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Key points 
 

- Cancer genomes are highly enriched with mutations of different kinds. 

- The DNA sequence context and distribution of mutations represent the signatures of mutational 

processes that can be deconvoluted into individual components.  

- These mutational signatures, supplemented by mutable motifs (a wider descriptor of mutation 

context), represent the footprints of interactions between DNA, mutagens and the enzymes of the 

repair/replication/modification pathways. 

- It has become clear that it is possible to acquire an understanding of the underlying mutational 

mechanisms in cancer by indirectly analyzing their mutational consequences in whole genomes. 



Abstract 

Cancer is a genetic disorder, meaning that a plethora of different mutations, whether somatic or 

germline, underlie the etiology of the ‘Emperor of Maladies’. Point mutations, chromosomal 

rearrangements and copy number changes, whether they have occurred spontaneously in 

predisposed individuals or have been induced by intrinsic or extrinsic (environmental) mutagens, 

lead to the activation of oncogenes and inactivation of tumor suppressor genes, thereby promoting 

malignancy. This scenario has now been recognized and experimentally confirmed in a wide range 

of different contexts. Over the last decade, a surge in available sequencing technologies has allowed 

the sequencing of whole genomes from liquid malignancies and solid tumors belonging to different 

types and stages of cancer, giving birth to the new field of cancer genomics. One of the most 

striking discoveries has been that cancer genomes are highly enriched with mutations of specific 

kinds. It has been suggested that these mutations can be classified into ‘families’ based upon their 

mutational signatures. A mutational signature may be regarded as the a type of base substitution (for 

example, C:G to T:A) within a particular context of neighboring nucleotide sequence (the bases 

upstream and/or downstream of the mutation). These mutational signatures, supplemented by 

mutable motifs (a wider mutational context), promise to help us to understand the nature of the 

mutational processes that operate during tumor evolution because they represent the footprints of 

interactions between DNA, mutagens and the enzymes of the repair/replication/modification 

pathways. 

 



Introduction 

Mutations provide the raw material for natural selection in evolution but their rate is 

maintained at a low level in order to minimize the reduced fitness that would be associated with 

numerous deleterious mutations. Multicellular organisms can however dramatically elevate mutation 

rates in subpopulations of cells in certain chromosomal regions, for example in the variable regions 

of immunoglobulin genes in B cells. The mutator effect is achieved by the recruitment of editing 

deaminase (AID) to convert cytosines to uracil, together with error-prone DNA polymerases that 

augment the mutator effect by inaccurate repair of the uracils [1, 2]. However, aberrant regulation of 

the elaborate machinery of region-specific hypermutagenesis under pathological conditions can lead 

to cancer and other diseases [1, 3, 4]. Strong mutator phenotypes are also caused by errors in the 

global system of DNA replication and maintenance [5-7]. As a result of these aberrations, many 

cancer genomes are characterized by large numbers of changes to their constitutional genetic 

information. The underlying mechanisms of the genetic change and the factors that determine 

mutational distribution patterns in tumor genomes are multifaceted and have long been regarded as 

being refractory to direct investigation. However, recent advances in the field have led to the 

emergence of precision (or personalized) medicine in a cancer context [8, 9]. 

Tumorigenesis is a multi-step process. It begins with the transformation of a single cell that 

acquires several of the six hallmarks of cancer [10]. Cells gain these characteristics through 

numerous mutations [11, 12] caused by errors of DNA replication, the action of exogenous 

mutagens or endogenous DNA damage [13, 14]. It is likely that the mutator phenotype is a feature 

of many different cancers [15]. The ensuing genetic assault leads to the activation of oncogenes and 

inactivation of tumor suppressors thereby promoting malignancy [4, 16]. Impairment of DNA 

polymerases (pols), alterations in nucleotide pools or expression of editing deaminases promote 

tumors because cells become unable to accurately replicate and repair their DNA [4, 17-19]. The 

sophisticated machinery of replication and genome maintenance can be damaged by mutations, or 



altered by physiological conditions, such that it can become a potent mutagenic factor in cancer [20, 

21]. The frequencies of single base-pair substitutions, chromosomal rearrangements and changes in 

gene or chromosomal copy number are greatly enhanced by various environmental and intrinsic 

mutagens, especially in genetically or developmentally predisposed individuals whose cells are 

unable to properly maintain genome integrity [22]. These effects are tissue-specific: for example, the 

hereditary inherited lack of mismatch repair and/or the exonuclease domain of replicative DNA 

polymerases predisposes to colorectal cancer [10, 23]; abnormal DNA double strand break repair 

leads to an increase in incidence of breast and ovarian cancer [24]; defects in translesion DNA Рolη 

cause skin cancer [25]. Some of the mutations leading to defective DNA metabolism can predispose 

to pancreatic cancer [26]. However, compromised DNA maintenance is not the only cause of cancer. 

At the beginning of this century, it was discovered that in addition to faithful repair, human cells are 

equipped with powerful mutator machines - proteins that act in a highly mutagenic way. Most 

prominent are the DNA/RNA editing cytosine deaminases of the AID/APOBEC family [1] and 

inaccurate translesion synthesis DNA polymerases [27]. The availability of intrinsic mutators 

provides an opportunity to create variability "on demand" as an integral part of developmental 

programs and adaptive responses, but clearly poses a threat to genome integrity in case of their 

faulty regulation causing cancer and other diseases [13, 22, 28, 29].  

One powerful approach to understanding the mechanisms of mutagenesis in cancer is to 

analyse the DNA sequence context of mutations in tumors [4, 14, 30-32]. The methodology was 

introduced in the 1990s in the context of deciphering the mechanisms of somatic hypermutation in 

humoral immunity [30, 33, 34] and hypermutagenesis in retroviruses [35]. Mutations have been 

found in many types of cancer in DNA sequence contexts that are similar to those associated with 

mutagen-induced mutagenesis in model systems. It was found that AID (mutations in the WRC 

motif, with the mutable C being underlined) may contribute to gastric and hemopoietic cancers [3, 

36], especially in sites subject to cytosine methylation [32]; deaminases participating in innate 



immunity, APOBEC3A and APOBEC3B (the TCW/WGA motif, the mutable C is being underlined, 

W = A/T) may contribute to solid tumors, including breast, lung and others [37-40]. The genomes of 

several types of cancer may exhibit signatures of environmental mutagens, e.g. tobacco smoke for 

lung cancer [41], ultraviolet radiation for skin cancer and ionizing radiation for many other cancers 

[42, 43]. These examples will be discussed in more detail in the next chapters. 

 

Complete cancer genomes and genomes of other model systems 

Emerging genetic factors predisposing to cancer or connected with sporadic cancer include 

defects of systems maintaining proper quality of nucleotide pools [44], proofreading by replicative 

DNA polymerases, mismatch repair [5, 7], and the mis-regulation of editing deaminases [45]. The 

worst appears to be a combination of pool imbalance and pol defects, leading to mutational 

catastrophe and, very likely, cancer [46]. Low replication fidelity or extensive genome editing 

causes hereditary and sporadic cancer and fuels the acquisition of drug resistance. On the other 

hand, low replicational fidelity renders many cancer cells more sensitive to certain antitumor agents, 

which could be used as therapeutic tools to contain tumor cells [47, 48]. 

It is imperative to highlight the point that mutational signatures attributable to each particular 

cancer type were first found and characterized by means of the extensive use of model organisms, 

bacteria and yeast [49-56]. Despite enormous progress in our understanding of the mechanisms of 

mutagenesis, the latest data prompt new questions and stimulate the search for new approaches and 

methods aimed at addressing these questions. Among the most pressing issues are the mechanisms 

of mutagenesis in tumor cells. The transient hypermutable phenotype that was described in cancer 

cells and in cultures of microorganisms is worth comprehensive study [4]. Most of the studies 

devoted to the mutational process were conducted in haploid organisms. It was previously noticed 

that mutagenesis in diploid organisms possesses some special features [55, 57, 58]. 

 



Somatic mutations in normal tissues 

Not only cancer genomes, but also the genomes of benign cells acquire somatic mutations 

during the course of apparently normal development and aging. These mutations arise due to various 

endogenous factors such as the activity of mobile elements, DNA polymerase slippage, DNA 

double-strand breaks, inefficient DNA repair, unbalanced chromosomal segregation and various 

exogenous factors such as cigarette smoke and UV exposure [59, 60]. The genomes of somatic cells 

carry a substantial burden of somatic mutations and footprints of exogenous and endogenous 

mutagenic processes. For instance, comparing the mutational burden in skin fibroblasts from 

forearm and hip from the same donors, it was ascertained that the UV-induced (primarily C:G > T:A 

and CC:GG > TT:AA) and endogenous mutation rates per year in exposed skin were more than two-

fold higher than that in protected areas such as hip [61]. In similar vein, the impact of smoking was 

apparent in lung, and an increased burden of C:G > A:T mutations was detectable at tissue-level 

resolution in smokers indicating pervasive clonal growth (with implications for field cancerization 

[62, 63]). Endogenous factors also lead to a context-specific increase in mutation burden. For 

example, somatic variants in peripheral blood occasionally carried signatures of endogenous 

mutational processes including AID-driven targeted mutagenesis [63-65]. Spontaneous deamination 

of methylated cytosine residues appears to be an important source of somatic mutations in benign 

colon and small intestine, but not in liver [66]. Germline BRCA1 and BRCA2 mutations are 

associated with increased DNA double strand break repair defects and a higher burden of genomic 

alterations (e.g. amplifications, deletions) in benign tissues [67]. It was however difficult to ascertain 

the developmental lineage in which the majority of somatic mutations were acquired. Using 

transcription-coupled repair signatures, Yadav et al. [63] were able to associate somatic mutations 

with transcriptional profiles of the affected cells and infer that the vast majority of somatic 

mutations detectable in peripheral blood had probably been acquired in the lymphoid progenitor 

cells and hematopoietic stem cells. 



The burden of somatic mutations in benign cells appears to be substantial [68-70]. According 

to some estimates [71], almost half of the somatic mutations in cancer genomes have accumulated 

prior to neoplastic transformation. This translates into a burden of 10-2 to 102 mutations per Mb on a 

genome-wide scale, and 10-100 mutations in protein coding regions in a single somatic cell in 

benign human tissues. Although estimates of the rate of stem cell divisions in adult tissues are 

controversial and vary quite widely [72], this is roughly consistent with estimates of the somatic 

mutation rate (2 to 10 mutations per diploid genome per cell division) calculated in a number of 

human cell types including B and T lymphocytes and fibroblasts [reviewed in [73]]. Another 

estimate based on sequencing clonally-derived organoids from small intestine, colon and liver of 

human donors (aged between 3 to 87 years) suggested that the mutation rate was comparable among 

progenitor cells in those tissues: approximately 40 novel mutations per year, despite the large 

difference in cancer incidence between these organs [66]. Reliable single cell data for other tissue 

types are still relatively sparse. It is not yet known whether stem cell division rates, and hence the 

increase in mutation burden, are constant over the lifetime of the individual. This notwithstanding, 

these data indicate that as with cancer genomes, the genomes of normal benign cells also carry a 

substantial burden of somatic mutations during normal development and aging. 

The tissue-level functional consequences of somatic mutations present in a single somatic 

cell are limited, unless the cell undergoes clonal growth [63, 67, 73]. Clonal growth certainly 

appears to be widespread in skin and blood. Tissue-level studies that complemented single cell 

analyses, found that approximately 2-30 somatic mutations and 1-8 somatic copy number alterations 

were detectable at tissue-level resolution (>1% allele frequency) in benign tissues [60, 63, 67]. In 

some cases, clonally expanded cell populations carried cancer gene mutations (however, this was 

not obligate and there were exceptions). For instance, clonal hematopoiesis is often characterized by 

DNMT3A and TET2 mutations [64, 74]. In benign skin-tissues, clones carrying BRAF and TP53 

mutations were common [73]. It is possible that such early driver mutations have a role in initiating 



field cancerization and premalignant lesions. Mutational signatures suggested that such mutations 

tend to propagate under relaxed purifying selection (i.e. nearly neutral and/or positive selection) in 

non-malignant tissues [63, 73]. 

 

Mutation databases in cancer genetics and potential problems associated with their use 

The major cancer genomic databases are listed in Table 1. These databases contain mutations 

identified in cancer samples using a variety of different methods e.g. allele-specific PCR, SNP chip 

arrays, targeted gene sequencing, whole-exome sequencing, whole-genome sequencing. The 

heterogeneity of these data is such that it can lead to certain experimental bias, particularly study 

bias associated with known cancer driver genes and variants. Analysis of mutational signatures, 

motifs or spectra requires unbiased datasets, such as whole genome/exome sequences and additional 

preprocessing. Therefore, databases providing access to data from whole-genome and whole-exome 

studies, such as ICGC, TCGA, COSMIC WGS, CBioPortal, PCDP, and UCSC Cancer Genomics 

Browser (listed in Table 1) have been a prerequisite for mutational signature research. 

In model organisms, mutation accumulation studies involve the genome sequencing of 

subsequent generations. As described in the previous chapter, these studies reveal both the mutation 

rate and the mutational spectrum associated with spontaneous mutagenesis. Other mutational studies 

have focused on controlled experiments exposing cell cultures to certain mutagens or genetically 

modifying enzymes involved in replication and DNA repair machinery.  

Human cell lines are catalogued in Biobanks (Table 1) and data are aggregated in databases 

such as CCLE and COSMIC CLP, whereas for model organisms the data are scattered around 

various resources. Many of the known carcinogens are mutagens; when the mutational spectrum of a 

given mutagen is known, it may be used in order to identify the likely cause of cancer. Known 

mutagenic substrances and pharmacogenomics data are available in the databases Risctox, 

COSMIC, CCLE and the UCSC Cancer Genomics Browser (Table 1). 



Several large-scale cancer genomics projects, such as the Cancer Genome Atlas (TCGA) and 

the International Cancer Genome Consortium (ICGC) (Table 1), have been initiated in recent years.  

These pan-cancer projects have generated high volumes of data which in principle should prove 

invaluable in understanding the biology, initiation and progression of human cancers.  One caveat, 

however, is in how to distinguish artefactual DNA damage from the bona fide somatic mutations 

that actually occurred in the tumour; Chen et al. (PMID: 28209900) have recently reported that 

mutagenic damage accounts for the majority of the erroneous identification of variants within the 

low to moderate (1 to 5%) frequency range in whole (cancer) genome sequencing studies. If many 

of the somatic mutations supposedly identified in human cancer genomes are indeed spurious, 

implying that some of the key datasets used for the analysis of cancer mutational signatures have 

been compromised from the outset, some of the conclusions drawn from early studies may have to 

be revisited once the accuracy and reliability of the mutation datasets have been ascertained. 

 

Mutable motifs: from the DNA context of modifying enzymes and mutagens to mechanisms of 

mutagenesis 

There is no doubt that nucleotide sequence context influences mutation probability [30, 75-

84]. Mutable motifs constitute a well-established approach to study mutagenesis because they 

represent the fingerprints of interactions between DNA and mutagens/repair/replication/ 

modification enzymes thereby providing clues as to the underlying molecular mechanisms of 

mutation/recombination [78, 82, 83]. Mutable motifs are usually derived from mutation spectra, sets 

of data that includes the frequency of mutations in a target nucleotide sequence under defined 

conditions. Mutational spectra are often determined by applying phenotypic selection to an 

experimental mutagenesis system. Phenotypic selection restricts the mutational spectrum to 

detectable changes where a mutation has given rise to a phenotypic change. Alternatively, mutations 

are identified by random sequencing of DNA clones or PCR-amplified DNA molecules. However, 
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this approach only works well when the frequency of mutations is extremely high (roughly in excess 

of 10-3 per nucleotide). A mutational spectrum is usually displayed with the target nucleotide 

sequence along a horizontal linear axis and each mutational variant listed vertically above the 

nucleotide it replaces (Figure 1, [85]). In other words, a mutational spectrum shows exhibits the 

types and frequencies of context-dependent mutations associated with a particular experimental 

system. It may be either difficult or impossible to integrate mutational spectra originating from 

different studies. A mutational motif is a generalized representation of mutated nucleotides and their 

context associated with a mutagenic factor. Motifs often lack quantitative information and serve as 

qualitative descriptors of most frequently mutated sites, allowing integration of results from 

different studies. Examples of motifs are the activation-induced deaminase (AID) motif 

WRCY/RGYW (the mutable position is underlined, W=A or T, R=purine, Y=pyrimidine) with C to 

T/G/A mutations [30], and error-prone DNA polymerase η attributed AID-related mutations (A to 

G/C/G) at WA/TW motifs [86]. Examples of mutable motifs [27, 30, 32, 40, 58, 76, 82, 87, 88] are 

shown in Table 2. 

Several methods are available to analyze mutational spectra represented as a set of aligned 

sequences (Table 3); these approaches are particularly useful when applied to a set of so-called 

“hotspot” sites (sites with an elevated frequency of mutations, see [82, 83] for a discussion of 

hotspot sites). For example, a set of aligned sites can be analyzed to derive a consensus sequence 

[89] (Table 3) using one of several available approaches as described by Day and McMorris [90, 

91]. Methods that rely upon arbitrary discrimination between informative and non-informative 

positions may lead to controversial and/or unreliable results. Simple consensus sequences can be 

misleading especially when the data set is small; however, they can be reconstructed using any 

mutational spectrum and any subset of positions. 

The binomial test can also be used to study consensus sequences at or near mutation hotspots 

[92]. In this method, a number NIJ of a nucleotide “I” is calculated in each position “J” in a set of 



“M” aligned mutation hotspot sequences (Table 3). The probability P(NIJ,M,FI) to find NIJ or more 

nucleotides “I” in a position “J” is calculated taking a frequency FI of a nucleotide “I” in a target 

sequence as an expected number of the nucleotide “I” in the position “J”. A nucleotide with the 

lowest probability P(NIJ,M,FI) among all possible nucleotides in a position “J” is accepted as a 

consensus nucleotide for this position if P(NIJ,M,FI) for this nucleotide is below the significance 

level, a. It is important to note that a = 0.05 cannot be used to reject or accept a statistical hypothesis 

due owing to the multiplicity of binomial tests; moreover, these tests are strongly inter-dependent 

for each position. In order to estimate the significance level for P(NIJ,M,FI), Malyarchuk et al. [92] 

developed a resampling procedure which takes into account the multiplicity of binomial tests. 

Multiple regression models can be used for simultaneous analysis of how several 

neighboring positions influence mutation frequency. The purpose of multiple regression analysis is 

to learn more about the relationship between several independent (or predictor) variables Xi and a 

dependent (or criterion) variable Y. Stormo et al. [93] used multiple linear regression analysis to see 

how nucleotide sequence context affects 2-aminopurine mutagenesis in the lacI gene. The data 

indicate that the two nucleotides immediately preceding the mutable base strongly affect the 

frequency of mutation. However, the method assumes a direct linear correlation between the 

frequency of mutations in detectable positions and factors attributable to the nucleotide sequence 

context, and that the factors are distributed normally; in general, these assumptions are not valid for 

experimental mutational spectra. Rogozin and Kolchanov [30] employed a heuristic classification 

approach and a Monte Carlo procedure to build hotspot consensus sequences. This procedure 

assesses the non-randomness of nucleotides adjacent to or near a mutation hotspot [30]. Regression 

trees have also been used to analyze the effect of nucleotide sequence context on mutation frequency 

[94]. Regression trees are mathematically tenable, do not restrain the number of variables (as do 

heuristic methods) and are recommended for the study of simulated and real mutation spectra [94]. 

However, these approaches are based on complex assumptions and need large datasets [94]. 



Another important computational task is to identify over-representation of somatic mutations 

in known mutable motifs. Usually the frequency of known mutable motifs for somatic mutations is 

compared with the frequency of these motifs in the vicinity of the mutated nucleotide. Specifically, 

for each base substitution, 120 or 150 bases of DNA sequence centered at the mutation are extracted 

(the DNA neighborhood). This approach has been thoroughly tested and a the high accuracy of the 

analysis demonstrated [38]. The frequency of mutable motifs in the positions of somatic mutations 

was compared to the frequency of the same motifs in the DNA neighborhood (Figure 2) using 

Fisher’s exact test (2 x 2 table) and the Monte Carlo test [32, 38]. 

 

Methods to derive mutational signatures 

Cancer genome studies necessitate working with large amounts of data; the obvious 

problems of analysis of such data were resolved to a large extent by means of the so-called 

mutational signature technique [16, 31, 95, 96]. Since it is usually not possible to define the DNA 

strand on which a mutation occurred (distinguishing, for example, C > T mutations from G > A 

mutations on the opposite strand), there are essentially only six types of substitutions to be analyzed. 

Similarly, there are 96 context-dependent mutations that consider two nucleotides in the flanking 5‘ 

and 3’ positions of the mutated nucleotide. Analysis of mutational spectra of context-dependent 

mutations in cancer patients involves pooling all mutations from cancer samples into a discrete 

distribution according to the mutation types. For multiple patients/samples, their context-dependent 

mutations can be represented in the form of a non-negative matrix X, where columns correspond to 

samples and rows represent context-dependent mutation types. The problem is to find two non-

negative matrices W and H as a result of decomposition of X ~ WH, where W corresponds to 

mutational signatures and H corresponds to exposure of samples to mutational processes described 

by the signatures [16]. This so-called non-negative matrix factorization (NMF) method was 



introduced in 1999 [97], and was subsequently applied to identify metagenes and pathways in cancer 

gene expression data [95], most recently being used to derive mutational signatures [16].  

There are some variations of this basic technique. For example, Temiz et al. [98] presented a 

32 × 12 mutation matrix that captures the nucleotide pattern two nucleotides upstream and 

downstream of the mutation. In this study, a somatic autosomal mutation matrix (SAMM) 

representing tumor-specific mutations and mechanistic template mutation matrices (MTMMs) 

representing oxidative DNA damage, ultraviolet-induced DNA damage, (5m)CpG deamination, and 

APOBEC-mediated cytosine mutation, were constructed. MTMMs were mapped to the individual 

tumor SAMMs to find mutational mechanisms corresponding to each overall mutational pattern. It 

was found that ~90% of all tumor genomes had a nearest neighbor from the same tissue of origin. 

When a distance-dependent 6-nearest neighbor classifier was used, ~10% of SAMMs had an 

undetermined tissue of origin, whereas 92% of the remaining SAMMs were assigned to the correct 

tissue of origin. Thus, although tumors from different tissues may have similar mutation patterns, 

their SAMMs often display signatures that are characteristic of specific tissues [98]. 

Mutational signature is an important concept for describing individual mutagenic factors and 

for quantifying their contribution to mutational spectra in cancer samples. Several computational 

methods have been proposed for solving the X ~ WH decomposition problem. The original method 

of non-negative matrix factorization (NMF), minimizing the Frobenius norm of decomposition, is 

available as a Wellcome Trust Sanger Institute (WTSI) Mutational Signature Framework in the form 

of a Matlab package [16]. SomaticSignatures is an R Bioconductor package implementing NMF and 

PCA approaches to signature decomposition from mutational data [99]. The DeconstructSigs R 

package applies an alternative approach – multiple linear regression models to the reconstruction of 

signatures [100]. The MutSpec package integrates NMF decomposition into a Galaxy toolbox, 

enabling genomic data analysis pipelines [101].  



A recently developed resource, MutaGene [102], provides a set of tools that allows the 

exploration of this heterogeneity in terms of the underlying mutagenic processes. The processes are 

defined based on the concept of mutational signatures obtained by non-smooth NMF decomposition 

from available cancer samples. MutaGene can analyze any set of mutations obtained, for instance, 

from sequencing tumor samples, and identifies the underlying mutagenic processes and the most 

likely cancer type and subtype for a given sample. Finally, MutaGene applies mutational profiles 

and signatures as background statistical models for calculating the expected rates of context-

dependent mutations for each nucleotide and amino acid in a given gene or corresponding protein, 

helping to find site-specific cancer driving events. 

An example of a mutational signature is shown in the Figure 3. This signature (Signature 9; 

http://cancer.sanger.ac.uk/cosmic/signatures) has been found in chronic lymphocytic leukemia and 

malignant B-cell lymphoma genomes. Signature 9 is characterized by a pattern of mutations that has 

been attributed to DNA polymerase η, which has been implicated with the activity of AID during 

somatic hypermutation. 

The number of mutational signatures defines the dimensionality of the problem. It is an 

important parameter, because signatures are interpreted as individual mutational processes. An 

optimal number of signatures is hard to find because a large number of signatures may result in 

over-fitting, whereas a small number of signatures may result in inaccurate decomposition. A 

number of approaches have been implemented, for example by Tan and Fevotte [96] in a Bayesian 

NMF algorithm, and cophenetic correlation inspired by Brunet et al. [95]. To this end, finding a true 

number of mutagenic processes operating in a set of cancer samples remains an open research 

problem. Although decomposition into signatures is very useful for interpreting the mutagenic 

processes, there are certain limitations. One of them is the heuristic nature of associations between 

mutational signatures and molecular mechanisms of mutations. For example, the pol η signature in 

COSMIC (Figure 3; the Signature 9, http://cancer.sanger.ac.uk/cosmic/signatures) has a higher 

http://cancer.sanger.ac.uk/cosmic/signatures
http://cancer.sanger.ac.uk/cosmic/signatures


frequency of T:A > G:C transversions compared to T:A > C:G transitions, although such a pattern 

has not been observed either in vitro or in vivo [27]. In addition, this pol η mutational signature was 

not found in follicular lymphoma although this cancer is associated with the activity of AID [32]. 

 

Examples of cancer studies 

 There are several examples of the successful application of mutable motifs and mutational 

signatures. As discussed above, several mutations are required for cancer development, and genome 

sequencing has revealed that many cancers, including breast cancer, have somatic mutational spectra 

that are dominated by C:G > T:A transitions [40, 103]. Roberts et al. [40] and Burns et al. [103] 

have shown that APOBEC-mediated mutagenesis is pervasive throughout cancer genomes and 

correlates with APOBEC mRNA levels. Interestingly, APOBEC3B mRNA is upregulated in most 

primary breast tumors and breast cancer cell lines. Cancer cells that express high levels of 

APOBEC3B exhibit twice as many mutations as those that express low levels and are more likely to 

have mutations in TP53 [103]. Mutation clusters in whole-genome and exome data sets conformed 

to the stringent criteria indicative of an APOBEC mutation pattern (examples of APOBEC3A and 

APOBEC3B mutation patterns [56] are shown in the Figure 4). Applying these criteria to somatic 

mutations from 14 cancer types showed a significant presence of the APOBEC mutation pattern in 

bladder, cervical, breast, head and neck, and lung cancers, reaching 68% of all mutations in some 

samples [40]. Within breast cancer, the HER2-enriched subtype was clearly enriched for tumors 

with the APOBEC mutation pattern, suggesting that this type of mutagenesis is functionally linked 

with cancer development. The APOBEC mutation pattern also extended to cancer-associated genes, 

implying that ubiquitous APOBEC-mediated mutagenesis is carcinogenesis [40]. 

Tobacco smoking has been claimed to be associated with an increased risk of at least 17 

classes of human cancer. Alexandrov et al. [41] analyzed somatic mutations and DNA methylation 

in 5243 cancers of those types for which tobacco smoking is associated with an elevated risk [41]. 



Smoking was found to be associated with an increased mutational burden of multiple distinct 

mutational signatures that contribute to different extents in different cancers. One of these 

signatures, mainly but not exclusively found in cancers derived from tissues directly exposed to 

tobacco smoke, was attributed to misreplication of DNA damage caused by tobacco carcinogens. 

Other signatures probably reflect the indirect activation of DNA editing by APOBEC cytidine 

deaminases and of an endogenous clock-like mutational process. These results are consistent with 

the proposition that smoking increases cancer risk by increasing the somatic mutation load, although 

direct evidence for this mechanism is still lacking in smoking-related cancer types [41]. 

Follicular lymphoma is an uncurable cancer characterized by the progressive severity of 

relapses. The sequence context specificity of mutations in the B cells from a large cohort of 

follicular lymphoma patients has been analyzed [32]. A substantial excess of mutations was found 

within a novel hybrid nucleotide motif: the signature of somatic hypermutation (SHM) enzyme, 

AID, which overlaps CG dinucleotides. The prevalence of this hybrid mutational signature in many 

other types of human cancer was observed, suggesting that AID-mediated, CpG-methylation-

dependent mutagenesis is a common feature of human tumorigenesis [32]. Analysis of the 

association between the methylation ratio and somatic mutations in WRCG/CGYW mutable motifs 

identified a moderate but significant (p < 0.0001) decrease of methylation in the WRCG/CGYW 

mutation context [32]. Figure 5 shows that the major difference lies within the range of methylation 

ratios (% of methylated cytosines) of 80 and 100. This finding implies that in follicular lymphoma 

the SHM machinery acts at genomic sites containing methylated cytosine. It is consistent with the 

hypothesis that AID-dependent demethylation occurs preferentially in WRCG/CGYW mutable 

motifs so that mutations are one of the outcomes of the multistep demethylation process [32]. 

Smith et al. [PMID: 25934800] identified a novel signature of accelerated somatic evolution 

(SASE) marked by a significant excess of clustered somatic mutations localized in a genomic locus, 

and prioritized those loci that carried the signature in multiple cancer patients. In a pan-cancer 



analysis of 906 samples from 12 tumor types, SASE was detected in the promoters of several genes, 

including known cancer genes such as MYC, BCL2, RBM5 and WWOX. Nucleotide substitution 

patterns consistent with oxidative DNA damage and APOBEC-related local somatic hypermutation 

appeared to contribute to this signature in selected gene promoters (e.g. MYC) [PMID: 25934800]. 

 

Clustering of mutations 

 Clustering of mutations is characteristic of many DNA modifying enzymes [104] and may be 

used as an additional source of information to provide evidential support for the involvement of 

certain enzymes in generating somatic alterations in cancer. It should be noted that clustering could 

be due to certain structural or functional features of genomes (e.g. transcription start sites) [57, 105]. 

Several aspects of a mutational spectrum, including the frequency of nucleotide substitutions, 

clustering of mutations and hotspots, and periodicity of mutational patterns can be used to 

understand molecular mechanisms of mutagenesis. Some statistical approaches for analyzing the 

clustering of mutations are described in [40, 55, 106-108]. 

 In theory, any two mutations that are not distributed randomly can be considered to be 

clustered [52]. In practice, however, certain thresholds should be used to define cluster borders. 

Sometimes, when the clusters are prominent, this is rather easy. For example, the sequencing of 

genomes of certain tumors points to the mechanism where extensive deamination of resected DNA 

ends by APOBEC enzymes causes formation of strong mutational clusters (termed ‘kataegis’) [109]. 

Similarly, ssDNA-specific mutagens cause strand-specific mutation clustering in yeast upon DSB 

repair via homologous recombination [52] or upon induction of break-induced replication [110]. An 

example of a clear cluster is shown schematically on Figure 6A. 

In other cases where mutation numbers are low and/or their densities are either low or high, 

both the determination of whether clustering is present and the definition of cluster borders require 

formal mathematical approaches. For example, in a recent study [57], clusters associated with 



ssDNA vulnerable during transcription initiation have been found. For the most sensitive promoters, 

every genome contains strong and clear mutational clustering (Figure 6B,D), whereas for the more 

weakly expressed and better protected genes, clusters can be detected only when combined 

mutational datasets have been studied. In this case, clusters are defined not in a genetic but rather in 

a functional way, and depict the profiles of genomic ssDNA vulnerability to specific mutagens 

(Figure 6C,E). 

 

Large-scale DNA rearrangements, gene expression data and DNA methylation 

A variety of large-scale recombination events (duplications, deletions, translocations and 

inversions) are a characteristic feature of many cancers [111-113]. Some of these events are 

recurrent and are considered to be signatures of specific cancer subtypes [111, 112]. One well-

known example is the BCL2 gene that is involved in translocation with immunoglobulin genes. This 

translocation is a characteristic feature of follicular lymphoma [114]. Previously, we found a 

signature of pol eta  (WA/TW, W = A/T) in follicular lymphoma which was significant in 5’UTR 

regions (P-value = 0.01) [32]. However, a detailed analysis of pol  mutability suggested that a 

substantial fraction (24%) of mutated 5’UTR WA/TW motifs occurred within the BCL2 gene (19 

out of 28 mutations at A:T bases). After we removed somatic mutations that were identified within 

the BCL2 5’UTR region (near the translocation breakpoint), the correlation became insignificant (P-

value = 0.11, 60 mutations in WA/TW motifs out of 116 mutations at A:T bases) [32]. This is an 

example of how a single translocation event is able to bias the results of the whole exome analysis; 

therefore such events cannot be ignored. 

The expression of genes potentially associated with mutable motifs is also used as an 

additional feature to delineate proteins involved in mutagenesis as we discussed in the chapter 

“Examples of cancer studies”. However, these data are not always a useful source of information. 



For example, no correlation between AID mutagenesis and RNAseq expression of AID was found 

[32]. There have been numerous attempts to use expression data for the analysis of cancer. For 

example, microarrays have revolutionized breast cancer research by generating various cancer 

diagnostic and prognostic signatures. Clinically, breast cancer is a highly heterogeneous disease, and 

gene expression profiling has potentiated the subclassification of tumours into five distinct 

“intrinsic” subclasses (luminal A, luminal B, ERBB2, basal and normal-like) thereby helping to 

explain why patients with histologically similar tumours often show different outcomes and 

responses to therapy [115, 116, 117, 118, 119]. Currently, several breast cancer prognostic assays 

are on the market based on microarray and RT-PCR technologies (Oncotype DX™, MammaPrint®, 

the H/I ratio test) and their clinical validity and utility extensively studied [120]. MammaPrint®, the 

first prognostic microarray-based test, received its original FDA approval in 2007 and additional 

approval for testing in fixed tissues in 2015. Multiple additional expression-based classifiers have 

been developed [121, 122], the PAM50 classifier having been recently translated into a clinical 

assay (Prosigna™) [123]. Recently, the PRES strategy (Personalized REgimen Selection, this 

strategy employes both genetic and clinical variables) was shown to significantly increase response 

rates for breast cancer patients, especially those with HER2- and ER- negative tumors [PMID: 

28256629]. In addition to PCR- and microarray-based techniques, the utility of RNA-seq based 

methods for a variety of breast cancer signatures was demonstrated [120]. 

Epigenetic modifications, including DNA methylation, play an important role in many gene 

regulatory processes. Methylation involves two nucleotides, cytosine and adenine, and in humans it 

is predominantly found as 5-methylcytosine in CpG dinucleotides. CpG constitutes a mutation 

hotspot in the human genome, both in the germline and in the soma. This is due to methylation-

mediated deamination of 5-methylcytosine (5mC): while cytosine spontaneously deaminates to 

uracil (which is efficiently recognized as a non-DNA base and removed by uracil-DNA 

glycosylase), the spontaneous deamination of 5mC yields thymine thereby creating G•T mismatches 



whose removal by methyl-CpG binding domain protein 4 and/or thymine DNA glycosylase 

followed by base excision repair is inherently less efficient [124]. Recently developed high-

throughput techniques such as bisulfite sequencing and DNA methylation arrays have provided data 

on the methylation status of individual cytosines; these data are deposited in international consortia 

such as ICGC and TCGA. The patterns of DNA methylation may change as the cell grows and 

differentiates, and aberrant DNA methylation patterns have been observed in many cancers [125]. In 

normal tissues, promoter-associated CpG islands remain unmethylated whereas hundreds of CpG 

islands in tumors acquire DNA methylation. In the late 1990s, the CpG island methylator phenotype 

was identified in colorectal cancer [126]. Later studies have shown that there could be subgroups 

with similar methylomes even within one cancer type; thus, four different subgroups have been 

identified in colorectal cancer [127]. At the same time, certain similarities have been detected 

between the methylomes of different cancer types. In this respect, colorectal, gastric and 

endometrial cancers have been found to belong to the highly methylated subgroup that is associated 

with tumors with microsatellite instability and hypermethylation of the MLH1 promoter [128] 

whereas solid human epithelial tumors and cancer cell lines revealed commonalities and tissue-

specific features of the CpG island methylator phenotype [129].  

 

Cancer driver and passenger mutations 

A driver is a mutation that directly or indirectly confers a selective advantage upon the cell 

in which it occurs while a passenger is a mutation that exerts no selective growth advantage upon 

the cell in which it occurs [130]. There is a subtle difference between a driver gene and a driver gene 

mutation: a driver gene harbors driver gene mutations but may also harbor passenger gene 

mutations. A driver mutation typically confers upon a tumor only a very small growth advantage, 

which may be as low as a 0.4% increase in the difference between cell birth and death rates 

[131]. More recently, Bozic et al. [132] have shown that the first, and hence most abundant, 



passenger mutations are influenced by both the mutation rate and by the death-birth ratio of the 

cancer cells. 

It should be appreciated that whereas passenger mutations cannot by definition exert a 

selective growth advantage, they are not necessarily neutral. Indeed, many are deleterious in terms 

of their effect on cellular proliferation and cancer progression [133, 134]. It should also be 

appreciated that while the damaging effect of a non-synonymous passenger mutation is of the order 

of 100 times smaller than the effect of a driver mutation, passengers are 100 times more numerous 

than drivers [134]. The paucity of drivers in a sea of passenger mutations represents a challenge to 

identifying the former [135]. This task is made all the more daunting by the possibility that drivers 

and passengers are not discrete entities but rather lie along a continuum which includes latent driver 

mutations which “behave as passengers but…..coupled with other emerging mutations, drive cancer 

development and drug resistance” [136]. For most types of cancer, the genomic landscape comprises 

a small number of ‘mountains’ (genes altered in a high percentage of tumors) and a much larger 

number of ‘hills’ (genes that are altered much less frequently, see [137]).  

Recently it was suggested that only a small number of driver mutations are required for 

progression of normal tissues into tumor [72]. A high proportion of cancer driver events occur in 

non-coding regions and a similarly large fraction affects protein-coding regions. Possible molecular 

mechanisms of mutation occurrence at the DNA level have been described in previous sections, 

whereas the effects of cancer missense mutations on proteins have been reliably established only in 

a few cases. Establishing such effects on protein activity, stability, dynamics and binding would 

certainly facilitate our understanding of driver events in cancer. Several distinct properties are 

characteristic of cancer-associated proteins: tumor suppressors in cancer frequently harbor 

destabilizing mutations that preferably occur within the core of the protein; the enhanced activity of 

oncogenes is often linked with mutations at functional sites [138]; cancer mutations cluster in three-

dimensional space [139, 140] in both oncogenes and tumor suppressors [139]; cancer missense 



mutations largely affect protein binding interfaces [141-143]; and the transforming effect of 

mutations is directly proportional to their frequency in cancer samples [144, 145]. 

Different in silico approaches have been developed that aim to detect driver genes or sites 

that acquire significantly more mutations than expected from the background mutational models. An 

unbiased testing and comparison of these methods is an issue because methods are trained on all 

available experimental datasets of cancer mutations and their transforming effects and such datasets 

are scarce [146]. There are several methods that can distinguish cancer-associated mutations from 

neutral polymorphisms, but there is no existing method that can accurately distinguish driver 

mutations from passenger mutations.  

In general, the somatic evolution of cancers is expected to be characterized by weak 

purifying selection in most genes and substantial positive selection in some “cancer” genes that are 

likely to contain driver mutations [147, 148]. The latter possibility is of particular interest because 

the positive selection of somatic mutations in cancers flags up that the change in function of the 

respective genes is relevant for tumorigenesis, leading to the recognition of previously undetected 

oncogenes and other genes associated with cancer. We shall discuss this in more detail in the next 

chapter .  

There have been numerous attempts to build a census of human cancer genes [147, 149, 

150]. Back in 2004, Futreal et al. [149] published a “Census of human cancer genes” which aimed 

to list all genes that are causally implicated in tumorigenesis. This Census has been kept up to date 

and currently includes 602 entries [http://cancer.sanger.ac.uk/census/]. This implies that more than 

2% of all human genes are implicated via mutation in cancer. Of these, approximately 90% have 

somatic mutations in cancer, 20% have germline mutations that predispose to cancer and 10% 

harbor both somatic and germline mutations. A second resource, the Network of Cancer Genes 

[http://ncg.kcl.ac.uk/], contains a total of 1053 ‘cancer genes’ whose possible involvement in cancer 

has been inferred by statistical means. An important direction for this avenue of research has been 

http://cancer.sanger.ac.uk/census/
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the development of predictive models for cancer-associated genes that could accelerate their 

identification, although ubiquitously overexpressed genes could be marked as nonspecific cancer-

associated genes when delineating genes that are specific to certain types of cancer [151]. The 

number of genes recognized as being cancer-associated is likely to increase as new techniques are 

devised to search for them [152, 153]. 

One important direction of research lies with attempts to identify the underlying mechanisms 

of driver mutation generation. For example, analysis of the APOBEC3A/B signature associated with 

driver mutations suggested that APOBEC signature mutations themselves contribute to 

carcinogenesis in samples with a strong mutation pattern associated with ABOBEC3A/B [40]. 

Furthermore, many of the APOBEC3A/B signature mutations that are likely to be driver mutations, 

occurred in genes that are highly mutated in various databases and are also present in the Census of 

human cancer genes [40]. In lung cancer, despite sustained carcinogen exposure, subclonal 

mutations showed a relatively lower burden of smoking-related mutations, accompanied by an 

increase in APOBEC-associated mutations, which suggestings that mutagenic processes also evolve 

over the course of tumor development and that APOBEC-mediated mutagenic processes play a role 

in subclonal genetic heterogeneity in some tumors (PMID: 25301630). 

 

Selectionist and neutralist models of evolution in cancer  

There is a widely held presumption that subclone dynamics in human cancers are dominated 

by strong selection, but this may not be invariably true. Thus, for example, Williams et al. [154] 

found that subclonal mutant allele frequencies of 323 of 904 cancers of 14 types followed a simple 

power-law distribution predicted by neutral growth. As the tumour grows, a large number of cell 

lineages are formed, and intratumoral heterogeneity increases whilst the allele frequency of the new 

heterogeneous mutations rapidly decreases due to expansion. Thus, after malignant transformation, 

individual subclones with distinct mutational patterns grow at similar rates, coexisting with one 



another within the tumour for long periods of time, as a consequence of the lack of stringent 

selection. In malignancies identified as evolving neutrally, all clonal selection appears to have 

occurred before the onset of cancer growth rather than in later-arising subclones, resulting in 

numerous passenger mutations that account for the intratumoral heterogeneity.  

These data concur with the ‘big bang’ model of cancer growth of Sottoriva et al. [155]. This 

model of colorectal cancer growth envisages tumors growing predominantly as a single expansion 

producing numerous intermixed subclones that are not subject to stringent selection. On the 

assumption of a neutralist model of tumour growth, cancer sequencing data can be used to measure, 

in each individual, both the in vivo mutation rate and the order and timing of mutations. Uchi et al. 

[156] noted that known driver mutations were observed frequently among early-acquired mutations 

in colorectal cancer, but rarely among the late-acquired mutations. Little evidence was found to 

support the view that selection had shaped the intratumoral heterogeneity which was much more 

likely to have been generated by neutral evolution. The extremely high level of genetic diversity 

evident in a single hepatocellular carcinoma (>100 million coding region mutations estimated in the 

entire tumor) has provided further evidence for the occurrence of ‘non-Darwinian cell evolution’ in 

cancer [157]. A total of 286 regions of this tumor were sequenced and the lack of any evidence for 

selection was consistent with a model of big bang-like growth. 

Gao et al. [158] investigated copy number evolution in patients with triple-negative breast 

cancer. They sequenced 1,000 single cells from tumors in 12 patients and identified 1-3 major clonal 

subpopulations in each tumor that shared a common evolutionary lineage. For each tumor, these 

authors also identified a minor subpopulation of non-clonal cells. Phylogenetic analysis and 

mathematical modeling showed that these data were hard to explain by the gradual accumulation of 

copy number events. These data therefore challenge the paradigm of gradual evolution, showing that 

the majority of copy number aberrations were acquired at the earliest stages of tumor evolution, in 

short punctuated bursts, followed by stable clonal expansions to form the tumor mass. Thus, at least 



in some cases, a saltationist model of evolution may be relevant to cancer [159]. A compromise 

between a gradualist model and salutatory evolution may well be found in the application of 

punctuated equilibrium to cancer evolution – periods of stasis punctuated by sudden and dramatic 

changes [160]. 

We may conclude that natural selection would not be expected to bias/change mutational 

patterns to a large extent and such effects are anticipated to be negligible. Periods of sudden and 

dramatic changes [160] might be associated with bursts of mutations introduced by error-prone 

mutational mechanisms, processes reflected in mutational signatures and by mutable motifs; this is 

likely to be a promising avenue for future research. 

 

Concluding remarks 

There are numerous examples of the successful application of mutational signatures and 

mutable motifs to studies of molecular mechanisms of mutagenesis. The level of success achieved in 

the context of the AID/APOBEC protein family certainly supports the notion that mutable motifs 

and mutational signatures are useful tools with which to study molecular mechanisms of mutations 

in cancer. Such results arean approach is likely to be very helpful for in understanding the biology, 

initiation and progression of human cancers. One potential caveat, however, is in how to distinguish 

artefactual DNA lesions from the bona fide somatic mutations that actually occurred in the tumour 

(PMID: 28209900, this ref. Is already mentioned above). This important issue certanly requires further 

investigation. 

The potential for mutational signatures and mutable motifs to provide new cancer 

biomarkers or drug targets is unclear. For example, AID-related WRC/GYW and WRCG/CGYW 

mutable motifs for 22 individual follicular lymphoma patient exomes were analyzed (Supplemental 

Table 3 from Rogozin et al. [32]). A significant excess of mutations in both motifs was found for 13 

patients [32]. This finding suggests that the mutational processes associated with AID are active in 
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follicular lymphoma to an extent detectable with sensitive statistical tests in samples with limited 

numbers of mutations; however, the sensitivity of this test is not high. This notwithstanding, in 

combination with other mutational signatures, methylation patterns and other biomarkers, this 

approach may have some value. 

There is much room for improvement in our ascertainment of mutable motifs and mutational 

signatures. Theoretically, various computational approaches can be used to analyze aligned 

sequences of mutation hotspots. Many techniques have been developed for the analysis of functional 

signals including information content, weight matrices, perceptron, k-tuple frequencies, discriminant 

analysis, hidden Markov models, linguistic approaches, and neural network models. These methods 

are well established and have been tested on different types of data, but all of these methods require 

large datasets. 

 It should be noted that the analysis of mutations is rather a classification problem than 

discriminant analysis (commonly used in bioinformatics, for example, analysis of splicing signals) 

with well-defined training (learning) and control (test) sets. This necessarily imposes certain 

restrictions on the interpretation of results, and conclusions should still be regarded as 

hypotheses/observations rather than proven facts; in many cases, such conclusions will require 

further experimental validation. However, all attempts to assign mutational signatures to known 

human carcinogenic exposures or endogenous mechanisms of mutagenesis [78] should still be 

appreciated for what they are: the first tentative attempts to found a vital new branch of enquiry in 

cancer genomics. Such studies will certainly add very significantly to our knowledge of mutagenesis 

in human cancers.  
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Legends to Figures 

 

Figure 1. Mutational spectrum of human DNA polymerase  in the lacZ gene without phenotypic 

selection. 

 

Figure 2. Statistical analysis of mutable motifs in sites of somatic mutations and surrounding 

regions. The excess of mutations in motifs was calculated using the ratio Fm/Fn, where Fm is the 

fraction of somatic mutations observed in a given mutable motif (the number of mutated motifs 

divided by the number of mutations), and Fn is the frequency of the motif in the DNA neighborhood 

of somatic mutations (the number of motif positions divided by the total number of all un-mutated 

positions in the 120 bp window). 

Figure 3. The DNA polymerase η mutational signature (Signature 9, 

http://cancer.sanger.ac.uk/cosmic/signatures). 

 

Figure 4. APOBEC3A (A) and APOBEC3B-induced (B) mutation patterns in yeast genomes [56] 

shown as a logo (weblogo.berkeley.edu). The position 6 is the mutable position. 

 

Figure 5. The methylation ratio in WRCG mutable motifs and non-WRCG motifs (YCG/CGR and 

SNCG/CGNS) [32]. The fraction of motifs in each bin (0–20% methylation ratio, 20–40% 

methylation ratio, etc.) is shown. 

 

Figure 6. Types of mutational clusters. Horizontal black lines, chromosome. Mutations resulting 

from damage to the top and bottom DNA strands are shown as red and blue circles, respectively. 

Clusters are indicated by brackets. 

http://cancer.sanger.ac.uk/cosmic/signatures


(A) Strong, clear cluster resulting from the action of ssDNA-specific mutagen on the resected DNA 

during DSB (double strand break) repair. 

(B) Cluster of moderate strength with mixed types of mutations. In this case, clusters of different 

size can be defined based on the threshold parameters of clustering algorithm (compare two 

brackets). 

(C) Six individual clones (e.g., cells, tumors, or mutants microorganisms) are shown on top. No 

apparent clustering is observed except for one clone where two mutations of different types are 

located close to each other. However, upon combining all datasets, prominent and likely strand-

specific clustering is detected (bottom). This clustering likely represents the general susceptibility of 

the corresponding genomic region to the ssDNA-specific mutagen. 

(D) Example of clustering of intermediate power (compare with scheme on the panel B). This 

cluster is found on chromosome X of yeast mutant clone induced by PmCDA1 deaminase [57]. Two 

clusters can be defined based on the algorithm parameters. Blue rectangles, heterozygous C > T 

substitutions which result from deamination of cytosine in the top DNA strand; red rectangles, 

heterozygous G > A substitutions, which result from deamination of cytosines in the bottom DNA 

strand. Genomic features, as well as chromosomal coordinates, are shown on top. 

(E) Example of cluster detected in silico by combining mutational data from independent yeast 

mutant clones induced by PmCDA1 deaminase. Each individual mutant possesses only a single 

SNV in this genomic region. However, merging data from several clones reveals a region of 

susceptibility to the mutagen. Color code and labels are as in the panel D. 

 


