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ABSTRACT 

Specification of dorsal/ventral regional identity in progenitors of the developing 

telencephalon is a first pivotal step in the development of the cerebral cortex and basal 

ganglia. Previously, we demonstrated that the two zinc finger doublesex and mab-3 related 

(Dmrt) genes, Dmrt5 (Dmrta2) and Dmrt3, which are coexpressed in high caudomedial to 

low rostrolateral gradients in the cerebral cortical primordium, are separately needed for 

normal formation of the cortical hem, hippocampus and caudomedial neocortex. We have 

now addressed the role of Dmrt3 and Dmrt5 in controlling dorsal/ventral division of the 

telencephalon in mice of either sex by comparing the phenotypes of single knock-out (KO) 

with double KO embryos and by misexpressing Dmrt5 in the ventral telencephalon. 

We find that DMRT3 and DMRT5 act as critical regulators of progenitor cell dorsoventral 

identity by repressing ventralizing regulators. Early ventral fate transcriptional regulators 

expressed in the dorsal lateral ganglionic eminence such as Gsx2 are upregulated in the 

dorsal telencephalon of Dmrt3;Dmrt5 double KO embryos and downregulated when ventral 

telencephalic progenitors express ectopic Dmrt5. Conditional overexpression of Dmrt5 

throughout the telencephalon produces gene expression and structural defects that are 

highly consistent with reduced GSX2 activity. Further, Emx2; Dmrt5 double KO show a 

phenotype similar to Dmrt3; Dmrt5 double KO embryos, and both DMRT3, DMRT5 and the 

homeobox transcription factor EMX2 bind to a ventral telencephalon-specific enhancer in 

the Gsx2 locus. Together, our findings uncover cooperative functions of DMRT3, DMRT5 and 

EMX2 in dividing dorsal from ventral in the telencephalon. 

 

SIGNIFICANCE STATEMENT 

We identified the DMRT3 and DMRT5 zinc finger transcription factors as novel regulators of 

dorsoventral patterning in the telencephalon. Our data indicate that they have overlapping 

functions and compensate for one another. The double but not the single knockout 

produces a dorsal telencephalon that is ventralized, and olfactory bulb tissue takes over 

most remaining cortex. Conversely, overexpressing Dmrt5 throughout the telencephalon 

causes expanded expression of dorsal gene determinants and smaller olfactory bulbs. 

Furthermore, we show that the homeobox transcription factor EMX2 that is coexpressed 

with DMRT3 and DMRT5 in cortical progenitors cooperates with them to maintain 

dorsoventral patterning in the telencephalon. Our study suggests that DMRT3/5 function 

with EMX2 in positioning the PSB boundary by antagonizing the ventral homeobox 

transcription factor GSX2. 

 

INTRODUCTION 

The mammalian telencephalon is the largest and most complex region of the mammalian 

brain, controlling cognitive processes and purposeful actions. It comprises the cerebral 

cortex dorsally and the amygdala and basal ganglia structures ventrally. Defects in 

telencephalon development are associated with many human neuropsychiatric and 

neurological disorders (Gaitanis and Walsh, 2004; Hu et al., 2014). Related to this study, a 



loss-of-function mutation in the human DMRT5/DMRTA2 gene has been found to be 

associated with microcephaly (Urquhart et al., 2016). 

 

Specification of dorsoventral (DV) regional identity in progenitors of the developing 

telencephalon is a pivotal step in the development of the cerebral cortex and basal ganglia. 

In the developing telencephalon, as in the spinal cord, Bone Morphogenetic Proteins (BMPs) 

and Wingless-Int proteins (WNTs) produced dorsally and Sonic Hedgehog (SHH) secreted 

from ventral sources are implicated in DV specification of the telencephalon (Ericson et al., 

1995; Chiang et al., 1996; Backman et al., 2005; Fernandes et al., 2007). Opposition between 

these morphogens alone does not establish DV telencephalic identity. Rather, interactions 

among the transcription factor GLI3, Fibroblast Growth Factor (FGF) signaling from the 

rostral telencephalic patterning center (RTPC), and ventral sources of SHH, regulate DV 

patterning (Ohkubo et al., 2002; Shimogori et al., 2004; Hasenpusch-Theil et al., 2017). GLI3 

is a transcriptional activator in the presence of high levels of SHH, and a repressor, GLI3R, 

when levels of SHH are low (Grove et al., 1998; Theil et al., 1999; Tole et al., 2000a; Aoto et 

al., 2002; Kuschel et al., 2003). SHH promotes ventral identity by maintaining FGF signaling 

at the RTPC in part by suppressing formation of Gli3R which represses Fgf8 expression 

(Ohkubo et al., 2002; Rallu et al., 2002; Rash and Grove, 2007). FGFs at the RTPC are in turn 

required to establish or maintain Shh expression in the ventral telencephalon (Storm et al., 

2006). FGF signaling further promotes ventral telencephalon development independently of 

SHH, through regulating expression of the Foxg1 transcription factor gene (Gutin et al., 

2006; Tole and Hébert, 2013). Pax6 and other homeobox genes such as Emx2 (Muzio et al., 

2002b, a) expressed throughout the pallium, and the homeobox gene Gsx2 expressed in the 

subpallium are also involved in positioning the pallium-subpallium boundary (PSB) (Stoykova 

et al., 2000; Toresson et al., 2000; Yun et al., 2001; Kroll and O'Leary, 2005; Carney et al., 

2009). How these different transcription factors function together to control telencephalon 

DV patterning and whether there are other players involved remains unknown. 

 

Dmrt3 and Dmrt5 (Dmrta2) encode related transcription factors expressed in a similar high 

caudomedial to low rostrolateral gradient in the cortical primordium. Their loss leads to a 

similar phenotype, more severe in Dmrt5 than in Dmrt3 mutants. In either single null 

mutant, Wnt and BMP expression at the cortical hem is decreased and adjacent 

hippocampus and caudal neocortical areas are reduced in size. In conditional Dmrt5 mouse 

models, Dmrt5 loss or gain of function after hem formation also leads to a reduction of 

hippocampal size and alters neocortical area map formation, indicating that DMRT5 is not 

only required for hem formation but also directly controls cortical progenitor proliferation 

and specification. DMRT3 and DMRT5are thus crucial regulators of cortical development, 

acting at different steps of its formation (Konno et al., 2012; Saulnier et al., 2013; Young et 

al., 2017; De Clercq et al., 2018). DMRT3 and DMRT5 have similar DNA binding properties 

(Murphy et al., 2007) suggesting they act redundantly in telencephalic development, 

implying that analysis of single KO embryos did not reveal their full function. We therefore 

generated double KO and compared their telencephalic development with that of single KO 

embryos. Further, we conditionally overexpressed Dmrt5 in the telencephalon. As Emx2 is 

coexpressed with Dmrt3 and Dmrt5 in cortical progenitors, we also generated Dmrt5;Emx2 

double KO embryos. Our new findings reveal that DMRT3, DMRT5 and EMX2 cooperate to 

repress Gsx2 and maintain DV patterning in the telencephalon. 

 



MATERIAL AND METHODS 

 

Animals. 

All mice were maintained on a C57/Bl6 or CD1/C57Bl6 mixed background and mice of either 

sex were used. Midday of the day of the vaginal plug discovery was defined as embryonic 

day (E) 0.5.Animal care was in accordance with Institutional guidelines, and the policies of 

the US National Institutes of Health. 

 

Dmrt3 (Saulnier et al., 2013), Dmrt5 (De Clercq et al., 2018), Emx2 (Pellegrini et al., 1996) 

and Gsx2EGFP mice (Wang et al., 2009) were genotyped by polymerase chain reaction (PCR) 

as described respectively in these articles. Dmrt3+/- or Dmrt3-/- animals, which are viable, 

were crossed with Dmrt5+/- mice to obtain Dmrt3+/- ;Dmrt5+/- mice. These double 

heterozygotes were then crossed to obtain Dmrt3- /- ;Dmrt5-/- homozygous double KO 

embryos. Dmrt5-/-;Emx2-/- homozygous double mutants were obtained by intercrossing 

Dmrt5+/- heterozygous mutants with Emx2+/- heterozygous mutants. Dmrt5 conditional 

transgenic (Dmrt5Tg) mice were maintained and genotyped as described (De Clercq et al., 

2018) and crossed to Foxg1-IRES-Cre (Kawaguchi et al., 2016) mice to overexpress Dmrt5 

throughout the telencephalon or to Gsx2-Cre-IRES-EGFP (Gsx2-CIE) (Qin et al., 2016) to 

overexpress it in ventral telencephalon progenitors. tetO-Gsx2-IRES-EGFP mice were crossed 

to Foxg1TA/+ mice to obtain Foxg1TA/+;tetO-Gsx2-IRES-EGFP embryos overexpressing Gsx2 

throughout the telencephalon (Waclaw et al., 2009). 

 

Histology, immunofluorescence and in situ hybridization. 

Standard hematoxylin and eosin (H&E) staining was performed on 6–8 μm sections of 

embryosor brains fixed overnight in 4% paraformaldehyde/PBS, dehydrated and paraffin-

embedded. For immunofluorescence, embryos were fixed overnight at 4°C in 4% 

paraformaldehyde/PBS, infused in 30% sucrose/PBS overnight, frozen in gelatin (7.5% 

gelatin, 15% sucrose/PBS) or NEG-50 and cryosectioned (12-20 μm). Antigen retrieval was 

performed by boiling the sections in Target Retrieval Solution Citrate pH 6.0 (DAKO®). Slides 

were the blocked with 10% normal goat serum, 0.3% Triton X-100 in PBS and incubated with 

primary antibodies O/N at 4°C. The incubation with secondary antibodies was carried out for 

2h at RT. Samples were then mounted in DAKO® mounting medium. The following primary 

antibodies were used: rabbit anti-TH (1:500, Immunostar), rabbit anti-DMRT5 (1:2000, (De 

Clercq et al., 2018)), rabbit anti-GSX2 (1:500, (Toresson et al., 2000)); mouse anti-ASCL1 (1 

:100, gift from C. Parras laboratory); goat anti-PAX6, (1:200, Santa Cruz); rabbit anti-TBR2 

(1/500, Abcam) and chicken anti-GFP (1:1000, Aves Labs). The following secondary 

antibodies were used: anti-Mouse AlexaFluor 488 (1 :400, Invitrogen), anti-Mouse 

AlexaFluor 594 (1 :400,Invitrogen), anti- Rabbit AlexaFluor 488 (1 :400, Invitrogen), anti-

Rabbit AlexaFluor 488 (1 :400, Invitrogen), anti- Rabbit AlexaFluor 594 (1 :400, Invitrogen). 

Sections were counterstained with DAPI. Images were acquired with a Zeiss LSM 70 confocal 

microscope using ZenBlack® software or Nikon A1R GaAsP inverted Confocal Microscope 

and processed using ImageJ and Photoshop® softwares. 

 

In situ hybridization (ISH) on sections and whole-mount in situ hybridization of embryos 

were performed using antisense digoxigenin-labeled riboprobes as described (Saulnier et al., 

2013; De Clercq et al., 2018). The other antisense probes were generated from the 

previously described cDNA clones: Emx1 (Theil et al., 1999), Ascl1 and Gad67 (Fode et al., 



2000), Dlx2 (Porteus et al., 1991), Gsx2 (Toresson et al., 2000) Sp8 (Sahara et al., 2007) Isl1 

(Huber et al., 2013), ER81 (Chotteau-Lelievre et al., 1997), sFrp2 and TGF-α (Assimacopoulos 

et al., 2003). Images were acquired with an Olympus SZX16 stereomicroscope and a XC50 

camera, using the Imaging software CellSens®. 

 

Confocal imaging 

Confocal imaging used a Zeiss LSM-710 confocal microscope using both Zeiss x10/0,3 EC 

Plan Neofluor and Zeiss x20/0,8 PlanApochromat objectives and with specific excitation 

using a 405nm laser diode, a 488nm Argon ion laser and a 594nm Helium/Neon laser. A 

specific Gallium arsenide phosphide (GaAsP) Airyscan detector was used when necessary to 

increase signal detection and signal/noise ratio. Images were acquired using Zeiss ZenBlack 

software (Zeiss, Oberkochen, Germany). For Tile scan imaging, acquisitions were performed 

with a 10% overlap of fields and images were reconstruct using ZenBlack software. For 

nuclei counting in Fig. 5, a homemade automated macro was developed on Fiji software. 

Briefly, background of images was reduced using a “rolling ball radius” function and nuclei 
were segmented through fluorescence intensity using an automated threshold. Nuclei 

segmented from both “green” and “red” channels were counted automatically through a 
size selection and nuclei present in both channels were considering as colocalizing. 

Brightness and contrast adjustments and image processing were done using Fiji and 

Photoshop software. 

 

RNA sequencing. 

RNA was extracted using the RNeasy mini kit from Qiagen (RNA-seq) and prepared for 

sequencing using the TruSeq RNA Sample Prep Kit v2. Four WT samples and five samples of 

each genotype were analyzed. Sequence reads have been obtained using an Illumina Hiseq 

2000 in singleend mode (51bp). Sequencing quality was checked and approved using the 

FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and one 

Dmrt5 KO sample that had too low number of reads was removed. Reads were aligned to 

the mouse genome reference (genome assembly mm10 downloaded from ensembl.org) 

using the STAR alignment software (https://www.ncbi.nlm.nih.gov/pubmed/23104886, 

version 2.3) allowing for 2 mismatches within 51bp. Gene expression quantification was 

performed using the featureCounts tool 

(https://www.ncbi.nlm.nih.gov/pubmed/24227677). Count normalization and differential 

gene expression analyses were conducting using R/Bioconductor (version 3.2) and the 

DESeq2 package (https://www.ncbi.nlm.nih.gov/pubmed/25516281/, version 1.8.2). PCA 

and hierarchical clustering were applied to normalized count data. Two outlier samples 

were removed (one from control group after inspection of sample cluster plots and the one 

from the Dmrt5 KO group with low number of reads). Genes were annotated using the 

biomaRt package (https://www.ncbi.nlm.nih.gov/pubmed/19617889, version 2.24). 

Differentially expressed genes were selected based on a log2-fold-change and false 

discovery rate (FDR) cutoff of 1 and 0.05, respectively. Gene Ontology (GO) analysis was 

performed using DAVID 6.7 (http://david.abcc.ncifcrf.gov) in the annotation category BP-

FAT. Strongly enriched categories had a score of 0.05 or less after Benjamini multiple test 

correction. RNAseq data have been deposited at NCBI GEO (GSE108611). 

 

Plasmid construct and transgenesis 

The 1.8 kb of the Gsx2 locus (chr5: 75481187-75479361, mm9 assembly) was amplified by 

https://www.ncbi.nlm.nih.gov/pubmed/19617889


polymerase chain reaction (PCR) with the oligonucleotides forward 5’- 
CGCACCGTTGGGGATTCTAA-3’ and reverse 5’ TCTCTCAATTCCCAGGGGTCA-3’ and using 

DNA from BAC clone RP23-382i10 as template. The resulting fragment was subcloned 5’ of 
the globin basal promoter in the SpeI and NotI sites of a reporter vector (BGZA) containing 

the chick -globin promoter, the lacZ reporter gene, and an SV40 polyadenylation cassette 

(Yee and Rigby, 1993). The 1.3kb fragment of the Gsx2 locus (chr5: 75480316-75481596, 

mm9 assembly) was amplified by PCR with the oligonucleotides forward 5’-
GGCGCGCCCACCCTTTTGTTTTGTTGTTAAGACTTAG-3’ and reverse 5’ 
ACAAAAAAGCAGGCTGTTGTCGTTCAGGTGGCAAGG-3’ using DNA from BAC clone RP24-

223O21 as template, and was inserted into a vector containing Cre-IRES-EGFP. Transgenic 

embryos were generated by pronuclear injection at the Transgenesis platform of the De 

Duve Institute, UCL, Leuven using fertilized eggs from B6CBAF1/Crl crosses (for fragment A) 

or at the Transgenic Animal and Genome Editing Core at Cincinnati Children's Hospital 

Medical Center by microinjection of fertilized eggs from FVN mice (for fragment B). 

Transgenic embryos were identified by PCR using tail DNA. Expression of the transgene was 

analyzed in E12.5 embryos. LacZ activity in transgenic embryos was detected by whole 

mount X-gal staining. Expression of the GFP transgene was examined by DAB staining of a 

E12.5 brain sections with chicken anti-GFP antibodies (1:1000, Aves Labs), followed by 

biotinylated donkey anti-chicken IgY (1:200, Jackson Immunoresearch) and ABC solution 

(Vector Laboratories). 

 

Electrophoretic mobility shift assay. 

Electrophoretic mobility shift assays were performed using extracts from HEK293 cells 

transfected with Dmrt3, Dmrt5 and/or Emx2 pEFX expression vectors. The double stranded 

oligonucleotide used containing the Dmrt and/or Emx2 binding sites (underlined) were the 

following: Dmrt BS1: 5’-GCTGGGTTACACTGGAAGGA-3’; Dmrt BS2: 5’ 
TAGTCACTGTTTCATTAGGC- 3’; Dmrt BS3: 5’-GACTTTTCGATACATTCCTA-3’; Emx2 BS1: 

ACCTCCCCTCTTCCTTCCTAATTAATGACCAT-3’; DMRT BS3/EMX2 BS2: 5’ 
GACTTTTCGATACATTCCTAATTGACTGAGGG-3’. Briefly, double stranded biotin-labelled 

probes and non-labelled competitors were prepared by mixing equal molar ratio of two 

complimentary oligos in Annealing buffer (10 mM Tris-HCl pH7.9, 10 mM MgCl₂ and 50 mM 

NaCl). The paired oligos were heated to 95°C for 5 min then the temperature were reduced 

slowly to room temperature on hot blot. DNA binding reaction was performed in Binding 

buffer (10 mM Tris-acetate pH7.9, 5 mM Magnesium acetate, 25 mM Potassium acetate, 0.1 

M ZnSO4 and 50 μg/ml BSA) including 0.5g sonicated herring sperm DNA and 1pmole 

double stranded DNA probe. Twenty-three pmoles of competitor (23 fold molar excess to 

probe) was used in each reaction as indicated. Protein-DNA complexes were separated by 

electrophoresis at 50V for 3 hrs on 5% polyacrylamide mini gels in 0.5xTBE at 4°C. DNA was 

transferred to Hybond+ membrane using Bio-Rad Trans-Blot® SD Semi- Dry Electrophoretic 

Transfer Cell and crosslinked by UV light for 5 min. Biotin-labelled DNA was detected using 

the Thermo Scientific™ Pierce™ Chemiluminescent Nucleic Acid Detection Module. 
 

Experimental design and Statistical analysis 

Quantification of the dorsal surface area of the cortical hemisphere of E12.5 and E18.5 

animals was obtained by taking measurements from images of whole brains. Photographs 

were taken with an Olympus SZX16 stereomicroscope and a XC50 camera. Measurements 

were done using ImageJ software. All quantified data are expressed as mean values ± 



standard deviation (SD) with the value obtained for WT set to 1. Significance tests were 

performed using a 2-tailed Student’s t-test; P-values less than 0.05 were regarded as 

statistically significant. For each genotype, at least 5 embryos were examined. 

 

In Dmrt single and double KO and transgenic Dmrt5 overexpressing embryos, for each 

marker and age, 2-4 embryos were analyzed. In Dmrt5;Emx2 double mutants, markers were 

only examined in 2 embryos due to the difficulties of obtaining them. For each of the 

markers used and in embryos of the different genotypes analyzed, photographs of sections 

from the rostral to caudal or from the lateral to medial part of the telencephalic vesicles 

were taken and assembled into series. Comparable coronal sections, taken at rostral to mid 

telencephalon levels (based on landmarks provided by the ganglionic eminences), and 

sagittal sections, taken at the level of the olfactory bulb, are shown. 

 

Mice with conditional misexpression of Dmrt5 throughout the telencephalon (using the 

Foxg1- IRES-Cre driver line) show a ventral expansion of the normally dorsally expressed 

gene, Emx1. The amount of expansion was measured in images of coronal brain sections 

through E12.5 conditional transgenic and control embryos. Images were obtained with a 

Zeiss Axioscope microscope fitted with Axiovision software (Zeiss). Five 12.5 transgenic 

embryos and five controls, from three different litterswere utilized. To quantify the ectopic 

spread of Emx1 expression, a consistent landmark between control and mutant mice was 

essential. The demarcation between the LGE and MGE was such a landmark, given that the 

MGE appeared essentially unaltered in Dmrt5Tg/+;Foxg1IRES-Cre/+ embryos. We therefore 

measured how close the expression of Emx1 came to this landmark, focusing on expression 

in the medial and central parts of the LGE where Emx1 is not expressed in WT mice. 

Measurements were made using ImageJ, and the two groups were statistically compared 

with the Paired Sample Student’s t-test. 

 

For the transgenic embryos, X embryos were obtained positive 4 positive for construct B 

based on PCR results. Among them, possibly due to transgene integration into silent/closed 

locus, only two out of the 4 transgenic embryos for construct B, showed expression in the 

ventral telencephalon. 

 

RESULTS 

Dmrt3;Dmrt5 double KO show greater defects in the cerebral cortex than either single KO 

Embryos 

We generated Dmrt3;Dmrt5 double mutants by intercrossing the Dmrt3 and Dmrt5 single 

mutants (Konno et al., 2012; Saulnier et al., 2013; De Clercq et al., 2018). Dmrt3;Dmrt5 

double KO die at birth, as do Dmrt5 single KO mice (Saulnier et al., 2013), therefore, 

embryos were analyzed just before birth (E18.5). We found that the dorsal surface area 

roughly correlated with the number of null Dmrt3 and Dmrt5 alleles in an individual 

genotype, such that cortical hemispheres in Dmrt3;Dmrt5 double KO were strikingly smaller 

than either single KO embryos (-63+/- 3.4% compared to -43+/- 7.6% in Dmrt5 KO and -13+/- 

10.4% in Dmrt3 KO embryos) (Fig. 1 A,B). This more severe reduction of the cerebral 

hemispheres in double KO embryos was already apparent at E12.5 (-52.5 +/- 0.04% 

compared to -43.7 +/- 0.06% in Dmrt5 KO and to -19.9 +/-0.32% in Dmrt3 KO embryos). 
 



In Dmrt3;Dmrt5 double KO, the reduction of caudal neocortical areas, hippocampus and 

other dorsomedial telencephalic structures, such as the cortical hem, is more dramatic than 

in single KO embryos (data not shown). An obvious external difference between single KO 

and Dmrt3;Dmrt5 double KO embryos was that the telencephalic vesicles of the double KO 

embryos show no discernible olfactory bulb (OB) (Fig. 1 A,C). However, when analyzed with 

gene and protein expression markers of the OB, including Tbx21 whose expression is limited 

to OB mitral cells (Faedo et al., 2002; Kahoud et al., 2014), the residual pallium of the double 

KO embryos appears dominated by an olfactory bulb-like structure (OBLS) (Fig. 1 D). Thus, 

the Dmrt3;Dmrt5 double KO have more substantial defects than either single KO embryos, 

suggesting that Dmrt3 and Dmrt5 compensate for the loss of one another. 

 

Loss of both Dmrt3 and Dmrt5 causes ventralization of the pallial neuroepithelium. 

To determine how DMRT3 and DMRT5 interact to regulate gene expression in the 

developing telencephalon, we dissected the dorsal telencephalon from E12.5 Dmrt3 KO, 

Dmrt5 KO, Dmrt3;Dmrt5 double KO and WT embryos and carried out a transcriptome 

analysis of the dissected tissue by RNA sequencing (RNAseq) (Fig. 2 A). Applying a minimal 

cutoff of twofold change and a significance level of p<0.05, 68 differentially expressed genes 

were identified in the Dmrt3 single KO, 146 in the Dmrt5 single KO embryos and 553 in the 

double KO embryos. The majority of differentially expressed genes were downregulated (67 

in Dmrt3 KO, 126 in Dmrt5 KO and 422 in Dmrt3;Dmrt5 double KO) and the overlap between 

the single and double KO embryos was very high (Fig. 2 A). Gene ontology (GO) analysis of 

the deregulated genes identified in the double KO embryos revealed an enrichment in genes 

involved in neuron differentiation, forebrain development, neuron fate and cell fate 

commitment (data not shown). Among the down-regulated genes in the double KO embryos 

were, as expected (Saulnier et al., 2013; De Clercq et al., 2018), genes of the WNT and BMP 

signaling pathways associated with the cortical hem, and downstream targets genes linked 

to hippocampus and choroid plexus development (Wnt3a, Bmp6, Lmx1, Emx1, Lhx2, Nfix, 

Rspo1-3, Foxj1, Ttr, Mcidas, Gmnc, Ccno, Dnah6). Partially overlapping this list, were 

transcription regulators of dorsal telencephalic fates, including Emx1, Emx2, Lhx2, 

Tbr2/Eomes, the proneural factors Ngn2/Neurog2, NeuroD1, Math2/NeuroD6, Nhlh1 and 

the glutamatergic neuronal gene Vglut1. Among upregulated genes were unexpectedly, 

many transcriptional determinants of ventral telencephalic cell fates, including Gsh2/Gsx2, 

Dlx2, Dlx5, Sp8, Sp9, Ascl1, ventral neuronal telencephalic genes (Gad1/Gad67, Gad2, 

Scl30a3, Slc32a1) and olfactory bulb interneuron genes (Foxp2, TH, calbindin) (Fig. 2 B,C). 

The dorsal determinant Pax6 was also slightly increased, but its change of expression level 

was below the applied twofold change cutoff. Genes encoding general regulators of 

neurogenesis such as MyT1, Myt1l, and general neuronal markers (Dcx, Mapt, Nefh) were, 

in contrast, not differentially expressed. The most highly up- and down-regulated genes 

together with the change of their expression in the different KO genotypes are shown in Fig. 

2 B,C. For the vast majority of the deregulated genes identified, the changes observed in the 

Dmrt3; Dmrt5 double KO embryos relative to WT controls were in the same direction as 

those observed in the two single KO embryos, suggesting that Dmrt3 and Dmrt5 are 

redundant in several aspects of cortical development. The changes were generally greater 

than additive and the deregulation observed in Dmrt5 KO was always much stronger than in 

Dmrt3 KO embryos. For a given target, the difference between the WT and Dmrt3 KO 

expression levels (EWT -EDmrt3 KO) and between the Dmrt5 KO and Dmrt3; Dmrt5 double 

KO (EDmrt5KO -EDmrt3/5 DKO) represent the contribution of Dmrt3 to gene expression in 



the presence or absence of Dmrt5. For many of the transcripts, this EWT -EDmrt3 KO value 

is smaller than the EDmrt5KO - EDmrt3/5 DKO value. The greater effect of the loss of Dmrt3 

in the double KO embryos than in the WT context suggests that Dmrt5 indeed partially 

compensates for the loss of Dmrt3. 

 

Distinct domains are distinguished in the early telencephalic neuroepithelium (Fig. 3). The 

dorsal telencephalon, or pallium, is subdivided into the medial, dorsal, lateral and ventral 

pallium (MP, DP, LP and VP). MP generates the hippocampus, and the DP gives rise to the 

neocortex. The LP and the VP contribute neurons to olfactory cortex and the amygdala. The 

ventral telencephalon, or subpallium, has three proliferative subdomains, the lateral, medial 

and caudal ganglionic eminences (LGE, MGE and CGE), which develop into the striatum, 

globus pallidus and parts of the amygdala. The MGE and CGE are also the source of 

GABAergic interneurons, which migrate tangentially into the cortex (Anderson et al., 1997; 

Puelles et al., 2000; Flames et al., 2007). To confirm the differential gene expression 

revealed by the RNA-seq analysis, we performed in situ hybridization of selected 

deregulated genes on brain sections of E12.5 embryos (Fig. 3). We first examined patterning 

genes such Emx1, Emx2, Pax6 and Ngn2, expressed in the cortex of wild-type (WT) mice, 

and Dbx1 expressed selectively in the VP, which lies adjacent to the pallial-subpallial 

boundary (PSB) (Fig. 3A). For genes expressed in the subpallium, we analyzed Gsx2, Dlx2 and 

Ascl1 (Toresson et al., 2000; Yun et al., 2001; Tole et al., 2005). 

 

The dorsal regulators Emx1, Emx2 and Ngn2 were strongly decreased in cortical progenitors 

of the double KO, more severely than in either single KO embryos. Expression of these genes 

remained detectable only in the dorsomedial telencephalon (Fig. 3A, open arrows). Dbx1 

expression which remains detectable in the VP of both single KO embryos was lost in the 

double KO embryos (Fig. 3A, open arrow). In contrast, Pax6, which is upregulated in the 

cortex of Dmrt single KO (Saulnier et al., 2013; De Clercq et al., 2018), remained expressed 

in the cortex of the double KO embryos but was reduced at the PSB. Gsx2, Dlx2 and Ascl1 

whose expression is restricted to the subpallium in WT embryos, extended dorsally into the 

lateral part of the telencephalon in the double KO (arrows in Fig. 3A), a phenotype that was 

not observed in either single Dmrt KO embryos. 

 

The LGE is subdivided into a dorsal (dLGE) and a ventral domain (vLGE) (Yun et al., 2001). 

dLGE progenitors express Sp8 and generate olfactory bulb interneurons, whereas vLGE 

progenitors express Isl1 and give rise to striatal GABAergic projection neurons (Stenman et 

al., 2003; Waclaw et al., 2006; Waclaw et al., 2009; Ehrman et al., 2013). We examined their 

expression in single and double KO embryos. Sp8, normally restricted to the dLGE SVZ, 

showed a similar expression in single KO, but expanded dorsally the double KO embryos 

(Fig. 3B, arrow). Isl1 expression in single KO embryos was similar to WT controls. In double 

KO, Isl1 appears only moderately affected, with only very weak staining detectable in the 

cortex (Fig. 3B). 

 

We also examined expression of dorsal and ventral regulator genes in sagittal sections (Fig. 

4). Expression of Ngn2 and Emx1 retracted caudodorsally. Pax6 expression, upregulated in 

the single KO, also appeared to retract in double KO embryos. This was accompanied by a 

dorsal expansion of Gsx2 and Dlx2 expression in the anterior telencephalon. In the brain of 

E12.5 Dmrt3; Dmrt5 double KO embryos, subpallial gene expression expand dorsally both in 



the lateral and anterior telencephalon (Fig. 4, arrows). We found that Er81 expression, 

restricted at E12.5 in WT embryos to the olfactory bulb primordium (OBP) (Stenman et al., 

2003; Allen et al., 2007; Besse et al., 2011), was also extensively expanded caudally (Fig. 4, 

arrow). Together, these results indicated that in E12.5 Dmrt3; Dmrt5 double KO, there is an 

expansion of dLGE and OBP domains, as characterized by gene expression, into the dorsal 

telencephalon, and a concomitant shrinkage of the dorsal pallium (Fig. 1C and 3C). 

 

The expansion of dLGE and OBP domains in E12.5 Dmrt3; Dmrt5 double KO could be the 

consequence of the collapse of the dorsal telencephalon and invasion of ventral progenitors 

or of a respecification, namely ventralization of dorsal telencephalic progenitors. To test the 

second hypothesis, we performed double immunostaining with antibodies for both the 

dorsal PAX6 and ventral GSX2 markers on coronal brain sections of E12.5 single and double 

KO embryos and WT controls. In the lateral cortex of the double KO embryos, but not in the 

single KO and WT embryos, many cells were found to be positive for both markers (Fig. 5), 

suggesting that indeed dorsal telencephalic progenitors were acquiring a ventral identity, 

perhaps corresponding to that in WTs of the few cells present at the PSB that coexpress 

Pax6 and Gsx2, or a hybrid fate. 

 

To assess the consequences of the ventralization of dorsal progenitors in Dmrt3;Dmrt5 

double KO embryos, we examined Tyrosine hydroxylase (TH), found in a subpopulation of 

OB interneurons, Gad67, a GABAergic interneuron marker, and Math2, a marker of 

glutamatergic cortical neurons in sagittal sections of E18.5 brains. In accordance with our 

observation of an expansion of the dLGE and OBP at E12.5, compared to single KO and 

controls, TH-positive cells were detected more caudally and Gad67 was increased in the 

dorsal telencephalon of the double KO embryos. Compared with single KO and controls, 

Math2 expression was in contrast dramatically reduced overall (Fig. 6), suggesting some 

respecification of cortical neuroblasts. 

 

Misexpression of Dmrt5 in the subpallium represses ventral telencephalic markers 

To perform Dmrt5 gain-of-function experiments, we used a Dmrt5 Cre/loxP conditional 

transgenic mouse model we recently generated. In our previous work, the Dmrt5 

conditional transgenics (designated here Dmrt5Tg mice) were crossed with Emx1-Cre mice 

to study the role of DMRT5 in neocortical area map formation (De Clercq et al., 2018). 

Emx1-Cre drives excess Dmrt5 only in the dorsal, not ventral telencephalon, and Cre lox 

recombination begins in the most medial telencephalon at roughly E10, spreading laterally 

so that full recombination in lateral cortex is as late as E11.5. In the present study, Dmrt5Tg 

mice were crossed with different Cre driver lines, Foxg1-IRES-Cre or Gsx2- Cre-IRES-EGFP 

(Gsx2-CIE). In Dmrt5Tg/+;Foxg1IRES-Cre/+ embryos, Dmrt5 is overexpressed in both the 

dorsal and ventral telencephalon from E8.5 (Kawaguchi et al., 2016), thus much earlier and 

more broadly than with Emx1-Cre. In Dmrt5Tg/Tg;Gsx2-CIE embryos, Dmrt5 is 

overexpressed selectively in the ventral telencephalon from E10.5 (Qin et al., 2016). 

 

As expected, in Dmrt5Tg/+;Foxg1IRES-Cre/+ embryos, Dmrt5 transgene expression detected 

by GFP ISH filled the entire telencephalon (data not shown). In E12.5 Dmrt5Tg/+;Foxg1IRES-

Cre/+ embryos, we examined the expression of ventral (Gsx2, Dlx2 and Ascl1) and dorsal 

(Emx1 and Ngn2) telencephalic markers. We also analyzed sFrp2, Tgf-α, Dbx1 expressed in 

the VP (Assimacopoulos et al., 2003) and Sp8 marking the dLGE (Fig. 7). 



In E12.5 control embryo sections, Emx1 expression did not enter the LGE and only extended 

along the far lateral edge of the LGE in a territory that may be presumptive olfactory cortex. 

By contrast, in Dmrt5Tg/+;Foxg1IRES-Cre/+ E12.5 embryos, the Emx1 expression domain 

expanded ventrally into the central and medial LGE (Fig. 7A, arrow). This expansion of Emx1 

expression in Dmrt5Tg/+;Foxg1IRESCre/+ E12.5 embryos, compared with controls, was 

quantified by measuring how close the central sector of Emx1 expression came to the 

boundary between the LGE and the MGE. The latter boundary served as a consistent 

landmark because the MGE appeared morphologically unaffected by overexpression of 

Dmrt5. For Dmrt5Tg/+;Foxg1IRES-Cre/+ E12.5 embryos the mean distance from the Emx1 

expression front and the LGE/MGE boundary was 133.3 microns (SEM, 25.3; SD 75.9), and 

for control embryos, 273.8 microns (SEM, 18.2; SD, 54.6). The two groups were significantly 

different (p=0.0004). Notable by eye, but not quantified, the extension of Emx1 expression 

increased from rostral to caudal, reaching the MGE/LGE boundary in more caudal sections. 

Similarly, Ngn2 expression, normally confined to the cerebral cortical primordium, expanded 

into almost all the LGE territory (Fig. 7A, arrow). 

 

In contrast, Gsx2 and Dlx2 expression was downregulated overall and did not reach along 

the entire DV length of the LGE (Fig. 7A, arrow). The strongest expression of both sFrp2 and 

Tgf-α was shifted ventrally and Sp8 in the dLGE was virtually absent (Fig. 7A, arrow). At 

E13.5, Tgf-α and sFrp2 appeared to have recovered a normal expression level at the PSB, 

but expression of Dbx1, a selective marker of the VP, was greatly expanded and shifted 

ventrally. Sp8 remained virtually absent in the dLGE (Fig. 7B, arrow). Thus, at E13.5, the PSB 

boundary expressed some appropriate genes, yet the VP area as marked by Dbx1 had 

expanded (Fig 7C). An enlarged VP was previously observed in the Gsx2 null mutant (Yun et 

al., 2001; Carney et al., 2009; Waclaw et al., 2010). 

 

Sp8 in the dLGE is required for OB interneurons to begin migration through the embryonic 

rostral migratory stream (Waclaw et al., 2006). In Dmrt5Tg/+;Foxg1IRES-Cre/+ brains at P6, 

consistent with the virtual loss of Sp8 expression in the dLGE, the ventricle of the OB was 

slightly open rather than filled with migrating interneurons as in WT mice, suggesting that 

interneurons were not reaching the OB correctly (Fig. 7D). 

 

In Dmrt5Tg/Tg;Gsx2-CIE embryos, Dmrt5 overexpression was only detected in the ventral 

telencephalon, as expected. As observed in Dmrt5Tg/+;Foxg1IRES-Cre/+ embryos, Dmrt5 

ectopic expression induces loss of the ventral (Gsx2, Dlx2, Ascl1) and gain of the dorsal 

(Emx2, Ngn2, Dbx1) markers tested (Fig. 8), suggesting that the ventral expansion of dorsal 

telencephalic and ventral pallium markers is largely caused by the downregulation of ventral 

determinants. 

 

EMX2 interacts with DMRT5 to control telencephalic D/V patterning and both 

transcription factors can bind to a ventral telencephalic-specific enhancer of the Gsx2 

locus. 

 

Emx2 is coexpressed with Dmrt3 and Dmrt5 in cortical progenitors in a similar graded 

manner. As in Dmrt5 or in Dmrt3 single mutants, the hippocampus and caudomedial 

neocortex are reduced in Emx2 deficient mice (Yoshida et al., 1997; Tole et al., 2000b). This 

reduction too is more dramatic in Dmrt5/Emx2 double KO than in single KO embryos (Fig. 



9A), suggesting that Dmrt5 and Emx2 genes interact in controlling telencephalic growth and 

patterning. Supporting such an interaction, in situ hybridization showed that in E12.5 

Dmrt5/Emx2 double KO brains, the pallial transcription factor gene Ngn2 was switched off 

whereas gene expression domains of Gsx2, Dlx2 and Ascl1, normally confined to the 

subpallium, extended dorsally, a phenotype not observed in either Dmrt5 or Emx2 single KO 

embryos (Fig. 9B). 

 

GSX2 is crucial for ventral identity in the telencephalon. In Gsx2 mutants, the VP expands 

into the dLGE (Toresson et al., 2000; Yun et al., 2001; Carney et al., 2009; Waclaw et al., 

2010). Conversely, Gsx2 misexpression in the pallium results in increased expression of 

ventral telencephalic markers and repression of dorsal ones (Toresson et al., 2000; Yun et 

al., 2001; Carney et al., 2009; Waclaw et al., 2009), including Dmrt5 (Fig. 10). 

 

To investigate how GSX2 and DMRT5 interact, we first compared by immunofluorescence 

their expression in Gsx2GFP/+ knock-in embryos and found that the two proteins abut at 

the PSB (Fig. 10). Their exclusive expression at the PSB, the upregulation of Gsx2 observed in 

Dmrt3;Dmrt5 and Dmrt5;Emx2 double KO embryos, along with its downregulation in 

response to overexpression of Dmrt5, suggest that DMRT5 may regulate cortical identity in 

telencephalic progenitors via repression of Gsx2 transcription. We therefore searched the 

Gsx2 locus for non-coding, evolutionarily conserved potential enhancer sequences 

(Bejerano et al., 2004; Pennacchio et al., 2006) with potential DMRT3/5 binding sites 

(Murphy et al., 2007). We focused on one such conserved site of about 0.5 kb that has been 

described as an enhancer bound by PAX6 that is active in the forebrain but not the lens (Sun 

et al., 2015), and is located 8.8 kb downstream of Gsx2 transcribed sequences. Two 

overlapping fragments, encompassing this conserved region, one of 1.8kb including 

upstream sequences and the other of 1.3 kb containing downstream sequences and 

including another conserved region (respectively fragments A and B, Fig 11A) were cloned 

and fused to a reporter gene (constructs A and B). We found that both fragments tested 

exhibit specific enhancer activity in the ventral forebrain in E12.5 transgenic embryos, 

suggesting that it is the conserved region common to the two fragments that is responsible 

for the activity (Fig. 11B). This conserved region contains two potential DMRT3/5 binding 

sites (BS) as well as one 5’-ATTA-3’ which represent the core of potential homeobox 

transcription factor–binding motifs (Berger et al., 2008). This 5’-ATTA-3’motif is adjacent to 

the second Dmrt3/5 BS. Upstream of this conserved region, within the cloned genomic 

fragments, we found one additional Dmrt3/5 BS and one additional 5’-ATTA-3’ motif (Fig. 
11A). To test for direct binding of DMRT3/5 and EMX2 to these putative binding sites, we 

performed electrophoretic mobility shift assays (EMSA) using extracts prepared from 

HEK293 cells transfected with Dmrt3, Dmrt5 or Emx2 expression plasmids. In first 

EMSA assays, using oligonucleotides containing the different Dmrt and Emx2 potential 

binding sites, we found that DMRT5 and DMRT3 both bind strongly to binding site 3 but not 

to the other sites. EMX2 can bind to both identified binding sites (data not shown). We then 

examined the ability of DMRT3, DMRT5, and EMX2 to bind to an extended oligonucleotide 

encompassing both Dmrt BS3 and Emx2 BS2, in the presence or absence of an identical 

competitor oligonucleotide containing mutated Dmrt and Emx2 binding sites. Fig 11C shows 

that, as expected, the binding of DMRT3, DMRT5 and EMX2 to the Dmrt BS3/Emx2 BS2 

oligonucleotide is abolished in the presence of WT but not mutated competitors. 

Interestingly, in the presence of EMX2, the complex of DMRT3 appears more intense and 



to run faster than in its absence. Although no change in mobility shift was observed, DMRT5 

binding in the presence of EMX2 appears also more intense than in its absence, suggesting 

cooperative interactions between DMRT3/5 and EMX2. 

 

DISCUSSION 

We have previously identified DMRT5 and DMRT3 as important regulators of the 

development of caudomedial cortical structures acting downstream of dorsal WNT midline 

signals and controlling Wnt expression in a feedback loop (Hasenpusch-Theil et al., 2012; 

Saulnier et al., 2013; De Clercq et al., 2018). In the present study, we show that the size of 

the cortical hemispheres is drastically smaller in the Dmrt3;Dmrt5 double KO than in the 

single KO embryos, further highlighting their importance in the control of the proliferative 

state of progenitor cells. This dramatic reduction in size of the cortex of the double KO 

embryos may due to premature differentiation and exhaustion of the pool of progenitors as 

observed in Dmrt5-/- embryos (Young et al., 2017), which remains to be explored. We also 

show that the development of caudomedial telencephalic structures such as the cortical 

hem and hippocampus is more severely reduced in the Dmrt3;Dmrt5 double KO than in the 

single KO embryos. Together, these observations indicate that DMRT3 and DMRT5 have 

similar overlapping function in several aspects of cortical development and partially 

compensate for one another. Dmrt5 is upregulated in the absence of Dmrt3 and Dmrt3 is 

downregulated in Dmrt5 KO embryos. The two factors appear thus to function in the same 

cascade but it remains unclear which one is upstream of the other. 

 

More unexpected, we observed that double knock-outs have a dorsal telencephalon that is 

ventralized. In addition the olfactory bulbs, the most rostral cortical structure, take over the 

cortex, thus suggesting “rostroventralization” of the dorsal telencephalon, in accordance 

with the high caudal to low rostral gradient of expression of Dmt3/5 genes. Conversely, in 

Dmrt5 overexpressing embryos, DP genes expand ventrally, although some PSB markers 

remain in place, and olfactory bulbs are smaller than in wildtype mice. In addition, Dbx1 

expression expands supporting an expansion of the VP. These findings revealed a new early 

role for DMRT5 and DMRT3 in DV telencephalic patterning, that could not have been 

predicted from examining the phenotype of either single KO line alone. This role fits with 

the timing of activation in the developing telencephalon. Both Dmrt3 and Dmrt5 expression 

is detected from the open neural plate stage in the prospective dorsal telencephalon when 

patterning is initiated (data not shown). 

 

As noted, WNT and BMP signaling molecules and downstream dorsal telencephalic 

transcription factors are dramatically reduced in the cortex of the double KO embryos. The 

reduction of these pathways is likely to be involved in the ventralization. In contrast, FGF 

signals appears unaffected and SHH and downstream targets such as Nkx2.1 appear 

normally restricted to the MGE (data not shown). Gli3R is another major player in 

telencephalic DV patterning (Theil et al., 1999; Tole et al., 2000a; Rallu et al., 2002; Kuschel 

et al., 2003). RNA-seq analysis of the cortex of E12.5 single and double Dmrt KO embryos did 

not detect a significant difference in Gli3 mRNA levels compared with WT controls. This 

unaltered expression of Gli3 in double Dmrt KO embryos has been confirmed by in situ 

hybridization and RT-qPCR experiments (data not shown). Given the similarity of the 

telencephalic patterning defects observed in Dmrt3;Dmrt5 and Gli3Pdn/Pdn mutants, 

whether a reduction of Gli3R activity occurs in the Dmrt double KO embryos is an hypothesis 



that remains to be tested. A more significant role in the ventralization of double Dmrt KO 

ermbryos is likely to be played by the transcription factor GSX2. In the ventral 

telencephalon, GSX2 is known to be required for the specification of LGE progenitors. GSX2, 

further, represses the expression of Dbx1 and other VP markers (Yun et al., 2001; Carney et 

al., 2009). Our data indicate that it also represses Dmrt5 expression. GSX2 acts in the 

specification of LGE progenitors upstream of the homeobox Dlx and proneural Ascl1 genes 

(Wang et al., 2009; Wang et al., 2013). Thus, the increase of Dlx2 and Ascl1 and the loss of 

dorsal and ventral pallium markers in Dmrt3;Dmrt5 double KO embryos may be a 

consequence of the dorsal expansion of Gsx2. The large expansion of Gsx2 and other 

subpallial markers in the cortical neuroepithelium when Dmrt3 and Dmrt5 are lost is 

intriguing because it occurs despite continued strong Pax6 expression in the cortex, which is 

reduced only close to the PSB. PAX6 has been shown to repress Gsx2 expression to position 

the PSB (Toresson et al., 2000; Yun et al., 2001; Carney et al., 2009) but PAX6 may be not 

sufficient for this role in the absence of DMRT3 and DMRT5.  

 

Gsx2 is expressed at high level in dLGE progenitors that generate ER81 and Sp8 expressing 

olfactory bulb interneurons, and at lower levels in vLGE progenitors giving rise to Isl1 

expressing striatal projection neurons (Toresson and Campbell, 2001; Yun et al., 2001; 

Stenman et al., 2003; Waclaw et al., 2006; Ehrman et al., 2013). Gsx2 mutants have reduced 

vLGE and dLGE and exhibit a significant reduction of their derivatives, striatal projection and 

olfactory bulb interneurons (Corbin et al., 2000; Toresson et al., 2000; Yun et al., 2001; Yun 

et al., 2003). Conversely, in Gsx2 conditional transgenics, GSX2 sequentially favors striatal 

and olfactory bulb fates (Waclaw et al., 2009). In Dmrt double KO embryos, we observed at 

E12.5 strong ectopic expression of Sp8 but no or low Isl1 indicating a predominant 

expansion of dLGE. Accordingly, at E18.5, TH positive interneurons appear abundant in 

the OBLS structure and Gad67, expressed in OB interneurons, is increased. At the same 

stage in the double mutant cortex, we also observed a strong reduction of Math2 suggesting 

that some respecification of cortical neuroblast is occuring as a consequence of the 

observed early patterning defects. 

 

Upon ectopic expression of Dmrt5 throughout the telencephalon, we observed at E12.5-

E13.5 a loss of Gsx2 expression and downstream dLGE gene expression markers, and an 

expansion of DP and some VP gene expression markers into the subpallium. Other PSB 

markers appeared less affected. SFrp2 expression shifted ventrally at E12.5, but recovered 

at E13.5. In Gsx2 mutants, a strong LGE phenotype at early stages goes away later, due to 

increased Gsx1 expression (Toresson and Campbell, 2001; Yun et al., 2003; Carney et al., 

2009). Whether there is a compensatory increase in Gsx1 in the Dmrt5Tg/+;Foxg1-IRES-Cre 

that rescues the location of sFrp2 expression remains to be investigated. An alternative 

possibility is that the PSB repositions itself. The VP, however, does not, and instead expands 

in subpallial territory, thus dissociating the VP from the PSB. A similar dorsalizing phenotype 

was observed when Dmrt5 is selectively misexpressed in the ventral telencephalon. This 

indicates that the ventral expansion of DP and VP gene expression markers is indirect and 

caused by downregulation of ventral determinants by DMRT5. Gsx2 is again a good 

DMRT3/5 target candidate as SHH and Nkx2.1 were found to be unaffected in 

Dmrt5Tg/Tg;Gsx2-CIE embryos (data not shown). A further suggestion is that dorsal identity 

in the telencephalon is a “ground state” which must be suppressed by ventral determinants. 

 



Finally, our findings indicate that Emx2, a target of Dmrt5 (Saulnier et al., 2013), cooperates 

with Dmrt3 and Dmrt5 in repressing Gsx2, and that these transcription factors bind to an 

evolutionarily conserved, PAX6-bound element, located downstream of Gsx2. This Emx2 

involvement in Dmrtdependent Gsx2 repression, echoes a previous report that co-ablation 

of Emx2 and Pax6 results into generalized spreading of subpallial programs into dorsal 

telencephalon and suppression of pallial programs (Muzio et al., 2002a). Intriguinigly, 

despite the prominent ventralization of dorsal telencephalon occurring in mid-neuronogenic 

Emx2-/-;Pax6-/- and Dmrt3-/-;Dmrt5-/- embryos, vestigial and abortive pallial specification 

can be still detected at earlier developmental stages in both double KO embryos. 

 

In summary, our findings suggest that DMRT3/5 transcription factors and GSX2 mutually 

antagonize one another and that DMRT3/5 cooperate with EMX2 and PAX6 to establish and 

maintain dorsoventral patterning in the telencephalon. How DMRT3 and DMRT5 interact 

with EMX2, and possibly PAX6 and other dorsal regulators such as LHX2 to control the 

positioning of the PSB and, more globally, telencephalon patterning remains to be 

investigated. 

 

FIGURE LEGENDS 

Fig. 1 Cortices of Dmrt3;Dmrt5 double KO embryos are more severely reduced in size than 

either single KO embryos and contain a prominent olfactory bulb-like structure. (A) Dorsal 

views of E18.5 brains of the indicated genotypes. (B) Quantification of dorsal cortical surface 

area compared to WT controls (in red) or as indicated (**p < 0.01, ***p < 0.001; n 5). (C) 

Diagram showing the telencephalon of E18.5 WT embryos and the size reduction and 

absence of the olfactory bulbs observed in Dmrt3-/-;Dmrt5-/-. (D) Sagittal sections through 

E18.5 brains processed by IF or ISH for Tbr1, Tbr2 and Tbx21 olfactory bulb mitral projection 

neuron markers. In the cortex, Tbr2 is also detected in SVZ progenitors and Tbr1 in layer VI 

neurons. For WT and double KO embryos, high magnification views of the cortex (a’,d’, m’, 
q’) and olfactory bulbs (a”, d”, l’, p’, u’) are shown. For the double KO brains, two sections 

are shown (i,j,m,n), taken at the levels indicated in the diagram. Note in the Dmrt3+/- 

;Dmrt5-/- and double KO embryos the presence of a prominent olfactory bulb-like structure 

occupying most of the reduced cortex (shown schematically in the diagram in comparison to 

controls) in which Tbr1, Tbr2 and Tbx21 are expressed and form a cluster or appear as a 

disorganized layer ( l’, p’, u’). Note also in the cortex the disappearance of cortical Tbr2+ 

basal progenitors (compare a’ and m’) and more diffuse Tbr1 expression (compare d’ and 
q’). An asterisk indicates a region of strong ectopic expression of Tbr2 outside the cortex in 

the double KO embryos. Abbreviation: AOB, accessory olfactory bulb; AON, anterior 

olfactory nucleus; BP, basal progenitor; Ctx, cortex, OB-L, olfactory bulb like structure; H, 

hippocampus; MCL, mitral cell layer; VI, layer VI cortical neurons. Scale bars: 50 μm.  

Fig. 2. Genome-wide transcriptome analysis reveals that DMRT3 and DMRT5 cooperate to 

regulate cortical gene expression and play a role in early telencephalon dorsoventral 

patterning. (A) Dissected dorsal telencephalic tissues analyzed by RNA-seq and Venn 

diagram showing the overlap of differentially expressed genes (both up- and down-

regulated) identified in Dmrt3 KO, Dmrt5 KO and double KO E12.5 embryos. (B) Heatmap for 

the 50 most significantly regulated genes (according to pvalue) in a comparison between 

wild type (WT) and double knockouts. Yellow and blue colors represent up- and 

downregulated genes, respectively. (C) Examples of identified differentially expressed dorsal 

and ventral genes with log2 fold changes observed in each genotype. 



Fig. 3. Downregulation of dorsal determinants and expansion of dLGE markers in the 

lateral telencephalic neuroepithelium of Dmrt3;Dmrt5 double KO embryos. (A, B) Coronal 

brain sections of E12.5 embryos hybridized with the indicated markers, with arrowheads 

indicating the region of the PSB and arrows pointing to the shifted dorsal limit of ventral 

markers expressed ectopically in the pallium of the double KO embryos. The strongly 

downregulated expression of Emx1, Emx2 and Ngn2 that remains detectable only in the 

dorsomedial telencephalon and the absence of Dbx1 in the double KO is indicated by open 

arrows. The inset in the Isl1 panel of the Dmrt double KO shows a high magnification view of 

the boxed region where some Isl1 ectopic staining in the pallium is observed. (C) Diagram 

showing the expression domain of the different markers used in the telencephalon of E12.5 

WT embryos and the reduction of the ventral pallium and an expansion of the dLGE domain 

as observed in Dmrt3-/-;Dmrt5-/-. Scale bar: 200 μm. 

Fig. 4. Subpallial gene expression expands in the rostral telencephalon of Dmrt3;Dmrt5 

double KO embryos. Sagittal sections of E12.5 brains processed by ISH or IF with the 

indicated markers, with the rostral part to the right. Arrowheads indicate PSB. Arrows 

indicate the rostral or caudal boundaries of the gene expression domains. These boundaries 

are shifted dorsally in the Dmrt3;Dmrt5 double KO embryos. Note in the mantle zone of the 

neuroepithelium of the single and double KO embryos Pax6 staining in postmitotic cells that 

extends more caudally than in single KO or WT controls (open arrows). Scale bar: 200 μm. 

Fig. 5. Dorsal telencephalon cells express ventral markers in Dmrt3;Dmrt5 double KO 

embryos. (A) Coronal section of though E12.5 brains of the indicated genotypes processed 

by IF for Pax6 and Gsx2. High magnification views of the PSB are shown at the bottom. (B) 

Histograms showing the number of double positive cells among Pax6 positive cells in the 

boxed area (***P < 0.001). 

Fig. 6. Expression of GABAergic, glutamatergic and olfactory bulb interneuron markers in 

the cortex of E18.5 Dmrt3 and Dmrt5 single KO and in double KO embryos. (A,O) Sagittal 

sections through brains of the indicated genotypes processed by ISH or IF for the indicated 

markers. In P, the line in the schematic of the brain of WT and double KO embryos indicate 

the positions of the sections. For the double KO brains, two sections are shown for each 

marker and a high magnification of the Math2 and Gad67 staining in the residual cortex of 

the double KO is shown in E’,J’. Note the slight upregulation of Gad67 (asterisks) and loss of 

Math2 in the cortex of double KO embryos. Note also the TH positive cells that are not 

correctly laminated and form a large cluster in the olfactory bulb like structures of the 

double KO that extend more caudally in the dorsal telencephalon than in WT embryos 

(arrowheads). Ctx, cortex; OB, olfactory bulb; OB-L, olfactory bulb like structure, MFB, 

medial forebrain bundle, Acbn, accumbens nucleus. Scale bar: 500 μm except in H,P (50 

μm). 

Fig. 7. Repression of ventral and expansion of dorsal telencephalic and ventral pallium 

markers in the subpallium of Dmrt5Tg/+;Foxg1-IRES-Cre embryos. (A,B) Coronal sections 

through the telencephalon of transgenic and control embryos at E12.5 (A) and E13.5 (B) 

processed by ISH for the indicated markers. In A (upper 8 panels) arrowheads indicate the 

boundary of the MGE and LGE, a constant landmark between control and mutant mice, used 

for quantification of Emx1 expansion (see text). Arrows point to the ventral limit of Emx1 

and Ngn2 expression, or the dorsal limit of Gsx2 and Dlx2 expression. Notably in Foxg1-IRES-

Cre embryos, the arrows and arrowheads are closer together than in controls, indicating the 

dorsalization of the telencephalon when Dmrt5 is overexpressed. In A (lower 6 panels) and 

in B, arrrowheads indicate the PSB, and arrows indicate expression of sFPR2, TGF-α, Sp8 and 



Dbx1. (C) Diagram showing the ventral expansion of DP and VP markers as observed in the 

telencephalon of Dmrt5Tg/Tg;Foxg1-IRES-Cre embryos. (D) Dorsal view of P6 brains and 

eosin staining of olfactory bulbs. Arrowheads point to the RMS and the OV is indicated by an 

arrow. RMS, rostral migrating stream; OV, olfactory ventricule; GL, glomerular layer; Igr, 

internal granule layer. 

Fig. 8. Repression of ventral and expansion of dorsal and ventral pallium markers in the 

subpallium of Dmrt5Tg/Tg;Gsx2-Cre embryos. (A,B) Coronal sections through the 

telencephalon of E12.5 embryos processed by IF (A) or ISH (B) with the indicated markers. In 

A, the ectopic expression of Dmrt5 and downregulation of Ascl1 and Gsx2 in the ventral 

telencephalon are indicated by asterisks. In B, arrowheads indicate the region of the PSB. 

Arrows points to the expansion and shifted ventral limit of Ngn2, Emx1 and Dbx1 and 

downregulation and shifted dorsal limit of Dlx2 expression in the subpallium of the 

transgenics. (C) Diagram showing the expansion of the ventral pallium as observed in 

Dmrt5Tg/Tg;Gsx2-CIE embryos. Scale bar: 200 um. 

Fig. 9. DMRT5 and EMX2 cooperate in telencephalon D/V patterning. (A) Dorsal views of 

the head of E12.5 embryos. Hematoxylin and eosin staining of E12.5 brain coronal sections 

of the telencephalon, at rostral and caudal levels. The arrow points to the caudomedial 

cortex of the Dmrt5;Emx2 double mutants, more severely reduced than in single mutants. 

(B) Coronal brain sections of E12.5 embryos processed by in situ hybridization with the 

indicated markers. Arrowheads indicate the region of the PSB. Arrows point to the dorsal 

limit of Gsx2, Dlx2, and Ascl1 expression, shifted dorsally in the Dmrt5- /-;Emx2-/-. double 

KO embryos. The dramatic reduction of Ngn2 in the cortex of the double KO embryos 

is indicated by an asterisk. Scale bar: 200 μm. 

Fig. 10. DMRT5 forms a boundary with GSX2 at the PSB and the overexpression of Gsx2 

represses Dmrt5 expression. (A) Coronal sections of the head of E14.5 Gsx2GFP/+ knock-in 

embryos processed by IF with DMRT5 and GFP antibodies showing that at the PSB, cells 

expressing DMRT5 do not express GFP, that is, GSX2. The boxed area is shown at a high 

magnification on the left. Oe: olfactory epithelium. Scale bar: 200 μm. (B-E) Coronal sections 

through the telencephalon of E12.5 WT or Foxg1tTA/+; tet-O-Gsx2-IRES-EGFP double 

transgenic embryos immunostained with the indicated antibodies. In these transgenic 

embryos, Gsx2 is misexpressed throughout the embryonic telencephalon and Dmrt5 is 

reduced. Arrows in B, E points to the ventral limit of high Dmrt5 expression. 

Fig. 11. DMRT5 and EMX2 binds a Gsx2 ventral specific telencephalon enhancer. (A) UCSC 

genome browser view of the Gsx2 locus with the location of the two cloned fragments 

tested in transgenic embryos. The identified putative DMRT3/5 and EMX2 binding sites are 

shown. (B) A lateral view and a coronal section of the head of a E12.5 Gsx2 1.8 kb enhancer 

LacZ reporter transgenic embryo (construct A) is shown on the left (scale bar: 500 μm for 

the lateral view and 200 μm for the coronal section). The level of the section is indicated by 

a dashed line. A coronal section of the brain of a Gsx2 1.3 kb enhancer-GFP reporter 

transgenic embryo (construct B) processed by DAB immunostaining for GFP and a high 

magnification view of the LGE region processed by IF for both GSX2 (red) and GFP (green) is 

shown on the right. (C) EMSA showing in vitro binding of cellular extracts containing DMRT3, 

DMRT5 and EMX2 or control extracts to BS3 of the Gsx2 enhancer. DMRT3/5 and EMX2 

complex formation is competed by WT enhancer oligonucleotides but not by 

oligonucleotides containing mutations in the DMRT and EMX2 binding sites. An arrowhead 

indicates a non-specific band. 

 



 
 



 



 



 

 



 

 

 

 

 

 

 

 



 

 

 



 

 



 

 



 

 



 

 



 



 



 



 


