
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 7 7 0 4/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

S u m m e r er, Anna,  Sc h äfer, Eleono r a ,  M a u t n er, Victo r-Felix, M e s si a e n,  Ludwin e,

Coop er, David N. a n d  Kehr e r-S a w a tzki, Hilde g a r d  2 0 1 9.  Ul t r a-d e e p  a m plicon

s e q u e n cing  indica t e s  a b s e n c e  of low-g r a d e  m os aicis m  with  no r m al c ells  in p a tie n t s

wi th  typ e-1  N F 1  d ele tions .  H u m a n  Gen e tics  1 3 8  (1) , p p.  7 3-8 1.  1 0.10 0 7/s00 4 3 9-0 1 8-

1 9 6 1-5  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.10 0 7/s0 0 4 3 9-0 1 8-1 9 6 1-5  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



1 

 

Ultra-deep amplicon sequencing indicates absence of low-grade mosaicism with normal 

cells in patients with type-1 NF1 deletions  

 

 

Anna Summerer1, Eleonora Schäfer1, Victor-Felix Mautner2, Ludwine Messiaen3, David N. 

Cooper4, Hildegard Kehrer-Sawatzki1 

 

 

 

 

1: Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany 

2: Department of Neurology, University Hospital Hamburg Eppendorf, 20246 Hamburg, 

Germany 

3: Department of Genetics, University of Alabama at Birmingham, Birmingham, USA 

4: Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK 

 

 

 

Corresponding author: 

Prof. Dr. Hildegard Kehrer-Sawatzki, PhD 

Institute of Human Genetics, University of Ulm 

Albert-Einstein-Allee 11 

89081 Ulm, Germany 

Phone: 0049 731 50065421 

hildegard.kehrer-sawatzki@uni-ulm.de 

  



2 

 

Abstract 

Different types of large NF1 deletion are distinguishable by breakpoint location and potentially 

also by the frequency of mosaicism with normal cells lacking the deletion. However, low-grade 

mosaicism with fewer than 10% normal cells has not yet been excluded for all NF1 deletion types 

since it is impossible to assess by the standard techniques used to identify such deletions, 

including MLPA and array analysis. Here, we used ultra-deep amplicon sequencing to investigate 

the presence of normal cells in the blood of 14 20 patients with type-1 NF1 deletions lacking 

mosaicism according to MLPA. The ultra-deep sequencing entailed the screening of 96 

amplicons for heterozygous SNVs located within the NF1 deletion region. DNA samples from 

three previously identified patients with type-2 NF1 deletions and low-grade mosaicism with 

normal cells as determined by FISH or microsatellite marker analysis  were used to validate our 

methodology. In these type-2 NF1 deletion samples, proportions of 5.3%, 6.6% and 15.0% 

normal cells, respectively, were detected by ultra-deep amplicon sequencing. However, using this 

highly sensitive method, none of the 14 20 patients with type-1 NF1 deletions included in our 

analysis exhibited low-grade mosaicism with normal cells in blood using this highly sensitive 

method, thereby supporting the view that the vast majority of type-1 deletions are germline 

deletions.   

 

Keywords: neurofibromatosis type-1, NF1, NF1 microdeletions, nonallelic homologous 

recombination (NAHR), low-grade mosaicism, ultra-deep amplicon sequencing, next-generation 

sequencing 
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Introduction 

The most common recurrent mutations in neurofibromatosis type-1 (NF1) are large deletions 

encompassing the NF1 gene at 17q11.2 and its flanking regions. These so-called NF1 

microdeletions have been detected in 4.711% of all patients with NF1 (MIM #162200) and are 

associated, in most instances, with a severe clinical phenotype (Cnossen et al. 1997; Rasmussen 

et al. 1998; Kluwe et al. 2004; Zhang et al. 2015). NF1 microdeletions are nevertheless rare, 

occurring with an estimated frequency of 1: 60.000. Different types of large NF1 deletion are 

known, which are distinguishable by virtue of their size and the location of their breakpoints. 

Type-1 NF1 deletions encompass 1.4-Mb and are characterized by breakpoints located within the 

low-copy repeats (LCRs) termed NF1-REPa and NF1-REPc. The underlying mutational 

mechanism of type-1 NF1 deletions is non-allelic homologous recombination (NAHR) between 

these LCRs (Dorschner et al. 2000; Jenne et al. 2001; López-Correa et al. 2001). Most type-1 

NF1 deletions exhibit breakpoints located within NAHR hotspots of 4-5 kb, termed paralogous 

recombination sites 1 and 2 (PRS1 and PRS2) (Forbes et al. 2004; De Raedt et al. 2006; 

Bengesser et al. 2014; Hillmer et al. 2016, 2017; Summerer et al. 2018). If all NF1 

microdeletions are considered, 70-80% are type-1 which is therefore the most common type of 

large NF1 deletion (Pasmant et al. 2010; Messiaen et al. 2011). Type-2 NF1 deletions encompass 

only 1.2-Mb and are mediated by NAHR between the SUZ12 gene and its pseudogene SUZ12P 

flanking adjacent to NF1-REPc and NF1-REPa, respectively (Roehl et al. 2010a; Vogt et al. 

2012). It has been estimated that type-2 NF1 deletions account for 10-20% of all large NF1 

deletions (Kehrer-Sawatzki et al. 2004; Messiaen et al. 2011). The third recurrent type of large 

NF1 deletion is the so-called type-3 NF1 deletion, which is characterized by NAHR-mediated 

breakpoints located within NF1-REPb and NF1-REPc (Bengesser et al. 2010; Pasmant et al. 

2010; Zickler et al. 2012). However, type-3 NF1 deletions are relatively rare, since they comprise 

only 1.44% of all large NF1 deletions (Pasmant et al. 2010; Messiaen et al. 2011).  
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NF1 deletions of type-1, 2 and 3 have recurrent breakpoints and are mediated by NAHR. By 

contrast, atypical NF1 deletions exhibit non-recurrent breakpoints and are not mediated by 

recombination but instead originate via double strand break repair or replication-associated 

mechanisms (reviewed by Kehrer-Sawatzki et al. 2017). Atypical NF1 deletions are 

heterogeneous in relation to their size and the number of genes located within the deleted region 

(Vogt et al. 2014 and references therein). Atypical NF1 deletions account for ~10% of all NF1 

microdeletions (Pasmant et al. 2010; Messiaen et al. 2011). 

In addition to breakpoint location and underlying mutational mechanism, the various types of 

NF1 microdeletion are potentially also distinguishable by the frequency of somatic mosaicism 

with normal cells not harbouring the NF1 deletion. Type-2 NF1 deletions are frequently of 

postzygotic origin (Kehrer-Sawatzki et al. 2004; Steinmann et al. 2007); indeed, at least 63% of 

all patients with type-2 NF1 deletions exhibit somatic mosaicism with normal cells (Vogt et al. 

2012). Importantly, type-2 deletions are mostly associated with low-grade mosaicism with 

normal cells in blood, characterized by low proportions (1-5%) of normal cells as determined by 

interphase-FISH (Roehl et al. 2012). The number of normal cells in these cases has been noted to 

be higher in other cell types such as skin fibroblasts and urine-derived cells and hence the 

detection of low-grade mosaicism with normal cells is somewhat easier in these tissues (Roehl et 

al. 2012). However, cells other than those derived from blood are often not available for analysis. 

and sSo far, FISH has been the only method suitable for the detection of low-grade mosaicism.  

In addition to type-2 deletions, atypical NF1 deletions are also frequently of postzygotic origin 

and it has been estimated that approximately 60% of atypical NF1 deletions exhibit somatic 

mosaicism with normal cells (Vogt et al. 2014). However, as yet, the proportion of low-grade 

mosaicism with normal cells in patients with atypical NF1 deletions has not been investigated in 

any detail.  

In contrast to type-2 and atypical NF1 deletions, only a very small proportion (3.4%) of type-1 

NF1 microdeletions have been observed to be of postzygotic origin and associated with somatic 
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mosaicism with normal cells not harbouring the deletion (Messiaen et al. 2011). In the study of 

Messiaen et al. (2011), four (3.4%) of 116 patients with type-1 NF1 deletions exhibited 

mosaicism with normal cells. Only one of these four patients had low-grade mosaicism, with 

normal cells being present at a level of only 3% in the blood. In one of the four patients, the 

proportion of normal cells was not determined precisely and the other two patients exhibited 20% 

and 50% of normal cells in their blood as determined by FISH. Hence, low-grade mosaicism 

would appear to be very rare in patients with type-1 NF1 deletions, being detected in only 1% of 

patients with type-1 NF1 deletions. However, not all 116 patients in the study of Messiaen et al. 

(2011) have been investigated by FISH. Consequently, some patients with type-1 NF1 deletions 

and mosaicism with normal cells might not have been detected, particularly those with a high 

proportion of cells harbouring the deletion and only low proportions of normal cells (< 10%) in 

blood.  

Low-grade mosaicism with normal cells may have been overlooked in patients with type-1 NF1 

deletions investigated by classical methods used to detect NF1 deletions such as multiplex 

ligation-dependent probe amplification (MLPA). This method is characterized by an intrinsic 

detection limit of 10-20% (Coll-Mulet et al. 2008; Stevens-Kroef et al. 2009; van Veghel-

Plandsoen et al. 2011; reviewed by Hömig-Hölzel and Savola, 2012; Alhourani et al. 2014). In 

the case of patients with high proportions of cells with NF1 microdeletions in their blood, normal 

cells not harbouring the deletion and present at proportions lower than 10-20% are not detected 

by MLPA. Similar detection limits are associated with other methods such as microarray analysis 

and Sanger sequencing (Tsiatis et al. 2010; Davidson et al. 2012; Oneda et al. 2017; Kumar et al. 

2018). However, next generation sequencing methods including ultra-deep amplicon sequencing 

with high coverage of the target regions (> 1000 sequence reads), have been shown to detect low-

grade somatic mosaicism down to a level of only a few percent (reviewed by Cohen et al. 2015; 

and reviewed by Gajecka, 2016; Contini et al. 2015; Quin et al. 2016; Bernkopf et al. 2017; 

Chang et al. 2017; Morimoto et al. 2017).  
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In the study presented here, we performed ultra-deep amplicon sequencing to investigate the 

putative presence of low proportions of normal cells in the blood of patients with type-1 NF1 

deletions which were initially identified by MLPA and not associated with somatic mosaicism 

according to this method. The principle of our approach was to screen for heterozygosity of 

single nucleotide variants (SNVs) located within the NF1 microdeletion region which would 

indicate the presence of normal cells not harbouring the deletion. To analyse the frequency of 

somatic mosaicism in patients with type-1 NF1 deletions is important since it can influence both 

the phenotypic expression of the disease and the transmission risk (reviewed by Kehrer-Sawatzki 

and Cooper, 2008). Further, although as a group, patients with type-1 NF1 deletions exhibit a 

severe clinical phenotype, variability in the clinical manifestations of the disease is frequently 

observed at the individual level (Mautner et al. 2010). This variation could be associated with 

somatic mosaicism with normal cells that has remained undetected because it was present as low-

grade mosaicism with normal cells in the blood. If low-grade mosaicism with normal cells were 

very rare in patients with type-1 deletions, the observed inter-individual differences in clinical 

manifestations might result from other factors such as modifying genes.  

 

Patients and methods 

Patients 

In this study, 14 genomic DNA derived from blood samples of 20 patients with type-1 NF1 

deletions were was analysed by means of ultra-deep amplicon sequencing. The deletion 

breakpoints of 12 18 of these 14 20 patients have been previously determined by means of 

breakpoint-spanning PCRs (Mautner et al. 2010; Hillmer et al. 2016, 2017; Summerer et al. 

2018). The deletions of the remaining two patients were characterized in terms of their breakpoint 

location during the course of this study. In addition to the 14 20 patients with type-1 NF1 

deletions, we investigated two patients with either an atypical NF1 deletion or a type-2 deletion 

as summarized in Table 1. All 16 22 patients have been investigated by MLPA (P122 NF1 area 
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probemix, version C2, MRC Holland, The Netherlands) in our previous study and somatic 

mosaicism with normal cells was not detected by this method (Summerer et al. 2018). The 

parental origin and the chromosomal mechanism underlying some of these deletions has been 

determined previously as indicated in Table 1 (Neuhäusler et al. 2018). The clinical features of 

the patients are summarized in Supp. Table S1. The patients provided written informed consent 

and the study was approved by the respective institutional review boards. 

 

Ultra-deep amplicon sequencing 

In total, 96 amplicons were amplified by PCR using the AmpliTaq Gold™ 360 Master Mix 

(ThermoFisher Scientific, Waltham, USA) and primers listed in Supp. Table S2. The genomic 

positions of the amplicons, as well as the SNVPs with a minor allele frequency (MAF) ≥ 1% 

covered by these amplicons, are listed in Supp. Table S3. The amplicons had a mean size of 204-

bp (size range: 124-bp to 266-bp) and were located within the NF1 microdeletion region as 

schematically indicated in Figure 1. In total, 1809 SNVs were covered by these 96 amplicons. Of 

these 1809 SNVs, 141 SNVs had a MAF ≥ 5% whereas 186 SNVs had a MAF ≥ 1% (Supp. 

Table S3). The amplicons were purified using Exonuclease I (ThermoFisher Scientific, Waltham, 

USA) and FastAP thermosensitive alkaline phosphatase (ThermoFisher Scientific, Waltham, 

USA). All amplicons were quantified by means of the Qubit-4 fluorometer and equal amounts 

(14 ng) of each amplicon were added to the pool. The amplicons were produced and quantified at 

the Institute of Human Genetics, University of Ulm. In Subsequent experiments were performed 

by Eurofins Genomics GmbH (Ebersberg, Germany) including the library preparation and the 

next step, adaadaptor s were ligation ed to the pooled amplicons by means of the NEBNext Ultra 

II DNA Library Prep Kit (New England Biolabs, Ipswich, MA, USA). Next, the After adapter 

ligation, PCR was performed and the indexed libraries were subjected to paired-end sequencing 

on an Illumina HiSeq 4000 platform performed by(Eurofins Genomics GmbH (, Ebersberg, 

Germany). At least five million sequence reads were obtained fromor each patient-specific library 
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whichand were analysed in different time-shifted batches; and hence not all libraries were 

sequenced on the same HiSeq 4000 lane.   

The amplicon reads in FastQ file format were aligned against the reference sequence and 

analysed by means of the SeqNext module of the Sequence Pilot software (JSI medical systems 

GmbH, Ettenheim, Germany). Filtering of reads was performed according to the default settings: 

(i) Quality score threshold: 10, representing a base call accuracy of at least 90%; (ii) Ignore reads 

threshold: 30%, meaning that reads with more 30% of incorrect base calls were not considered. 

The mean number of reads (coverage) at the sites of SNVs with a MAF ≥ 1% per DNA sample is 

summarized in Supp. Table S4. 

 

Results 

Validation of the ultra-deep amplicon sequencing 

In this study, we performed ultra-deep sequencing of 96 amplicons covering a total of 186 SNVs 

with a MAF ≥ 1% (Supp. Table S3) and investigated the allele frequency and heterozygosity of 

these SNVs located within the NF1 microdeletion region (Figure 1). In order to evaluate the 

efficiency of this approach e ultra-deep sequencing of the amplicons designed by us to detect 

low-grade mosaicism with normal cells, we analysed DNA samples derived from the blood of 

three patients with mosaic type-2 NF1 deletions previously identified by either interphase- FISH 

or microsatellite marker analysis (Roehl et al. 2010a, 2012). Type-2 NF1 deletions are frequently 

of postzygotic origin, and patients with these deletions exhibit low numbers (110%) of normal 

cells in blood (Roehl et al. 2012). In the three blood-derived DNA samples used to validate our 

approach, ultra-deep amplicon sequencing detected proportions of normal cells of 5.3%, 6.6% 

and 15.0%, respectively (Table 2; Supp. Tables S5-S7). The number of heterozygous SNVs per 

patient was 42, 36 and 45 SNVs, respectively (Supp. Tables S5-S10).  

From these validation experiments, we were able to conclude that heterozygosity of SNVs with 

frequencies of the second allele < 1% were likely to be artefacts caused by sequencing errors 
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(Supp. Tables S8-S10). Further, we deduced from the validation experiments that at least three 

SNVs must exhibit heterozygosity for us to be able to conclude that low grade mosaicism was 

present. Consanguinity was not reported in relation to the parents of the patients we investigated, 

who were either of European or North American descent. Hence, autozygosity is unlikely to have 

impaired our analysis. Further, extended homozygosity of the complete NF1 deletion region has 

not been observed by means of SNP array analysis in Europeans (Roehl et al. 2010b). The 

validation experiments performed here indicated an average of 41 heterozygous SNPs per DNA 

sample which demonstrated that the 96 amplicons, designed by us to covering the entire NF1 

deletion interval, are well suited for the reliable detection of low-grade mosaicism with normal 

cells.  

The PCR preceding the ultra-deep sequencing to generate the amplicons maycould have 

introduced a quantification bias, botheither by sequencing errors and or by preferentialred 

amplification of one allele. It has been shown that nucleotide substitution errors, in particular 

transitions, introduced during the preceding PCR amplification of the target regions, can impact 

upon the ultra-deep sequencing results (Brodin et al. 2013; Shao et al. 2013). Site-specific 

frequencies of substitution errors have been observed in the range of 0.0063% - 1.17% (Brodin et 

al. 2013). Additonally, quantification of alleles may be hampered by an amplification bias caused 

by SNVs at primer binding sites. In order to reduce the effectimpact of any such a bias, we 

havetook taken care to ensure that the three nucleotides at the 3’‘-prime end of the PCR primers 

did not bind to SNVs with a minor allele frequency >1%. Nevertheless, we can not exclude the 

possibility that an amplification bias of certain alleles has influenced our analysis.  

In order tTo assess a putativethis possible quantification bias in greater detail, we analysed the 

alleles at sites of heterozygous SNVs in patients with mosaic type-2 deletions (Supp. Table S11). 

The average proportions of the alleles present at lower proportionsfrequencies and derived from 

normal cells waswere 5% in patient 1502, 6.2% in patient 1630 and 13.1% in patient UC172. Our 

analysis was based on the assumption, that the difference between this average and the observed 

Formatted: English (United Kingdom)

Formatted: Line spacing:  Double

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)



10 

 

proportion of the lowerless frequently represented allele of the given SNV may reflect a 

quantification bias. In total, 39 SNVs were informative in the sense that they were heterozygous 

in at least two patients with mosaic type-2 deletions. For 23 of these 39 SNVs, we observed a bias 

towardsin favour of the amplification of a specific allele in at least two patients. However, on 

average this bias amounted only 0.6% of the estimated allele frequency (range: 0% - 3%; Supp. 

Table S11). 

 

Remarkably, the proportions of normal cells in the blood of the three patients with type-2 

deletions were estimated to be higher by ultra-deep amplicon sequencing than by interphase-

FISH even though the same blood samples had been analysed (Table 2). This difference may 

have resulted from the stringent FISH evaluation performed in our previous study which erred on 

the conservative side by aiming to avoid consideration of false positive normal cells (Roehl et al. 

2012). On the other hand, the allele frequencies of heterozygous SNVs determined by ultra-deep 

sequencing showed some variation when different amplicons derived from the same DNA sample 

were compared, possibly indicative of a quantification bias as mentioned above primer-specific 

differences in the amplification rate of the minor alleles (Supp. Figure S1; Supp. Table S11). 

Nevertheless, our results clearly indicate that ultra-deep sequencing of the amplicons represents a 

very sensitive technique for the detection of low-grade mosaicism with normal cells in the blood 

of patients with high numbers of cells harbouring large NF1 deletions.  

 

Investigation of potential low-grade mosaicism in 16 22 patients with large NF1 deletions 

We analysed 16 22 patients with large NF1 deletions for the presence of low-grade mosaicism 

with normal cells. Since interphase-FISH had not been performed with blood samples from any 

of these 16 22 patients, low-grade mosaicism with normal cells could not be excluded. Our study 

cohort included 14 20 patients with type-1 NF1 deletions as well as one patient with an atypical 

NF1 deletion. The breakpoints of this atypical deletion weare found to be located within NF1-
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REPa and NF1-REPc but not within regions with high sequence similarity between the LCRs. 

Thus, the deletion was not mediated by NAHR, as was noted in our previous study (Summerer et 

al. 2018). Further, we also investigated a patient with a type-2 NF1 deletion who exhibiteding a 

severe clinical phenotype, which is unusual for patients with mosaic type-2 deletions (Table 1, 

Supp. Table S1).  

Twelve Eighteen of the 14 20 patients with type-1 NF1 deletions had breakpoints located within 

the NAHR hotspots PRS1 and PRS2 as determined previously (Table 1). Two of these 14 20 

patients had breakpoints located outside these hotspots but within other regions of high sequence 

homology between NF1-REPa and NF1-REPc. The breakpoints in one of them, patient 4631, 

were had not been previously reported but were instead determined by microarray analysis and 

breakpoint-spanning PCR performed during the course of this study. As schematically indicated 

in Supp. Figure S2, the breakpoints of this NAHR-mediated deletion were found to be located 

within the LRRC37B gene and its pseudogene as determined by the sequence analysis of 

breakpoint-spanning PCR products.  

To investigate the potential presence of low proportions of normal cells in the blood of these 16 

22 patients, we performed ultra-deep sequencing of the 96 amplicons as described above (and 

validated by means of the confirmed mosaic type-2 NF1 deletions). In none of the 16 22 patients 

was a second allele observed with a frequency > 1% in more than two SNVs (Supp. Tables 121-

33226). Hence low-grade mosaicism with normal cells was not detected in any of these cases by 

means of the ultra-deep amplicon approach.   

 

Discussion 

The analysis of low-grade mosaicism with normal cells in patients with large NF1 deletions is 

potentially very important in the context of ascertaining genotype/phenotype correlations. So far, 

FISH has been the method of choice for the investigation of low-grade mosaicism but this 

method has its application limits since it is dependent upon the availability of (i) fresh blood 



12 

 

samples, (ii) high quality FISH probes which are not commercially available and (iii) experienced 

cytogeneticists to assess low-grade mosaicism with normal cells to a high degree of accuracy. 

The study presented here is the first to demonstrate that ultra-deep amplicon sequencing is well 

suited to detect low-grade mosaicism of normal cells in NF1 patients with high numbers of cells 

harbouring large NF1 deletions. Our validation experiments using three mosaic type-2 NF1 

deletions previously identified by interphase-FISH or microsatellite marker analysis indicated 

low proportions (5.3%, 6.6% and 15.0%) of normal cells in the blood of the patients (Supp. 

Tables S5-S7; Table 2). Type-2 NF1 deletions are frequently of postzygotic origin associated 

with high numbers of cells harbouring the deletion in blood (Kehrer-Sawatzki et al. 2004; Vogt et 

al. 2012). By contrast, the frequency of low-grade mosaicism with normal cells in patients with 

other types of large NF1 deletions has not as yet been investigated in any detail. Previous studies 

have suggested that only a small proportion of type-1 NF1 microdeletions are of postzygotic 

origin associated with somatic mosaicism with normal cells (Messiaen et al. 2011). In the latter 

study, low-grade mosaicism characterized by 3% of normal cells was detected in only one of 116 

patients with type-1 NF1 deletions investigated. However, not all 116 patients in the study of 

Messiaen et al. (2011) have been analysed by FISH. Consequently, some patients with type-1 

NF1 deletions and mosaicism with normal cells may not have been detected, particularly those 

with low proportions of normal cells (< 10%) in blood.  

To further investigate the frequency of low-grade mosaicism with normal cells in patients with 

type-1 NF1 deletions, we performed ultra-deep amplicon sequencing in 14 20 patients with type-

1 NF1 deletions, which is as yet the most sensitive method to detect low-grade mosaicism. 

However, proportions of second alleles > 1% ofin more than two SNVs located within the NF1 

deletion region, indicative of the presence of normal cells, were not detected (Supp. Tables S121-

S26S332). This finding implies that low-grade mosaicism (< 10%) with normal cells is indeed 

very rare in patients with type-1 NF1 deletions. Nevertheless, since cells other than blood-derived 

cells were not available to us for further analysies, the presence of low-grade mosaicism in the 
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patients with type-1 NF1 deletions investigated by us can not be completely excluded. As 

mentioned above, patients with mosaic type-2 NF1 deletions frequently exhibit high numbers (> 

90%) of cells harbouring the deletion in blood but lower proportions of cells with the deletion in 

other tissues (Roehl et al. 2012). We analysed three type-2 NF1 deletions exhibiting high 

proportions of cells with the deletion in blood (94.6%, 93.4% and 85.0%) by means of ultra-deep 

sequencing and mosaicism with normal cells was readily detected. Hence, we believe that ultra-

deep sequencing is indeed a powerful technique to detect low-grade mosaicism ofwith normal 

cells, even if the proportion of cells harbouring the deletion is very high. Our analyses of 20 

patients with type-1 deletions as well as the validation experiments we performed, imply that the 

detection limit of the ultra-deep sequencing approach is in the range ofaround 1%. In other 

words, normal cells present atin a proportions lower than <1% wcould not have beengone 

undetected by us. Our findings indicate that at least 99% of cells in the blood of the type-1 

deletions investigated by us harboured the deletion and if normal cells would have beenwere 

present, their proportion shwould have been lower than 1%. 

The assumptionconclusion that the majority of type-1 NF1 deletions are of meiotic origin and 

hence not associated with somatic mosaicism is supported by the observation of a pronounced 

maternal parent-of-origin bias for type-1 NF1 deletions and the predominance of 

interchromosomal NAHR causing these deletions. Previous analysess have shown that ~91% of 

all type-1 NF1 deletions are of maternal origin and predominantly caused by interchromosomal 

NAHR (observed in 87.5% informative cases) (López-Correa et al. 2000; Neuhäusler et al. 2018). 

Interchromosomal exchange of maternal chromosomes causing type-1 deletions most likely 

occurs by unequal crossover during meiosis I, when the homologous chromosomes are joined by 

the synaptonemal complex and thus broughtthereby bringing them into close proximity to one 

each another for an extended period of time. By contrast, type-2 NF1 deletions, which are 

frequently of postzygotic origin, are mediated by intrachromosomal NAHR and any preference 

for a parental origin has not been observed (Roehl et al. 2010a).  
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It may be possible that some of the less frequent type-1 NF1 deletions of paternal origin and 

those mediated by intrachromosomal NAHR could be of postzygotic origin, in contrast to the 

NF1 deletions mediated by interchromosomal NAHR which are more likely to occur during 

meiosis. These deletions are however rare and family analysis including siblings by means of 

microsatellite marker analysis is necessary to identify the parental and chromosomal origin of the 

deletions. In the study presented here, we analysed three paternal type-1 NF1 deletions as well as 

two maternally derived type-1 deletions mediated by intrachromosomal NAHR (Table 1). In 

total, we analysed five of the rare type-1 deletions mediated by intrachromosomal NAHR. Even 

in these rare forms of type-1 NF1 deletion, low-grade mosaicism with normal cells was not 

detected by ultra-deep amplicon sequencing which is the most sensitive method available to 

detect this type of mosaicism.  

We conclude that low-grade mosaicism with normal cells, frequently observed in patients with 

type-2 NF1 deletions, is very rare in patients with type-1 deletions, which seem to occur in most 

instances in the germline of a parent and are then transmitted to the child. Ectopic recombination 

occurring during meiosis between misaligned chromosomes 17 is predominantly located within 

the NAHR hotspots located in NF1-REPa and NF1-REPc and not within in the paralogous 

SUZ12 gene and its pseudogene immediately flanking adjacent to these LCRs. By contrast, 

SUZ12 and SUZ12P harbour the breakpoints that result from mitotic NAHR which must occur 

early during embryonic development, giving rise to type-2 deletions (Roehl et al. 2012). A 

potentialOne explanation for this could be, that the SUZ12 protein is an essential part of the 

polycomb repressive complex 2 (PRC2) which is required for embryonic stem cell differentiation 

and development (Bracken et al. 2006; Pasini et al. 2007). Hence transcription of SUZ12 needs to 

be increasesd during early embryonic development which may result in an open chromatin 

conformation that is vulnerable to DNA double strand break formation and transcription- 

associated recombination (reviewed by Gottipati and Helleday 2009, reviewed by Marnef et al. 

2017). Nevertheless, Tthe reasons for these positional preferences of meiotic vs. mitotic 
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recombination breakpoints are still unclear and further studies are will be necessary to investigate 

whether structural genomic variants, such as large inversions of the NF1 gene region, might exist 

that could predispose to misalignments of chromosomes 17 during meiosis and NAHR-mediated 

breakpoints within NF1-REPa and NF1-REPc causing germline type-1 NF1 deletions.  
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Legend 

Figure 1: Schema of the type-1 NF1 deletion region flanked by the low-copy repeats NF1-REPa 

and NF1-REPc. Horizontal black bars indicate the genes located in regions flanking the NF1 

gene. The relative positions of the 96 amplicons that have been analysed by ultra-deep 
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sequencing in order to identify low-grade mosaicism with normal cells are indicated by vertical 

bars. 

 


