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Abstract 

Ice sheets are currently ignored in global methane budgets1,2. They have been proposed 

to cap large reserves of methane that may contribute to a rise in atmospheric methane 

concentrations if released during periods of rapid ice retreat3,4, but no data on the current 

methane footprint of ice sheets currently exist. Here we find that subglacially-produced 

methane is rapidly flushed to the ice margin by the efficient drainage system of a 

subglacial catchment of the Greenland Ice Sheet. We report the continuous export of 

methane-supersaturated waters (CH4(aq)) from the ice sheet bed during the melt season. 

Pulses of high CH4(aq) concentrations coincided with supraglacially-forced subglacial 

flushing events, confirming a subglacial source and highlighting the influence of melt on 

methane export. Sustained methane fluxes over the melt season were indicative of 

subglacial methane reserves in excess of export, with an estimated 6.3 (2.4 – 11) tonnes of 

CH4(aq) laterally transported from the ice sheet bed. Stable isotope analyses revealed a 

microbial origin for methane; most likely derived from a mixture of inorganic and 

ancient organic carbon buried beneath the ice. We show that subglacial hydrology is 

crucial for controlling methane fluxes from the ice sheet, with efficient drainage limiting 

the extent of methane oxidation5 to about 17% of methane exported. Atmospheric evasion 

is the main methane sink once runoff reaches the ice margin, with estimated diffusive 
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fluxes (4.4 – 28 mmol-CH4 m-2 d-1) rivalling that of other world rivers6. Overall, our 

results provide evidence that ice sheets overlay extensive, biologically active 

methanogenic wetlands, and that high rates of methane export to the atmosphere can 

occur where efficient subglacial drainage pathways exist. Our findings suggest that such 

environments should be considered a previously underappreciated component of Earth’s 

methane budget. 

 

The role of ice sheets in the global methane cycle depends on the ability (thermogenic or 

microbial) of subglacial environments to evolve large quantities of methane (e.g. as hydrates) 

3,4,7, as well as the mechanisms responsible for methane export to the ice margin and subsequent 

release to the atmosphere. Subglacial CH4-hydrates have been suggested to currently exist 

beneath the Antarctic Ice Sheet,  large enough to raise atmospheric methane concentrations if 

released rapidly during deglaciation
4

. However, recent research has revealed the presence of 

active methane-oxidizing communities in subglacial ecosystems, suggesting the possibility of 

an efficient methane buffer by an active biological sink5,8. There is also ambiguity in the paleo-

record. New ice core data suggests that geological methane (e.g. from permafrost, but also 

potentially of ice sheet origin) had little role in affecting atmospheric methane concentrations 

over the Younger Dryas-Preboreal transition9; but previous estimates do suggest large 

subglacial methane releases from retreating Paleo-ice sheets of the Northern Hemisphere 

following the onset of the last deglaciation10. Confounding scenarios on the potency of sub-

ice-sheet methane mostly result from the scarcity of empirical data, limited to point 

measurements in ice cores11-13, Greenland marginal streams5, and an Antarctic subglacial lake8. 

 

Here we provide direct evidence from the GrIS for the existence of large subglacial methane 

reserves, where production is not offset by local sinks and there is net export of methane to the 

atmosphere during the summer melt season. We focused on a 600 km2 catchment of the GrIS 

which has been extensively studied over the last decade, both in terms of ice dynamics and 

subglacial geochemistry (Supplementary Information 1a). Between 19 May and 13 July 2015, 

we deployed a CONTROS HydroC® CH4 sensor14 (Kongsberg Maritime Contros, Germany) < 

2 km of the ice margin in the proglacial river of the Leverett Glacier (LG) (Supplementary 

Information 1.a; Extended Data Fig. 1)15,16. Manual measurements supported sensor readings 

and CH4 stable isotope analyses (13C and 2H) and 16S rRNA gene sequence data from LG 

runoff were employed to infer methane origin. A one dimensional reaction-transport model 
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was further applied to test for the possibility of hydrate formation beneath the ice in the 

catchment. Features of the study area suggest that results obtained are likely to be applicable 

to other ice-sheet catchments (Supplementary Information 1a), and are informative on a global 

scale, serving as a first-step assessment of subglacial methane contribution to present-day 

methane budgets.  

 

Sensor measurements revealed that LG runoff was supersaturated in methane with respect to 

the atmosphere over the entire monitoring period (mean concentration of ~271 nM, compared 

with an atmospheric equilibrium concentration of ~ 4.5 nM) (Fig. 1). This is consistent with 

the high concentrations (up to ~24 µM) of methane detected in the basal regions of the GRIP, 

GISP2, and NGRIP ice cores11-13, in marginal runoff from a small neighbouring Greenland 

glacier (~3-83 µM)5 and during experimental incubations of Greenland subglacial sediment17. 

Stepwise increases in methane concentrations closely followed the seasonal evolution of the 

subglacial drainage system, indicating the crucial role of hydrology in controlling methane 

export from the ice sheet. Clear differences in CH4(aq) concentrations were observed between 

a) the early part of the season during times of very low discharge when the subglacial portal 

was completely ice-sealed, and methane concentrations were low (mean ~64 nM) (Fig.1, 

Supplementary section 2b), b) the emergence of a subglacial upwelling through the river ice in 

front of the LG on June 1, which released over-winter stored waters enriched in methane from 

the ice margin (mean ~4 µM prior to the melt season; see Supplementary Information 1b, 

Extended data Fig. 1), and c) the later season (from June 19 onwards) with elevated CH4(aq) 

concentrations (pulses) coincident with a series of four subglacial outburst events 

(Supplementary Information 2b; Fig. 1). These outburst events were characterised by pulses in 

suspended sediment concentrations (SSC), electrical conductivity (EC), and pH (Fig. 1), 

indicative of subglacial origin as previously inferred18. The high concentrations of CH4(aq) 

observed during these events suggest the evacuation of methane-rich subglacial waters from 

progressively up-glacier sources (Supplementary Information 2b). We attribute the overall 

decreasing trend in methane concentration following the second outburst event to dilution by 

rising supraglacial icemelt inputs to the subglacial system over the melt-season. The sustained 

methane load observed during this period, however, indicates that subglacial methane reserves 

are not exhausted despite increases in meltwater discharge (Fig. 1). 
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Fig. 1 Geochemical time series of the LG proglacial river – Top: Electrical-conductivity (EC) and pH. Middle: 

CH4(aq) (HydroC®) and suspended sediment concentrations (SSC); the dashed section corresponds to times when 

the HydroC® sensor experienced slower response times (see Supplementary Information 2a, Extended Data Fig. 

2). Orange dots and vertical dashed lines indicate sampling time of waters used for stable isotope analysis (see 

Extended Data Table 2). Bottom: CH4(aq) lateral flux and discharge (Q); the first data points on May 28 are 

extended to the first data point of the above sensor measurements (dashed horizontal lines). Abrupt increases in 

SSC, EC, pH, and CH4(aq) correspond to outburst events (shaded sections) and reflect sudden drainage of sub-ice 

sheet waters and sediments driven by supraglacial melt water entering the subglacial system (Supplementary 

Information 2b). Y axes corresponding to black and orange datasets are located on the left and right, respectively.  

 

 

The cumulative lateral flux of CH4(aq) from LG amounted to ~1.87 (1.64 – 2.10) tonnes (t) over 

the measurement period. However, we estimate that at least 2.78 (2.43 – 3.12), but more likely 

~6.28 (5.19 – 7.36) t of CH4(aq), were laterally transported at the measuring site over the entire 

2015 melt season (Fig. 2, see methods for details). Methane measurements provide 
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conservative estimates of total methane production across the glacier, since recorded 

concentrations would have been influenced by oxidative and diffusive processes upstream of 

the measuring site, and hence subglacial methane production beneath the catchment are likely 

larger. Based on previously measured microbial oxidation rates5, we estimate that the bacterial 

methane sink at LG to have amounted to ~ 1.22 t prior to subglacial discharge reaching the ice 

margin, or about 16% of total methane export at the measuring site over the melt season on the 

basis of a sustained flux scenario (Fig. 2; Supplementary Information 2c).   

 

We employ scaling relationships between gas transfer velocities and river hydrology19 to derive 

conservative approximations of diffusive fluxes of methane from the LG proglacial river. We 

infer that there will be some evasion of methane from subglacial runoff to air spaces in 

subglacial channels close to the margin20 and to the atmosphere after emergence at the glacier 

subglacial portal. We estimate that such atmospheric evasion constitutes the main sink of 

CH4(aq) when compared to microbial oxidation, with diffusive fluxes responsible for at least 

1.72 (0.51 – 3.19) t of CH4 released to the atmosphere between the ice margin and the 

measuring site (Fig. 2; compared to ~ 0.09 t of CH4 oxidised for the same distance, or ~ 1% of 

exports, data not shown). Recent work on white-water streams have indicated that these 

traditionally used scaling relationships can grossly underestimate (by several orders of 

magnitude) diffusive fluxes in white-water systems21,22. Considering the high degree of 

turbulence observed on the LG river (Extended Data Fig. 1), we therefore stress that our 

estimates here constitute lower limit values. What is clear is that the LG catchment is a source  

of atmospheric methane, with our minimum estimates indicating that over 18% (7.5 – 26%) of 

exported methane reaches the atmosphere within 2 km of the ice sheet margin. 
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Fig. 2 Cumulative lateral export of LG CH4(aq) over the 2015 melt season – Cumulative lateral export of LG 

CH4(aq) over the 2015 melt season. Orange and red lines correspond to the minimum and sustained methane flux 

scenarios, respectively, at the measuring site (see Methods). Dark-grey lines represent a scenario that accounts for 

a methanotrophic methane sink on a sustained-flux scenario and represent the expected lateral methane flux that 

would have occurred without a methanotrophic sink. Blue lines correspond to a scenario that accounts for the 

combined estimated methanotrophic and diffusive flux sinks of methane before reaching the measuring site, added 

to a sustained-flux scenario. The vertical dotted line marks the last day of CH4(aq) sensor measurements (13 July). 

The width of the shaded areas corresponds to errors from sensor measurements and estimates of gas transfer 

velocities (see Methods). The pale-grey time series denotes discharge measurements over the entire melt season. 

The annual methane fluxes depicted in the bar plot correspond to the cumulative fluxes at the end of the melt 

season for each of the estimated scenarios; error bars correspond to the range depicted by the shaded areas. 

 

 

Methane concentrations at LG fell within the global range reported for streams and rivers (Fig. 

3). A recent survey of riverine methane indeed revealed that streams have previously been 

overlooked as net contributors of atmospheric methane, estimated to emit over 27 Tg of CH4 

annually, or ~ 15-40% of global wetland and lake effluxes respectively6. Results presented here 

suggest that streams draining subglacial basins are probably no exception, with the estimated 

diffusive fluxes of methane at LG falling in the higher range of reported world averages for 

rivers, comparable to the large fluxes observed in the Congo basin (Fig. 3; Extended data Table 

1). Because of the high uncertainties surrounding LG methane diffusive fluxes, it is difficult to 

accurately determine the overall contribution of methane to the atmosphere from the LG 

catchment, and by extension from the GrIS margin as a whole. 

 



 7 

In order to more directly compare methane fluxes at LG with other systems, we calculated a 

catchment-wide areal yield of CH4(aq) that contributed to the observed CH4(aq) lateral flux. When 

comparing catchment area-normalised yields of CH4(aq), the lateral CH4(aq) flux from LG 

translates into a yield significantly higher than, or within the range, of other large rivers 

worldwide, and highlight that the GrIS may act as a relatively important source of atmospheric 

methane (Extended Data Table 1, Supplementary Information 1c). Ultimately, the atmospheric 

footprint of GrIS CH4 will partly depend on the overall surface area of the ice sheet contributing 

to the overall diffusive fluxes, as well as the magnitude of such fluxes at points of first contact 

between the atmosphere and subglacial runoff (e.g. within open channels beneath the ice).  

 

 

 

 

Fig. 3 Box plots of CH4(aq) concentrations and diffusive fluxes for the LG and other major world river 

systems – Box mid lines represent medians; the interquartile range (IQR) is represented by the lower and upper 

box boundaries and denote the 25th and 75th percentiles, respectively; whiskers indicate 1.5 times IQR confidence 

intervals and points are outliers. Where no raw data was available, averages and reported ranges are depicted by 

circles and error bars (see Supplementary Information 1c for details). MethDB refers to a worldwide CH4(aq) dataset 

for rivers6. “Trib” and “MS” refer to rivers’ tributaries and mainstems, respectively.  

 

 

Stable isotope analyses (δ13C and δ2H) revealed that LG methane was microbial in origin, with 

most samples falling in a well-defined range characteristic of acetoclastic methanogenesis, 

although with some degree of mixing with methane likely produced by a CO2-reduction 
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pathway (Fig. 4). This mixed origin of methane by CO2-reduction and acetate fermentation is 

also supported by molecular evidence from the LG proglacial stream, which identified the 

presence of 16S rRNA gene sequences related to both hydrogenotrophic and acetoclastic 

methanogens (Extended Data Fig. 4; Supplementary Information 2d). A mixed methane source 

at LG suggests the availability of several methanogenic substrates beneath the ice, likely 

derived from the recycling of overridden old carbon (e.g. acetate), such as seen in GrIS 

marginal lakes23, potentially supplemented by H2 gas generated from rock comminution 

hypothesised to fuel methanogens beneath ice masses over extended glaciation24 (see 

Supplementary Information 2.d). 

 

Partial oxidation during transit from the subglacial system likely enriched the sampled methane 

with heavier stable isotopes25 (Supplementary Information 2c), yet there is no strong isotopic 

trend that conclusively identifies methanotrophy as a major control on the isotopic signatures 

observed here (Fig. 4; Extended Data Fig. 3). This contrasts with patterns we observed for 

stagnant waters beneath the LG proglacial river-ice (this study, Extended Data Fig. 3) and 

waters sampled from Antarctic Subglacial Lake Whillans (Supplementary Information 2c). We 

infer the limited methanotrophic signature here to reflect the largely anoxic conditions at the 

sites of methane production (and thus limited aerobic oxidation of methane) and the rapid 

evacuation of methane from the production site via a fast and efficient drainage system  

(Supplementary Information 2b). 
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Fig. 4 Carbon-Hydrogen isotopic diagram of LG CH4(aq) – Black-border points denote dual stable-isotope 

values (13C and 2H) for LG CH4(aq) samples (sample values are summarized in Extended Data Table 2). Average 

13C- and 2H-CH4 values and ranges from Subglacial Lake Whillans (SLW) in Antarctica3 and GrIS marginal 

lakes24 are added as references (grey-border points), as well as 13C-CH4 data from GrIS ice-core basal ice12,23 and 

from the subglacial outflows of the Greenland Russell Glacier (RG)6 (marked by vertical lines). The estimated 

carbon age (years before present – yr BP) from 14C analyses of the GrIS marginal lakes methane24 is indicated next 

to point. The arrow denotes the microbial oxidation effect on CH4 stable-isotope signatures;  ∆H/∆C denotes the 

gradient (delta 2H-CH4 over delta 13C-CH4) of the arrow26. The classification zones and definitions of methane 

origins are derived and adapted from refs 25,26. VSMOW, Vienna standard mean ocean water; VPDB, Vienna Pee 

Dee belemnite. 

 

 

The impact of subglacial methane on atmospheric concentrations partially depends on the 

presence of methane hydrates beneath ice sheets, as catastrophic CH4-hydrate destabilization 

during periods of rapid ice thinning could likely result in very large fluxes of methane to the 

atmosphere3,4. We employed a 1D reaction-transport model to identify the conditions required 

to allow for CH4-hydrate formation beneath the LG catchment. Our results indicate that 

relatively high methanogenic rates (larger than observed in Greenland basal ice incubation 
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experiments17; Extended Data Fig. 5) and thick sediment layers (at least several tens of meters) 

are required to evolve and sustain methane hydrates beneath the LG catchment (Supplementary 

Information 2e, f). The high methane flux that would be generated at the ice-sediment interface 

under CH4-hydrate conditions (estimated at 10 to 1,000 times larger than the observed lateral 

flux depending on hydrate conditions; Extended Data Fig. 6) makes it unlikely that a significant 

portion (if any) of the exported CH4 measured from the LG comes from subglacial CH4-

hydrates. Importantly, however, the model results suggest that conditions favourable to hydrate 

formation are likely present in other regions of the GrIS, where there has been sustained thick 

ice cover (e.g. for > 10,000 years), and where thick sedimentary layers exist (e.g. ref. 27; 

Supplementary Information 2f). 

 

Using high-resolution in situ sensor measurements, we show that an extensive area of the GrIS 

continuously releases methane-supersaturated runoff from its bed during the melt season. Our 

results constitute the first measurements of sustained methane export from an ice sheet 

catchment, and highlight the need to better gauge the footprint of ice sheets on current methane 

budgets. The release of several tonnes of microbial methane from beneath the GrIS represents 

one of the strongest lines of evidence to date for significant microbial production of methane 

in subglacial ecosystems, and reinforces the view that large methane reserves may accumulate 

beneath past and present day ice sheets3,7. This methane can reach the atmosphere where 

fast-flowing drainage networks enable its rapid transport beyond the ice margin prior to being 

oxidised to carbon dioxide, whether driven by supraglacial forcing in the GrIS ablation zone, 

or potentially also during episodic subglacial lake drainage events in Antarctica28. The 

influence of meltwater discharge on methane export observed here further suggests that 

projected increases in warming and melting rates could also lead to increases in subglacial 

methane release to the atmosphere. Our findings that subglacial environments in Greenland 

can generate high levels of methane emphasise the need to directly measure methane reserves 

in subglacial systems containing high quantities of organic carbon, such as the thick 

sedimentary basins beneath the Antarctic Ice Sheet, where much larger amounts of methane, 

as hydrates, are expected to be present4. 
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METHODS 

Site description and hydrogeochemical analyses 

The hydrology of LG has been extensively studied and described previously (see 

Supplementary Information 1a). A detailed description of the proglacial study site, as well as 

the hydrological and geochemical monitoring performed during the 2015 melt season can be 

found in two parallel studies16,29. Briefly, a suite of hydrogeochemical sensors [logging for pH, 

(Honeywell Durafet), water temperature (Aanderaa and Campbell Scientific), electrical 

conductivity (Campbell Scientific 547), and turbidity (Partech C)] were deployed in the LG 

proglacial river ~ 1.6 km downstream from the subglacial ice portal at the glacier’s terminus 

(Extended Data Fig. 1). Turbidity measurements were converted to suspended sediment 

concentrations by calibration against manual sediment samples collected over the span of the 

melting season as per ref. 30. Discharge measurements were derived from pressure transducers 

(Druck and Hobo) and stage sensors (Campbell Scientific SR50A) fixed in a bedrock section 

~ 2 km downstream from the glacier’s terminus. Stage measurements were converted to 

discharge using a stage-discharge rating curve generated from calibration against repeat 

Rhodamine dye injections over the full range of river stages during the melt season as per ref. 

18. Uncertainties (RMSD) on discharge measurements were calculated to be ~ 12.1%. 

  

Manual sampling 

Manual samples were collected a few meters (~ 5-10 m) upstream of the HydroC®. Water 

samples were collected inside pre-evacuated (at most 500 mTorr) 120 mL borosilicate vials 

sealed with 2 cm thick butyl-rubber stoppers, pre-flushed with 5.0 grade argon, and pre-

poisoned with ~24 mg of HgCl2 to fix the samples and prevent any microbial activity affecting 

the gases post-sampling; after the method of ref. 31. 10 mL (at room temperature and pressure) 

of helium (grade 5.0) was added to the evacuated vials to maintain a headspace during 

sampling. Most water samples (n=53) were collected using a peristaltic pump (Portapump-810, 

Williamson Manufacturing) equipped with silicone tubing; a small number of samples were 

collected using plastic syringes (n=2) or passively using the vials’ vacuum pressure by directly 

piercing the septum of submerged vials with a needle (n=8). Vials containing apparent air 

contamination or vacuum loss (e.g. resulting in abnormally large headspace post sampling) 
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were excluded from analyses. Samples for stable isotopic analysis were collected as above (n=9 

collected using the peristaltic pump, n=2 using syringes).  

 

Methane concentrations were calculated using the headspace method. Headspace samples were 

analysed on an Agilent 7980A gas chromatograph equipped with a Porapak Q 80-100 mesh, 

2.5 m X 2.0 mm SS column and flame ionization detector.  Standard curves were calculated 

from certified ( 5%) gas standard measurements. Gas concentrations were converted to molar 

concentrations using the ideal gas law and dissolved methane concentrations were obtained 

using Bunsen coefficients32. Internal vial pressures were calculated using the ideal gas law 

from the difference between the headspace volume post-sampling and the theoretical 

headspace volume of 10 mL at 1 atm and 20°C. The average internal pressure of 3.5 (± 0.9 

standard deviation) atm was assigned to all manual samples for calculations. 

 

CONTROS HydroC® CH4 sensor  

Methane measurements were performed using a CONTROS HydroC® CH4 system (Kongsberg 

Maritime), an optical (infrared), headspace-based underwater sensor. An underwater pump 

(SBE 5T, Sea-Bird Scientific) mounted to the sensor continuously feeds water to the membrane 

equilibrator. Dissolved gases diffuse through a composite membrane into the internal gas 

circuit where partial-pressure is measured via tunable diode laser absorption technology14. The 

CONTROS HydroC® sensor was deployed completely submerged within a solid metallic cage 

moored by cables attached to boulders on the river bank, with the sensor head facing the river 

current (Extended Data Fig. 1). Measurements were logged every minute between May 19 and 

June 4; the logging interval was changed to 5 minutes on June 4 until the end of the measuring 

period on July 13. 

 

The ideal gas law and Bunsen coefficients were used to convert µatm measurements (Extended 

Data Fig. 7c) to molar concentrations (Fig. 1). Water temperatures ±0.05°C were recorded 

using an Aanderaa Optode 3830 sensor deployed in parallel (Extended Data Fig. 7a). The 

CONTROS HydroC® CH4 reported overall uncertainty is 2 µatm (~ 5nM) or ±3% of reading, 

whichever is greater.  

 

Calculation of lateral methane flux 
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CH4(aq) measurements stopped on July 13. CH4(aq) fluxes estimated during the rest of the 

ablation season were based on two scenarios: i) assuming that methane levels would 

immediately decrease until reaching river baseline concentrations on September 15 (last 

discharge measurement), or alternatively, ii) continue to follow a discharge-dependent trend 

for the duration of the ablation season.  

 

i. Constant concentration-decrease scenario (annual lateral flux of 2.78 t-CH4) 

 

In the constant concentration-decrease scenario, a baseline CH4(aq) concentration was set based 

on manual water samples collected during a return visit to the sampling site on October 28, at 

a time during which the proglacial river was partially frozen, and where no runoff contribution 

to the proglacial river stream was apparent. October concentrations averaged ~18.5 nM 

(beneath river ice at that time, n=6).  

 

The minimum flux scenario was calculated using a natural log decrease behaviour of the form: 

 

y=C e-(kt) 

 

where y is the methane flux (e.g. in g s-1), C is the last flux measurement on July 13 (i.e. 0.71 

g s-1), t is the time elapsed between July 13 and the flux y, and k is the reaction constant obtained 

assuming a baseline concentration of 18.5 nM and using the discharge of 32 m3 s-1 (last 

discharge measurement) on September 15.  

 

ii. Sustained-flux scenario (annual lateral flux of 6.28 t-CH4) 

 

The sustained-flux scenario was calculated using the discharge-weighted mean CH4(aq) 

concentration of 271 (± 34) nM obtained from measurements up to July 13; the error reflects 

errors on discharge measurements (12.1%) as well as the HydroC®-CH4 measurement errors 

(2 µatm or 3%, whichever is greater).  

 

Estimation of methane sink via methanotrophic oxidation 

The recorded methane concentrations at LG most likely underestimated the original methane 

levels present beneath the catchment because of the water travel time between the subglacial 

methane source and the measurement site. In addition to atmospheric evasion of methane, 
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aerobic microbial oxidation of methane would have lowered methane concentrations prior to 

reaching the observation site once fully oxygenated meltwater runoff entered the subglacial 

system (O2 concentrations in runoff were either in near atmospheric equilibrium or 

supersaturated for most of the monitoring period; Extended Data Fig. 7a). Methanotrophy was 

observed qualitatively in a small number of un-fixed river samples collected in parallel to fixed 

manual samples, with up to a 100 fold decrease in CH4(aq) concentrations in unfixed versus 

fixed vials upon analyses back in the home laboratory (data not shown). However, no time 

series incubation was set-up and consequently no methanogenic rates were calculated for the 

LG site.  

The quantity of methane oxidized by methanotrophic bacteria prior to reaching the measuring 

site was estimated using the methanotrophic rate reported for the marginal stream of the 

neighbouring Russell Glacier (i.e. 0.32 µM d-1)5. Justifications for using the Russell Glacier 

oxidation rate are discussed in Supplementary Information 2c. The time during which runoff 

was subject to methane oxidation (i.e. water travel-time) was estimated from water velocities 

and subglacial drainage evolution calculated based on a previous study at LG by Chandler et 

al. 2013 (ref. 20). We assumed that subglacial aerobic methane oxidation occurs between the 

location of supraglacial runoff-input, where oxygenated supraglacial waters enter the 

subglacial system, and the measuring site located 1.6 km downstream of the LG glacier 

terminus.  

 

Water velocities were calculated using the relationship between maximum tracer velocity 

(v0.5) and cumulative discharge (∑Q) described for the gaseous SF6 tracer in ref. 20, which 

takes the form:  

 

v0.5=A*ln(∑Q) + B 

 

with regression parameters A and B calculated to be 0.235 m s-1 and -3.59 m s-1 respectively20. 

We fixed a minimum velocity of 0.4 m s-1, which corresponds to the minimum v0.5 calculated 

for tracer injections performed 7 km inland from the LG portal at times of low cumulative 

discharge by Chandler et al. 2013.  

 

We estimate the inland evolution of an efficient channelized subglacial hydrological system 

based on the relationship between cumulative discharge and v0.5 at moulin injection sites (see 

Fig. 2.a in ref. 20). We derived the progression of supraglacial water-inputs using the lowest 
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value of cumulative discharge observed where v0.5 at an injection site fell onto the regression 

line of v0.5 to cumulative discharge for the L7 injection in ref. 20 (see Figure S2.8 in ref. 20). 

That is, we fixed that the channelized subglacial channel would reach 7 km at a cumulative 

discharge of 1.9 x 107 m3, 14 km at a cumulative discharge of 9.4 x 107 m3 and 41 km at 7.8 x 

108 m3 based on figure S2.8 and Table S1 in ref. 20. We acknowledge that such calculations are 

approximate at best, but they allow the use of a dynamic distance of travel during the melt 

season. We fixed a maximum travel distance of 41 km from the LG terminus, after which the 

LG subglacial system is considered to become primarily inefficient and distributed for the 

duration of the ablation season20. To account for potential methane sources and methanotrophic 

activity occurring downstream of the supraglacial-runoff input into the subglacial channelized-

system, we used an average distance of travel in our calculation (i.e. half of the distance of 

travel obtained from cumulative-discharge calculations above).   

 

Calculation of diffusive methane flux 

Accurately calculating methane losses due to atmospheric evasion was beyond the scope of the 

present study, and therefore, flux numbers should be considered conservative estimates of the 

amount of methane originally generated and exported from the LG catchment. 

 

Diffusive fluxes for the LG stream were estimated following the approach by Raymond et al. 

201319, which estimates gas transfer velocity coefficients (k) from stream slope and water 

velocity (fitted equation 5 in ref. 33). Fluxes were estimated for the first 1.6 km of the proglacial 

river, from the ice margin to the measuring site. Stream slope was obtained via Google Earth 

and approximated 0.04; a slope value of 0.01, 0.03, and 0.05 was used to generate minimum, 

medium, and maximum k values. A water velocity of 1 m s-1 was used which corresponds to 

the discharge weighted mean of subglacial water velocities (v.05) used for methanotrophic sink 

calculations (see above).   

 

Methane gas transfer velocities (kCH4) were converted from the calculated k600 values following 

relationships between Schmidt numbers and k for CO2 and CH4 (see equations 2 and 3 in ref. 

33); Schmidt numbers were calculated using an average water temperature value of 0.22°C 

(Extended Data Fig. 7d)34. Minimum, medium, and maximum slope values, as we well as 

standard deviations on k600 equation parameters33 resulted in minimum, medium, and 

maximum kCH4 of 16, 49, and 84 m d-1 respectively.  
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Methane diffusive fluxes were calculated using the discharge-weighted mean CH4(aq) 

concentration for the observation period (271 nM) and assuming an atmospheric methane 

concentration of 1.8 ppmv (resulting in an equilibrium concentration of about 4.6 nM). 

Diffusive flux occurring upstream of the measuring site was calculated using 1 m retroactive 

bins, adjusting upstream dissolved methane concentrations for methane loss by both diffusive 

flux and microbial oxidation losses in downstream bins; a fixed river width of 40 m, water 

velocity of 1 m s-1, and average discharge of 150 m3s-1 were used in calculations. The reported 

diffusive flux values correspond to the average flux calculated for the 1.6 km of stream for 

each minimum, medium, and maximum scenarios. Cumulative fluxes were calculated for the 

discharge-measurement period (i.e. ~ 110.5 days) and normalized to estimated water velocities 

(see above section). Details on the diffusive fluxes of other world rivers can be found in 

Supplementary Information 1c. 

 

Stable Isotope Analyses 

Analyses for δ13C values were performed by continuous flow compound specific carbon 

isotope ratio mass spectrometry with a Finnigan MAT 252 mass spectrometer interfaced with 

a Varian 3400 capillary GC.  Hydrocarbons were separated by a Poraplot Q column (25m x 

0.32mm ID) with temperature program: initial 40oC hold 1 minute, increase to 190oC at 

5oC/min., hold 5 minutes. Total error incorporating both accuracy and reproducibility is  

0.5‰ with respect to V-PDB standard35. The 2H analysis was performed on a continuous flow 

compound specific hydrogen isotope mass spectrometer which consists of an HP 6890 gas 

chromatograph (GC) interfaced with a micropyrolysis furnace (1465oC) in line with a Finnigan 

MAT Delta+-XL isotope ratio mass spectrometer. H2 and CH4 were seprated by a Molecular 

Sieve 5A column (25m x 0.32 mm ID) with a carrier gas flow rate of 1.2 mL/min with the 

temperature program: initial 20oC, hold for 5 minutes followed by an increase to 280oC at 

25oC/min. Higher hydrocarbons were separated using the same column and temperature 

program as the carbon isotope analysis. Total error incorporating both accuracy and 

reproducibility for hydrogen isotope analysis is  5 ‰ with respect to V-SMOW31. 

 

CH4-Hydrates 

In order to evaluate the potential for hydrate formation beneath the LG catchment, we 

employed a one-dimensional reaction-transport model that has been originally developed for 

simulating hydrate formation in marine sediments36 and has previously been adapted for 
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subglacial Antarctica4. We assumed physical properties for sediments similar to those 

previously employed for ocean sediment modelling36. Extended Data Table 3 summarizes 

site-specific model parameters, their model values and units. The model solves the one-

dimensional diffusion-advection-reaction equations for dissolved methane, gaseous methane 

and methane hydrates. The implemented reaction network accounts for a constant methane 

production rate Rxn over a predefined sediment depth zxn, methane hydrate, as well as methane 

gas formation and dissociation. At the upper boundary, the boundary concentrations are set to 

zero (i.e. Dirichlet boundary condition) reflecting warm-based conditions and allowing for 

diffusive flux of methane through the ice-sediment interface. In addition, initial conditions for 

dissolved and gaseous methane, as well as methane hydrates were set to zero. A “best case” 

scenario was designed to reflect optimal, but plausible physical and biogeochemical conditions 

for hydrate formation to assess the maximum potential for hydrate accumulation in the 

catchment. More specifically, we assigned a thick methanogenic sediment layer beneath the 

catchment (i.e. up to 100 metres), a 10,000 year ice sheet overburden to allow for hydrate 

evolution, complete anoxic conditions, an overlaying ice thickness set to 1,000 metres (ice 

thickness over the LG catchment exceeds 1,000 metres at ~ 39 km from the ice margin20), a 

basal temperature of -1°C, and assumed the absence of a methane sink within the sediment 

layer (e.g. no anaerobic oxidation of methane). This “best case” model set-up was run over a 

wide range of constant methane production rates (Rxn= 10-17 to 10-13 g-CH4 g-1 wet sediment 

s-1) to determine the order of magnitude of methane production rates required to accumulate 

hydrates. After this initial screening, methane production rates were varied systematically 

between Rxn= 10-15 to 10-14 g-CH4 g-1 wet sediment s-1.  
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EXTENDED DATA 

 

Extended Data Table 1 ∣ CH4(aq) concentration, fluxes, and areal yield from LG, the GrIS, 

and other world rivers* 

 

 

*Diffusive fluxes are calculated grand means except for the LG runoff diffusive flux which 

corresponds to the medium flux scenario (scenario b in Fig. 2; see methods for details). 

Except for the Amazon and Congo, lateral fluxes and yields are calculated using discharge-

weighted means; see Supplementary Information 1c for reference and calculation details.  

†GrIS-wide CH4(aq) flux was estimated using the LG discharge-weighted CH4(aq) 

concentration mean applied to the entire GrIS runoffs; this number is therefore speculative 

and was included as reference only.  

‡From ref. 37 

Areal yields are for entire catchment areas whereas diffusive fluxes refers to stream surface 

areas. 
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Extended Data Table 2 ∣ Stable isotope details of CH4 and CO2 

 

 

First three rows correspond to borehole and chainsawed-hole collected samples 

(see Supplementary Information 1b; Extended Data Fig. 3). 

 

 

Extended Data Table 3 ∣ Site specific parameters applied in the 1D hydrate model 
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Extended data Fig. 1 ∣ Leverett Glacier and proglacial stream. a Leverett Glacier with catchment boundaries38 

outlined in grey. b Zoomed image of the LG with sampling site and portal marked by dots. c Sensor deployment 

site during the early melt season with the LG is visible in the background; image faces upstream. d Sensor 

deployment site in late June; image faces downstream. Also visible is the HydroC® sensor inside steel cage during 

inspection before re-deployment. e LG portal in late May whilst still covered with both glacial and river ice. 

Picture was taken an hour before the appearance of the glacial upwelling (see Supplementary Information 2b). 

Arrow marked the location of the chainsawed hole, visible in the inlet image. Image of the chainsawed hole was 

taken on May 10 2015. f LG portal in mid-July 2015. Map images courtesy of USGS/NASA Landsat. 

 



 22 

 

Extended data Fig. 2 ∣ Comparison of CONTROS HydroC® and manual sample CH4(aq) concentrations. a 

CH4(aq) time-series; red points correspond to the CONTROS HydroC® pump power during operation. Continuous 

line depicts CONTROS HydroC® measurements with the dashed section corresponding to times when the sensor 

experienced low pump power and thus a reduced water flow induced by the pump (~ June 19 to July 01); open 

circles correspond to manual samples. The thin shaded grey area ribbon around the CH4(aq) time-series corresponds 

to the uncertainty of the CONTROS HydroC® measurements (~ ± 3%); uncertainty on manual measurements 

indicated through error bars reflects error on vial internal pressures and volumes (119 ± 0.76 mL standard 

deviation; internal pressures are derived from volumes, see Methods for details). b Regression plot between the 

CONTROS HydroC® and manual sample measurements. Only manual samples taken during times where 

CONTROS HydroC® pump power was above ~ 7W were considered for the regression (black circles, black line); 

grey circles correspond to samples taken during times of lower pump power. Horizontal error bars reflect errors 

on manual measurements; vertical error bars are smaller than size of circles. Orange line depicts a hypothetical 

1:1 relationship between the sensor and manual measurements. 
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Extended Data Figure 3 ∣ Combination plot of δ13C-CO2 and δ13C-CH4 of LG runoff. Points denote δ13C 

CO2-CH4 values for LG manual samples. Methanogenesis and microbial oxidation classification zones are derived 

and adapted from ref. 25.  
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Extended Data Figure 4 ∣ LG 16S rRNA gene sequences related to methanotrophic and methanogenic 

clades. a Relative abundance of the dominant OTUs related to bacterial methanotrophs (OTU00009) and archaeal 

methanogens; box mid lines represent medians; the interquartile range (IQR) is represented by the lower and 

upper box boundaries and denote the 25th and 75th percentiles, respectively; whiskers indicate 1.5 times IQR 

confidence intervals and points are outliers. b, c Maximum likelihood trees of 16S rRNA sequences related to 
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methanotrophs rooted with the sequences of Clostridium frigoriphilum (b), and methanogens rooted with the 

sequences of Acidibilus sulfurireducens and Caldisphaera draconis (c). 

 

Extended Data Figure 5 ∣ Relationship between rates of subglacial methanogenesis, sediment thickness and 

observed annual CH4 flux at LG. Each panel corresponds to the different yearly lateral CH4(aq) flux estimates 

measured in 2015 (see Fig. 2). Each line type corresponds to the sediment thickness required under different 

catchment area conditions; whether 100%, 50%, or 10% of the subglacial catchment contribute to the observed 

CH4 flux. Any point on a line corresponds to the required methanogenesis rate and subglacial sediment thickness 

to generate the observed lateral CH4 flux. The four points on each line correspond to known methanogenic rates 

recorded from different subglacial habitats17.  
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Extended Data Figure 6 ∣ Summary plot of model conditions required for subglacial methane hydrate 

formation. Left panel indicate model results under a fixed methanogenic depth (100 m) but varying methanogenic 

rates (R2 to R10, i.e. 2 to 10-15 g-CH4 g-sediment-1 s-1); right panel outputs model runs under a fixed methanogenic 

rate (5-15 g-CH4 g-sediment-1 s-1) but varying methanogenic depths (20-100 m). a, b, e, f: Vertical profiles of 

methane solubility, dissolved methane, and methane hydrates; methane concentrations are normalised to Ceq 

(equilibrium concentration). c, g: Time required for methane hydrate formation under modelled conditions. d, h: 

Diffusive CH4 flux at the sediment-ice interface under CH4-hydrate conditions assuming three different catchment 

CH4-hydrates cover area (i.e. 10, 50, and 100 % of the LG catchment), compared to the three lateral flux scenarios 

(a, b, d; Fig. 2) – see supplementary section 2f.  
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Extended Data Figure 7 ∣ Extended time series of geochemical measurements from the LG proglacial river. 

EC, pH, and SSC time series include the same as the ones depicted on Fig. 1, but extending to measurements 

before, and after, the methane record. Note that the CH4(aq) data in c are the CONTROS HydroC® partial pressure 

(µatm) measurements. Y axes corresponding to black and orange datasets are located on the left and right, 

respectively. 
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SUPPLEMENTARY INFORMATION 

 

a. Site Description – Leverett Glacier (LG) catchment hydrology and catchment area 

The LG acts as the main outlet to the Russell-Leverett catchment, one of the three large GrIS 

hydrological basins of the Kangerlussuaq area in South West Greenland39. The LG catchment 

has been the focus of numerous ice-dynamics, hydrology and subglacial biogeochemistry 

studies in the last decade, and is considered to be highly representative of large areas of 

Greenland due to its relatively large catchment area, underlying geology (Precambrian 

orthogneiss and granite) common to much of Greenland40, and hydrology easily scalable to 

large regions of the GrIS based on modelled ice sheet runoff and LG discharge (e.g. ref. 

15,18,20,30,41-43). Basal conditions at LG are polythermal, similar to much of the Western margin 

of the ice sheet which is considered thawed at the bed44. The southwestern margin of the GrIS 

has also experienced the highest degrees of warming in the past decades and is considered the 

most sensitive ice-sheet region in Greenland to projected temperatures increases in the 21st 

century, consequently bearing the largest meltwater contribution from the ice sheet37; the LG 

catchment is therefore located in a hydrological “hotspot” of the ice sheet margin. 

 

The LG (surface) catchment covers an area of ~ 1200 km2 based on surface elevation, extending 

up to ~ 80 km from the GrIS margin38; an area of ~ 600 km2, however, more accurately depicts 

the extent of the subglacial catchment15, with an efficient, fast flowing channelized subglacial 

system extending to at least 41 km, but less than 57 km, from the ice margin20. The relatively 

large area of the catchment, but, arguably more importantly, the relatively large runoff 

contribution and very high basal erosion rates at LG makes it of particular interest to understand 

and evaluate GrIS-wide processes. Overeem et al. (2017)45 recently surveyed > 160 Greenland 

outlet glaciers and illustrated that in situ  measurements of sediment export at LG agreed with 

satellite and model estimates of Greenland-wide sediment exports to the global ocean. Based 

on the authors’ estimates, the LG catchment ranked 22nd in terms of subglacial catchment area 

and experienced the 10th largest annual water discharge and 4th highest sediment load of all 

surveyed catchments. 

 

b. Pre melt-season measurements of ice-margin CH4(aq)  

In early May, prior to the onset of the melt season, water samples were collected and sensor 

measurements performed beneath the frozen proglacial river, directly in front of the LG portal 
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(~20 m downstream of the then-closed subglacial portal; Extended Data Figure 1). Water 

samples (n=4) were collected on May 2 and 4 through river-ice boreholes (ice thickness ~ 3 m) 

using the peristaltic pump (see methods). The HydroC CH4 sensor was also temporally (~24 

hours) deployed in a chainsaw-cut hole on May 13. CH4(aq) concentrations in the borehole were 

~5.6±0.8 µM and chainsaw hole ~3.5±0.4 µM respectively (mean ± standard deviation).  

 

c. Catchment-normalised areal CH4(aq) yield calculations 

In order to allow catchment-wide comparison between methane fluxes observed at LG and 

other systems, catchment-normalised areal yields of lateral CH4(aq) fluxes were calculated 

instead of catchment-wide yields from diffusive fluxes normally reported for gaseous species. 

Lateral fluxes of CH4(aq) most likely account for a larger portion of overall fluxes in glaciated 

catchments (because most of the catchment is capped by ice) than non-glaciated river basins, 

where they only amount to a very small fraction of the total fluxes (Extended Data Table 1). 

Lateral inputs of CH4(aq)  feeding proglacial streams are also constrained to a focal source (i.e. 

ice margin) at the head of the river (as opposed to continuous lateral inputs from smaller-order 

streams and tributaries to river mainstems), and lateral fluxes from downstream and upstream 

of the measuring site at LG would be lower and higher, respectively, dependent on methane 

losses relative to our measuring site.  

 

As opposed to diffusive fluxes, riparian CH4(aq) yields (derived from lateral fluxes) are directly 

dependent on discharge (and upstream catchment area). LG CH4(aq) concentration 

measurements were constrained to a single measuring location; consequently, the reported 

yield is also constrained to the measurement site (methane yields obtained upstream of the 

measuring sites would be larger and downstream ones smaller, due to CH4(aq) sinks). To more 

directly compare CH4(aq) yields between LG and other river systems, we focused comparisons 

to published datasets where both CH4(aq) concentrations and discharge measurements, and 

ideally drainage-basin area, were available for the same sampling location. 

 

i. Leverett Glacier 

The catchment-normalised CH4(aq) yield for the LG site was calculated using the product of the 

CH4(aq) discharge-weighted mean (i.e. 271 nM) and the total 2015 cumulative discharge (i.e. 

1.45 km3), normalised to the entire glacier catchment (i.e. 600 km2). Details on estimates of 

diffusive fluxes at LG are present in the methods section. 

 



 30 

ii. Yukon river  

Yields for the Yukon river and tributaries were calculated using USGS datasets for specific 

Yukon-basin gauging stations, which included locations for the Yukon mainstem (i.e. Pilot, 

Stevens village, and Eagle stations), as well as locations for Yukon tributaries (Koyukuk, 

Tanana, and Porcupine stations). Except for the Koyukuk station, 2001-2004 CH4(aq) 

concentration averages were used for calculations46-49; the CH4(aq) concentration value for 

lower-Yukon tributaries in ref. 50 (i.e. 0.77 µM) was used for the Koyukuk station. Discharge-

weighted means for each station were used in calculations. Station-specific annual discharge, 

as well as drainage-basin area, were obtained from the USGS database51, and a grand average 

for all available yearly discharge measurements was used in yield calculations. The reported 

CH4(aq) yields for the Yukon basin were calculated using the grand mean of discharge-weighted 

concentration means of Koyukuk, Tanana, and Porcupine for the Yukon tributaries, and Pilot, 

Stevens village, and Eagle for the Yukon mainstem. Diffusive fluxes and associated catchment-

wide yields were directly taken from ref. 50. 

 

iii. Lena Delta 

Yields obtained for the Lena delta were derived using the overall discharge-weighted mean of 

the 2009-2010 median CH4(aq) concentrations reported for all three main delta channels (i.e. 

Trofimovskaya, Bykovskaya, and Olenekskaya channels) in ref. 52. The complete Lena basin 

area, as well as the 2002-2012 annual discharge mean (total Lena basin as well as specific 

channel discharges) were used in calculations53. 

 

Diffusive fluxes were calculated using the average of the three Lena Delta channel fluxes52 

assigned to the entire surface area of Lena Delta channels. We assumed that the surface area of 

all river channels within the delta (3,480 km2) represents 12% of the entire delta area (29,000 

km2) based on ref. 54. The diffusive flux of the delta was then normalised to the entire Lena 

river basin area (2,486,000 km2) in order to obtain a catchment-wide areal yield.  

 

iv.  Amazon lower-basin (Negro and Solimões rivers) 

The Amazon lower basin yields were calculated using discharge-weighted means of site-

specific CH4(aq) concentrations and discharges integrated over a range of water level conditions 

(i.e.  low, high and falling water levels) in 2011-201255. Because drainage area information 

was not available for each sampling site, discharge-weighted catchment areas of the Negro and 

Solimões were used when calculating yields of their respective tributaries. In the case of the 
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Negro, we assigned 290,459 km2 as the catchment area of its tributaries out of the 686,810 km2 

for the Negro mainstem; 560,747 km2 of catchment area was assigned to the Solimões 

tributaries out of the 990,780 km2 for the mainstem56. Diffusive fluxes were directly taken from 

Table 6 in ref. 55, and associated catchment-wide yields calculated using the mainstem total 

basin area56. 

 

v.  Congo and Amazon basins 

The Congo basin and Amazon-wide basin CH4(aq) yields were calculated using the overall mean 

of CH4(aq) concentrations reported for the entire Amazon and Congo basins, as well as the basin-

wide annual discharge and drainage area57.  Unlike the previous sites, the calculated yields only 

represent gross estimates because no information on sampling-site discharge and 

drainage-basin area was available. Diffusive fluxes and associated yields for the Amazon- and 

Congo-wide basins were obtained from ref. 58 and 59 respectively. In the case of the Congo, the 

average of the fluxes reported using the “Auf” and “Ray” methods was used (see ref. 59).  

 

d. Molecular analyses of LG runoff 

 

Between ~ 600 – 2000 mL of LG bulk runoff was filtered through Sterivex filters (Millipore, 

USA) between May 04 and July 26 (n = 31). Sterivex filters were preserved in MoBio RNA 

LifeGuard solution (MoBio Laboratories, USA) immediately after sampling, frozen inside 

portable freezer within 1 hour of collection. DNA was extracted using the DNeasy PowerWater 

Sterivex kit (MoBio Laboratories, USA) following the manufacturer’s protocol. Extracted 

DNA samples were sequenced at the Mr. DNA Molecular Research facility (Shallowater, TX, 

USA; http://www.mrdnalab.com/) on an Illumina MiSeq platform using the 515f/806r  primer 

pair, which targets the 16S rRNA V4 hypervariable region60. 

 

Sequences were analysed on the mothur platform v.1.38.161 following the mothur MiSeq 

standard operation procedure62. Sequences were binned into operational taxonomical units 

(OTU) at a 97% sequence identity level and classified against the SILVA (v.123) database. 

Maximum likelihood phylogenetic trees containing the representative sequence of the 

dominant OTUs related to methanotrophic and methanogenic sequences were assembled in 

MEGA v.7.0.26.  
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2. Supplementary Discussion 

 

a. Manual samples and CONTROS HydroC response time 

CH4(aq) concentrations obtained by manual samples generally agreed with HydroC results for 

most of the measuring period when the sensor’s pump power was maintained over ~ 7W; the 

large error on manual measurements relates to uncertainties of internal vial pressures (i.e. 3.5 

± 0.9 atm) (Extended Data Fig. 2). The small deviation between HydroC and manual sample 

measurements (Extended Data Fig. 2.b) may also relate to the presence of air bubbles during 

manual sampling. Whilst care was taken to exclude any air bubble during sampling, we cannot 

exclude the possibility that a small amount of air bubbles may have been present in some 

samples due to the highly turbulent waters during sampling. Air contamination in manual 

samples would result in a slight underestimation of methane concentrations.  

 

The repetitive drops in pump power during the first parts of the measurement period (May 19 

– June 19, Extended Data Fig. 2) correspond to the changes in power sources (i.e. solar-charged 

battery versus back-up generator) to the sensor that were necessary during evenings and 

mornings. Only solar-charged batteries were used after June 19 (due to increased solar 

irradiance), reflected by the more stable power output (Extended Data Fig. 2). A drop in power 

to the HydroC pump (SBE-5T) between June 19 – 30, however, most likely affected the 

HydroC response time and measurements during that period may not have accurately captured 

changes in CH4(aq) concentrations as reflected by a more pronounced difference between 

manual samples and sensor measurements. The high degree of uncertainty associated with 

manual measurements, however, limits their use as exact reference points during that period 

(Extended Data Fig. 2). Inefficient pumping of water to the HydroC can affect the CH4 

equilibration time between the membrane and the detector chamber of the sensor, causing 

measurement lags.  

 

This drop in pump power was most likely caused by the rapid increases in suspended particulate 

matter levels during the first two outbursts (Fig. 1), which may have impeded the movement 

of the magnetically coupled impeller (pump power is proportional to pump rate). Despite a 

probable slower measurement response from the sensor during times of lower pump power, 

sharp peaks and troughs in CH4(aq) levels were still captured by the sensor during that period, 

reflective of outburst events and discrete subglacial methane flushing, as well as diurnal 

patterns (Fig. 1). Because the overall changes in CH4(aq) mimicked changes in SSC, E.C., and 
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pH, we consider them to approximately depict evolution of CH4(aq) concentrations, even if the 

magnitude of those exports may be under-represented. Correcting for HydroC measurement 

lags63,64 are unlikely to change the overall CH4(aq) concentration trend observed here with 

respect to outburst events and diurnal cycles, which happen on the timescale of several hours 

to days (the HydroC response time, t63, under optimal conditions at 2-3°C water temperature is 

< 30 minutes).  

 

b. Evolution of the LG subglacial drainage system and concomitant methane export 

behaviour 

The LG hydrological system displays features which are reported in many glaciers worldwide, 

and likely is typical of GrIS catchments more generally. Surface meltwaters are routed to the 

bed via supraglacial openings (e.g. crevasses and moulins) caused by fracturing of the ice, 

connecting sub- and supraglacial environments. The subglacial drainage system consequently 

undergoes a seasonal evolution following the upglacier progression of the snowline driven by 

the increase in surface runoff entering the subglacial environment20,65-67. It evolves from a slow, 

inefficient hydrological system with tortuous flow pathways early in the melt season, to a 

rapidly draining efficient system20. At LG, subglacial runoff ultimately exits the catchment via 

a well-defined portal that feeds its proglacial river (Extended Data Fig. 1).  

 

Early melt-season (prior to June 19 2015) 

 

During early sensor deployment, most of the proglacial river was still ice-covered, with waters 

at the measuring site largely derived from a mixture river-ice meltwaters and marginal runoff 

(Extended Data Fig. 1). The very high EC and pH values recorded during that period, however, 

also indicate a significant contribution from basal meltwaters (Fig. 1). Elevated EC and high 

pH are indeed typical of subglacial environments, and the geochemistry of the LG proglacial 

river prior to major melt events in the season is mostly influenced by slow inefficient marginal 

basal meltwaters from the distributed subglacial system18. Because of the very small discharge 

in the early melt season, even a small contribution from subglacial waters has an important  

influence on the hydrochemistry profile of the proglacial river.  

 

Methane concentrations during this period were the lowest recorded (mean ~55 nM) but were 

significantly higher than background-equilibration concentrations (~4 nM at local water 

temperatures). The abrupt pulse in methane on May 31-June 01 coincided with the opening of 
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the subglacial conduit at LG, marked by the appearance of a water upwelling through river ice 

in front of the then ice-sealed LG portal, and resulting in a relative increase in discharge 

indicative of larger influences from meltwaters (Fig. 1). The dramatic increase in methane 

concentrations and sustained high EC during and following the appearance of the subglacial 

upwelling most likely reflects the release of over-winter stored subglacial waters enriched in 

methane from the ice margin (see Supplementary Information 1b). Similarly, the two methane 

peaks recorded on June 8 and 15 likely represent the connection of proximal distributed system 

waters, also consistent with rises in EC during those two events (Fig. 1).  

 

Outburst period (June 19 to July 13 2015) 

 

Export of long-residence-time subglacial waters from the glacier bed is accentuated during 

increases in the rate of supraglacial meltwater delivery into the subglacial drainage system, 

often producing distinct pulses of enhanced water runoff superimposed on the general pattern 

of runoff growth18. Large pulses of meltwater alter the basal water pressure and enable the 

expansion of efficient subglacial drainage pathways into previously inefficient areas of the ice 

sheet bed68,69. The precise timing of distinct runoff pulses is generally associated with sudden 

catastrophic drainage of meltwater stored in supraglacial lakes which force a surface-to-bed 

drainage connection through hydro-fracture, or routing of large volumes of meltwater to the 

ice-sheet bed via englacial conduits such as crevasses and moulins18,69. Periods of subglacial 

water release via outbursts are typically accompanied by peaks in electrical conductivity (EC) 

and suspended sediment, reflecting the evacuation of sediments and solute-rich water from 

basal environments; pH spikes (Fig. 1) are also consistent with increased mobilisation of long 

residence time subglacial waters which have undergone substantial chemical weathering70. 

Herein, we refer to such events as outbursts. 

 

The first outburst on June 19 marked a pronounced increase in meltwater discharge, and the 

growth of an efficient subglacial drainage system at LG, allowing the rapid evacuation of 

meltwaters to the ice margin. From this point forward, and during the rest of the observation 

period, the subglacial drainage system at LG undergoes a rapid upglacier expansion20. A series 

of supraglacially forced outburst events are normally observed at LG during this expansion 

period where new regions of the bed become accessible and connected to efficient drainage 

channels18; in 2015 these events occurred broadly coincidently with the step-wise retreat of the 

snowline to higher elevations, increasing the supraglacial catchment area16.  
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The four methane concentration pulses that accompanied the recorded four outburst events 

during the observation period indicate that newly connected methane-bearing regions of the 

bed act to sustain methane fluxes beyond the early melt period (Fig. 1). It also illustrates that 

sediment-rich, long-residence-time waters from the distributed drainage system contain high 

concentrations of methane, which can be rapidly exported to the ice-margin once connected to 

efficiently-draining channels.  

 

Supraglacially forced pulses in methane concentrations appear to lag those of other 

geochemical parameters (EC, pH, and SSC; Fig. 1). We attribute this lag to a momentary 

dilution of methane-rich subglacial waters by the sudden input of high volumes of low-

methane-concentration supraglacial runoff waters, illustrated by abrupt, but brief, drops in 

methane concentrations at the onset of the recorded outburst events, where the latter caused 

increased subglacial pressures. The subsequent abrupt rises in methane levels (most evident 

during the first two outbursts; Fig. 1) can be explained by mobilisation of methane rich 

distributed system water, associated with the water pressure decrease that likely followed the 

rapid evacuation of supraglacial lake waters in a newly expanded channelized system. This 

promoted the flow of distributed water sources along the pressure gradient towards the main 

subglacial channel67,70.  

 

This behaviour is most evident during the first two recorded outbursts, most likely due to a 

closer proximity to the ice margin and lower discharge, which translate into a more pronounced 

effect on the methane concentration graph (Fig. 1). The effects of these localised events on 

methane concentrations later in the melt season (outbursts 3 and 4) are indeed dwarfed by a 

larger meltwater contribution from a more developed channelized drainage system, reflected 

by the absence of sharp methane pulses following the onset of the two later outbursts, as well 

as the persistence of a strong diurnal pattern observed during the rising limb of the methane-

concentration peaks (Fig. 1). Because the overall methane load remained high during those 

later outbursts (Fig. 1), the absence of sharp methane concentration peaks is likely caused by 

the continuous dilution from ice melt generated from a larger overall catchment area. 

 

Outburst occurrences at LG are normally limited to the first half of the ablation season, when 

supraglacial lakes and melt ponds drain and drive rapid expansion of the efficient subglacial 

drainage system15,18. The evolution of an efficient subglacial hydrological system at LG 
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progresses to ~ 41 km upglacier after reaching a cumulative discharge of ~ 0.78 km3 based on 

SF6 injection tracer experiments20 (in 2015 a cumulative discharge of 0.78 km3 was reached 

on July 26). Once fully established, sustained fluxes of solute and suspended sediments in 

runoff indicate a continued flow contribution by distributed system waters during the rest of 

the season (i.e. SSC and ions; e.g. ref. 15,18,30). The continuous methane record ended on July 

13; the sustained load of methane observed during the end of the measuring period did not 

indicate any sign of exhaustion of subglacial methane reserves (Fig. 1). Like other chemical 

species (major ions, dissolved organic carbon71), we hypothesize that methane export during 

the second period of the melt season will follow similar behaviour to SSC (Extended Data Fig. 

7c). 

 

c. Inferred methanotrophy in LG runoff 

Methanotrophic rates at LG were not directly measured. However, non-poisoned water samples 

(without HgCl2 to inhibit microbial activity) revealed a decrease in methane concentrations up 

to 100-fold relative to microbially fixed samples upon analyses back in the home laboratory 

(data not shown), indicating that active methanotrophs were present at the site. Moreover, a 

strong microbial oxidation isotopic signature25 characterised the borehole and chainsaw hole 

manual samples collected through river ice in front of the LG prior to the onset of the melt 

season. We attribute the stronger methanotrophic effect (enrichment in heavy stable isotope) 

of the samples collected in the chainsawed open-hole versus the borehole-collected waters to 

the likely higher oxygen concentrations present in the surface waters of the chainsaw hole, 

which had been exposed to the atmosphere for 20 days prior to sampling (Extended Fig. 3).  

 

To estimate the impact of aerobic microbial oxidation upon methane concentrations in 

subglacial channels en route to the glacier terminus, we used a previously measured 

methanotrophic rate from proglacial stream samples of the neighbouring Russell Glacier (RG)5. 

RG is part of the same overall ice-sheet catchment as the LG, overlaying same geological 

settings; environmental factors impacting microbial oxidation at LG should therefore be similar 

to the ones present at RG. Moreover, molecular analyses of the LG river revealed that the 

dominant methanotrophic clade sampled had identical (100% identity) partial 16S rRNA-gene 

sequences to the one identified at RG (Extended Data Fig. 4b).  

 

We therefore consider that the use of the Dieser et al. 2014 reported microbial rate to be 

representative of the methanotrophic sink at LG. In fact, the RG oxidation rate likely exceeded 
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in situ methanotrophy at LG for most our measuring period, given the higher temperature (i.e. 

4°C) and higher methane concentrations in meltwaters employed in the Dieser et al. 2014 

incubations. The lower LG river temperatures (Extended Data Fig. 7d), as well as lower overall 

methane concentrations (i.e. lower substrate availability), should result in overall lower 

methanotrophic rates72,73. Additionally, a smaller methanotrophic footprint at LG relative to 

RG is consistent with the lower relative abundance of 16S rRNA gene sequences related to 

methanotrophic clades detected in the LG runoff (~ 0.5 to 10 % of total OTUs at LG (Extended 

Data Fig.  4.a)) than at RG (~ 1 – 60 %)5. As such, we consider the use of the Dieser et al. 

(2014) microbial oxidation rate to be conservative and likely represent higher limits.   

 

A small methanotrophic impact on subglacial methane during its transit through the glacier 

drainage system is also consistent with the 2H- and 13C-CH4 isotopic signature of samples 

collected later in the season, at a time of higher flow and thus, short residence times (see 

methods). Conversely, water samples collected earlier in the season show more oxidised 

signatures (Extended Data Fig. 3) which is consistent with their source from mostly stagnant 

waters beneath the river ice in front of the LG, where methane production and oxidation would 

be expected to be in a near equilibrium state. 

 

A similar methanotrophic effect to these latter stagnant or more slowly flowing meltwaters was 

also observed in the Antarctic Subglacial Lake Whillans, where microbial oxidation was found 

to strongly impact the concentrations and isotopic signature of methane diffusing from the 

underlying lake sediments3. We therefore suggest that microbial oxidation may have a strong 

buffering effect on subglacial methane fluxes in steady-state systems (e.g. stagnant subglacial 

lake waters or in systems dominated by passive, diffusive fluxes), but that the microbial sink 

observed under such stable conditions may have a much smaller buffering impact during rapid 

subglacial drainage events, such as the ones observed here in Greenland, which completely 

alter the nature of the putative methanotrophic layer.   

 

d.  LG methanogen populations and subglacial methanogenic substrates 

Overall, archaeal sequences constituted a minority of the recovered microbial diversity of the 

LG proglacial stream, amounting to less than 1% of the total microbial classified OTUs. 

Focusing on archaeal diversity alone, however, identified the presence of archaeal sequences 

related to both hydrogenotrophic and acetoclastic clades of methanogens amongst the most 

abundant archaeal OTUs (here defined to OTUs amounting to >1% archaeal relative 
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abundance). Interestingly, whereas methane stable isotopes pointed to a dominance of acetate-

derived methane generated from the LG catchment (Fig. 4; Extended Data Fig. 3), three of the 

four most abundant methanogen-related OTUs from the LG stream most closely matched 

sequences from hydrogenotrophic methanogens (i.e. related to Methanobacteriales and 

Methanomicrobiales strains; Extended Data Fig. 4). It is important to point out that 16S rRNA 

gene data alone cannot infer microbial activity. The low relative abundance of the methanogen-

related OTUs (<0.1% of overall 16S rRNA gene library) further limits the use of molecular 

data to conclude on the relative contribution of each methanogen clade towards the overall LG 

methane pool and original methanogenic substrate (H2 or acetate) utilised by subglacial 

methanogen populations beneath the catchment.  

 

Acetate-derived methane beneath the LG is consistent with findings of CH4 originating from 

relatively old OC from recently deglaciated marginal lakes in the Kangerlussuaq area23 (Fig. 

4). The lighter CH4 stable isotopic signature found in these lakes compared to the LG CH4 (Fig. 

4) could partially result from substrate maturation25, where methane from the LG catchment 

would be generated from older source material. Recent 14C analyses of particulate organic 

carbon at LG indeed demonstrated average radiocarbon ages of > 4,000 years16, compared to 

CH4 bearing a 14C signature of 1,400 – 1,500 years for Greenland marginal lakes23. The likely 

contribution to methane production from multiple pathways at LG is suggestive of a 

progressive transition from organic (e.g. acetate) to inorganic (H2/CO2) methane substrates 

(e.g. derived from bedrock comminution24) reflecting a depletion of the labile organic carbon 

pool in further inland regions, overlaid by the ice sheet for longer time periods. This putative 

“inorganic switch” is consistent with GISP2 and GRIP ice core, as well as Subglacial Lake 

Whillans sediment data, which all identified subglacial methane to be derived from H2 

oxidation/CO2 reduction, as indicated by stable isotopes8,12,74 (Fig. 4). 

 

e. Subglacial methanogenic rates and sediment thickness  

The methanogenic rates required to sustain the observed methane flux at LG are dependent on 

the subglacial habitat present beneath the ice. No consensus exists regarding the state of the 

bed beneath the GrIS. Studies at LG often assumed a hard bed directly underlying the ice (e.g. 

in ref. 15), whilst others have alluded to at least meters-thick subglacial sediments for a 

neighbouring catchment75, as well as sediment layers potentially hundreds of meters thick in 

other regions of the GrIS27. Orders of magnitude also separate methanogenic rates measured 

from different subglacial environments, with rates from lacustrine- or marine-derived 
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subglacial sediments from Antarctic glaciers much higher than those reported for Greenland 

and alpine glaciers overlaying paleosol17.  

 

Extended Data Fig. 5 describes the relationship between subglacial methanogenic rates and 

sediment thickness required to sustain the observed methane cumulative exports recorded in 

2015. Interestingly, if methanogenic rates observed for Greenland basal ice sediments apply to 

the LG catchment, at least ~ 9 - 29  m of  sediment across the catchment are required for 

subglacial methanogenic populations to match the annual CH4(aq) flux recorded in 2015 

(Extended Data Fig. 5). It should be noted that these estimates represent a lower limit on both 

methanogenic rates and sediment thickness needed to exactly match 2015 methane export, 

under a scenario where the entire catchment is warm-based with a uniform sediment layer, and 

where subglacial methane production exactly matches annual methane discharges, ignoring 

(residual) methane build-up beneath the catchment. The possibility for residual methane to 

build-up under LG, potentially leading to methane hydrate formation is discussed below. 

Would only a subsection of the LG catchment contribute to methane export (likely), then 

thicker sedimentary pockets would be required to account for the observed methane flux 

(Extended Data Fig. 5). Recent seismic evidence from the Russell-Leverett catchment suggests 

the presence of a sedimentary layer beneath the ice76. However, ice flow observations and 

models, as well as borehole investigations from Western Greenland indicate that if thick 

sedimentary layers do exist beneath the ice, they likely are patchily distributed77,78.  

 

f. Subglacial CH4-hydrate evolution 

A 1D reaction-transport model was used to assess the plausibility of methane hydrate 

accumulation in the LG catchment. For this purpose, the model was applied to quantify the 

magnitude of methane production rates that would be required to accumulate CH4-hydrates 

under plausible, but optimal environmental conditions in the LG catchment. Methane hydrates 

form in the sediment when constant methane production rates exceed the diffusive methane 

loss through the sediment-ice interface and allow for the accumulation of methane in 

porewaters beyond the saturation concentration. Simulation results indicated that several tens 

of meters of sediments, and at least several thousand years are required in order to form and 

maintain CH4-hydrate reservoirs at LG (Extended Data Fig. 6). Assuming a 100 m thick 

methanogenic-sediment layer, a methane production rate of ~ 310-15 g-CH4 g-1 sediment s-1 

(about two orders of magnitude higher than that observed in GrIS basal ice incubations17, 
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Extended Data Fig. 5) is required to form CH4-hydrates after just under 8,000 years of sustained 

methane production (Extended Data Fig. 6 a, b, c). Thinner sediments would require higher 

methane production rates; e.g. at least 30 m thick sediments are needed to form CH4-hydrates 

assuming a sustained methanogenic rate of 510-15 g-CH4 g-1 sediment s-1 (Extended Data Fig. 

6 e, f).  

 

Because CH4-hydrate formation requires oversaturation of porewaters, model scenarios that 

result in the formation of methane hydrates in the LG catchment are associated with high 

dissolved methane concentrations (close to the methane-hydrate equilibrium line) in shallow 

sediments and, thus, large concentration gradients at the sediment-ice interface. As a 

consequence, the catchment wide diffusive methane fluxes through the sediment-ice interface 

generated under such CH4-hydrate-stable conditions would result in hundreds of t-CH4 a-1, over 

an order of magnitude larger than the observed lateral fluxes at LG (i.e. 2.5-9.3 t-CH4 a-1; 

Extended Data Fig. 6 d, h). These estimates, however, depend on the overall catchment area 

bearing CH4-hydrates (Extended Data Fig. 6 d, h). Considering the likely patchiness of 

sedimentary layers beneath the ice sheet (see above section), it may be possible that distributed, 

deep sediment sections do exist beneath the LG catchment that could favour methane hydrate 

evolution and potentially account for some of the methane flux observed at LG. Given our 

current estimations of overall methane export from the catchment, however, it seems unrealistic 

that the bulk of methane measured at LG originates from CH4-hydrate-bearing sediments. That 

being said, the required conditions to form CH4-hydrate layers beneath 1,000 m of ice are not 

unrealistic for other regions of the GrIS, where thick ice cover has been present for long time 

periods (>10,000 years) and where thick sedimentary layers are also likely present (e.g. ref. 27). 
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