBR is required to localise RAD51 and that RBR

and RAD51 co-localise in these large foci, corroborating a non-

transcriptional role for RBR in the maintenance of plant genome

integrity. We further show that RBR and E2FA also have transcrip-

tional DNA damage response roles that act in parallel to the well-

established SOG1 pathway. Below, we discuss how this evidence for

a possible dual cell cycle-independent role of RBR in the meristem-

atic DNA damage response at cH2AX foci and at target gene promot-

ers fits in with recent evidence from plant and mammalian

experimental systems.

RBR-mediated DNA damage control at cH2AX foci

When mammalian Rb proteins are deregulated, aberrant S-phase

progression can result in nucleotide pool deficiency, replication fork

stalling and DNA damage (Bester et al, 2011). Even with haploid

wild-type Rb, mammalian cells show chromosome defects and

aneuploidy (Coschi et al, 2014; Hinds, 2014). Similarly, in plants,

reduction of RBR function in the rbr-3 mutant (Johnston et al, 2010)

and in transgenic plants overexpressing the viral RepA protein inac-

tivating RBR (Henriques et al, 2010) resulted in aneuploidy. Our

data corroborate that, in plants, S-phase progression due to RBR

deregulation can contribute to DNA damage but we show that this

effect is separable from a direct role of RBR in DNA damage control.

Our finding that DNA damage induces ATM/ATR-dependent

recruitment of RBR and E2FA to cH2AX foci suggests a direct, non-

transcriptional role for RBR in DNA damage control. The reported

accumulation of NtE2F in cH2AX-labelled foci at the G1/S transition

in tobacco cells is consistent with this notion (Lang et al, 2012).

Also, consistent with non-transcriptional roles for RBR is the finding

that, during meiosis, RBR is recruited to chromosomes in a DNA

DSB-dependent manner, where it was suggested to facilitate the

assembly of chromatin modifiers, repair proteins and condensin

complexes for homologous recombination through their LxCxE

motifs (Chen et al, 2011).

In mammals, Rb localises to chromatin at S-phase after DNA

damage (Avni et al, 2003). Furthermore, E2F1 (Coschi et al, 2014)

and E2F7 (Zalmas et al, 2013) have transcription-independent roles

to bring protein complexes to damaged DNA. E2F1 and Condensin II

are recruited by pRb to the pericentromeric region of the chromo-

some and to replication origins, thus facilitating correct replication,

accurate chromosome condensation, and chromosome segregation

(Coschi et al, 2014; Hinds, 2014). Rb heterozygosity leads to loss of

E2F1 and Condensin II binding, accompanied by replication stress

labelled by increased cH2AX foci. Recently, it was shown that Rb

localises to DSBs dependent on E2F1 and ATM, to promote DSB

repair through homologous recombination (Velez-Cruz et al, 2016).

We show that a similar mechanism might operate in plants, where

RBR localisation to DSBs requires ATM and ATR activities. Further

similarities to the animal scenario are that, homogenously distrib-

uted tobacco E2F partly relocalises upon genotoxic stress and forms

2–3 foci per nucleus in BY-2 tobacco cells. For this focus formation,

the transactivation domain and the RBR binding site were shown to

be critical. Also, the plant Condensin complex II appears to play a

role in alleviating DNA damage by HR or compacting the genome in

response to genomic stress (Sakamoto et al, 2011). In future, it will

be interesting to investigate whether a similar non-transcriptional

role for RBR, E2FA and Condensin II complexes in genome integrity

is also operational in plants.

In mammalian cells, Rb interacts with HsBRCA1, which was

suggested to be important to repress cell proliferation (Aprelikova

et al, 1999). In Arabidopsis, we did not detect any cell proliferation

effect either after induced AtBRCA1 overexpression or in the Atbrca1

mutants. In human cells, Rb was also shown to recruit HsBRCA1 in

order to facilitate processing and repair of topoisomerase II-induced

DSB (Xiao & Goodrich, 2005). Recently, Rb was also shown to be

directly involved in DSB repair, independently of its cell cycle func-

tion, through its interaction with components of the canonical

non-homologous end-joining repair pathway (Cook et al, 2015). It

will be interesting to investigate the mechanism of RBR and AtBRCA1

interaction at these specific heterochromatic sites with damaged

DNA, and their joint function in DNA damage control in Arabidopsis.

RBR-mediated transcriptional responses to DNA damage

Cells with excessive damage are eliminated. The coordination of cell

proliferation and apoptosis in mammalian cells relies on the forma-

tion of the Rb-E2F1 complex by interaction of Rb’s carboxy-terminal

domain and the marked box of E2F1 (Carnevale et al, 2012; Dick &

Rubin, 2013). During S-phase, the phosphorylated Rb-E2F1 complex

represses pro-apoptotic genes, while in response to DNA damage

upon ATM-dependent phosphorylation of E2F1, this complex

becomes a transcriptional repressor on the cell cycle genes and acti-

vator on the pro-apoptotic genes (Ianari et al, 2009; Dick & Rubin,

2013). There are indications that a similar mechanism may function

in Arabidopsis. RBR forms a complex with E2FA, which remains

stable upon CYCD3;1-CDKA phosphorylation during the cell cycle

(Magyar et al, 2012). In animal cells, phosphorylation of Rb by

CycD:Cdk4/6 kinases diversifies rather than merely inactivates Rb

complexes (Narasimha et al, 2014). RBR phosphorylation upon

CYCD3.1 overexpression in plants might similarly lead to the forma-

tion of distinct regulatory complexes with roles in activation of G1

to S transition and roles protecting against cell death or differentia-

tion. In agreement, we find that silencing of RBR leads to a very dif-

ferent outcome than RBR phosphorylation. It initiates cell death

response fully relying on E2FA with an intact “marked box”

domain, suggesting a conserved mechanism between kingdoms.

Importantly, not all the RBR-repressed DDR genes are E2FA regu-

lated. AtBRCA1 is an essential target, as its function was required

but not sufficient to induce cell death upon transcriptional derepres-

sion. As cell death response was fully suppressed in e2fa-1, in rela-

tion to AtBRCA1, additional genes should be involved in the

induction of cell death process. Interestingly, both AtBRCA1 and

E2F functions are required also for the pathogen-induced cell death

during hypersensitive response in plant defence (Bao & Hua, 2015;

Zebell & Dong, 2015).
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Active SOG1 is the pivotal transcription factor in plant DDR upon

genotoxic stress (Yoshiyama et al, 2013b). Here we show that E2FA

also carries out this function, since MMC-induced activation of DDR

genes, such as AtBRCA1 and SMR4, is compromised both in sog1-1

and e2fa-1 mutants. The ability of E2FA to activate DDR genes is

dependent on RBR levels or activity, which are responsive to

intrinsic cell cycle-dependent and cell extrinsic signals in a SOG1-

independent pathway.

In conclusion, RBR, mainly known as a regulator of cell cycle

and asymmetric cell division in plant meristems, is also involved in

maintaining genome integrity in these growth zones through two

functions, (i) assembly at a limited number of cH2AX foci together

with E2F and, possibly, AtBRCA1; (ii) transcriptional regulation of

important DDR genes including AtBRCA1. It will be interesting to

investigate in the future whether and how assembly of E2F-RBR

complexes at particular cH2AX foci is coupled to the transcriptional

role of these complexes in DDR gene regulation.

Materials and Methods

Plant material and growth conditions

Seeds were sterilised and grown as described earlier (Wildwater

et al, 2005) except that seedlings used for micro-array analysis and

qRT–PCR were germinated on 1.2% plant agar. Arabidopsis

thaliana ecotype Columbia 0 (Col-0) was used as wild type; T-DNA

insertion lines Atbrca1-3 (SALK_099751) and e2fb-2 (SALK_120959)

were obtained from the Nottingham Arabidopsis Stock Centre. The

transgenic lines sog1-1 (Yoshiyama et al, 2009), e2fa-1, e2fa-2

and e2fb-1 (MPIZ_244, GABI-348E09, SALK_103138, respectively

(Berckmans et al, 2011b) (Berckmans et al, 2011a)), e2fa-3 (Xiong

et al, 2013), Atbrca1-1 (Reidt et al, 2006), rRBr (Wildwater et al,

2005) and amiRBR (Cruz-Ramirez et al, 2012) were described

earlier. The T-DNA insertions and mutations were confirmed by

PCR-based genotyping or sequencing and gene silencing was

demonstrated via gene expressional studies and phenotyping. To

study the amiRBR;sog1-1 phenotype, more than 20 independent

transformants were generated, genotyped by sequencing the sog1-1

locus and analysed for RBR silencing. The overexpression lines

E2FA-DPA (De Veylder et al, 2002) and CYCD3.1OE (Riou-Khamlichi

et al, 1999; Dewitte et al, 2003) were described earlier. The

construction of E2FB-DPA (Magyar et al, 2005) is described in the

Appendix Supplementary Methods.

Chemical treatments and induction studies

To induce DNA damage response, 5- to 6-day-old seedlings were

transferred to tissue culture plates (unless stated otherwise),

containing fresh MS liquid medium without or with 10 lg/ml mito-

mycin C (MMC), 20 or 3 lg/ml zeocin or 1 mM hydroxyurea (HU)

and treated for 16 h or alternatively for short treatment periods of

1–4 h. For kinase inhibitory assay, 5- to 6-day-old seedlings were

pre-incubated for 2 h in ATM or ATR kinase inhibitors (Selleckchem,

KU55933, VE-821, respectively) which was applied to the MS liquid

medium at 10 lM final concentration, afterwards MMC was given,

as described above. Appropriate controls and mutants were treated

simultaneously, and all treatments were repeated at least three times

(n = biological repeat) with 15–20 (N = sample size) replicates.

Although the level of MMC induction was varied between the dif-

ferent experiments, the ratio between controls and treated samples

were comparable. Cell death in root tips was quantified by counting

the number of PI-stained cells in the columella stem cells (CSC) and

lateral root cap initials (LRC) and their daughter cells, and by

measuring the contiguously PI-stained cell area directly adjacent to

the QC in the proximal meristematic vasculature.

Immunofluorescence labelling and fluorescence microscopy

Root excision and slide preparation of squashed root tips and

immunolabelling with Arabidopsis anti-cH2AX and others were

performed according to Amiard et al (2010) and Friesner et al

(2005) with slight modifications; 3.7% paraformaldehyde with

0.05% Triton was used for 1 h and enzyme treatment was applied

on root tips transferred and attached to microscopic slides. For

dilution of primary and secondary antibodies, see Appendix Supple-

mentary Methods. 5-Ethynyl-20-deoxyuridine (EdU) labelling was

performed in whole mount preparation of root tips (for details, see

also in Appendix Supplementary Methods).

For fluorescence microscopy Olympus IX-81 FV-1000 confocal

imaging system was used. For details of confocal laser scanning

microscopy, image acquisition and processing, see Appendix Supple-

mentary Methods. For Imaris section, z-stacks were taken with

0.2 lm z-step. Images were de-convolved using Huygens (Scientific

Volume Imaging, Hilversum, The Netherlands) to remove out-of-

focus information and sectioning of gained 3D objects was

performed using Imaris software (Bitplane) in the section mode.

The quantitative co-localisation analysis was performed using

ImageJ software with JACoP (Just Another Co-localisation Plug-in,

(Bolte & Cordelieres, 2006) based on Pearson’s coefficient. A region

of interest was defined by a square of unified pixel size (26 × 26),

and image correlation analysis was performed by combining single

stacks of green and red fluorescent images. The data analysis was

generated using the Real Statistics Resource Pack software (Charles

Zaiontz; www.real-statistics.com).

For phenotypic analysis, roots were stained in 5 lg/ml propid-

ium iodide (PI) and analysed on Leica SP2 or Olympus IX-81-

FV1000 inverted laser scanning microscope. For qualitative and

quantitative comparison, images were recorded with identical

microscope settings in all cases. EdU staining of replicating cells

was performed using Click-iT EdU Alexa Fluor 488 HCS Assay

(Molecular Probes, Eugene, OR, USA) as described earlier

(Vanstraelen et al, 2009).

Bimolecular fluorescent complementation and transient
transfection assay

For BiFC, AtBRCA1 cDNA was subcloned to pGEMT-easy 221 (see

primers Appendix Table S3). Subcloning of SCR and RBR cDNAs

were described earlier (Welch et al, 2007) (Cruz-Ramirez et al,

2012) respectively). To generate split YFP construct, the binary BiFC

GATEWAY-Destination vectors were used (Gehl et al, 2009). Four-

week-old Nicotiana benthamiana plants were infiltrated by Agrobac-

terium tumefaciens containing different constructs as described by

(Liu et al, 2010). The infiltrated region of the leaf was then mounted

in water and checked for expression. YFP fluorescence was
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visualised using a Zeiss LSM 710 confocal laser scanning

microscope, and images were processed with the confocal

microscope Zeiss ZEN software. Results from at least three

independent experiments, and more than 20 infiltrated leaves were

visualised.

Transcriptional profiling, expressional studies and cloning

A detailed description is provided in Appendix Supplementary

Methods. The micro-array data are submitted to GEO under

accession GSE47715. Link: http://www.ncbi.nlm.nih.gov/geo/que

ry/acc.cgi?acc=GSE47715.

Chromatin immunoprecipitation (ChIP)

ChIP was carried out on root material of 5-day-old Col-0 seedlings to

study RBR enrichment and on Col-0(E2FApro:E2FAgen:GFP) (Magyar

et al, 2012) seedlings without and with 16-h MMC treatment to

analyse E2FA-GFP enrichment. Here, 35Spro:GFP was used as a

control. To determine RBR enrichment, IP was performed in the

absence and presence of antibody specific for RBR protein as

described by Horvath et al (2006). For the detection of E2FA-GFP,

GFP-trap beads (Chromotek) were used as described earlier

(Schepers et al, 2001).

Primers for quantitative RT/PCR were designed to amplify frag-

ments between 100 to 200 bp spanning the putative promoter region

of AtBRCA1. The negative and positive controls are described earlier

(Cruz-Ramirez et al, 2012). Primer pairs were analysed on the same

biological material, repeated three times with three technical repli-

cates for RBR and twice for E2FA. Enrichment for RBR was calcu-

lated by comparing the PCR data derived from immunoprecipitation

samples with and without antibody and for E2FA between Col-0

(E2FApro:E2FAgen:GFP) and 35Spro:GFP lines. Student’s t-tests were

performed to analyse statistical significance. List of primers is given

in Appendix Table S3.

In vitro translation and pull-down

Full-length cDNAs for AtBRCA1 and RBR were obtained from the

RIKEN Plant Science Centre and recloned into the pEU3II-HLICNot

vector by ligation-independent cloning. In vitro transcription, cell-

free translation, pull-down and immunoblotting were performed as

described earlier (Nagy et al, 2015). See also Appendix Supplemen-

tary Methods.

Expanded View for this article is available online.
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