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ABSTRACT: ChemShell is a scriptable computational chemistry
environment with an emphasis on multiscale simulation of complex
systems using combined quantum mechanical and molecular mechanical
(QM/MM) methods. Motivated by a scientific need to efficiently and
accurately model chemical reactions on surfaces and within microporous
solids on massively parallel computing systems, we present a major
redevelopment of the ChemShell code, which provides a modern
platform for advanced QM/MM embedding models. The new version of
ChemShell has been re-engineered from the ground up with a new QM/
MM driver module, an improved parallelization framework, new
interfaces to high performance QM and MM programs, and a user interface written in the Python programming language.
The redeveloped package is capable of performing QM/MM calculations on systems of significantly increased size, which we
illustrate with benchmarks on zirconium dioxide nanoparticles of over 160000 atoms.

1. INTRODUCTION

Combined quantum mechanical/molecular mechanical (QM/
MM) calculations are an efficient means of calculating
localized chemistry in complex molecular and solid systems.
In the QM/MM approach, a region of interest in the system is
identified where an electronic structure description is required,
for example the site of a reaction or a defect. A quantum
mechanical calculation is performed on this region, while the
environment around it is described with a classical molecular
mechanics force field. This approach ensures that local
chemical processes are modeled with sufficient accuracy,
while avoiding the expense of treating the whole system
quantum mechanically.
ChemShell is a general-purpose scriptable computational

chemistry environment1,2 with an emphasis on QM/MM
simulations. ChemShell implements a flexible, modular
approach to QM/MM, where a variety of QM and MM
programs (either built in as libraries or called through external
interfaces) may be used to evaluate energies and gradients of
the quantum and classical regions, while ChemShell takes on
the task of coupling the results to obtain the combined QM/
MM energy and gradient, including an appropriate treatment
of the boundary region that couples the two subsystems. High-
level tasks such as geometry optimization and molecular

dynamics are also handled at the ChemShell level, ensuring
that these are carried out in a consistent way regardless of the
choice of energy evaluator.
Previously, ChemShell has been used to model a wide range

of chemical systems using QM/MM methods, particularly in
the fields of biomolecular and materials modeling. In
biochemistry, QM/MM methods are well-suited to simulating
enzymatic reaction mechanisms3 and ChemShell has been
used to study many important enzymatic processes, with recent
investigations targeting oxidoreductases such as flavin-contain-
ing amine oxidases,4 lignin peroxidase,5 multicopper oxidases,6

[Fe] hydrogenase,7 Ni−Fe carbon monoxide dehydrogenases,8

iron-containing dioxygenases,9−13 and iron-containing halo-
genases;14,15 transferases such as protein kinases16 and
glycosyltransferases;17 hydrolases such as the lipase family18

and matrix metalloproteinases;19,20 lyases such as the radical
SAM superfamily;21 and ligases such as carbapenem
synthase.22 ChemShell continues to be particularly heavily
used for studies of the cytochrome P450 superfamily of
enzymes owing to their importance in metabolic processes,23

with recent studies investigating reactivity networks,24 active
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site chemoselectivity,25 regio- and enantioselectivity of fatty
acid hydroxylation,26,27 and redox-catalyzed drug metabolism
mechanisms.28 ChemShell has also been used to study
prototypical copper complexes,29 electron hole transport in
proteins,30 protein−protein interfaces,31 covalent inhibitors for
drug design,32 DNA repair mechanisms,33,34 and enzymatic
reactions in crystals.35,36

As well as studying reaction mechanisms, ChemShell is used
to determine QM/MM spectroscopic properties through use
of appropriate QM programs, with recent work involving IR,37

NMR,38 and Mössbauer15,39 calculations. The QM and QM/
MM molecular dynamics driver can be used to study chemical
reactivity and kinetics at arbitrary levels of theory,40−42 and
excited state optimization and molecular dynamics methods
are also supported, which have recently been used to study
chromophore emission properties in proteins,43,44 light-oxy-
gen-voltage domains in blue-light-sensitive proteins,45 and
OLEDs.46

In materials chemistry, QM/MM techniques are increasingly
used to model defects, localized electronic states, sorbed
species, and catalytic reactions on surfaces, where they have
distinct advantages over the widely used periodic methods in
their avoidance of artificial periodicity, capability to handle
charged (surface) defects without a posteriori correction
schemes, and the availability of a clearly defined vacuum
level; they may also prove to be more economical in
computational resources. The solid state QM/MM embedded
cluster model implemented in ChemShell has recently been
used to investigate defect formation in wide band gap
semiconductors;47 the band energies of TiO2 polymorphs48

and band alignment of mixed-phase TiO2;
49 the energetics of

Mg doping,50 stabilization of silicon and oxygen dopants,51 and
multiband luminescence in GaN;52 and the nature of oxygen
vacancies in transparent conducting oxides.53 The embedded
cluster approach is also extensively used for the study of
microporous catalysts54,55 and has been adapted to describe
one-dimensional CdS nanowires.56 Recent surface studies have
included the adsorption of CO2 on MgO57 and Mn-doped
MgO58 and its reactivity with H2,

59 water oxidation on TiO2,
60

and reactivity on ice surfaces using instanton theory.61−63

ChemShell has also been used to study molecular crystals,64

metal−organic frameworks (MOFs),65 and the aggregate-
induced emission and the influence of structural distortion on
the optical structure of nanoparticles.66,67 Further discussion of
the methodology for solid state embedding is available in ref
68.
The original ChemShell program, with an interface written

in the Tcl scripting language69 (herein referred to as “Tcl-
ChemShell”), is a well-established, mature software package,
having been under active development for over 20 years. This
article describes our work to redevelop ChemShell using the
Python programming language70 (“Py-ChemShell”). This work
was motivated for several reasons. First, Python has become
established in recent years as one of the most popular
programming languages in the computational chemistry
community, and the redevelopment provides a more familiar
and appealing working environment for new users. Second,
Python is a more powerful and flexible language than Tcl, with
better support for mathematical operations, complex data
structures, and a wider range of support libraries. Third, the
redevelopment has offered the opportunity to rationalize the
underlying codebase in order to make ongoing development of
new embedding methods more straightforward. This includes

the development of a significantly improved parallelization
framework, with associated new functionality including a
general purpose finite difference gradient module and new
directly linked interfaces to QM and MM codes to enable
highly scalable QM/MM materials simulations. Finally, we
have taken the opportunity afforded by rewriting the software
codebase to change to an open source licensing model. The
new Py-ChemShell package is available for download under
the GNU LGPL v3 free software license at www.chemshell.org.

2. PYTHON IMPLEMENTATION
In the original Tcl-ChemShell program, the Tcl scripting
language is used mainly to provide the user interface layer, with
complex data structures and manipulation implemented in the
more flexible C programming language, and some modules and
interfaces to external packages written in Fortran. In Py-
ChemShell, we have exploited the power of the Python
language and the associated mathematical library NumPy71 to
simplify this structure, with both the user interface and data
structures handled at the Python level, while the data
structures can be directly accessed by Fortran modules and
interface code without the need for C wrappers, as described
below.

2.1. User Interface. Py-ChemShell retains the flexible
scripting approach taken by Tcl-ChemShell, and we intend
that Py-ChemShell inputs will look familiar to experienced
ChemShell users, albeit translated into a new programming
language. As a simple example, we present a script that carries
out a purely quantum mechanical optimization of a water
molecule using the NWChem QM code with the BLYP density
functional and a 6-31G basis set:

This script can be run either in an ordinary Python
interpreter after importing the Py-ChemShell library, or
through calling the user-compiled ChemShell executable as
follows:

chemsh h2o.py

where h2o.py is the Python input script. The ChemShell
executable is particularly intended for parallel calculations, as
described in section 3.

2.2. Data Structures. The ChemShell object types
previously implemented in C have been reimplemented as
Python classes in accordance with the principles of object-
oriented programming. An overview of these classes is
provided in Figure 1. At the highest level are classes defining
computational tasks, such as the SP class for single-point
calculations, and the Opt class for geometry optimization.
Different levels of theory are then defined, with classes
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corresponding to each external software package interfaced to
ChemShell. The classes are grouped by type of theory (QM or
MM) and can be combined together using the QMMM class.
Underneath this is the Fragment class that holds
information on the chemical system such as the geometry,
thus corresponding to the Fragment object in Tcl-ChemShell.
In Py-ChemShell additional information such as shells
(Shells), point charges (BQs), link atoms (Links), and
periodic boundary conditions (Cell) are contained in
subclasses that are accessible from the Fragment object.
Further classes include Field, which, as in Tcl-ChemShell,

contains potential and field data on a grid, and Result,
which collates the results of a calculation into a single object
including energy, gradient, and Hessian information.
The user creates a Py-ChemShell object by instantiating one

of the above classes. User instances can have arbitrary names.
For example, in the script in section 2.1, my_mol is an
instance of class Fragment while my_qm is an instance of
the theory class NWChem. Each Py-ChemShell object instance
contains data which is stored in instance variables, as with any
other Python object. All array data (such as a list of atomic
coordinates, for example) is stored in NumPy arrays to ensure
high performance and ease of data manipulation. Each instance
may also contain scalar data (such as the number of atoms, for
example) and instances of other Py-ChemShell classes. The
names of these attributes also serve as input keywords in the
user interface, so that instances can be initialized when created.
In the script in section 2.1, the line

my_mol = Fragment(coords=’water.xyz’)

creates an instance of the Fragment object named
my_mol and initializes it by passing in the name of a file
containing an XYZ geometry using the coords keyword,
which refers to the NumPy array holding the geometry data.
Once loaded, this data can then be accessed and edited using
standard Python syntax as my_mol.coords.
Some other attributes are used as options to control the

computational job. For example,

my_qm.restart = True

forces the QM calculation to restart based on a previously
saved wave function from NWChem. Another set of attributes
are read-only properties which are provided for the
convenience of the user to enquire, such as radius,
volume, and so on.
Py-ChemShell objects also contain methods, which are

functions that act on the associated object; these correspond to
the procedures in Tcl-ChemShell which are used to manipulate
object data. For example, to remove the first atom from the
my_mol fragment, the delete() method would be called
as follows:

my_mol.delete(0)

2.3. Python/Fortran Coupling. While the ChemShell
user interface has been reimplemented in Python and
ChemShell objects are now implemented as Python classes, a
Fortran layer is required for certain lower level operations.

Figure 1. Python classes that define Py-ChemShell objects, their relationships to each other, and their main attributes and methods. Attributes in
italics are scalar quantities, in bold are NumPy arrays, underlined are instances of associated classes, and those with parentheses are methods.
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These include the integration of modules written in Fortran
such as the routines for cutting clusters and the DL-FIND
geometry optimization library, and the ability to interface
directly to external packages written in Fortran. The
parallelization framework in Py-ChemShell has also been
written in Fortran so that it is not necessary to launch a Python
interpreter on every MPI process (see section 3).
To address this need we have developed a general-purpose

library, DL_PY2F, which enables Py-ChemShell objects to be
directly accessed from the Fortran layer so that data can be
passed in a straightforward manner to and from Fortran
modules and external libraries. When DL_PY2F is run, it
creates a table of pointers to the Python object data (such as
NumPy arrays and references to other objects) together with
their datatypes. This table is accessed from the Fortran side
through a convenient dictionary-like interface of key and value
pairs, through which any data within the object can be
obtained and amended. For example, for the DL-FIND
optimization library described in section 2.6, the user options
selected for a geometry optimization, together with the initial
structure, are passed to DL-FIND by DL_PY2F. The
calculated energy and gradients required over the course of
the optimization are obtained via a callback mechanism. DL-
FIND then updates the new sets of positions directly using
DL_PY2F.
Unlike other Python/Fortran coupling approaches,

DL_PY2F is specifically designed for interfacing with modern
Fortran and fully supports complex datatypes such as those
used by Py-ChemShell. Full technical details of DL_PY2F will
be published in a companion paper.
2.4. External Interfaces. Py-ChemShell supports calcu-

lations using a range of QM and MM packages through user
interfaces written in Python that automatically handle both the
creation of input files and the parsing of outputs in a consistent
manner across packages. Each interface is implemented as a
Python class, with optional attributes to specify general
settings, such as energy evaluation methods, and any
program-specific settings for each software package. In the
example input script in section 2.1, my_qm is defined as an
instance of the NWChem class with an appropriate set of QM
options.
For the initial release of Py-ChemShell, a subset of the

interfaces available in Tcl-ChemShell were targeted, specifically
those that are particularly well-suited for calculations on high-
performance computing platforms. For each external code a
loosely coupled interface is available, where the code is
executed through a system call, or alternatively a directly linked
interface where the external code is compiled into ChemShell
as a library. The latter mode is important for parallel execution
as described in section 3.
NWChem is an ab initio quantum chemistry software

package developed by a consortium of scientists led by the
Environmental Molecular Sciences Laboratory at the US
Pacific Northwest National Laboratory.72 It supports Hartree−
Fock, density functional theory, and several high-level ab initio
methods. NWChem is highly scalable with an architecture built
on the Global Arrays toolkit (see section 3). The NWChem
package is freely available under the open source Educational
Community License 2.0. As part of the ChemShell redevelop-
ment project, we have implemented a frozen density
embedding model73,74 in NWChem for use with ChemShell
QM/MM calculations, which will be described in a follow-up
paper.

GAMESS-UK is a quantum chemistry package developed by
Daresbury Laboratory and collaborators75 as part of the UK’s
Collaborative Computational Project for the Electronic
Structure of Molecules (CCP1). It supports Hartree−Fock,
DFT, and MCSCF calculations together with a variety of post
Hartree−Fock methods. GAMESS-UK is highly scalable
through MPI parallelism or Global Arrays builds. The
GAMESS-UK package has a proprietary license but is available
free of charge to UK-based researchers.
LSDalton is a quantum chemistry program which forms part

of the Dalton suite76 led by developers at the University of
Oslo. LSDalton contains a highly efficient, linear-scaling
implementation of Hartree−Fock and density functional
theory suitable for large molecular systems with robust wave
function and response optimization procedures. The LSDalton
program is open source and available for download under the
GNU LGPL v3 license. QM/MM calculations with Chem-
Shell/LSDalton support hybrid MPI/OpenMP execution and
have been shown to give excellent scaling on high performance
platforms.77

GULP (General Utility Lattice Program) is a molecular
mechanics software package developed at Curtin University.78

ChemShell fully supports all forms of QM/MM embedding
with GULP, including polarized embedding using shell-model
force fields. It is particularly well-suited for QM/MM materials
chemistry calculations as it offers excellent support for
materials force fields. GULP has a proprietary license but is
free of charge for academic users.
DL_POLY 4 is a general purpose molecular dynamics

program79 developed by a team led by Daresbury Laboratory
under the UK’s Collaborative Computational Project for
Computer Simulation of Condensed Phases (CCP5). In Tcl-
ChemShell, the original replicated data version of DL_POLY
(“DL_POLY Classic”) was available as a built-in module,
which offered support for QM/MM calculations of up to
roughly 50000 atoms. In Py-ChemShell, we have implemented
an interface to the more modern DL_POLY 4 program, which
is parallelized based on a domain decomposition strategy
allowing much larger MM environments to be included in the
QM/MM calculation (see section 3). DL_POLY 4 has a
proprietary license but is free of charge for academic users.
Further QM and MM programs will be interfaced to Py-

ChemShell in future releases.
2.5. QM/MM Driver. The original Tcl/C “hybrid” module

for QM/MM calculations in Tcl-ChemShell has been rewritten
in Python with an emphasis on flexibility to support ongoing
embedding model developments. In the initial release of Py-
ChemShell, the standard additive QM/MM scheme has been
implemented as described in the original QUASI project
publication,1 with full support for both link-atom and ionic
boundary methods for handling the QM/MM boundary
region. Mechanical, electrostatic, and polarized (shell model)
embedding are all implemented in full. The charge shifting
scheme for avoiding overpolarization of link atoms is available
and automatically applied when electrostatic embedding is
selected. Link atom forces are resolved as in the original
implementation.
QM/MM calculations are performed in an analogous

manner to Tcl-ChemShell, with a QMMM class used to define
the overall calculation, which contains subclasses to define the
QM and MM components. The new QM/MM driver has been
rigorously validated against the original Tcl-ChemShell
implementation. In the initial release, MM force fields must
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be defined in either GULP or DL_POLY format, but future
releases will include a mechanism for automated import of
standard MM force fields to support biomolecular QM/MM
calculations.
2.6. Geometry Optimization with DL-FIND. DL-FIND

is an open-source geometry optimization library80 developed at
Daresbury Laboratory. It is the recommended optimizer
module in Tcl-ChemShell and Py-ChemShell, implementing
a wide range of optimization algorithms. Local energy
minimization methods include steepest descent, conjugate
gradients, Newton−Raphson, Quasi-Newton (BFGS), and
damped molecular dynamics. Transition states can be located
via partitioned rational function optimization (P-RFO) or the
dimer method,81 and full minimum energy reaction paths can
be optimized using the nudged elastic band (NEB)
method.82,83 Global optimization can be performed using a
genetic algorithm or stochastic search, and multiple electronic
state crossings can be found using three conical intersection
optimization algorithms.84,85 Reaction rates can be calculated
using harmonic transition-state theory and quantum tunneling
paths optimized using instanton theory.86

During a DL-FIND optimization, the main optimization
cycle is controlled by the chosen optimizer, and energies and
gradients are requested from ChemShell as required. The
modular design of ChemShell allows any choice of QM, MM,
or combined QM/MM method to be used in conjunction with
DL-FIND, which needs no information on the underlying
method used. Several techniques have however been
implemented within DL-FIND to facilitate the optimization
of large QM/MM systems. For example, the calculation of a
Hessian matrix rapidly becomes intractable for large systems,
but this can be avoided by using the limited memory variant of
the BFGS algorithm87 (L-BFGS) for minimization and dimer
method for transition state optimization. A number of
coordinate systems are implemented, which are converted
automatically within DL-FIND to/from Cartesian coordinates,
including the highly efficient hybrid delocalized coordinate
system (HDLC), which calculates delocalized internal
coordinates using a divide-and-conquer approach that splits a
complex system into manageable residues.88 Microiterative
methods have also been implemented for minimization,
transition state searches, and nudged elastic band, in order
to increase the efficiency of QM/MM optimization.89 These
methods relax the MM environment fully after every QM step,

relying on the fact that MM energy and gradient evaluations
are usually much quicker than QM to reduce the overall time
to optimization.
In Py-ChemShell, DL-FIND is invoked through the Opt

Python class, which is designed to be extensible to enable
linking in other optimization modules in future. The Opt class
interfaces with DL-FIND using the DL_PY2F library as
described in section 2.3, with optimized structures returned as
Py-ChemShell objects.

2.7. Generation of Finite Cluster Models. ChemShell
uses an embedded cluster approach for QM/MM calculations
of materials, in which a finite cluster is cut from a periodic
system in order to model localized states such as point defects
and adsorbed molecules.1 This approach has a number of
advantages over periodic models: the method is well-suited to
QM packages that do not support periodic MM background
charges, there are no inaccuracies due to periodically repeating
defects, charged states can be readily calculated, and a common
reference energy can be defined for ionization potentials of
different systems. The disadvantage is that periodic electro-
static interactions are lost, but these can be compensated for by
fitting point charges around the outside of the cluster to match
the electrostatic potential and derivatives in a sampling region
of the original periodic system.
In Tcl-ChemShell, a cluster cutting module is available that

automates much of the cluster setup process, including the
charge fitting scheme. This module has been ported to Py-
ChemShell with a new Python wrapper interfacing the code via
DL_PY2F.
The point charge fitting scheme can be computationally

intensive as Ewald summations over the periodic system are
required to calculate the electrostatic potential and its
derivatives over a set of atomic centers and grid points in
the sampling region. These calculations are however
independent and so amenable to parallelization. An MPI
replicated data version of the module is currently under
development and will be released in a future version of Py-
ChemShell.

3. TASK-FARMING PARALLELISM

3.1. Methodology. Task-farming parallelism is useful in
situations where a set of independent calculations have to be
performed.90,91 The task farm consists of all available
processors, which are then divided into subsets of processors

Figure 2. Parallel MPI framework in Py-ChemShell following implementation of task-farming parallelization. M, Master; R, Replica; and Py, Python
interpreter.
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called workgroups. The tasks are split between the workgroups,
which then work on the separate tasks in parallel. As the
calculations are independent, no information needs to be
exchanged between workgroups during this time, and sharing
of results can be postponed until all the tasks have completed.
In computational chemistry, it is common to carry out
calculations containing a number of single-point energy
evaluations that are independent from each other. Typical
examples of applications include the nudged elastic band
method for reaction path optimization, finite-difference
numerical gradient and Hessian calculations, and optimization
methods based on a population of structures (e.g., genetic
algorithms).
Figure 2 illustrates the task-farmed MPI parallel environ-

ment of Py-ChemShell. The MPI processes are evenly grouped
into workgroups, each containing one Master process and zero
or more Replica processes. Each Master process launches a
Python interpreter instance, which parses the user input script
and invokes external programs to execute computational
chemistry tasks. If the size of the workgroup is greater than
one, these tasks will be run in parallel across the Master and
Replica processes. This results in a two-level parallelization
framework that allows Py-ChemShell to execute multiple
parallel energy evaluations simultaneously.
This approach follows the previously implemented task-

farming framework in Tcl-ChemShell91 but goes beyond it in
several important respects.
First, as indicated in Figure 2, we allow parallel tasks within

workgroups to be executed either over the full workgroup or
on a subset of the workgroup processes. This is useful for QM/
MM simulations where the QM part of the calculation is
usually the dominant computational expense and the most
amenable to parallelization, whereas the MM region is
generally relatively small and quick to compute, such that
using a subset of the processes may reduce the time to solution
due to avoiding unnecessary parallel communication over-
heads.
Second, task-farming with the Global Arrays (GA) library is

fully supported. The GA library is used in a variety of popular
quantum chemistry packages, including NWChem and
GAMESS-UK, and our implementation ensures that task-
farmed QM/MM calculations with NWChem can be
performed in ChemShell. In order to support task-farming,
GA processor groups are set up at the initialization of the
calculation to match exactly the MPI workgroups, such that all
GA and MPI calls apply to the same set of processes.
Third, we have implemented new parallel tasks within Py-

ChemShell, including a new numerical finite difference
gradient module, which can be helpful when using levels of
theory for which analytic gradients are not available. The finite
difference gradient module is seamlessly integrated into
ChemShell so that it can be used in place of an analytical
gradient wherever the user requests it and can be run either in
serial or parallel as desired. One-point and two-point finite
difference gradients are available.
3.2. QM/MM Task-Farming Benchmarks. To validate

and benchmark the task-farming implementation, we per-
formed a series of two-point finite difference gradient
calculations. An MgO cluster containing 2263 atoms and
1133 shell centers was constructed (see Figure 3), and
numerical gradients were calculated over the 34 QM atoms
(102 degrees of freedom, i.e., 204 QM/MM single-point
calculations). In each single-point calculation, a full relaxation

of the shell centers is undertaken until the QM and MM
regions are self-consistently converged (tolerance: 1.0 × 10−4

a.u.), after which a final energy evaluation is carried out for
estimating the gradients.
In Table 1, we present example QM/MM benchmark

calculations using GAMESS-UK as the external QM driver and
GULP as the MM driver. The QM calculations were
performed using density functional theory with the BLYP
functional.93,94 The atoms in the QM region were described
using a modified def2-SVP basis set95 with Stuttgart effective
core potentials96 placed on the Mg ions in the QM region and
on the cations in the boundary region. The GULP force field
used was as described in previous studies of MgO.57 Task-
farming scalability has been benchmarked by varying the
number of workgroups in a fixed allocation of 48 cores on the
ARCHER supercomputing service (a Cray XC30 platform with
two 2.7 GHz 12-core Ivy Bridge processors per node). The
table lists the wall time for these calculations with respect to
changing the number of workgroups (nworkgroups), and Figure 4
visualizes the profiles. Overall, we observe a 5.7-fold speedup
for a 24 workgroup calculation compared to the non-task-
farmed reference (nworkgroups = 1). Note that the scaling profile
of the task-farmed calculations is nonlinear as nworkgroups grows,
and it always has a minimum point. This is due to the increase
of computational time for a single-point GAMESS-UK or
GULP execution as ncores per workgroup decreases (see dashed
lines in Figure 4).
To demonstrate the scalability of task-farming parallelization

to higher core counts, we also carried out similar two-point
finite difference gradient calculations while increasing both
nworkgroups and the total number of processor cores (ncores),
while fixing ncores per workgroup at 48. Results are shown in
Table 2 and Figure 5. The speedup obtained in this way on 8
workgroups (384 ARCHER cores) is 7.26, illustrating the
inherent linearity in the task-farming parallelization of the finite
difference task. In this case, the time used for a single-point
GAMESS-UK or GULP execution remains roughly equal
because the available ncores per workgroup is a constant

Figure 3. QM/MM-embedded MgO system used for two-point finite-
difference numerical gradient calculations. The cluster consists of
2263 atoms in total, with the QM region comprising 25 Mg (pink
VDW representation) and 9 O (red VDW representation) atoms and
the MM region comprising 2229 atoms, with 107 background point
charges surrounding the cluster (in blue). Graphic produced with
VMD.92
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number. Note that superlinear scaling is possible because of
subtle variations in the shell relaxation starting points, but this
is an artifact of the benchmark rather than a systematic effect.
Although these benchmarks cannot be compared in a

straightforward manner with Tcl-ChemShell (as the finite
difference gradient module is not available in that program),
the observed performance is broadly in line with the previously
implemented task-farming parallelization framework,91 as
would be expected given that the overall timings are
determined for the most part by the parallel scaling
performance of the GAMESS-UK and GULP packages. In
the next section, we consider a system which is beyond the
capability of Tcl-ChemShell to calculate.

3.3. QM/MM Nanoparticle Benchmarks. To assess the
performance of Py-ChemShell for large QM/MM systems, we
have carried out NWChem/DL_POLY 4 single-point QM/
MM energy evaluations for a ZrO2 nanoparticle of radius 75.0
Å, containing 162994 atoms, as illustrated in Figure 6. It is not
possible to treat such a system in Tcl-ChemShell because the
built-in version of DL_POLY Classic used for MM energy
evaluations uses replica data parallelism with an upper limit of

Table 1. Two-Point Finite Difference QM/MM Gradient Task-Farming Benchmark of MgO on a Fixed total of 48 Cores Using
GAMESS-UK/GULPa

nworkgroups 1 2 4 8 16 24 48

ncores 48
ncores/workgroup 48 24 12 6 3 2 1
nSP 412 416 424 440 472 504 600
tSP/s (GAMESS-UK) 2.9 4.2 5.7 9.8 18.0 25.8 57.6
tSP/s (GULP) 2.1 2.5 2.6 3.0 4.1 5.0 8.1
ttotal (h) 1.48 0.85 0.50 0.33 0.27 0.26 0.32
speedup vs 1 workgroup 1.0 1.7 2.9 4.5 5.4 5.7 4.6

aThe total wall time (ttotal in h) for the calculation quoted is the average over workgroups, and the time for single-point (SP) calculations is
averaged over all calculations (tSP in sec). nworkgroups, ncores, ncores/workgroup, and nSP refer to the number of workgroups, processor cores, processor cores
per workgroup, and single-point calculations, respectively. The active region for the calculation is the QM region (102 degrees of freedom). System
size: 2263 atoms, of which 34 are QM, plus 1133 shell centers and 107 fitted point charges. Shell relaxation tolerance: 1.0 × 10−4 a.u. Calculations
performed on 2 nodes of ARCHER (48 cores).

Figure 4. Benchmark of task-farmed two-point finite-difference numerical gradients calculation on QM/MM embedded MgO system against the
number of workgroups on a fixed total number of 48 cores. The total wall time (ttotal in h) for the calculation quoted is the average over
workgroups, and the time for single-point (SP) calculations is averaged over all calculations (tSP in sec). The active region for the calculation is the
QM region (102 degrees of freedom). System size: 2263 atoms, of which 34 are QM, plus 1133 shell centers and 107 fitted point charges. Shell
relaxation tolerance: 1.0 × 10−4 a.u. Calculations performed on 2 nodes of ARCHER (48 cores) using GAMESS-UK/GULP.

Table 2. Two-Point Finite Difference QM/MM Gradient
Task-Farming Benchmark of MgO for Fixed Size
Workgroups Using GAMESS-UK/GULPa

nworkgroups 1 2 4 8

ncores 48 96 192 384
ncores/workgroup 48
nSP 412 416 424 440
tSP/s (GAMESS-UK) 2.9 2.6 2.8 3.1
tSP/s (GULP) 2.1 1.9 2.0 2.0
ttotal (h) 1.48 0.72 0.37 0.20
parallel scaling 1.00 2.05 4.04 7.26

aEach workgroup consists of 48 cores. The total wall time (ttotal in h)
for the calculation quoted is the average over workgroups, and the
time for single-point (SP) calculations is averaged over all calculations
(tSP in sec). nworkgroups, ncores, ncores/workgroup, and nSP are defined as in
Table 1. The active region for the calculation is the QM region (102
degrees of freedom). System size: 2263 atoms, of which 34 are QM,
plus 1133 shell centers and 107 fitted point charges. Shell relaxation
tolerance: 1.0 × 10−4 a.u. Calculations performed on ARCHER.
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roughly 50000 atoms. This limit is removed in Py-ChemShell
through interfacing to DL_POLY 4. The QM calculations
were carried out at the Hartree−Fock level using the def2-
TZVP basis set,95 with the corresponding ECP97 for Zr. The
MM force field used was as described in previous studies of
ZrO2.

98

The resulting time used for the calculations are listed in
Table 3, which shows that Py-ChemShell scales efficiently for
this system. To demonstrate the facility for using different
number of processes for the QM and MM parts of the
calculation, we have restricted the DL_POLY energy
evaluations to 8 cores, while the computationally far more
intensive NWChem calculations uses the full set of processes.
The overall wall time is therefore dominated by the NWChem

QM calculation (>99%), and good scaling is observed as the
number of cores increases (speedup column).

Figure 5. Benchmark of task-farmed two-point finite-difference numerical gradients calculation on QM/MM embedded MgO system against
number of cores and workgroups: each workgroup consists of 48 cores. The total wall time (ttotal in h) for the calculation quoted is the average over
workgroups, and the time for single-point (SP) calculations is averaged over all calculations (tSP in sec). The active region for the calculation is the
QM region (102 degrees of freedom). System size: 2263 atoms, of which 34 are QM, plus 1133 shell centers and 107 fitted point charges. Shell
relaxation tolerance: 1.0 × 10−4 a.u. Calculations performed on ARCHER using GAMESS-UK/GULP.

Figure 6. ZrO2 nanoparticle of 162994 atoms, including 19 Zr (gray VDW representation) and 32 O (red VDW representation) atoms in the QM
region. Graphics generated using VMD.92

Table 3. Single-Point Energy Evaluations of a QM/MM
ZrO2 Nanoparticle System of 162994 Atoms Using
NWChem/DL_POLY 4a

ncores nnodes
ncores

(DL_POLY 4)
tNWChem
(h)

tDL_POLY
(s)

ttotal
(h) speedup

24 1 8 11.99 50.1 12.21 1.00
48 2 8 6.15 49.3 6.38 1.91
96 4 8 3.26 58.8 3.47 3.52
192 8 8 1.71 50.8 1.92 6.36

aCalculations run on ARCHER.
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4. CONCLUSION AND OUTLOOK
The ChemShell software package has been completely
rewritten with the aim of providing a modern, scriptable
platform for multiscale computational chemistry. This
redevelopment of ChemShell features an easy-to-use Python-
based interface and a high-performance Fortran parallelization
framework. This article describes the features of the code
available in the initial public release in December 2017
(version 17.0), which is focused on QM/MM calculations for
materials chemistry. However, the code continues to undergo
rapid development, and a number of additional features are
targeted for release in the near future. These include a built-in
molecular dynamics driver incorporating the open source
DL_POLY Classic code99 and support for biomolecular QM/
MM calculations through automatic import of biomolecular
force fields via an interface to the DL_FIELD program,100

bringing these aspects of Py-ChemShell up to feature
equivalence with Tcl-ChemShell. Further functionality not
currently available in Tcl-ChemShell will continue to be
introduced, including full support for embedded cluster
calculations with the ORCA QM code101 and a new interface
to the density functional tight binding package DFTB+ for fast,
semiempirical DFT calculations.102 In ongoing projects, we are
implementing a periodic QM/MM embedding scheme
together with interfaces to periodic QM programs including
CP2K103 and CRYSTAL104 and developing new methods for
spectroscopic signatures based on the frozen density
embedding model developed in NWChem. Future releases
will also include methods for “adaptive” QM/MM calculations,
where molecules can be exchanged between the QM and MM
regions. A graphical user interface is also under development
through a plug-in to the open source Aten visualizer.105

For further information about the ChemShell project and to
download the Py-ChemShell code, please visit www.chemshell.
org.
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Lluch, J. M. SP20 Phosphorylation Reaction Catalyzed by Protein
Kinase A: QM/MM Calculations Based on Recently Determined
Crystallographic Structures. ACS Catal. 2015, 5, 4897−4912.
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