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Abstract
Understanding the applicability and limitations of electronic-structuremethods needs careful and
efficient comparisonwith accurate reference data. Knowledge of the quality and errors of electronic-
structure calculations is crucial to advancedmethod development, high-throughput computations
and data analyses. In this paper, we present amain-group test set for computationalmaterials science
and engineering (MSE), that provides accurate and easily accessible crystal properties for a hierarchy
of exchange-correlation approximations, ranging from thewell-establishedmean-field approxima-
tions to the state-of-the-artmethods ofmany-body perturbation theory.We consider cohesive energy,
lattice constant and bulkmodulus of a set ofmaterials that representatives for the first- and second-
row elements and their binaries with cubic crystal structures and various bonding characters. A strong
effort ismade to achieve high numerical accuracy for cohesive properties as calculated using the local-
density approximation (LDA), several generalized gradient approximations (GGAs), meta-GGAs and
hybrids in all-electron resolution, and the second-orderMøller–Plesset perturbation theory (MP2)
and the random-phase approximation (RPA) bothwith frozen-core approximation based on all-
electronHartree–Fock, PBE and/or PBE0 references. This results in over 10 000 calculations, which
record a comprehensive convergence test with respect to numerical parameters for awide range of
electronic-structuremethodswithin the numerical atom-centered orbital framework. As an
indispensable part of theMSE test set, a web site is established http://mse.fhi-berlin.mpg.de. This not
only allows for easy access to all reference data but also provides user-friendly graphical tools for post-
processing error analysis.

1. Introduction

First-principles electronic-structure calculations have become an indispensable complement to experiments in
physics, chemistry, andmaterials science. Since the exact description of interacting electrons and nuclei is
intractable formost systems, it is a perpetual challenge tofind an ‘optimal’ approximation that reconciles
computational accuracy, efficiency, and transferability across different chemical environments and
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dimensionality. In quantum chemistry for atoms andmolecules, test sets with accurate reference values for
various relevant chemical and physical properties have been since long established [1–15]. These test sets play an
instrumental role in the development of hierarchical electronic-structure approximations for bothwave-
function theory (WFT) and density functional theory (DFT). In particular, they are needed for validating
numerical implementations [16–19], investigating the basis set convergence [20–24], and benchmarking the
intrinsic limitations of the various quantum-chemistrymethods [1–6, 14, 15, 25–38]. Formost existing test sets,
the developers provide all essential information for each calculation, includingmolecular geometry, basis set,
and/or code-specific numerical setting [39, 40].

Condensed-matter physics andmaterials science is lacking behind, so far, with respect to comparable
benchmark datasets. Two types of accurate reference data are crucial. One is essentially the exact values,
obtained from either precise experiments or high-level theoretical calculations. They are prerequisite for an
unbiased benchmark of the intrinsic errors associatedwith, for example, the exchange-correlation (XC)
approximations inDFTormore generally the treatment of relativistic effects. The other type of reference data
can help to quantify the numerical error in calculated values using any chosenmethod, whichmight come from
the basis set incompleteness, finite k-point sampling, or other approximationsmade in the numerical
implementation. Unfortunately, for condensed-matter systems, neither of these reference data are easy to
obtain.

The subsequent paper, which seeks to address some of these challenges, is structured as follows: after a
detailed survey of the test sets that arewidely used in quantum chemistry, as well as inmaterials science, we
discuss the underlying challenges to obtain numerically accurate reference data in the latter. In section 2, a
representativemain group test set formaterials science and engineering (MSE) is established. It is followed by an
overview of a dedicatedweb site http://mse.fhi-berlin.mpg.de.We take three examples to demonstrate that the
web site features amulti-mode access framework, versatile visualization, and a linear regression tool for post-
processing data analysis. Section 4 presents the numerical strategies applied in this work to obtain the
numerically well-converged data on a diverse levels of theory.We draw conclusions and give an outlook in
section 5.

1.1. Test sets in quantum chemistry
The importance of reliable test sets for the success of quantum-chemistrymethodswas first realized by Pople
and co-workers [1, 26, 41–44]. Alongwith the development of theGaussian-n theories [1, 26, 41–44], a
hierarchy of extrapolating levels of correlation and basis sets have been developed to obtain increasingly accurate
thermochemistry. A sequence of pioneering test sets for quantum chemistry were also developed and used for
methdological validation. These test sets are nowwidely recognized as theGn test sets, addressing atomization
energies and other energetic properties ofmolecules with increasing numbers of accurate reference values
obtained from experiments [1, 26, 41–44]. One of these test sets, G3/99 [26] generated in 1999, has beenwidely
used in the development of density functional approximations (DFA) to describe covalent bonding in themain
groupmolecules [1, 25–38]. Since then,manywell-established test sets have been proposed for different,mainly
ground-state properties ofmolecules andmolecular processes [1–15, 26, 42]. For example, Hobza and co-
workers designed the S22 set, comprising 22 non-covalent binding complexes of biologic relevance, which can
be further divided into 7 systems for hydrogen bonds, 8 for dispersion bonds, and 7 formixed bonds [7].
Moreover as one of themost popular standard benchmark sets, the BH76 set proposed by the Truhlar group
consists of forward and reverse barrier heights of 19 hydrogen transfer reactions, 6 heavy atom transfer
reactions, 8 nucleophilic substitution reactions, and 5 unimolecular and association reactions [4].Most recently,
theGrimme group compiled a comprehensive benchmark test set, GMTKN30, which includes 30 subsets
collected from the literature, covering a large section of chemically relevant properties of themain-group
molecules [14, 15].

Itmay appear plausible that reference data, i.e. the accurate values of the relevant chemical and physical
properties of atoms andmolecules, can be acquired from experiments [1–3, 6, 11–13, 26, 42], but the required
accuracy is not always achievable. The influence of electron-vibrational coupling is often unclear, which can
hamper the comparisonwith the directly computed values. Thus, reference data would ideally be created by
accurate quantum chemistrymethods such as the coupled-cluster (CC)methodwith single, double, and
perturbative triple excitations, CCSD(T) [45–47], or single, double, triple and perturbative quadruple
excitations, CCSDT(Q), or full configurational interaction (full-CI) theory extrapolated to the complete basis set
(CBS) limit [48–50]. For the test sets aforementioned, the corresponding reference data are either carefully
chosen from accurate experiments [1–3, 6, 11–13, 26, 42] or obtained fromhigh-level first-principles
calculations [4, 5, 7–10].

As themost popular choice in quantum chemistry, the atom-centeredGaussian-type orbital (GTO) basis
sets providewell-converged total energies of atoms andmolecules with a reasonable basis set size for themean-
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fieldmethods, including the local-density approximation (LDA), generalized gradient approximations (GGAs)
and hybrid functionals inDFT, and theHartree–Fockmethod inWFT. For an all-electron approach and for
heavier atoms (e.g. Z>18), i.e. whenwave-functions oscillatemore strongly at the core region, it ismore
convenient, efficient, and accurate to use numerical atom-centered orbital (NAO) basis sets [51, 52].

For advanced correlationmethodswhich require unoccupied single-particle states, e.g. the second-order
Møller–Plesset perturbation theory (MP2) [53], the random-phase approximation (RPA) [54–57], or CCSD(T)
[45–47, 58], the slowbasis set convergence is amore serious problem [23, 24, 59–62]. It can be ascribed to the
inaccurate description of the electron-electronCoulomb cusps using smooth orbital product expansions
[63, 64]. The so-called correlation consistent basis sets have been proposed [24, 59], which allow for an analytic
extrapolation to theCBS limit. Alternatively, by introducing an explicit dependence on the inter-electronic
distance into thewave-function (F12 strategies [64–68]), it is possible to treat the cusp explicitely and suppress
the basis set incompleteness error at afinite basis set size. Both techniques were proposed to address the basis set
incompleteness errors in advanced correlationmethods for both atoms andmolecules, and they have been
demonstrated to be very successful for light elements (e.g.Z<18) and for ground-state properties
[24, 59, 64, 68]. Therefore, accurate chemical or physical properties, e.g. reaction energies, reaction barrier
heights and isomerization energies, can be obtainedwithout concern for the numerical error cancellation
originating from a givenfinite basis set. However, the quantum-chemistry test sets aremainly available only for
the ground-state properties of light elements and smallmolecules, as it remains a challenge to obtain accurate
reference datawith advanced correlationmethods for heavy elements (e.g.Z>18), excited states, and large
systems.

1.2. Test sets inmaterials science
Asmentioned earlier, in computationalmaterials science, the situation ismore complex and less developed than
in the quantum chemistry ofmolecules, and there is an urgent need for accurate test sets to support the
developement of advancedDFAs for solids. Staroverov and co-workers considered lattice constants, bulk
moduli, and cohesive energies of 18 solids, as well as jellium surface energies to benchmark the TPSS functional,
ameta generalized gradient approximation (meta-GGA) [69]. They also presented results for LDA,GGAPBE,
andmeta-GGAPKZB [70]. Heyd and Scuseria [71] used lattice constants and bulkmoduli for 21 solids and band
gaps for 8 semiconductors out of this set to investigate the screenedHartree–Fock-exchange properties in the
HSEhybrid functional. Comparisonwas alsomadewith LDA, PBE, andTPSS. This test set (or part of it) has
been used to benchmark theHSE andHSEsol as implemented inVASP [72, 73], to understand the failure of
B3LYP for solids [74], and to develop improvedDFAs for solids [75–77]. A set of 60 cubic solids was used by
Haas, Tran, andBlaha to compare the performance of different GGA functionals, LDA andTPSS in describing
lattice constants and bulkmoduli [78–80]. To compare the accuracy of different van derWaals (vdW)
functionals applied to solids, Klimes and co-workers determined cohesive properties for a set of 23 bulk solids
[81], based on a set ofmaterials and properties used byCsonka and co-workers when testing the accuracy of
GGA andmeta-GGA functionals [82]. Recently, Tran et al performed an extensive test on the lattice constant,
bulkmodulus, and cohesive energy for a large set of XC approximations belonging to rungs 1–4 of ‘Jacob’s
ladder ofDFT’ [83], performed in a non-self-consistent way using PBEorbitals. The test set used contain 44
strongly and 5weakly bound solids,most of whichwere cubic, except for hexagonal graphite and h-BN. These
test sets ofmaterials with different properties have already been playing an important role in developing and
benchmarking theDFAs for solids. These test sets exclusively rely on reference values from experiment; no
quasi-exact calculated results exist, which can be used as reference data for solids.

For reasons of comparability and consistency, reference values from theory provide the unique opportunity
to compare calculations based on exactly the same atomic structure and exclude finite-temperature, zero-point
vibration, relativistic and electron-vibration coupling effects. Recently, the ‘gold standard’method in quantum
chemistry, CCSD(T), has gained attention inmaterials science [84–89]. A significant step towards an exact
description of solids was demonstrated by Booth et alby performing a full-CI quality calculationwith the aid of
theQuantumMonteCarlo (QMC) stochastic strategy [85]. However, the numerical difficulty and
computational complexity for describing solids has strongly limited the applications of these highly accurate
quantum chemistrymethods to onlymodel systemswith very few electrons, basis functions, and k points
[84, 85, 88, 90]. OtherQMC stochastic strategies, such asVariationalMonte Carlo (VMC) [91] andDiffusion
Monte Carto [92] feature a low computational scalingwith respect to the system size and aweak dependence on
basis set. QMChas been demonstrated to be as accurate as aforementioned quantum chemistrymethods, e.g.
CCSD(T), if certain numerical issues could be considered properly, which includes thefixed-node error and the
form and optimizaiton of the trial function [93–95].

Unlike themolecular systems investigated by quantum chemistry, extended periodicmaterials are often
simulated in reciprocal spacewith periodic boundary conditions (PBC) so as to fully leverage the periodic
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symmetry. However, it also introduces extra numerical difficulties: thefirst Brillouin zone in reciprocal space
must be sampled by afinite number of k points, for which different kinds of k-mesh have been proposed to
provide an efficient sampling according to different periodic symmetries [96–100]. Basis set incompleteness
error is another big issue: the atom-centeredGTO-type basis sets that are dominant in quantum chemistry
become cumbersome for condensedmatter systems [101, 102]. In particular, large and especially diffuse GTO
basis setsmight cause severe ill-conditioning problems due to the lack of rigorous orthogonality for GTObasis
functions. The plane-wave basis sets are a popular alternative choice for solids as they provide an intrinsically
improvable description of the electronic orbitals with only one parameter: the plane-wave cutoff energy.
However, the delocalized nature of planewavesmakes them inefficient to describe the localized core electrons
surrounding atomic nuclei. In practice, the pseudo-potential approximation, which removes the core electrons
from explicit electronic-structure calculations, are often used together with the plane-wave basis sets in the
projector augmentedwave (PAW) framework [103, 104].More recently, it has been demonstrated that the use of
compactNAObasis sets [52, 105] or the linearized augmented plane-wave (LAPW) strategies [106] are able to
converge themean-field approximations in all-electron and full-potential resolutionwith relativistic effects
explicitly included as opposed to implicitly as is the case for pseudo-potentialmethods.

Such diversity ofmethods leads to a need for a standard data set that is comparable among different
numerical implementations. This is indeed the purpose of theΔ-value concept introduced byCottenier et al
[107, 108], which is currently focusing on the implementation of the PBEmethod for solids. The numerically
well-converged PBE results from the all-electron, full-potential LAPW-based programWIEN2k [108, 109] are
taken as reference. To quantify the numerical errors in the description of equations of state, theΔ-value is
defined as the root-mean-squared (RMS) energy difference between the equations of state of two codes, averaged
over an exhaustive test set of crystalline solids, containing all ground-state elemental crystals.

Despite the enormous success achieved by the (semi)-local DFA, e.g. LDA andGGAPBE, there are several
notorious failures of thesemethods. For instance, there exist serious self-interaction errors and significant
underestimation of vdW interactions for these functionals, which demandmore sophisticated approximations.
Themeta-GGAs, inwhich the orbital kinetic energy density is added to the density functional evaluation, belong
to a higher rung of the ‘Jacob’s Ladder inDFT’. Representative are the nonempirical TPSS [69] and the
multiparameter empiricalM06-L [110]. A recently proposed nonempiricalmeta-GGA, SCAN,which satisfies 17
known exact constraints appropriate to a semilocal functional [111], has been found to show a big step ahead in
accuracy formanifold chemical and physical properties and has attracted increasing interest in computational
materials science. The so-called hybrid functionals, e.g. HSE06 [112], incorporate the information of the
occupied orbitals inHartree–Fock-like ‘exact exchange’. The next level of complexity is to deriveDFAs using the
information of virtual orbitals. Twomethods at such level,MP2 [53] andRPA [18, 34, 35, 54–56, 113], are state-
of-the-art in computationalmaterials science [34, 76, 77, 85, 87, 114–117]. The numerical errors in these
methods can either be inherited from the aforementioned algorithms to solve the one-electronKohn–Sham (or
Hartree–Fock) equations, or arise from extra algorithms, such as the choice of the self-consistent Kohn–Sham
orbitals for the post-processing evaluations [118], the resolution-of-identity technique to handle the two-
electron four-center integrals [18, 119–121], and the localization approximations [114, 122, 123] to reduce the
computational scaling in these advanced correlationmethods.

In this context, it becomes imperative for computationalmaterials science to have a representative test set
with numerically well-converged reference values at various levels of theory. In spirit of the existing quantum-
chemistry test sets and theΔ-value concept, we introduce in the following ourmain group test set forMSE,
coinedMSE, which is based on results acquired using density functionalmethods fromLDA, PBE, PBEsol,
SCAN, TPSS,M06-L,HSE06; and state-of-the-artMP2 andRPA. The numerical convergence of thesemethods
is investigated in terms of the total energy. Cohesive energies, lattice constants and bulkmoduli are then
reported. A comprehensive understanding of the numerical errors, particularly inMP2 andRPA, is discussed in
order to aid the community’s pursuit of a numerically stable implementation of CCSD(T) and full-CI for the
exact description of solids.

2.Main group test set formaterials science and engineering (MSE)

In this project, we select 7 elemental solids and 12 binaries with cubic structure, as the first step in creating the
MSE test set. As illustrated infigure 1, the set is composed of elements from the first and second rows of the
periodic table, consisting of the body-center-cubic (bcc), face-center cubic (fcc), diamond, rocksalt, and
zincblende structures. Thus, the set includesmaterials composed ofmain group elements withmetallic,
covalent, ionic, vdW, andmixed bonding characters.
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The FritzHaber Institute ‘ab initiomolecular simulations’ (FHI-aims) electronic-structure package [52] is
used to generate the numerically well-converged reference data in theMSE test set. The reasons for this choice
are as follows:

• The numerical accuracy of the FHI-aims package has been shown to be equivalent to the accuracy of other
high-quality codes [124]. FHI-aims,WIEN2K and exciting are indistinguishable in accuracy and at the top of
all participating codes.

• A range of popularDFAs have been implemented in FHI-aims and can be used routinely for atoms,molecules,
clusters, and periodic systems. Besides the conventional (semi)-local functionals, e.g. LDA, PBE, PBEsol,
SCAN, TPSS andM06-L, a real-space implementation of the exact exchange operator in PBCby Levchenko
et alhas been demonstrated to allow for a practical use of hybrid functionals (includingHSE06) and the
Hartree–Fockmethod, aswell, for bothmolecular and periodic systems [105]. Furthermore, as will be
reported soon, amassively parallel, in-memory implementation of periodicMP2 andRPAmethods has also
been implemented in FHI-aims using canonical crystalline orbitals.

• FHI-aims employs numerically tabulatedNAObasis sets [52]. The default basis sets were developed from a
minimal basis that is composed of exact occupied orbitals for spherically symmetric free atoms [52]. Such
minimal basis captures the essential core-electron behavior in the vicinity of atomic nuclei. Additional ‘tiers’
are defined in a step-wiseminimization of the LDA total energies of symmetric dimers for all elements. These
hierarchical basis sets, tier-n (n=1–4) for short, can provide theCBS total energies formean-field
approximations (LDA, PBE, PBEsol, SCAN, TPSS,M06-L andHSE06 in this project) in an all-electron
description.

• To address the slow basis set convergence of advanced correlationmethods (MP2 andRPA in this project),
FHI-aims provides a sequence ofNAObasis sets withValence Correlation Consistency [24], namelyNAO-
VCC-nZwith n=2, 3, 4 and 5. The basis set incompleteness error in the valence correlations ofMP2 and
RPA can be removed using two-point extrapolation schemes [24]. Unless otherwise stated, theMP2 andRPA
calculations in this work are valence-only (frozen-core)using all-electronHartree–Fock andPBE orbitals,
respectively. Assuming complete convergence of the k-mesh and basis sets, any discrepancy between our
results and those obtainedwith a plane-wave basis should presumably originate from the error of the pseudo-
potentials used in plane-wave approaches to generate the valence and virtual orbitals in the self-consistent
procedure. Besides theminimal basis, theNAO-VCC-nZbasis sets comprise an additional group of s, p
hydrogen-like functions, named enhancedminimal basis [24]. For isolatedmolecules, such additional
functions have been demonstrated to be useful to improve the description of valence correlations [24];
however, the densely packed nature of the condensed-matter systems largely alleviates the difficulty of
saturating the s, p basis space for valence correlations. In this work, we exclude the enhancedminimal basis
and re-optimize theNAO-VCC-nZbasis sets, but do not change the name for simplicity (interested readers
are referred to [24] for the optimization strategy in detail).

At present theNAO-VCC-nZbasis sets in FHI-aims are only available fromH toAr [24]. As a consequence,
theMSE test set is currently focused on lightmain group elements (seefigure 1), with future intentions to expend
to heavier elements. In this paper, we report the numerically well-converged results ofMP2 andRPA for 14
selectedmaterials, including 4 elemental solids (Ne andAr in the fcc, andC and Si in the diamond structure) and
10 binaries (LiF, LiCl, LiH,MgO andMgSwith rocksalt, BeS, BN, BP, SiC andAlPwith zincblende structure).
We snapshot infigure 2 theMP2 data currently available through theMSEweb site. In the long term, theMSE
test set shall be extended to include heavy elements and non-cubic structures including representatives for the

Figure 1.The 7 elements and 12 binaries with cubic structures included in theMSE test set.
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majority of systems of interest inMSE. To achieve this goal, it is prerequisite to establish a set ofNAObasis sets
for heavy elements (Z>18), which can provide a smooth numerical convergence ofMP2, RPA and other
advanced correlationmethods towards the complete basis set limit.

Relativistic effects were investigated in our calculations as well, using the atomic zeroth order regular
approximation (atomic ZORA) [52]. By performing a linear regression comparison, we confirmquantitatively
that the relativistic effect has a negligible influence on thematerials formed by light elements, regardless of any
XC approximation that is used (see the following section formore details). Thus, we report the reference data
without consideration of relativistic effects. As a side benefit, this approach excludes the numerical uncertainty
arising fromdifferent relativisticmethods [52]. Obviously, for heavy elements, the relativistic effectmust be
considered carefully, but this is beyond the scope of the present study.

3. Theweb site of theMSE test-set

Akey feature of ourMSE test set project is to establish a dedicatedweb site http://mse.fhi-berlin.mpg.de, which
allows for easy access and analysis of the data.

3.1.Multi-mode access to the reference data
At theMSEhome page, an overview of theMSE test set project is given alongwith a table that summarizes all
materials available for a givenDFA. Thematerials are sorted by their crystalline structures with a layout similar
tofigure 1. The default DFA is PBE; the table for otherDFAs is obtained via a drop-down select box. A search
engine allows to access a group of results for a givenmaterial, structure, orDFA, and/or combination of the
above. Figure 2 shows a snapshot of thefiltered table produced by the search engine, listing theMP2 reference
data currently available. Thismulti-mode search framework, together with awell-organized data structure,
guarantees easy access to themore than 10 000 calculations in the currentMSE test set.

3.2. Visualization
TheMSEweb site provides a quick and easy-to-use visual display of the test set data. For any individual reference
value calculated for a givenmaterial and using a specificDFA, the crystal structure and thewell-converged
equation of state are displayed. If available, one can also visualize the numerical convergence towards this
reference data; this includes convergence tests for basis set, k-mesh, and internal numerical parameters.
Furthermore, a statistic analysis of the basis set convergence for thewhole test set can be visualized, which is
derived using themean absolute deviation (MAD).

As an example of this functionality, figure 3 presents the basis set incompleteness error inMP2 cohesive
energies per atom for (A) Si diamond and (B) 14materials representing covalent, ionic, vdW, andmixed
bonding characters. Clearly, NAO-VCC-nZ basis sets provide an improved description for advanced correlation
methodswith the increase of the basis set size, which allows for the extrapolation to theCBS limit fromNAO-
VCC-3Z and 4Z (i.e. CBS[3,4]). As a recommendation for practical use, we note that the basis set extrapolation
fromNAO-VCC-2Z and 3Z (CBS[23]) guarantees a nearNAO-VCC-4Z quality, butwithmuch less
computational cost.

Figure 2. Snapshot of theMP2 data currently available from theMSEweb site.
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3.3. Linear regression
For the benchmark studies of theDFAs, theMADand the root-mean-square deviation (RMSD) are often used to
quantify the numerical errors in calculations. For a given group ofmaterials with the number ofmaterials of n
and the targeted observables of {Yi}, if the computational data are {yi}with the errors distributed as
x Y yi i i= - , we then define the relevantMADandRMSDas

n
x

x

n
MAD

1
; RMSD . 1

i

n

i
i

n
i

1

2

å
å

= =
=

∣ ∣ ( )

Despite bothMADandRMSDbeingmeasures of accuracy, we note that larger errors have a disproportionately
large effect onRMSD,making itmore sensitive to outliers.

A linear regression bymeans of a least-squares fit allows us to separate the error into predictable (or
systematic) andmaterial-specific (or residual) parts [125, 126]. The resulting linearmodel

L y y 2i ib a= +ˆ ( ) ( )

allows the analysis of thematerial-specific deviations {òi} and the corresponding root-mean-square deviation
(RMSD) as

Y L y
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; RMSD . 3i i i
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The systematic error can be determined by the difference between RMSD and RMSD. It was argued that the
material-specific deviations represent a truemeasure of the inadequacy of themethod or the numerical
incompleteness of the basis set and k-mesh [125, 126]. Tomake themost of this analysismethod, we have
equipped theMSEweb site with a linear-regression analysis tool. In three examples, wewill demonstrate how to
gain insight into the numerical and intrinsic limitations of a state-of-the-art DFAs.

3.3.1. Basis set convergence in theMP2 lattice constants
Slow basis set convergence is a well-documented problem for advanced correlationmethods likeMP2 andRPA.
Figure 3 presents the basis set incompleteness errors inMP2 cohesive energies using the valence correlation
consistent basis set in theNAO framework. Taking theMP2 results in theCBS limit as the reference, table 1 lists

Figure 3.The basis set incompleteness error inMP2 cohesive energies per atom for (A) Si diamond and (B) 14materials in terms of
mean absolute deviations. NnZ is the short-hand notation ofNAO-VCC-nZ, andCBS[n1, n2] denotes a complete basis set
extrapolation byNAO-VCC-n1Z and n2Z. TheCBS[3, 4] value is taken as the reference data. The convergence test is performedwith
4×4×4Γ-centered k grid. In section 4,more details about the numerical convergence for differentmethodswill be discussed.
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the RMSDs and RMSDs of the incompleteness errors forNAO-VCC-nZwith n=2, 3, and 4.Despite the basis
set errors systematically decreasing with the increase of the basis set size, RMSDand RMSDwithNAO-VCC-3Z
remain about 0.1Å, which is unacceptable for real applications.

Figure 4 shows the linear regression analysis. It clearly suggests that there are two outliers, which areNe and
Arwith fcc structure.We note thatNe andAr crystals are bonded by vdW forces, which are overestimated by the
MP2method; however it is an intrinsic error of theMP2method and thus not addressed here. For isolated
molecules, it has been discussed in previous literature [18, 24] that an accurate description of weak interactions
using advancedDFAs needs either a counterpoise correction scheme or very large basis sets with diffuse basis
functions to address the notorious basis set superposition error. As suggested by our results in this work, this
conclusion is also true for solids governed largely by vdW interactions. Excluding these two cases from the linear
regression analysis results in amuch better quantitative accuracy (values in parentheses in table 1). The RMSD
forNAO-VCC-3Z and RMSD forNAO-VCC-2Z are below 0.02Å, which clearly suggests thatNAO-VCC-3Z
or even 2Zwith a systematic correctionwould be good enough to converge theMP2 lattice constants for strongly
bonded systems, while theweak interactionsmust be treatedwith special care.

3.3.2. Starting point (SP) influence onmeta-GGAs andRPA
The commonpractice of evaluatingmeta-GGAs, like TPSS,M06-L and SCAN, and advancedmany-body
perturbationmethods, like RPA, is by performing an energy evaluation a posteriori using LDA,GGAor hybrid
GGAorbitals [35, 83].Meanwhile, theHartree–Fock orbitals are used for theMP2method generally in quantum
chemistry. The self-consistent implementation ofmeta-GGAs has been realized inmany computational
packages, including FHI-aims. In theMSE test set, we provide accurate reference data of TPSS,M06-L and
SCAN for both (a) self-consistent and (b)non-self-consistent using PBE orbitals, calculations.We also examine
the starting point influence onRPA cohesive energies by using PBE and PBE0 orbitals. For simplicity and
consistency, we use ‘DFA@SP’ in this discussion to denote whichmethod is based onwhich starting point (SP)
orbitals.

Table 2 shows the influence of the starting point on the cohesive energies per atom in terms of the RMSD.
The linear regressionwas performed to extract thematerial-specific part of the deviations. Clearly, the starting
point influence ismild formeta-GGAs: SCAN shows the smallest influence, leading to a RMSDof only 15meV.
Meanwhile, the linear regression analysis suggests that these errors are almostmaterial-specific. The
corresponding systematic errors (RMSD RMSD- ) are less than 2meV. In contrast, RPA ismuchmore

Table 1.RMSDs andmaterial-specific RMSD
of the basis set incompleteness errors for the
MP2 lattice constants. The values in
parentheses excludeNe andAr. (unit:Å)

Method RMSD RMSD

N2Z 0.148 (0.043) 0.126 (0.015)
N3Z 0.089 (0.017) 0.071 (0.009)
N4Z 0.032 (0.016) 0.021 (0.007)

Figure 4. Linear regression of theMP2 lattice constants at different basis sets to the reference values in theCBS limit. NnZ is the short-
hand notation of the valence correlation consistent basis set NAO-VCC-nZwith n=2, 3 and 4.
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sensitive to the choice of the starting point orbitals, though the influence is quite systematic: thematerial-specific
error RMSD is only about 30meV. This small error indicates that a careful choice of the starting point orbitals
can improve the RPAperformance because of its systematic underestimation of cohesive energies [118] and
weak interactions [34].

Formeta-GGAs andRPA, the starting point influences on lattice constant and bulkmodulus are similar: the
material-specific deviations aremild, though the systematic deviation is quite large for RPA results. The readers
interested in this topic can easily access the data and perform the linear regression online by themselves. It is also
easy to investigate the influence of relativistic effects on differentmethods and properties in the samemanner.

3.3.3. Cross-over comparison between differentmethods
Figure 5 summarizes the cross-over comparison of cohesive energies between differentmethods. RMSDs and
thematerial-specific RMSDs are shown in different subtables. In this comparison, RPA@PBE reference data
were used andmeta-GGAswere calculated self-consistently. The nineDFAs investigated cover allfive rungs of
the ‘Jacob’s ladder ofDFT’. From themany-body perturbation theory point of view,MP2 andRPA consider the
electronic correlations explicitly in themany-body interaction picture, while others are allmean-field
approximations.

LDA andRPA are the density functional approximations on the lowest and highest rungs of the ‘Jacob’s
ladder’, respectively, and they show the largest deviation in the cohesive energy calculations, leading to a RMSD
of over 1 eV. In fact, LDA shows a large disagreement with all othermethods, with the average RMSDs about
0.7 eV. This observation agrees with awidely accepted argument that the local density approximation derived
fromhomogeneous electron gas completelymisses the high order density derivative or response information

Table 2.RMSDs andmaterial-specific RMSD of the
starting-point influence on cohesive energies per atom.
‘DFA@SP’ denotes whichmethod is based onwhich
starting point orbitals. ‘sc-DFA’ denotes the self-
consistent study. (unit: eV)

Methods to compare RMSD RMSD

sc-SCANversus SCAN@PBE 0.015 0.015

sc-M06-L versusM06-L@PBE 0.049 0.043

sc-TPSS versus TPSS@PBE 0.035 0.033

RPA@PBE versus RPA@PBE0 0.119 0.030

Figure 5.Cross-over comparison of cohesive energies between differentmethods and experiment (Exp) in terms of the RMSD. The
direct RMSDs are shown in the up triangular part, while the values in the lower triangular part are thematerial-specific errors (RMSD
s) after the linear regression. (unit: eV)
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that is important for a proper description of chemical bonding.However, our linear regression analysis suggests
that this error is quite systematic: thematerial-specific RMSD is only 0.16 eV between LDA andRPA.

A similar analysis can be applied to study the intrinsic limitations inMP2 andRPA. It is well-known that the
RPAmethod performs unsatisfactorily in the calculations of cohesive energy for solids [35, 37, 127, 128]. From
themany-body perturbation point of view, this error is due to the lack of an infinite summation of the second-
order exchange diagrams, which is necessary to eliminate the notorious one-electron self-interaction error in the
RPAmethod [35, 37]. On the other hand, theMP2method itself is exactly free from such self-interaction error,
but completely ignores high-order perturbative diagrams. In consequence, a large RMSDof about 0.68eV
betweenMP2 andRPA cohesive energies is observed, which can be traced back to the dissimilarity of underlying
physicalmodels used in the twomethods. Recently,much effort has been devoted to improve RPA andMP2
fromdifferent perspectives, but these approaches often exacerbate the computational complexity dramatically.
Our linear regression analysis suggests that the difference betweenMP2 andRPA cohesive energies is also quite
systematic, leading to amaterial-specific deviation RMSD of only about 100meV.

We also compared the results of differentmethodswith experimental data thatwere corrected for thermal
and zero-point vibrational effects [83, 107]. In-linewith the observation from the above cross-over comparision,
most of the errors in different theretical approximations are quite systematic, leading to thematerial-specific
errors RMSDs in 9methods are lower than 210meV,withM06-L presenting the largest difference. The
visualization of the linear regression analysis suggests that abnormally large errors inM06-L occur inmetallic
systems (Na andAl), which can be ascribed to an incorrect oscillation of the exchange enhancement factor of
M06-Lwhen approaching to the uniform electron gas limit [129]. Taking these two points out, the RMSDand
RMSD ofM06-L are reduced to 131meV and 95meV, respecitvely.

To summarize this section, we have presented three examples that demonstrate the usage of ourMSEweb
site. In the context of on-going innovation in computationalmaterials science, driven by data technology, there
is a growing awareness of the importance of effective data sharing and recycling. Here, we argue that a dedicated
test-set web site should be aboutmore than an easy, static access of the reference data. In order to liberate the
power of test sets, of key importance is providing a friendly analysis interface that facilitate the users to play with
the online data, repeat the observation in the original papers, and even gain new insights from the data by
themselves.

4.Numerically well-converged reference data

Numerically well-converged reference data at various levels of theory are crucial to achieve an unbiased
benchmark and discussion in the previous section. Due to the use ofNAObasis sets, the electronic-structure
problem is addressed using numerical integration in FHI-aims. The specific technical aspects, including the
implementation of localized resolution-of-identity (called ‘RI-LVL’)method, are described in [24, 52, 121].We
have systematically examined the numerical convergence in terms of relevant numerical parameters, and also
k-mesh and basis set sizes. The results ofmean-field approximations are included in theMSEweb site (see
section 3 for usage) and briefly summarized in the appendix.

However, the periodicMP2 andRPAmethods are state-of-the-art electronic-structure approaches for solid-
state community, due to their greater expensive costs thanmean-field approximations. Numerical convergence
behavior is not yet fully examined for solids and thus, in this section, we introduce the numerical strategies
applied to obtain the reference data ofMP2 andRPA calculations in theMSE test set.

4.1. The k-mesh convergence
In the framework of themean-field approximations, the evaluation of the XC energy needs only the electron
density and/or occupied orbitals. However, the advanced correlationmethods, i.e.MP2 andRPA, explicitly
consider the excitations that are between occupied and virtual orbitals and that cross-over different k points.
Therefore, it is not surprising to see thatMP2 andRPA calculations for solids have amuch higher demand on the
sampling of the first Brillouin zone. The k-mesh convergence of the periodicMP2method has been investigated
with theΓ-center sampling strategy byGrüneis et al [76, 130]. In FHI-aims, we adopt a hybrid strategy to
generate theCoulombmatrices inMP2 andRPA calculations, i.e. using the cut-Coulomb operator only for theΓ
point and the full Coulomb operator for the rest of the k points. ForMP2 andRPA, this hybrid choice shows a
faster k-mesh convergence compared to the cut-Coulomb strategy used inHSE06 calculations [105].

TakingC diamond andMgO rocksalt as examples, figure 6 shows the k-mesh incompleteness error of total
energies per atom forfivemethods:

E n E n E , 4k ktotal total totalD = - ¥[ ] [ ] [ ] ( )
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where nk is the number of k points in each direction (n n nk k k´ ´ ). Our results reveals that the total energies
per atom calculated atMP2 andRPA levels converge dramatically slower than those of LDA, PBE andHSE06.
The k-mesh incompleteness error inCdiamond remains to be 15meV for bothMP2 andRPA total energies
with a dense 8×8×8 k-mesh.Wenotice that other off-set evenly sampled k meshes [96, 97], the so-called
mean-value point strategy [98], and smearing samplingmethods, such as themethod ofMethfessel and Paxton
[99], the improved linear tetrahedronmethod [100], etc., have all been proposed to provide a better sampling
with fewer (or even one) k points, but at the semi-local DFT level of theory only. It is interesting to investigate the
influence of these sampling strategies on advanced correlationmethods.

The computational expense of the canonicalMP2 (andRPA) scales as Nk
3 (and Nk

2), where N nk k
3= is the

total grid number in a given k mesh. ForC diamond andNAO-VCC-2Z basis set (with 28 basis functions per
unit cell), theMP2 calculationwith the 8×8×8 k-mesh requires 10 hours to complete using 320CPU cores
of an Infiniband-connected Intel cluster with Intel Xeon E5-2680 v2 cores (2.8 GHz, 20 cores per node). The
periodicMP2 implementation in FHI-aims is a k-mesh-oriented parallelization in the framework of the
message passing interface, guaranteeing efficientMP2 calculations with thousands of cores. However, with the
optimistic assumption of a perfect parallel scalability, it would need over 2000CPUcores tofinish theMP2
calculationwith a denser k-mesh (10×10×10) in a comparable amount of time.While the RPA calculations
with such a dense k-mesh and theNAO-VCC-2Z basis set can be carried out at a reasonable cost, the remaining
k-mesh error is about 7meV forCdiamond. TheRPA calculations with denser k-meshes and larger basis sets
become infeasible aswell.

A practical way to approach the complete k-mesh limit (CKM) for advanced correlationmethods is the two-
point extrapolation in terms of an inverse relation between E nktotalD [ ]and nk:

E n A n

E n A nlog log log 5
k k

k k

total

total a
D =
D = -

a[ ]
( [ ]) ( ) ( ) ( )

The exponential ‘α’ determines the speed of the k-mesh convergence of differentmethods. On a logarithmic
scale (see equation (5) andfigure 6), ‘α’ is the negative value of the slope of E nktotalD [ ] towards theCKM limit.
Previously, the exponentialα=3.00 has been successfully used to extrapolatedMP2 andCCSD(T) cohesive
energies for severalmaterials [85].

Table 3 shows the performance of such k-mesh extrapolation forfive selectedmaterials (two elemental and
three binary solids) from theMSE test set. The complete k-mesh extrapolation from8×8×8 and
10×10×10, CKM(8, 10), are taken as the reference for the periodic RPA calculations. The deviations of the
CKM(6, 8) values are smaller than 1.5meV for allfivematerials and theMAD is only 1.1meV.Our results
confirm the validity of the practical extrapolation (equation (5))withα=3.00 for advancedmethods provided
that reasonable dense k-meshes are utilized.However, a notable decrease of the performance can be observed in
the combination of CKM(4, 6) andα=3.00. TheMAD remains at about 8.0meV (with themaximum error of
14meV forC diamond) for the RPA total energies per atom. In this project, we optimize ‘α’ for theCKM(4, 6)
extrapolation, andfind thatα=3.95 improves theCKM(4, 6) extrapolation consistently, resulting in theMAD
of only 1.6meV.

TheCKM(6, 8) valueswithα=3.00 are chosen as the reference forMP2. Table 3 indicates that the CKM(4,
6) extrapolation is not good enoughwhen using the default choice ofα=3.00, and it can be effectively
improvedwith an exponential valueα=3.95 as optimized for RPA.Our results reveal that advanced

Figure 6.Dependence of the total energy per atomon the number of k points nk (along one direction). TheΓ-center k-mesh is used.
C diamond (A) andMgO rocksalt (B) results are presented on a logarithmic scale. The basis sets used are tier-2 for LDA andPBE and
NAO-VCC-2Z for RPA andMP2. The reference total energies are calculatedwith the 12×12×12 k-mesh for LDA, PBE and
HSE06. For RPA andMP2, the references are extrapolated byCKM(8, 10) andCKM(6, 8)withα=3.0, respectively.
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correlationmethods share a similar k-mesh convergence behavior, and thus theCKM(6, 8) values with
α=3.00 are good enough to converge the errorwithin 2.0meV for insulators and semiconductors, which is
choosen for bothMP2 andRPA calculations in this work (see table 1 in supporting information).

We notice that the periodicMP2 andCCSD(T) results reported in the literature were often extrapolated
usingCKM(5, 6) or even sparser CKM(3, 4)withα=3.00 [85]. It is an understandable compromise
considering the computational expensewith denser k-meshes and larger basis sets for thesemethods; however,
in order to achieve k-mesh-converged values with the numerical uncertainty within 10meV, an adapted
exponential factor for CKMextrapolation appears necessary fromour benchmarking.

4.2. The basis set convergence
TheNAObasis sets ofNAO-VCC-nZ, used in FHI-aims, hold the promise to provide numerically well-
converged total energies for advanced correlationmethods in frozen-core approximations. (see [24] for details).
ForMP2 andRPA calculations, the complete basis set (CBS) results are extrapolated using a two-point
extrapolation formula [24, 60] based onNAO-VCC-3Z andNAO-VCC-4Z, namely CBS(3, 4):

E
E E3 3 4 4

3 4
6

3 3

3 3
¥ =

-
-

[ ] [ ] [ ] ( )

HereE[n] is the RPAorMP2 total energy per atomusingNAO-VCC-nZbasis sets (with n=3 and 4).While the
extrapolation fromNAO-VCC-4Z andNAO-VCC-5Z shall further reduce the numerical uncertainty of the
reference data [24], NAO-VCC-5Z is too expensive to be used for periodicMP2 andRPA calculations at present.

The k-mesh convergence ofMP2 andRPAmethods tested in the previous section is carried out together
with the smallestNAO-VCC-2Z basis sets (see figure 6). However, it would be impossible to performMP2
calculations with an 8×8×8 k-mesh forNAO-VCC-4Z, and sometimes even aNAO-VCC-3Z calculation is
too expensive, because of the unfavorable scaling of theMP2methodwith respect to the number of k points.

TakingC diamond as an example, table 4 shows the k-mesh convergence of theMP2 total energies per atom
for different basis sets. Themost time consuming result in this table is the combination ofNAO-VCC-3Z and
the 8×8×8 k-mesh, which requires about 4 days using 320CPUcores of an Infiniband-connected Intel
cluster with Intel Xeon E5-2680 v2 cores (2.8 GHz, 20 cores per node). As illustrated in table 4, while the error of
a 4×4×4 k-mesh varies with the basis set employed by severalmeV, it becomes almost independent of the
choice of basis sets for 6×6×6 and 8×8×8meshes. Ohnishi et al [131] andGrüneis et al [132] had a
similar observation inMP2 andCCSD calculations using theGTO-type and plane-wave basis sets, respectively.
In consequence, they concluded that the long-range behavior of the correlation energy dependsmostly on the

Table 3.Errors of extrapolated RPA andMP2 total energies per atom
forfivematerials (inmeV). The complete k-mesh (CKM)
extrapolation is performed from the different combinations of k grids,
namelyCKM (nk1, nk2), andwith different exponentialsα. Themean
absolute errors (MAE) listed are the deviations of Etotal-Etotal

Ref , where the
reference Etotal

Ref for RPA is the extrapolated value from8×8×8 and
10×10×10, CKM(8, 10), withα=3.00. ForMP2, the reference is
extrapolated byCKM(6, 8) andα=3.00. Themean absolute
deviations (MADs) are shown for RPA andMP2 separately.

Index CKM(4, 6) CKM(4, 6) CKM(6, 8)
inMSE α=3.00 α=3.95 α=3.00

RPA

C 06 −13.8 −1.6 0.4

Si 07 −12.4 2.3 −1.3

MgO 12 1.5 2.4 1.4

BN 15 −5.7 1.0 1.3

AlP 18 −6.9 1.1 1.1

MAD 8.0 1.6 1.1

MP2

C 06 −17.9 −1.9

Si 07 −17.1 1.6

MgO 12 0.5 0.7

BN 15 −9.2 1.6

AlP 18 −9.5 −0.2

MAD 11.3 1.1
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low-lying excitations, and proposed their progressive down-sampling technique to approach the complete
k-mesh and basis set limit for advanced correlationmethods.

In this work, we adopt a similar down-sampling concept to estimate theMP2 total energies per atomwith
theNAO-VCC-4Z basis set and the 8×8×8 k-grid: E n 8ktotal

4Z =[ ]

E n E n E n8 6 8 7k k k
n

total
4Z

total
4Z

total
Z= = = + D =[ ] [ ] [ ] ( )

using the energy change between 6×6×6 and 8×8×8 k-meshes with theNAO-VCC-3Z (or 2Z) basis set
E n 8k

n
total

ZD =[ ] (n= 3 or 2) of:

E n E n E n8 8 6 8k k k
n n n
total

Z
total

Z
total

ZD = = = - =[ ] [ ] [ ] ( )

In summary, the reference data for theMP2 andRPA total energies (and also valence correlation energies) per
atomare obtained by the combination strategy of CKM(6, 8), CBS(3, 4) and E n 8ktotal

nZD =[ ]with (n= 3 or 2).
The error bar is estimated to be 20meV for theseMP2 andRPA reference data. The numerical uncertainty in the
combination strategy is dominated by theCBS(3, 4) extrapolation, i.e. 15meV forCBS(3, 4), 2meV forCKM(6,
8), and less than 1meV for E n 8ktotal

3ZD =[ ]or E n 8ktotal
2ZD =[ ], respectively.

4.3. Lattice constant, bulkmodulus, and cohesive energy
Based on the efforts discussed above to achieve the complete k-mesh and basis set convergence in terms of
absolute total energy for various levels of theory, we next focus on the numerical convergence ofMP2 andRPA
calculations on lattice constants, bulkmoduli and cohesive energies.

The post-processingMP2 andRPA correlations are frozen-core, but evaluated based on theHartree–Fock,
PBE and/or PBE0 orbitals in all-electron description. The basis set convergence of these properties arewell-
documented for (semi-) local and hybridDFAs.However, the slow basis set convergence togetherwith an
unfavorable computational scalingmakes it a big challenge to perform a systematic investigation of the basis set
convergence of thesematerials’ properties atMP2 andRPA levels.We present here theMP2 results offive
selectedmaterials from theMSE test sets in table 5. To the best of our knowledge, it is the first report of the basis
set convergence ofMP2 for condensedmatter systems usingNAObasis sets. The readers can easily access the
MP2 andRPAdata on convergence test for all 13materials in ourMSEweb site.

Table 5 reveals that the basis set convergence is relatively fast in theMP2 calculations of lattice constants.
NAO-VCC-3Z is good enough to provide awell-converged lattice constant (the convergence criterion is 0.01Å)
for allfivematerials (for details see also thefirst example in Section 3). In agreement with the previous
investigations using plane-wave basis sets [76, 85] or aGaussian and planewaves hybrid approach [117], the slow
basis set convergence ofMP2 cohesive energies is observedwithNAObasis sets as well. ComparedwithCBS(3,
4) values, the basis set incompleteness errors atNAO-VCC-4Z still remain about 60-130meV. Such slow
convergence arises from the slower basis set convergence of theMP2 total energies in bulks than that in free
atoms. It is well-documented in quantum chemistry that the accurate geometry information for theMP2 and
other advanced correlationmethods can be obtainedwith the basis sets of triple-zeta quality [133], but the
converged atomization energy or other energy differences cannot be achievedwithfinite basis sets [41, 134, 135].
Our results confirm that this conclusion is also valid for solids.While the bulkmoduli obtained at theNAO-
VCC-4Z basis set are not well-converged, the basis set error remains about 3–7GPa.

Inspecting table 5 also reveals the capability ofNAO-VCC-nZ to provide a consistently improvable
description of cohesive properties. In general, the calculatedMP2 cohesive energies increase with the cardinal
index (n) ofNAO-VCC-nZ.On the one hand, it allows for an accurate extrapolation to theCBS limit; and, on the
other hand, theNAO-VCC-4Z values set up a quite rigorous lower bound for the converged values ofMP2. In
otherwords, any results smaller than theNAO-VCC-4Z valuesmight be unreliable.

Table 4.Errors in theMP2 total energies per atomusing different basis sets
for C diamond (inmeV). The reference is theCKM(6, 8) extrapolated values
withα=3.00 (see equation (5)).

k-mesh

NAO-

VCC-2Z

NAO-

VCC-3Z

NAO-

VCC-4Z

(4×4×4) 117 114 115

(6×6×6) 22 22 22

(8×8×8) 9 9 9a

a ForNAO-VCC-4Z, theMP2 total energy per atomwith the 8×8×8

k-mesh is extrapolated using the energy difference between k-grids

6×6×6 and 8×8×8with theNAO-VCC-3Z basis set.
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The canonicalMP2methodwas implemented inVASP for periodic systems in 2009 [130]. Later, Grüneis
et al calculated theMP2 cohesive properties of 13materials in 2010 [76]. To approach theCBS limit in the
framework of the projector-augmented-wave (PAW)method using plane-wave basis sets, they proposed an
inverse relation between theMP2 correlation energy and the energy cutoff Eχ that represents the overlap charge
densities for theCBS extrapolation.Meanwhile, an efficient composite schemewas proposed to reduce the
computational cost due to the unfavorable scaling of the k-point number. To be specific, theHartree–Fock total
energy is calculatedwith a dense 10×10×10Γ-centered k-mesh, but theMP2 second-order direct and
exchange terms are evaluatedwith 6×6×6 and 3×3× 3 k-meshes, respectively. In 2013, Booth et al
updated theMP2 cohesive energies of threematerials [85], includingC diamond, BN andAlPwith zincblende
structure. Themain difference is to replace the composite scheme by an extrapolation scheme from5×5×5
and 6×6×6, i.e. CKM(5, 6)withα=3, to approach the converged k-mesh sampling. Table 5 also lists the
canonicalMP2 cohesive properties calculatedwithVASP. FHI-aims predicts very similar cohesive energies to
theVASP valueswith the k-grid extrapolation scheme. The difference is about 40meV for Cdiamond andAlP
zincblende, and 100meV for BN in zincblende. ForMgOand Si, the discrepancy of over 170meVbetween FHI-
aims andVASP values shall be ascribed to the k-grid incompleteness of the composite scheme used in the
previousVASP calculations [76].

Table 5.MP2 cohesive energies per atom, lattice constants, and bulk
moduli. All results have been extrapolated to the complete k-mesh
limit usingCKM(6, 8). TheVASP results are listed aswell.

Basis set Ecoh (eV) a0 (Å) B0 (GPa)

C NAO-VCC-2Z 7.65 3.56 451

NAO-VCC-3Z 7.81 3.55 454

NAO-VCC-4Z 7.96 3.54 454

CBS(3, 4) 8.08 3.54 454

VASPa 7.97 3.55 450

VASPb 8.04

Si NAO-VCC-2Z 4.62 5.44 98

NAO-VCC-3Z 4.92 5.41 100

NAO-VCC-4Z 5.07 5.41 100

CBS(3, 4) 5.21 5.40 100

VASPa 5.05 5.42 100

VASPb

BN NAO-VCC-2Z 6.84 3.62 387

NAO-VCC-3Z 7.01 3.59 392

NAO-VCC-4Z 7.14 3.59 375

CBS(3, 4) 7.25 3.58 368

VASPa 7.12 3.61 395

VASPb 7.15

MgO NAO-VCC-2Z 5.11 4.23 160

NAO-VCC-3Z 5.39 4.23 156

NAO-VCC-4Z 5.47 4.24 156

CBS(3, 4) 5.53 4.24 156

VASPa 5.35 4.23 153

VASPb

AlP NAO-VCC-2Z 4.06 5.48 92

NAO-VCC-3Z 4.41 5.45 94

NAO-VCC-4Z 4.55 5.45 95

CBS(3, 4) 4.67 5.45 95

VASPa 4.32 5.46 93

VASPb 4.63

a In [76], theMP2 results withVASPwere extrapolated to the CBS

limit. The k-meshwas sampled by a composite scheme. TheHatree-

Fock orbitals were generated in the pseudo-potential framework.
b In [85], theMP2 results withVASPwere extrapolated byCKM(5, 6)
withα=3. TheHartree–Fock orbitals were generated in the pseudo-

potential framework.
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5. Conclusions

Wehave accomplished thefirst step towards a representativematerial science and engineering (MSE) test set
withwell-defined and relevant cohesive and electronic properties, and reference values, obtained for a range of
main-groupmaterials using a hierarchy of thefirst-principles calculations. The accuracy of the reference values
in theMSE test set ismainly determined by thewell-defined numerical setting of each appliedDFA. A strong
effort has beenmade to provide numerically converged values from state-of-the-art theory, including periodic
MP2, andRPA calculations in theCBS limit and the complete k-space limit as well. At present, we provide 14
accurate data forMP2 andRPA.

Aweb site of theMSE test set, http://mse.fhi-berlin.mpg.de, is equippedwith amulti-mode access
framework, versatile visualization, and a linear regression tool for post-processing data analysis.We have
demonstrated that these features dramatically assist the post-processing data analysis that is necessary to detect
the numerical error in calculations and uncover the intrinsic limitations ofDFAs. The presented paradigm for
the test set construction is applicable to any newmaterial andmaterials’ property.
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Appendix. Numerically well-converged reference data for PBE andHSE06

A.1. The k-mesh convergence
The k-mesh convergence for LDA and PBEmethods is investigated togetherwithΓ-center (GC) and
Monkhorst-Pack (MP) sampling strategies [136–138], both of which span thefirst Brillouin zone in an evenly
spacedmanner. TheMP k-mesh coincides with theGCone for an uneven number of grid points [137, 138]. In
this project, we choose a set of k-meshes with even numbers of grid points. Our observation is consistent with
previous investigations where theMP k-mesh shows faster convergence behavior than theGC k-mesh for
insulators and semiconductors at the semilocal density functional level of theory [137, 138]. In order to achieve 1
meV accuracy, the 4×4×4MPgrid is sufficient for rare-gas crystals (Ne andArwith fcc structure), and the
6×6×6MP grid for other ionic- and covalent-bond systems. To achieve the same accuracy, an 8×8×8
(sometimes even denser) grid is often necessarywith theGC k-mesh.However, the slow k-mesh convergence in
the calculation ofmetallic systems ismore serious, and cannot be improved using theMP k-mesh. Based on
LDA, PBE, and threemeta-GGAs convergence benchmarks, we summarize the k-mesh setting in table A1,
recommended for all semi-local DFAs investigated in this paper: LDA, PBE, PBEsol, TPSS,M06-L and SCAN.

A linear-scalingHSE06method for condensedmatter systems has been implemented in FHI-aims [105]. In
order to fully utilize the sparsity of the densitymatrix in real space, thisHSE06 implementation needs a
projection of densitymatrix in aΓ-center k-mesh to the corresponding Born-von-Karman (BvK) supercell by
means of Fourier transformation. Furthermore, FHI-aims features amassively parallel, in-memory
implementation of canonicalMP2 andRPAmethods for periodic systems. At present, HSE06,MP2 andRPA
calculations can be performed onlywith theΓ-center k-mesh in FHI-aims.MP2 andRPA calculations have
been reported using k-meshes centered atΓ-point for the PAWmethod and plane-wave basis sets
[76, 77, 85, 87, 88, 132].

Table A1 lists the k-meshes for convergedHSE06 calculations: generally speaking,HSE06 shows a similar
convergence behavior as LDA and PBEusing theΓ-center k-mesh. Notable differences happen onlywith very
rough grids, e.g. in the rare-gas crystals (Ne andAr)with 2×2× 2 and ionic crystals with 4×4×4. Such
abnormality can be ascribed to an improper description of the integrable singularity of the Coulombpotential in
reciprocal space [72, 139], which ismathematically equivalent to a slow decay of Coulomb interaction in
condensedmatter systems. In FHI-aims, a cut-Coulomb operator is used forHSE06 to generate theCoulomb
matrices at every k-point [105, 112]. However, a reasonably dense k-mesh is still required. TakingCdiamond
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andMgO rocksalt as examples, figure 6 in themain text shows the k-mesh incompleteness error of total energies
per atom forfivemethods:

E n E n E , A.1k ktotal total totalD = - ¥[ ] [ ] [ ] ( )

where nk is the number of k points in each direction (n n nk k k´ ´ ). Our results reveal that aΓ-centermesh
with 6×6×6 grid points is enough forHSE06 to address this singularity issue, thus providing a similar
k-mesh sampling quality as LDA and PBE.

A.2. The basis set convergence
The difficulty of using theGTObasis sets, the de facto choice in quantum chemistry, to extended systems has
been studied extensively in different kinds of crystalsmainly using theCRYSTAL program [101, 140, 141]. To
quote the statement in theirUser’sManual (Chapter 10) [102], ‘as a rule, extended atomic basis sets, or ‘triple-
zeta’ type basis sets should be avoided (...), because the outer functions are too diffuse.’On the other hand,
despite the predominate use in calculations on periodic systems, the plane-wave basis set is ineffective to
describe the localized core-electron states and usually needs to be used in conjunctionwith pseudo-potentials.

TheNAObasis sets of FHI-aims [24, 52], including tier-n andNAO-VCC-nZ, hold the promise to provide
numerically well-converged total energies formean-field approximations in all-electron description, as the
minimal basis of both tier-n andNAO-VCC-nZ is composed of the exact core and valence orbitals of spherically
symmetric free atoms. In themeantime, a confining potential can be used to generate the primitiveNAOs that
are exactly localized in a certain region, so that any numerical instability caused by an unnecessary overlap
between the diffuse atom-centered basis functions can be significantly suppressed (see [24, 52] for details).

Table A2 lists the basis set incompleteness errors inHSE06 total energies per atomusing the tier-n series,
which are the default choice formean-field approximations in FHI-aims. The tier-2 basis set is recommended,
and tier-3 is considered to be good enough to reach theCBS limit [52].While the tier-n basis sets are optimized
with respect to smallmolecules, i.e. symmetric dimers for all elements [52], our results demonstrate their
transferability to the extended systemswith diverse chemical environments. The average (maximum) error in
tier-2 and tier-3are about 8meV (16meV) and 2meV (9meV) inHSE06 total energies per atomof light
elements’materials. Note that the basis size of tier-2 is slightly larger thanDunning’s GTO triple-zeta basis set cc-
pVTZ [59], which has been recommended to be avoided for calculations on solids [102]. In ourwork, we do not
encounter any self-consistent field (SCF) convergence problemwith tier-2 in all our calculations withGGAs and
hybridGGAs, including LDA, PBE, PBEsol, andHSE06. Formeta-GGAs, the SCF convergence can be achieved
with tier-2 aswell, but some code-specific numerical parametersmust be set carefully. For instance, we should
use afiner numerical integration grid for the vdW systems [142], and it is necessary to introduce a threshold for
the kinetic-energy related variable τ, which removes values that do not effect the total energy but do cause

TableA1.The k-meshes that are used for differentmethods. ‘GC’ denotes an evenly spacedΓ-center k-mesh and
‘MP’ for theMonkhorst-Pack one. Formean-field approximations, the convergence criteria is 1meV (or tighter) in
the calculations of the total energy per atom. ForMP2 andRPA, the complete k-mesh extrapolation from6×6×6
and 8×8×8, denoted asCKM(6, 8) is adoptedwithα=3 (see equation (5) in themain text).

(semi-)local DFAs HybridDFAs MP2 andRPA

Structure Type k-points Type k-points Type k-points

Li bcc GC 16×16×16 GC 16×16×16 — —

Na bcc GC 16×16×16 GC 16×16×16 — —

Al fcc GC 20×20×20 GC 20×20×20 — —

Ne fcc MP 4×4×4 GC 6×6×6 GC CKM(6, 8)
Ar fcc MP 4×4×4 GC 6×6×6 GC CKM(6, 8)
C diamond MP 6×6×6 GC 10×10×10 GC CKM(6, 8)
Si diamond MP 6×6×6 GC 10×10×10 GC CKM(6, 8)
LiF rocksalt MP 6×6×6 GC 6×6×6 GC CKM(6, 8)
LiCl rocksalt MP 6×6×6 GC 6×6×6 GC CKM(6, 8)
NaF rocksalt MP 6×6×6 GC 6×6×6 — —

NaCl rocksalt MP 6×6×6 GC 6×6×6 — —

MgO rocksalt MP 6×6×6 GC 6×6×6 GC CKM(6, 8)
MgS rocksalt MP 6×6×6 GC 8×8×8 GC CKM(6, 8)
BeS zincblende MP 6×6×6 GC 8×8×8 GC CKM(6, 8)
BN zincblende MP 6×6×6 GC 8×8×8 GC CKM(6, 8)
BP zincblende MP 6×6×6 GC 10×10×10 GC CKM(6, 8)
SiC zincblende MP 6×6×6 GC 10×10×10 GC CKM(6, 8)
AlP zincblende MP 6×6×6 GC 8×8×8 GC CKM(6, 8)
LiH rocksalt MP 6×6×6 GC 8×8×8 GC CKM(6, 8)
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sigularities when calculating the potential in theNAO framework [143]. Both parameters have been tested
extensively, with values chosen such that the errors these parameters introduce are in the sub-meV regime.

FHI-aims provides a larger tier basis set (tier-4) for some light elements.We notice that for the binaries with
mainly ionic bonding characters (LiF—MgS), the SCF procedure with tier-4 can fail. In this work, we report
HSE06 total energies per atomusing tier-4 for C and Si with diamond structure, SiC andAlPwith zincblende
structure. Comparedwith tier-3 results, a noticeable change can be observed only for AlP (about 3meV). It
suggests that tier-3 is competent to provide numerically well-convergedHSE06 total energies formost of
materials. Concerning the twoworst cases of tier-3, i.e. Na bcc andAr fcc, the basis set incompleteness errors are
about 5meV and 9meV, respectively. ForNa andAr, the tier-4 basis sets are unavailable.We then introduce 2 s-
type and 2 p-type hydrogen-like functions fromNAO-VCC-3Z as an additional s, p group to the tier-3, denoted
as tier-3+. Table A2 andfigure 7 reveal that such s, p group effectively compensates for the basis set
incompleteness in tier-3, resulting in theHSE06 total energies per atomwithCBS quality forNa bcc andAr fcc.

TheNAObasis functions used in the tier-n series are apt to saturate the bonding region in themiddle of two
atoms, as they are optimized tominimize the LDA total energies of symmetric dimers [52]. In contrast, the
sequence ofNAO-VCC-nZbasis sets is determined byminimizing the RPA total energies of atoms [24], thus
introducingmore compactNAObasis functions than the tier-n series.With similar basis sizes, NAO-VCC-3Z
delivers a larger basis set incompleteness error (18meVon average) than tier-2. It indicates the necessity of
introducing diffuse atom-centered basis functions in small basis sets to balance the aforementioned
incompleteness in core and bonding regions, which renders a better performance formean-field
approximations. However, such discrepancy can be reducedwith the increase of the index ‘n’ in both sequences,
the average error being only 2meV and 3meV for tier-3 andNAO-VCC-4Zwith similar basis sizes.

NAO-VCC-5Z is the largest NAObasis set in FHI-aims, and yields the lowestHSE06 total energies per atom
formost of thematerials in the test set. However, SCF convergence problemoccurs at Al fcc, C diamond, LiF and
MgOwith rocksalt structure, BN, BP and SiCwith zincblende structure. For binary crystals ‘AB’, we tried a
hybrid basis set strategyN(n1/n2)Z,which is a short-hand notation of usingNAO-VCC-n1Z for ‘A’ and
NAO-VCC-n2Z for ‘B’. ComparedwithNAO-VCC-4Z results, betterHSE06 total energies per atom can be
obtainedwithout SCF convergence problem for LiF,MgO, BP and LiHwithN(4/5)Z and for SiCwithN(5/4)Z.

Figure 7 presents the differences of theHSE06 total energies per atom (Δ Etotal) between the best NAO-VCC-
nZ and tier-n basis sets. The discrepancyΔEtotal is very small, about 1meVon average. Considering thatNAO-

Table A2.Basis set errors inHSE06 total energies per atom (inmeV). The reference data are the lowest
energies in two sequences ofNAObasis sets, i.e. tier-n andNAO-VCC-nZ.

tier-n NAO-VCC-nZ

n=1 n=2 n=3 n=4 n=2 n=3 n=4 n=5

Li 17 4 0 — 55 18 1 0

Na 32 16 5 0a 22 11 3 0

Al 16 4 0 — 50 13 1 —

Ne 13 11 0 — 16 6 4 1

Ar 16 11 9 0a 16 7 2 0

C 46 2 0 0 67 23 2 —

Si 32 10 1 0 66 22 4 1

LiF 33 2 0 — 44 16 0 0b

LiCl 23 7 2 — 42 15 2 0

NaF 23 7 2 — 44 14 2 0

NaCl 21 10 2 — 32 12 3 0

MgO 61 11 0 — 87 18 2 1b

MgS 55 13 2 — 69 18 4 0

BeS 47 6 1 — 113 38 4 0

BN 53 2 0 — 115 17 1 —

BP 19 5 1 — 79 22 3 0b

SiC 54 9 1 0 130 29 6 0b

AlP 23 9 4 1 87 22 5 0

LiH 11 1 0 — 48 11 0 0b

Average 31 8 2 62 18 3

a HSE06 results ofNa bcc andAr fcc are calculated using tier-3+which is tier-3 plus 2 s-type and 2 p-type basis

functions fromNAO-VCC-3Z.
b For a binary crystal AB, a hybrid basis set withNAO-VCC-n1Z for A andNAO-VCC-n2Z for B is denoted as

N(n1/n2)Z. These areN(4/5)Z for LiF,MgO andLiH rocksalts, BP zincblende, andN(5/4)Z for SiC.
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VCC-nZ and tier-n are designed for completely different purposes, such an agreement with each other clearly
indicates that theCBS limit has been approached for the calculations ofHSE06 total energies per atom in all-
electron description.

Other (semi-)localDFAs share a similar basis set convergence asHSE06. The observation and discussion
here are then transferable. In addition toHSE06, one canfind a comprehensive basis set convergence test with
LDA, PBE, TPSS,M06-L, and SCAN in theMSEweb site. For PBEsol, the bestNAObasis sets determined by
PBE are used to calculate the reference data directly.

A.3. Lattice constant, bulkmodulus, and cohesive energy
Tofind the optimized lattice parameters for eachmaterial and eachmethod, we calculate seven points within a
range of±5%around the initial value of the lattice constant, and fit the respective (volume, energy) data points
to the Birch-Murnaghan equation of state to obtain the optimized lattice constant. If all 7 lattice constants used
to generate the equation of state lie within a range of±7%around the optimized value, the value is taken as the
final, optimized lattice constant, a0. Otherwise, this optimized lattice constant is used as a new starting point and
more (volume, energy) data points are calculated, so that finally allmaterials’ optimized lattice constants are
obtained from an equation of state fitted to seven points with lattice constant values in a range of±5% to±7%
around thefinal, optimized lattice constant a0.We have carefully tested the stability of this procedure using the
PBE functional. The obtained optimized lattice constants and bulkmoduli are accurate within 0.02Å and
0.1GPa, respectively.

The cohesive energies EMcoh of thematerials are then calculated at the optimized lattice constant a0:

E E N E N , A.2M M
coh atom

atom

atom
atomå= - ( )

whereNatom is the number of atoms in the unit cell, EM the total energy of the unit cell formaterialM, and the
sum is taken over the total energies Eatom of the constituent atoms in their spin-polarized symmetry-broken
ground-state, i.e. no fractional occupancies.
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