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THE ANNIHILATING-IDEAL GRAPH OF Zn
IS WEAKLY PERFECT

REZA NIKANDISH, HAMID REZA MAIMANI AND HASAN IZANLOO

Abstract. A graph is called weakly perfect if its vertex chromatic
number equals its clique number. Let R be a commutative ring with
identity and A(R) be the set of ideals with non-zero annihilator. The
annihilating-ideal graph of R is defined as the graph AG(R) with the
vertex set A(R)∗ = A(R) \ {0} and two distinct vertices I and J are
adjacent if and only if IJ = 0. In this paper, we show that the graph
AG(Zn), for every positive integer n, is weakly perfect. Moreover, the
exact value of the clique number of AG(Zn) is given and it is proved
that AG(Zn) is class 1 for every positive integer n.

1. Introduction

The study of algebraic structures using the properties of graphs became an
exciting research topic in the past twenty years, leading to many fascinating
results and questions. There are many papers on assigning a graph to a
ring; for instance see [1], [2], [3], [6] and [7].

Throughout this paper we assume that all rings are commutative with
identity. Furthermore, we denote the set of all ideals of a ring R by I(R).

We now recall some basic graph theoretic facts: Let G be a graph with
the vertex set V (G). For any x ∈ V (G), degG(x) (or deg(x)) represents
the number of edges incident to x, called the degree of the vertex x in G.
The maximum degree of vertices of G is denoted by ∆(G). A clique of G
is a maximal complete subgraph of G and the number of vertices in the
largest clique of G, denoted by ω(G), is called the clique number of G. For
a graph G, let χ(G) denote the vertex chromatic number of G, i.e., the
minimal number of colors which can be assigned to the vertices of G in such
a way that every two adjacent vertices have different colors. Note that for
every graph G, ω(G) ≤ χ(G). A graph G is said to be weakly perfect if
ω(G) = χ(G). Recall that a k-edge coloring of a graph G is an assignment
of k colors {1, . . . , k} to the edges of G such that no two adjacent edges have
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the same color, and the edge chromatic number χ′(G) of a graph G is the
smallest integer k such that G has a k-edge coloring. A graph G is called
class 1, if χ′(G) = ∆(G).

Let R be a ring. We call an ideal I of R, an annihilating-ideal if there
exists a non-zero ideal J of R such that IJ = 0. We use the notation
A(R) to denote the set of all annihilating-ideals of R. By the annihilating-
ideal graph of R, denoted AG(R), we mean the graph with the vertex set
A(R)∗ = A(R) \ {0} such that two distinct vertices I and J are adjacent
if and only if IJ = 0. The annihilating-ideal graph was first introduced in
[4], and some of the properties of the annihilating-ideal graph have been
studied. In this article, we show that for every positive integer n, AG(Zn)
is a weakly perfect class 1 graph.

2. Main Results

We start with the following: Let n be a natural number. Throughout
the paper, without loss of generality, we assume that we are given prime
factorization n = pn1

1 p
n2
2 . . . pnm

m , where the pi are pairwise distinct primes
and the ni are natural numbers such that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nm.

Remark 2.1. Consider Zn, the ring of integers modulo n. Then:

(i) Zn is Artinian. Thus it follows from [4, Proposition 1.3] that every
non-trivial ideal of Zn is a vertex of AG(Zn).

(ii) It follows from Chinese Remainder Theorem that

Zn ∼= Zpn1
1
× · · · × Zpnm

m
.

(iii) I ∈ I(Zn) if and only if I = I1 × · · · × Im, where Ii ∈ I(Zpni
i

).

(iv) It is not hard to see that |A(Zn)∗| =
∏m
i=1(ni + 1)− 2.

Let n = p21p
3
2. The following example describes the structure of AG(Zn).

Example 2.2. Let n = p21p
3
2. Then AG(Zn) has the following properties:

(i) By Part (iv) of Remark 2.1,

|V (AG(Zn))| = |A(Zn)∗| = (3 · 4)− 2 = 10.

Indeed, Part (i) of Remark 2.1 implies that

V (AG(Zn)) =
{
〈p1〉 × 0, 〈p1〉 × 〈p2〉, 〈p1〉 × 〈p22〉, 〈p1〉 × Zp32 , 0× 〈p2〉,

0× 〈p22〉, 0× Zp32 ,Zp21 × 0,Zp21 × 〈p2〉,Zp21 × 〈p
2
2〉
}
.

(ii) It is not hard to check that the set

C =
{

0× 〈p22〉, 〈p1〉 × 0, 〈p1〉 × 〈p22〉, 0× 〈p2〉
}

is a clique of AG(Zn). In Theorem 2.4, we will prove that C is the
maximal clique of AG(Zn) and ω(AG(Zn)) = χ(AG(Zn)) = 4.
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(iii) Consider the vertices 〈p1〉 × 0 and 0× 〈p22〉. One may check that

∆(AG(Zn))= deg(0× 〈p22〉) = (32)− 1− 1 = 7

> deg(〈p1〉 × 0) = (2 · 4)− 1− 1 = 6.

To prove that AG(Zn) is weakly perfect we need the following lemma:

Lemma 2.3. Let m = 1. Then

ω(AG(Zn)) = χ(AG(Zn)) =
⌈n1

2

⌉
.

Proof. Let

C =
{
〈pn1−1

1 〉, . . . , 〈pbn1/2c
1 〉

}
.

It is clear that C is a maximal clique of AG(Zn). To complete the proof,
we color all vertices contained in C with different colors. Since the set of
vertices not contained in C is an independent set of AG(Zn), we assign the

color of the vertex 〈pbn1/2c
1 〉 to all vertices outside of C. �

This lemma allows us to state and prove the next result:

Theorem 2.4. The graph AG(Zn) is weakly perfect, for every positive in-
teger n. Moreover,

ω(AG(Zn)) =
m∏
i=1

ti + k − 1,

where k is the number of odd ni’s and

ti =

{⌈
ni
2

⌉
if ni is odd,

ni
2 + 1 if ni is even.

Proof. Let

Ai =
{

0, 〈pni−1
i 〉, . . . ,

〈
p
dni/2e
i

〉}
,

for i = 1, . . . ,m, and if nj is odd define

Ij = 0× · · · × 0× 〈pbnj/2c
j 〉 × 0× · · · × 0.

Set B = {Ij |nj odd} and

C =

((
m∏
i=1

Ai

)
∪B

)
\ {0}.

We claim that C is a clique of AG(Zn). Let I = I1 × · · · × Im and J =
J1 × · · · × Jm be two elements of C and suppose that I, J ∈

∏m
i=1Ai. By

Lemma 2.3, Ai \{0} is a clique of AG(Zpni
i

) for i = 1, . . . ,m. Thus IiJi = 0,

for each i = 1, . . . ,m, implying IJ = 0. Now, with out loss of generality,
assume that I ∈

∏m
i=1Ai and J ∈ B. Then we have that

J = 0× · · · × 0× 〈pbnj/2c
j 〉 × 0× · · · × 0,
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for some 1 ≤ j ≤ m. Since nj is odd, 〈pbnj/2c
j 〉〈pαj 〉 = 0, for every α ≥ dnj/2e,

and hence IJ = 0. The case I, J ∈ B is clear, as non-zero components of
I and J appear in different places. Thus the claim is proved and hence
ω(AG(Zn)) ≥ |C|.

We now show that C is a maximal clique of AG(Zn). Assume that I =
I1 × · · · × Im is a vertex which is adjacent to every vertex contained in C.
Then Ii is adjacent to 〈pbni/2c

i 〉 and hence Ii = 〈pαi
i 〉, where αi ≥ dni/2e, for

i = 1, . . . ,m, implying I ∈ C. Therefore, C is a maximal clique.
To complete the proof, it is enough to show that χ(AG(Zn)) ≤ |C|. First

color all vertices contained in C with different colors. Now, let I1×· · ·×Im =
I be a vertex not contained in C. We continue the proof in the two following
cases:
Case 1: I is not adjacent to at least one vertex in B:

Let T = {j ∈ N | IIj 6= 0} and assume that j0 is the minimum element
of T . Assign the color of the vertex Ij0 to I. We now show that if I and
J = J1 × · · · × Jm have the same color j0, then they are not adjacent.
However, if this is the case then clearly IIj0 6= 0 and JIj0 6= 0. Thus
Ij0Jj0 6= 0 and so IJ 6= 0, as desired.

Case 2: I is adjacent to every vertex in B:
Since I is adjacent to any vertex in B, there is at least one vertex in∏m
i=1Ai that is not adjacent to I. We consider the vertex K = K1 ×
· · ·×Km, which is defined as follows: Set Ki = 0 if Ii ∈ Ai ∪〈p

bnj/2c
j 〉. If

Ii /∈ (Ai∪〈p
bnj/2c
j 〉)\{0}, then define Ti = {J ∈ Ai\{0} | IiJ 6= 0} and set

Ki to be the minimum element of Ti. It is easily seen that K ∈ C. Assign
the color of the vertex K to the vertex I. We will show that if I and
J = J1 × · · · × Jm /∈ C have the same color, then they are not adjacent.
Assume that Ki 6= 0, for some i, 1 ≤ i ≤ m. Then Ii, Ji /∈ Ai \ {0} and
hence IiJi 6= 0. Therefore IJ 6= 0, as desired.

�

Theorem 2.4 leads to the following immediate corollary which shows that
if Zn is a direct product of m fields, then ω(AG(Zn)) = m.

Corollary 2.5. If n1 = · · · = nm = 1, then ω(AG(Zn)) = m.

Proof. Using the same notation as Theorem 2.4, it is obvious that k = m.
Since n1 = · · · = nm = 1, we deduce that t1 = · · · = tm = 1. By Theorem
2.4, ω(AG(Zn)) = (1)m +m− 1, as desired. �

To prove that AG(Zn) is a class 1 graph, the following lemma is needed:

Lemma 2.6. ([5, Corollary 5.4]) Let G be a simple graph. Suppose that
for every vertex u of maximum degree, there exists an edge {u, v} such that
∆(G)−deg(v)+2 is more than the number of vertices with maximum degree
in G. Then χ′(G) = ∆(G).

We are now in a position to prove that AG(Zn) is class 1.
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Theorem 2.7. For every positive integer n the graph AG(Zn) is class 1.

Proof. Suppose that m = 1 so that n1 > 1. If nm ≤ 3, then there is nothing
to prove, as AG(Zn) is a complete graph of order at most two. Thus we may
assume that nm > 3. However, then we have that 〈pnm−1

m 〉 is the only vertex
which is adjacent to every other vertex and ∆(AG(Zn)) = deg(〈pnm−1

m 〉) =
nm − 2. Since deg(〈pm〉) = 1, we have nm − 2 − 1 + 2 > 1; by Lemma 2.6,
AG(Zn) is class 1.

Now suppose that m > 1 and let n1 = · · · = nm = 1. If m = 2, then the
result follows easily, so suppose that m > 2. It is not hard to see that if
u = 0× · · · × 0× Zpm and v = Zp1 × · · · × Zpm−1 × 0, then

∆(AG(Zn)) = deg(u) = 2m−1 − 1,

u is adjacent to v, deg(v) = 1, and AG(Zn) has m vertices of maximum
degree. Since m > 2, we have 2m−1 − 1− 1 + 2 > m; again by Lemma 2.6,
AG(Zn) is class 1.

Suppose now that nm > 1 and let u = I1×· · ·×Im be a vertex of maximum
degree in AG(Zn), where Ii ∈ I(Zpni

i
). If Ii = 0, for some 1 ≤ i ≤ m, then

obviously Ii annihilates all ideals of Zpni
i

; however, we know that u is not

zero. Thus there exists exactly one i, 1 ≤ i ≤ m, such that Ii 6= 0. Since
∆(AG(Zn)) = deg(u), we derive that

deg
AG

(
Z
p
ni
i

)(Ii) = ∆
(
AG

(
Zpni

i

))
and hence Ii = 〈pni−1

i 〉. Since nm ≥ ni, for i = 1, . . . ,m− 1, we deduce that
i = m and u is of the form u = 0× · · · × 0× 〈pnm−1

m 〉. Thus

∆(AG(Zn)) = deg(u) =
m−1∏
i=1

(ti + 1)tm − 1− 1,

where ti + 1 = |I(Zpni
i

)|. Note that the ideal 0 is not a vertex of AG(Zn)

and u is not adjacent to itself. Consider the vertex

v = Zpn1
1
× · · · × Z

p
nm−1
m−1

× 0.

Then v is adjacent to u and deg(v) = tm and so

∆(AG(Zn))− deg(v) + 2 =

m−1∏
i=1

(ti + 1)(tm)− tm.

If nm > ni for every i = 1, . . . ,m− 1, then AG(Zn) has only one vertex
of maximum degree. If n1 = · · · = nm, then AG(Zn) has m vertices of
maximum degree. In both cases, by an easy calculation, one can show
that ∆(AG(Zn)) − deg(v) + 2 is larger than the number of vertices with
maximum degree in AG(Zn), as m > 1 and nm > 1. The result now follows
from Lemma 2.6. �
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