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Summary 

The interaction of subducted oceanic lithosphere with the discontinuities of the mantle 

transition zone (MTZ) provides insight into the composition and temperature of the 

subducted slab as well as potential melting of the slab or the surrounding mantle and 

loss of volatiles from the slab. Detailed mapping of the structure of the MTZ will help 

to better understand how slabs transport material and volatiles into the mantle and 

how phase transitions affect the slab dynamics. Here we use a dense network of 

seismic stations in northern Anatolia to image the structure of the MTZ discontinuities 

in detail using P-wave receiver functions. With a station spacing of about 7 km and a 

surface footprint of ~35 km by ~70 km, analysing receiver functions calculated from 

teleseismic earthquakes that occurred during an ~18 month deployment produced 

clear images of where the mantle transition zone interacts with the Tethys/Cyprus 

slabs that either lie flat on the 660-km discontinuity or pass into the lower mantle. We 

observe an undulating 660-km discontinuity depressed by up to 30 km and a slightly 

depressed (1 – 2 km) 410-km discontinuity, apparently undisturbed by the slab. The 
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MTZ is thickened to ~270 km as result of the cool slab in the MTZ influencing the 

660-km discontinuity and includes an arrival at ~520-km depth likely from the top of 

a flat lying slab or a discontinuity related to a solid-solid phase transition in the 

olivine component of the mantle. We find evidence for low-velocity zones both above 

and below the 410-km discontinuity and above the 660-km discontinuity. The low 

velocity zones around the 410-km discontinuity might be the result of hydration of the 

MTZ from the slab and upward convection of MTZ material into the upper mantle. 

The origin of the low velocity zone around the 660-km discontinuity is less clear and 

could be related to sedimentation of subducted mid-ocean ridge basalts. The small 

footprint of the seismic array provides accurate information on the structure of the 

MTZ in an area influenced by subduction and shows small-scale changes in MTZ 

structure that might be lost in studies covering larger areas with sparser sampling. 

 

Keywords: Mantle Processes, Phase Transitions, Composition & Structure of the 

Mantle, Dynamics of Lithosphere & Mantle, Subduction Zone Processes 

 

Introduction 

Subducted slabs are a major pathway for oceanic lithosphere, continental sediments, 

and volatiles to be transported into the lower mantle. Constraining this process and the 

interaction of the slab with the mantle at different depths is essential for our 

understanding of the flux and storage of elements such as carbon and water into the 

lower mantle and has an impact on life and the long-term habitability of Earth 

(Dasgupta and Hirschmann, 2010; Schmandt et al., 2014). The upper mantle beneath 

the eastern Mediterranean has long been influenced by interactions with subducted 

material due to the closure of the Tethys ocean and the on-going subduction at the 

Hellenic and Cyprus trenches (Cavazza et al., 2004; Faccenna et al., 2006; Jolivet et 

al., 2013; Robertson and Dixon, 1984; Stampfli, 2000). It is therefore an ideal location 

to study the interaction of subducted material with the upper mantle.  

The mantle transition zone (MTZ) is bounded by two global seismic discontinuities 

located at depths of approximately 410 km and 660 km. These sharp increases in 

seismic velocity are typically attributed to solid-solid phase transitions in the olivine 

component of the mantle. The 410-km discontinuity (herewith „the 410‟) marks the 

transition from -olivine to wadsleyite, whilst the 660 km discontinuity (herewith „the 
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660‟) is due to a transition from ringwoodite to bridgmanite and magnesiowüstite 

(Frost, 2008). The depths of the 410 and 660 transitions are dependent on pressure 

and temperature (e.g. Helffrich, 2000), allowing MTZ thickness to be used to infer the 

thermal state of the mantle (Flanagan and Shearer, 1998; Schmerr and Garnero, 2006; 

Shearer and Masters, 1992). The 410 transition occurs at lower pressures (and hence 

at shallower depths) in the presence of lower temperatures, while the opposite 

Clapeyron slope of the 660 means it will occur deeper in regions of lower temperature 

(e.g. Helffrich, 2000). Increased temperatures will conversely result in a deeper 410, 

and a shallower 660, resulting in a thinned MTZ. Theoretical and experimental studies 

on the petrology of upper mantle material have also shown that the composition and 

water content of the mantle strongly influence the structure and depth of these 

discontinuities (Bolfan-Casanova et al., 2006).  

An additional discontinuity at a depth of about 520 km (the 520) has also been 

observed at several locations (Shearer, 1990) and might be related to the wadsleyite to 

ringwoodite phase transition (Sinogeikin, 2003) or the formation of CaSiO3 

bridgmanite from garnet (Saikia et al., 2008). The 520 has been found to occur over a 

diffuse depth range and therefore might not be sharp enough to observe seismically 

and observations remain controversial (Bock, 1994). The 520 might be observable in 

subduction zones (Gilbert et al., 2001) where the wadsleyite-ringwoodite phase 

transition may occur over a small pressure interval due to variations in olivine content 

(Gu et al., 1998), hydrated mantle or slab material (Inoue et al., 1998).  

Mineral-physical studies have shown that water content influences the properties of 

the olivine-wadsleyite phase transition (Ohtani, 2005; Smyth and Frost, 2002). Water 

is preferentially incorporated into wadsleyite rather than olivine, so the transition zone 

has a larger water storage capability than the upper or lower mantle. This could lead 

to dehydration melting in material moving upwards through the 410, or sinking 

through the 660 (Bercovici and Karato, 2003; Revenaugh and Sipkin, 1994; Schmandt 

et al., 2014). It is possible that the related partial melting could be observed as zones 

of low seismic velocity bounding the transition zone discontinuities (Revenaugh and 

Sipkin, 1994).  

The eastern Mediterranean has a long and complex tectonic history currently 

characterized by differential plate motions between Arabia/Eurasia and by active 

subduction at the Hellenic and Cyprus trenches (Pichon and Angelier, 1979; Pichon et 

al., 1981). It has been proposed that the material being subducted at these trenches is 
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some of the oldest oceanic lithosphere on the planet and might be a remnant of the 

closure of the Neo- and Paleo-Tethys oceans (Granot, 2016; Hafkenscheid et al., 

2006). 

 Tomographic images of the upper mantle in the region show the location of the 

subducted material from the active trenches to the top of the lower mantle (Berk 

Biryol et al., 2011; Bijwaard et al., 1998; Fichtner et al., 2013a, 2013b; Goes et al., 

1999; Paul et al., 2014; Piromallo and Morelli, 2003; Salaün et al., 2012; Zhu et al., 

2015), with evidence for a long lasting tear in the slab at the Isparta angle influencing 

the dynamics of the region (Berk Biryol et al., 2011; Bijwaard et al., 1998; Jolivet et 

al., 2013, 2009). Although the tomographic images show that the flow of the eastern 

Mediterranean slabs into the lower mantle could be impeded by the 660 beneath 

Anatolia (Berk Biryol et al., 2011), the Tethys slab has been detected in the lower 

mantle beneath India (van der Meer et al., 2009; Van der Voo et al., 1999). It 

therefore remains unclear exactly how the slabs interact with MTZ discontinuities 

beneath Anatolia and the location where it penetrates into the lower mantle. 

This study utilises P-wave receiver functions (e.g. Langston, 1979; Ammon, 1991)  

from a dense network of seismometers deployed in north-western Turkey to image the 

MTZ discontinuities beneath Anatolia (DANA, 2012). Our results show that the MTZ 

is thickened to ~270 km and contains a strong 520 km discontinuity, with evidence 

for multiple low velocity layers around the discontinuities. This provides conclusive 

evidence for the presence of the slab and indicates a complex interplay of processes as 

the slab interacts with the MTZ beneath Anatolia.  

 

Data and Analysis 

A temporary network (Fig. 1a) of 73 medium- and broad-band seismometers was 

deployed between May 2012 to October 2013 across the North Anatolian Fault zone 

in the rupture zone of the 1999 Izmit earthquake (DANA, 2012). The stations were 

deployed on a semi-regular rectangular grid of 6 lines East-West and 11 rows North-

South. The nominal station spacing of the regular grid is 7 km. In addition to the main 

grid, a further 7 stations were deployed in a half circle towards the east, with a larger 

station spacing.  

We use instrument-response deconvolved P-waveforms from 160 high-quality 

teleseismic events (Fig. 1b) to compute P-wave receiver functions (PRF), isolating P-

to-S wave conversions from seismic discontinuities beneath the array. The waveform 
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data were initially filtered using a second-order Butterworth band-pass filter between 

0.04 Hz and 3.0 Hz. We used an iterative time domain deconvolution method 

(Ligorría and Ammon, 1999) with a Gaussian pulse width of 0.625 to deconvolve the 

vertical component P waveform from both the radial and transverse components to 

isolate P-to-S wave conversions from the MTZ discontinuities. This approach leads to 

a dominant receiver function frequency of ~0.3 Hz, which is the ultimate limit on the 

spatial resolution of this study. Whilst the nature of our array (station spacing of ~7 

km) provides us with dense sampling within the MTZ (Fig. 1b), our horizontal 

resolution is limited by the size of the Fresnel zone radii within the MTZ 

(approximately 60-80 km). Visual inspection led to 2346 high-quality receiver 

functions sampling an area of ~3° by 3° where slabs from the Mediterranean 

subduction zones (Hellenic and Cyprus slabs) have been imaged within the MTZ 

(Berk Biryol et al., 2011; Fig. 1b). This dataset was further trimmed to 1505 of the 

highest quality PRFs following an automated signal-to-noise ratio procedure 

(Cornwell et al., 2011; Hetényi et al., 2009). The final dataset of PRFs is dominated 

by ray paths that sample the MTZ to the north and east of the array (Fig. 1b). This ray 

geometry provides sampling in the region where the Hellenic and Cyprus slabs 

interact with the 660 discontinuity, while not sampling the transition of the slab 

through the 410 to the south of the region sampled by our dataset.  Figures for the full 

dataset are shown in the supplemental material with images produced with the quality 

selected dataset shown in the main part of the manuscript.  

 

PRFs were then migrated using three different approaches to firstly characterise the 

broad features and then examine their variation in space and depth. The first method 

is a 1D time migration (Stoffa et al., 1981) (Fig. 2) without corrections for crust and 

upper mantle velocity variations (Thompson et al., 2011) assuming the 1D Earth 

model ak135 (Kennett et al., 1995).  We then perform a 2-D common conversion 

point (CCP) migration (Sheehan et al., 2000) in depth again using the ak135 velocity 

model (Fig. 3). This migration collapses all the data from our small conversion point 

footprint into a 2D N-S profile, with a minimum of 10 conversion points in an 

individual bin. Finally, we perform a 3D CCP migration (Fig. 4) through the EU60 

velocity model of Zhu et al. [2015] by binning into 15 x 15 x 2 km voxels and then 

accounting for the Fresnel zone size by applying a Gaussian smoothing operator over 
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5 (i.e. 75 km) neighbouring bins in the horizontal directions and 3 (i.e. 6 km) in the 

vertical direction (e.g. Hetényi et al., 2009). 

 

Results 

The PRF results clearly show P-to-S conversions from the upper mantle 

discontinuities. Figure 2a shows stacked PRFs as a function of slowness. An Nth-root 

(N=4) slant stack for a reference slowness of 5.59 s/deg showing the observed seismic 

arrivals is also included in Fig. 2b. The P-to-S conversions from the 410 and 660 are 

clearly visible arriving at ~45 s and ~65 s, slightly later (~2-3 s) than predicted by 

ak135. This could be due to the low S-wave velocities in the upper mantle beneath 

Anatolia (Fichtner et al., 2013a; Salaün et al., 2012; Zhu et al., 2015), but our dataset 

cannot rule out the possibility that both the 410 and 660 are located slightly deeper 

than average in this location. Notably, the traveltime anomalies are consistent 

between the 410 and 660 arrival times, which suggests that the majority of this travel 

time residual can be accounted for through velocity variations in the upper mantle 

above the 410 along the S-leg of the P-to-S conversion. Another positive arrival is 

located at times between 50 and 60 s, between the 410 and 660. The arrival time of 

this arrival varies as a function of slowness, arriving earlier at low slowness, and later 

at slownesses of greater than 6.5 s/deg. This arrival is most likely a P-to-S conversion 

from a discontinuity at approximately 520 km depth, potentially related to the 

wadsleyite to ringwoodite transition.  We also observe a lower amplitude positive 

arrival at 75–85 s, which corresponds to a lower mantle depth of ~800 km (Figs. 2 and 

4). In addition to these positive arrivals, there are several negative arrivals present in 

the PRFs that suggest velocity decreases with depth (i.e. a low velocity layer). These 

negative arrivals are particularly prominent at ~40 s and ~50 s, bounding the 410 

discontinuity. A further localised negative arrival can be seen above the 660 at ~65 s, 

most evident at a slowness of larger than +6.5 s/deg. The moveout characteristics of 

these arrivals indicate that they are not multiples from shallower discontinuities (Fig. 

2b). 

The results of the 2D and 3D CCP depth migrations are shown in Figs. 3 and 4, 

overlain onto the EU60 tomography model (Zhu et al., 2015). Vertical and horizontal 

resolution of these migrated receiver function images are estimated to be +/-5 km and 

30 km, respectively, based on the first Fresnel Zone at the relevant frequency. The 

410 shows little depth variation along the 2D radial PRF profile whereas the 660 
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shows minor undulations on the order of 10 km (Fig 3). The maximum thickness of 

the transition zone in this transect is ~270 km: thicker than the global average of 242 

km (Gu and Dziewonski, 2002). This thickening is the result of topography and an 

overall deepening of the 660, which is largest close to the subducted slab indicated by 

high seismic velocities in the tomographic model. A conversion from a depth of ~520 

km is visible in the centre of the profile (Fig. 3), close to the velocity gradient 

interpreted as the top of the slab in the EU60 tomography model (Zhu et al., 2015). 

The 3D CCP depth migration using the EU60 tomography model (Fig. 4) generally 

displays similar structures to those observed in the 2D migrated profile (Fig. 3). 

Migration through the 3D tomography model appears to remove part of the traveltime 

anomaly visible in the 1D/2D migrations, giving further support to an upper mantle 

source of this traveltime anomaly. Some slight delay remains in the 3D migrated 

images, indicating that the tomography model may underpredict the magnitude of the 

upper-mantle velocity anomalies in the region. The 410 is enclosed by negative 

arrivals, which can also be seen above the 660. A positive arrival from ~520 km depth 

occurs at various locations, with a depth variation of +/-20 km. This arrival is 

strongest in the centre of the profiles coinciding with the top of the high velocity 

anomaly in the tomographic models.  Negative arrivals around the 410 and 660 show 

clear lateral variations. The negative arrival above the 660 seems to be absent from 

the southern part of the profile, while the arrival from below the 410 is present almost 

everywhere. The arrival above the 410 appears more complex but is clearly visible in 

both the south and north of the profile.  

Transverse PRFs were calculated using the deconvolution of the vertical from 

tangential components (see supplemental material) to examine evidence for radial 

seismic anisotropy or P-S conversions from dipping structures. Although some energy 

is present, the data distribution might prevent any conclusive interpretation of this 

energy and there seems to be little consistent structure throughout the volume in these 

transverse PRFs. We therefore conclude that there are no major and robust radially 

anisotropic signals present in the MTZ in this region.  

 

Discussion 

Our PRF results provide high-resolution images of the MTZ in the vicinity of a 

subducted slab. The tomographic models (shown in the background of Figures 2, 3 

and 4) indicate that a slab (defined by the high velocity anomaly) is lying flat on the 
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660, although there is alternative evidence that it penetrates the lower mantle 

(Bijwaard et al., 1998; van der Meer et al., 2018; Zhu et al., 2015). Our densely 

sampled receiver function images allow new detailed insight into the physical 

processes occurring during the interaction of the slab with the MTZ (Fig. 5). 

     In general, the main features of the dataset are consistent between all migration 

approaches  (Figs. 2,3 and 4), though some lateral variations in the MTZ structure are 

apparent in the 3D dataset. The amplitude of the 410 conversion is quite variable in 

the 3D migration, and is not clearly visible in the far west and east of the image (Fig. 

4). In addition, the low velocity zone below the 410, that is prevalent throughout the 

1D and 2D migrations, is notable only in the northern parts of the 3D migration (Fig. 

4). Only the most eastern 3D migration profile shows evidence of a low velocity zone 

beneath the 410 in the south. Conversely, the 660 discontinuity and its associated low 

velocity zone are spatially consistent between both the 2D and 3D migrations. The 

comparison between the two sets of migrated images allows us to identify the more 

robust features of our data set (e.g. the location of the 660 discontinuity), alongside 

those features that show spatial variability that is unclear in the 1D migration, such as 

the low velocity zone associated with the 410. 

We find strong correlation between the structure of the MTZ discontinuities and 

tomographic images that map broad-scale velocity variations associated with the 

subducted slab. The 410 and 660 both appear slightly deeper than average in the 3D 

migrations. With our current dataset, it is difficult to determine whether the 

depression of the 410 and 660 can be attributed solely to a reduction in S-wave 

velocity above the 410, a true depression of both discontinuities, or a combination of 

these two. There is little evidence for significant topography of the 410 that exceeds 

more than a few kilometres. This is in agreement with the tomographic models of the 

region, which indicates that the slab impinges on the 410 to the south of our study 

area (Berk Biryol et al., 2011; Piromallo and Morelli, 2003; Zhu et al., 2015). 

Therefore, it appears that the deepening of the 660 due to the presence of the 

subducted slab is the most likely cause of the increase in MTZ thickness to 270 km. 

Experimental values for the Clapeyron slope for the transition from ringwoodite to 

bridgmanite and magnesiowüstite vary from -1.0 MPa/K (Fei, 2004; Katsura, 2003) to 

-3.0 MPa/K (Ito and Takahashi, 1989). If we attribute the observed thickening of the 

MTZ purely to the ringwoodite phase transition, this would indicate a temperature 

reduction in the range of 1000 K to 330 K. Temperatures at the higher end of this 
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range seem unrealistic (Peacock, 1996; Stern, 2002). However, recent studies suggest 

that a disassociation of ringwoodite into akimotoite and periclase might alter the 

Clapeyron slope of the 660 to values of -4 to -6 MPa/K (Hernández et al., 2015; Yu et 

al., 2011). This would reduce the required temperature difference between the (most 

likely cold) slab and ambient mantle at a depth of 660 km to explain the deepening of 

the 660 to a more realistic ~160 to 245 K (e.g. Cottaar & Deuss, 2016).  

P-to-S conversions from a depth of 520 km are observed in the centre of the profile 

and seem to be co-located with the top of the subducted slab. The high amplitude of 

this conversion would imply a strong and sharp discontinuity. The wadsleyite to 

ringwoodite phase transition is thought to take place over a wide depth range of 25 to 

60 km (Akaogi et al., 1989) which would not be detectable in the frequency range of 

our data. The depth interval for the wadsleyite to ringwoodite transition has been 

found to be dependent on temperature (Xu et al., 2008), iron and water content 

(Mrosko et al., 2015). The co-location of the subducted slab and the arrivals from 

about 520 km depth (Fig. 3 and 4) makes it difficult to differentiate the source of 

these P-to-S conversions from a discontinuity formed due to a solid-solid phase 

transition or a compositional effect due to the top of the slab or the subducted oceanic 

Moho (Sinogeikin et al., 2003). The detection of an interface at this depth supports the 

existence of the slab in the transition zone in both scenarios, either by sharpening the 

phase transition through a temperature or water related effect; or by representing a 

direct detection of a compositional interface such as the top of the slab or the 

subducted Moho. The detection of a slab related interface (paleo-surface, paleo-

Moho) seems to be a more suitable explanation.  

Negative P-S converted energy that surrounds the 410 and occurs above the 660 is 

a prominent feature of this dataset and most likely indicates the presence of low 

velocity zones. Several studies have detected a low velocity zone above the 410 

(Revenaugh and Meyer, 1997; Song et al., 2004; Tauzin et al., 2010)  which has been 

interpreted as partial melting due to dehydration of hydrated material convecting 

upwards through the 410 (Bercovici and Karato, 2003). We observe a similar low 

velocity zone throughout our study region, although there is significant depth 

variation, most prominently a deepening from south to north. An intriguing feature of 

our PRFs is a negative arrival below the 410, which is interpreted as a low velocity 

zone at the top of the MTZ. Hydrated wadsleyite has been found to be more buoyant 

than dry wadsleyite (Karato, 2006), meaning hydrated material could rise to the top of 
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the MTZ. Hydrated wadsleyite “underplating” the 410, as suggested by Schmerr and 

Garnero [2007] beneath South America, is a candidate for the origin of this low 

velocity zone. The 410 is observed throughout the profile even in the presence of this 

deeper negative arrival so the low velocity hydrated wadsleyite does not obscure the 

conversion from the 410 in this location (Schmerr and Garnero, 2007). The hydration 

of transition zone wadsleyite may occur when the slab enters the transition zone and 

contains hydrous mineral phases and sediments (Kuritani et al., 2011).  The detection 

of the low velocity layer beneath the 410 along the whole profile could be a remnant 

of this hydration process as the rollback of the Hellenic arc (currently 25-30 mm/yr 

towards the south west) (McClusky et al., 2000) would have placed the slab further to 

the north-east in the past, perhaps within our study region.  Additionally, the 410 has a 

lower amplitude in the centre of the profile (Fig. 3, 4), in an area that coincides with a 

low velocity zone in the tomographic model (Zhu et al., 2015). This low velocity 

zone, along with the decreased amplitude of the 410 transition could also indicate an 

increased level of hydration in this area (Helffrich and Wood, 1996).  However, Frost 

& Dolejš (2007) suggest that this effect can only occur where temperatures are 

significantly below ambient mantle and where water contents are at or approaching 

saturation. The subducted slab and the long subduction history in the region might be 

able to provide these necessary conditions. 

The PRFs migrations also show a negative conversion above the 660.  Dehydration 

melting, due to the larger water capacity of transition zone minerals compared to the 

lower mantle (Hirschmann, 2006; Pearson et al., 2014; Schmandt et al., 2014), would 

create a low velocity zone below the 660 in regions of down-welling. In contrast, we 

observe low velocities above the 660. Although the phase transition in the olivine 

system (from ringwoodite to bridgmanite and magnesiowüstite) can explain the large 

scale structure of the 660, other phase transitions from garnet to calcium-rich 

bridgmanite have been detected in a similar pressure and temperature range (Vacher 

et al., 1998). This could lead to a more complicated structure of the 660. Such 

complexity has been inferred from seismic observations in other subduction zones 

around the planet (Simmons and Gurrola, 2000; Thomas and Billen, 2009). In contrast 

to these studies, our observations of the 660 beneath Anatolia do not show any 

potential splitting in the P-to-S conversions, but instead a negative velocity layer, 

which cannot be explained by the proposed phase transitions. Shen et al. [2008] and 

Shen and Blum [2003] attribute a low velocity zone at these depths to the 
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sedimentation of former subducted oceanic crust onto the 660, forming a layer 

dominated by majorite garnet. Similar proposals have been made for structures 

beneath western North America by Tauzin et al. [2013]. This mechanism requires that 

the crustal part of the slab is stripped from the mantle component due to differential 

buoyancy (Karato, 1997), and could explain the presence of a low velocity anomaly 

above the 660. However, seismic evidence shows that some crustal material enters the 

lower mantle (Bentham et al., 2017; Kaneshima, 2016; Rost et al., 2008). Here, we 

observe a low velocity zone over the area of the profile where the slab seems to be 

lying flat on the 660. It remains unclear whether the slab is potentially overlying an 

older layer that contains crustal material, or if the velocity structure of the harzburgitic 

slab can be responsible for the low velocity anomaly atop the 660.  

A further explanation for low seismic velocities within the subducted slab in the 

lower MTZ is the presence of dense hydrous magnesium silicate phases.  Low seismic 

velocities were observed by Brudzinski and Chen (2003) within the Tonga slab at mid 

to lower MTZ depths, and while this was interpreted as being associated with a 

metastable olivine wedge, more recent experimental work has postulated that the 

presence of superhydrous Phase B (ShyB) +/- Phase D could also explain the results 

(Rosa et al., 2015).  These phases are only stable along cold slab geotherms and have 

been previously linked to rapid subduction of old oceanic lithosphere along the 

western Pacific.  The material being subducted in the Cyprus trench is believed to be 

comprised of ~95Ma back-arc material formed during slab roll-back in the Late 

Cretaceous (Maffione et al., 2017; van der Meer et al., 2018).  In addition to this, the 

age of eastern Mediterranean oceanic crust has been suggested to be as old as 340Ma, 

potentially making it a remnant of the Neotethys Ocean (Granot, 2016).  These ages 

would likely be sufficient to produce the thick and cold oceanic lithosphere required 

to stabilise ShyB within the subducted slab at MTZ depths (e.g. Litasov & Ohtani, 

2010), making this a viable hypothesis for the observed low velocity layer within the 

Cyprus Slab. 

 

Summary and Conclusions 

This work studied a region of the upper mantle beneath north-western Anatolia, where 

the Cyprus slab passes through the MTZ. The dense imaging of the transition zone 

with P-to-S conversions from receiver functions allows accurate observations of the 

interaction between the MTZ and the subducted slab. The „410‟ and „660‟ are found 
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to be slightly deeper than the global average, though this is potentially due to low 

velocities in the upper mantle (Fichtner et al., 2013a; Zhu et al., 2015). The cold 

thermal anomaly of the subducted slab appears to deepen the 660, resulting in a 

mantle transition zone thickness of approximately 270 km. We estimate that this 

depression of the 660 translates to a negative temperature anomaly of 160 to 240 K at 

660 km depth compared to ambient mantle. The 410 shows little topography and we 

thus conclude that the slab likely passes through the 410 to the south of our study 

area. The 410 is bounded by strong negative arrivals above and below the main 

conversion. A low velocity zone above the 410 might be related to melting of 

hydrated wadsleyite flowing from the transition zone and transitioning to dry olivine 

(Bercovici and Karato, 2003), while the low velocity zone below the 410 can be 

explained by buoyant hydrous wadsleyite rising to the top of the transition zone 

(Karato, 2006; Schmerr and Garnero, 2007). A conversion observed at a depth of 

~520 km could be due to either a sharpening of the wadsleyite to ringwoodite phase 

transition due to the presence of the cold slab (Xu et al., 2008), the presence of water 

extracted from the slab (Kuritani et al., 2011), or simply a compositional signature 

from the subducted Moho or the top of the crust. A low velocity zone directly above 

the 660 might be related to mid-ocean ridge basalt that has been removed from the top 

of subducted slabs in the transition zone (Thomas and Billen, 2009), or could indicate 

the presence of dense hydrous phases within the subducted slab (e.g. ShyB +/- Phase 

D).  The dense nature of this P-receiver function study allows the detection and 

characterization of a wide variety of features in the MTZ beneath Anatolia.  The 

results suggest a complex suite of processes, involving both thermal and chemical 

variations, occurs within and around the MTZ during the transit of a subducted slab 

into the lower mantle.  
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Figure 1: a) DANA station locations. Stations of the regular grid are shown as black 

triangles and include 3 permanent stations of the KOERI national seismic network 

(red triangles). Yellow triangles indicate the eastern girdle of stations with larger 

station spacing. Background shows elevations from the Shuttle Radar Topography 

mission (Farr et al., 2007). b) Receiver function piercing points at 410 km (blue) and 

660 km depth (red). Station locations indicated by small triangles. Slab depths from 

tomographic models are indicated by black lines and are from Berk Biryol et al., 

[2011]. 
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Figure 2: a) Slowness section for the DANA network using the full dataset, 

highlighting the arrivals from the 410-km and 660-km discontinuities and waveform 

variations from velocity variations. Predicted traveltimes for conversions from 

varying depths (dashed lines) have been calculated through the 1D Earth model ak135 

(Kennett et al., 1995). Also visible are conversions from an apparent depth of 520 km 

in some regions of the study area. Dashed lines are 2  confidence limits.  b) Slant 

stack of receiver functions with a reference slowness of 5.59 s/deg. We observe strong 

arrivals from the 410 and 660 with strong low velocity zones around the 410 and a 

weaker conversion from 520 km depth. A diffuse arrival from depths of about 800 km 

can also be observed. The 410 arrival shows strong negative arrivals from shallower 

and larger depths. Similarly, a lateral varying negative arrival can be observed for the 

660.  

 
  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/g

ji/g
g
y
5
1
4
/5

2
3
2
3
1
1
 b

y
 C

a
rd

iff U
n
iv

e
rs

ity
 u

s
e
r o

n
 1

2
 D

e
c
e
m

b
e
r 2

0
1
8



 
 

 
 
 
Figure 3: Common conversion point depth migrated receiver functions of the quality-

controlled dataset projected onto a single NS profile using the 1D ak135 velocity 

model. Background shows P-wave velocity variation of tomography model EU60 

(Zhu et al., 2015). The location of the slab is indicated by high seismic velocities. The 

positive conversions from the 410 and 660 are observable across the profile and there 

is evidence for a conversion from a depth of about 520 km. The PRFs show evidence 

for 3 low velocity layers (LVL1, LVL2, LVL3) marked by strong negative arrivals.  

The depth migrated section of the full dataset is shown in Suppl. Figure 1 and shows 

only subtle differences.  Only bins containing greater than 10 traces were included in 

the 2D migration. 
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Figure 4: 3D common-conversion point (CCP) migration of the 1505 highest quality 

receiver functions using the EU60 regional tomography model [background colour 

fill, Zhu et al., 2015]. Color scale for tomography shown in Fig. 3. Slices through the 

3D model are shown in E-W and N-S direction (at latitudes of 40.82 , 41.09  and 

41.37 ; and longitudes of 30.63 , 30.90 , and 31.17 ). PRFs are shown as lines with 

positive arrivals filled in black and negative arrivals grey. Only bins containing more 

than 5 receiver functions are included, with a mean hit count of ~15 and maximum of 

89 in the center of the study region.  
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Figure 5: Interpretative sketch of the detected structure. The 410 shows little depth 

variation while we observe a depressed 660 due to the cooling effect of the slab. A P-

S conversion from 520 km depth can be seen which could be the top of the slab or a 

sharpened wadsleyite to ringwoodite transition. The 410 is surrounded by low 

velocity zones which are related to hydration from the subducting slab. The origin of 

the low velocity zone above the 660 is unknown but could be related to mid-ocean 

ridge basalt material.  
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