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Abstract

Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease characterised by

progressive destruction of intrahepatic bile ducts. The strongest genetic association is with

HLA-DQA1*04:01, but at least three additional independent HLA haplotypes contribute to

susceptibility. We used dense single nucleotide polymorphism (SNP) data in 2861 PBC

cases and 8514 controls to impute classical HLA alleles and amino acid polymorphisms

using state-of-the-art methodologies. We then demonstrated through stepwise regression

that association in the HLA region can be largely explained by variation at five separate

amino acid positions. Three-dimensional modelling of protein structures and calculation of

electrostatic potentials for the implicated HLA alleles/amino acid substitutions demonstrated

a correlation between the electrostatic potential of pocket P6 in HLA-DP molecules and the

HLA-DPB1 alleles/amino acid substitutions conferring PBC susceptibility/protection,

highlighting potential new avenues for future functional investigation.

Author summary

Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease that exhibits

strong genetic associations, especially with variants in the human leukocyte antigen

(HLA) gene region. Here we use dense single nucleotide polymorphism (SNP) data from

the largest PBC study to date (2861 cases, 8514 controls) to investigate the likely underly-

ing causes of this association, via performing imputation of HLA classical alleles and
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amino acids. We show that the HLA association can be largely explained by variation at

five separate amino acid positions, one of which shows functional relevance to electro-

static potentials of HLA-DP molecules.

Introduction

Primary Biliary Cholangitis (PBC; formerly known as Primary Biliary Cirrhosis) is a rare cho-

lestatic liver disease characterized by progressive auto-immune destruction of intrahepatic bile

ducts resulting in cholangitis, liver fibrosis and, eventually, cirrhosis. Candidate gene studies

have consistently demonstrated association with polymorphisms in the human leukocyte anti-

gen (HLA) region [1–8]. Genome-wide studies [9–12] have confirmed these HLA associations

and have also identified 27 non-HLA risk loci. The MHC region, however, remains by far the

strongest genetic contributor to disease susceptibility, with HLA haplotypes containing the

HLA-DQA1�04:01 allele conferring an approximately threefold increased disease risk [13].

To help understand the mechanisms underlying these HLA associations, and to identify

functional, potentially causal, variants within the HLA region, we used previously-generated

dense SNP genotype data from 2861 UK PBC cases and 8514 UK controls [13] to impute clas-

sical HLA alleles and amino acid polymorphisms within these 11375 individuals, using current

state-of-the-art methods implemented in the software packages HLA�IMP:03 [14], HLA�IMP:

02 [15], HIBAG [16] and SNP2HLA [17]. Previous interrogation of the UK PBC case/control

data set risk [13] using classical HLA alleles imputed using the package HLA�IMP:01 [18, 19]

had revealed four haplotypes showing independent disease associations: the well-established

association at HLA-DQA1�04:01 (which forms a haplotype with HLA-DQB1�04:02 and HLA-
DRB1�08:01), two previously identified protective effects marked by alleles HLA-DQB1�06:02
[20] and HLA-DQB1�03:01 [1], and a novel association marked by the haplotype HLA-DRB1�

04:04/HLA-DQB1�03:02. Similar associations were also observed in application of HLA�IMP:

01 to a smaller separate European data set [21]. Our updated analysis of the UK PBC data set,

reported here, confirms these previously-observed associations, suggests potential additional

independent associations, and suggests that the majority of the SNP and classical allele associa-

tion in the HLA region can largely be explained by variation at five separate amino acid

positions.

Results

Classical HLA associations

Various software packages have been developed for the imputation of classical HLA alleles

(and, in some cases, amino acid substitutions) using dense SNP data; here we used the current

state-of-the-art packages HLA�IMP:03 [14], HLA�IMP:02 [15], HIBAG [16] and SNP2HLA

[17], and compared the results obtained for classical HLA alleles with those previously

obtained [13] using HLA�IMP:01 [18, 19]. Our rationale for using four different software

packages was the fact that the precise methodology implemented varies across the different

packages, as do the reference sets used to inform the imputation. Thus, we were interested in

examining the sensitivity of our findings to the software implementation used, with concor-

dance of findings seen across different software implementations providing a greater degree of

confidence in the results obtained.

Analysis of the UK PBC data set using these packages confirmed the previously-observed

associations [13, 21] seen with classical HLA alleles (Table 1, haplogroups 1–4) and suggested
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potential additional novel independent associations at HLA-DPB1 (HLA-DPB1�03:01,

HLA-DPB1�06:01, HLA-DPB1�04:01, HLA-DPB1�10:01 and HLA-DPB1�17:01), HLA-C
(HLA-C�04:01) and HLA-DPA (HLA-DPA�02:01) (Table 1, haplogroups 5–10). Results were

largely concordant across different HLA imputation programs whenever the same alleles were

interrogated. Our understanding is that HLA-DPB1 was not included in the reference set used

by HLA�IMP:01 and so could not be assessed in previous analyses [13, 21] using this software.

Further associations with HLA-DQA1�03:01 identified in our current analysis (Table 1, hap-

logroup 4) but not reported in previous analysis of these data [13] appear to be part of the pre-

viously identified HLA-DRB1�04:04/HLA-DQB1�03:02 haplogroup.

Table 1. Comparison of highly significant marginal association results (P<0.000001) from 4 packages: HLA�IMP:02, HLA�IMP:03, HIBAG (calculated dosages

and best guess) and SNP2HLA. HLA�IMP:01 results from Liu et al. (2012) are shown for comparison. Haplogroups were considered separate (i.e. independent) if predic-

tors remained significant (P< 0.0001) when the top allele from any previously-identified haplogroup was included (pairwise) in the regression model.

Haplogroup Gene Allele HLA�IMP:01

(dosages, results

from Liu et al.

2012)

HLA�IMP:02

(dosages)

HLA�IMP:03

(best guess)

HIBAG 1.2 (best

guess, provided

probability > 0.8)

HIBAG 1.2

(dosages)

SNP2HLA

OR P OR P OR P OR P OR P OR P

1 HLA-DQA1 04:01 3.07 5.90E-45 3.14 5.94E-49 3.05 1.16E-44 3.04 2.63E-42 3.14 3.48E-45 3.08 2.64E-45

HLA-DQB1 04:02 3.04 1.91E-42 3.10 1.26E-45 3.04 2.35E-45 3.07 1.88E-44 3.08 1.37E-47 3.05 2.00E-45

HLA-DRB1 08:01 3.18 1.14E-40 3.12 1.35E-45 3.16 2.18E-45 3.17 2.47E-37 3.26 1.25E-45 3.18 4.57E-45

HLA-B 39:05a 5.48 4.81E-12 - - - - - - - - - -

HLA-B 39:06a - - 2.22 2.43E-09 2.28 7.72E-10 2.72 3.57E-10 2.78 1.60E-11 - -

2 HLA-DQB1 06:02 0.64 2.32E-15 0.66 2.96E-16 0.66 8.96E-17 0.67 2.58E-15 0.66 2.14E-16 0.66 2.28E-16

HLA-DRB1 15:01 0.65 2.78E-15 0.67 4.01E-16 0.67 3.89E-16 0.66 9.55E-15 0.67 4.57E-16 0.67 4.21E-16

HLA-DQA1 01:02 0.69 4.19E-15 0.71 9.52E-16 0.72 6.06E-15 0.71 6.60E-15 0.71 3.26E-15 0.72 9.60E-15

HLA-B 07:02 0.73 4.93E-10 0.73 4.14E-11 0.73 4.83E-11 0.72 1.08E-11 0.73 3.96E-11 0.73 3.62E-11

3 HLA-DQB1 03:01 0.70 6.48E-14 0.72 7.79E-15 0.72 4.92E-15 0.71 2.63E-15 0.70 1.93E-15 0.71 3.78E-15

HLA-DRB1 11:01 0.33 2.14E-13 0.35 6.78E-19 0.46 1.60E-15 0.43 0.001 0.31 1.15E-18 0.41 8.57E-17

HLA-DRB1 11:04 0.24 3.72E-09 0.14 1.38E-10 0.44 9.45E-06 0.44 0.011 0.14 5.00E-13 0.32 1.69E-07

HLA-DRB1 11:03 - - 0.31 0.076 0.65 0.202 - - 0.002 2.15E-10 - -

HLA-DQA1 05:01b 0.75 4.76E-12 0.90 0.013 0.75 1.01E-13 0.98 0.654 0.98 0.5895 0.75 1.38E-13

HLA-DQA1 05:05b - - 0.37 4.22E-26 - - 0.49 1.31E-25 0.50 1.73E-25 - -

4 HLA-DRB1 04:04 1.57 1.22E-09 1.61 8.59E-11 1.45 4.29E-09 1.45 4.09E-05 1.64 4.17E-10 1.54 1.25E-10

HLA-DRB1 04:03 - - 3.89 1.25E-07 1.32 0.183 1.23 0.626 2.92 1.21E-05 - -

HLA-DQB1 03:02 1.34 6.96E-09 1.34 7.83E-10 1.33 8.62E-10 1.33 2.11E-09 1.34 1.04E-09 1.28 1.45E-07

HLA-DQA1 03:01 - - 1.22 2.29E-06 1.14 4.14E-04 1.36 1.41E-09 1.37 1.03E-09 1.15 2.20E-04

5 HLA-DPB1 03:01 - - 1.69 1.20E-31 1.53 3.68E-24 1.49 2.04E-07 1.80 1.60E-26 1.69 1.08E-27

HLA-DPB1 06:01 - - - - 1.71 1.51E-10 - - 9.14 3.26E-26 1.97 6.30E-09

6 HLA-DPB1 04:01 - - 0.74 2.04E-18 0.78 3.29E-16 0.81 4.62E-09 0.75 1.29E-18 0.76 2.23E-17

7 HLA-C 04:01 - - 1.37 2.76E-10 1.37 3.15E-10 1.37 2.93E-10 1.37 4.01E-10 1.37 3.98E-10

8 HLA-DPB1 10:01 - - 2.71 0.002 1.91 2.68E-11 2.19 4.11E-13 2.04 1.90E-12 1.93 3.09E-11

9 HLA-DPB1 17:01 - - 2.43 0.005 2.40 1.03E-14 2.84 1.30E-17 2.47 5.55E-15 2.48 1.66E-15

10c HLA-DPA 02:01 - - - - 1.27 2.03E-09 - - - - 1.27 2.08E-09

a Note that HLA-B 39:05 and 39:06 are perhaps being used interchangeably: HLA�IMP:01 identified 39:05 whereas HLA�IMP:02, HLA�IMP:03 and HIBAG identify

39:06. Neither 39:05 or 39:06 are present in the SNP2HLA analysis.
b Note that there are only two amino acids that differ between HLA-DQA1 05:01 and 05:05, one of which corresponds to our 5th most significant result (position -13 of

DQA1, see Table 2). This could perhaps explain the discrepancies between the results from the different programs for these alleles. We note that when HIBAG and

HLA�IMP:02 identified either 05:01 or 05:05, the other programs (HLA�IMP:01, HLA�IMP:03 and SNP2HLA) identified exclusively 05:01
c Note that HLA-DPA is only examined in HLA�IMP:03 and SNP2HLA

https://doi.org/10.1371/journal.pgen.1007833.t001
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Our detected association at HLA-DPB1�03:01 is consistent with results from HLA imputa-

tion in a medium-sized Italian PBC data set (676 cases and 1440 controls) in which Invernizzi

et al. [22] used the Beagle software [23], in conjunction with the T1DGC HLA reference set, to

demonstrate association of HLA-DPB1�03:01 with disease [22]. Previous much smaller studies

had generated somewhat contradictory results, with some showing [24] and others not show-

ing [8] association between HLA-DPB1�03:01 and PBC.

In addition to examining the effects of individual classical HLA alleles, we also used the

HIBAG imputed dosages to perform multi degree-of-freedom (df) omnibus gene-based tests,

examining the effects of all alleles (with frequency> 0.5%) at a gene simultaneously, although

we note that the large (and differing) numbers of alleles at each HLA gene makes this proce-

dure arguably less powerful and interpretable than the testing of individual alleles. All genes

showed highly significant marginal association (S1 Table), with all genes except HLA-DQB1

retaining some level of support even conditional on the other genes (i.e. when all non-rare

alleles at all other genes were included in the model).

For our primary analyses, we did not consider it necessary to include additional covariates

such as gender or principal component scores (PCs) in the regression model to account for

possible population stratification (see S1 Text); an investigation of the sensitivity of the results

to inclusion or not of these covariates (S2 Table) suggested that the odds ratios (ORs) and P-

values achieved were largely unaffected by the inclusion or not of the top 10 PCs (calculated

from a pruned set of SNPs—with SNPs in the extended HLA region removed) and were only

slightly altered by the additional inclusion of gender as a covariate. We also found that the

marginal associations of the lead allele from each haplogroup shown in Table 1 were largely

reproduced when modelled as part of a 9 variable model (with all lead alleles included simulta-

neously) (S3 Table).

Association with amino acid substitutions

Given that classical HLA alleles encode combinations of amino acid substitutions at specific

positions, and given the a priori functional relevance of amino acid substitutions, we next

focussed our attention on the variables encoding their effects. To determine whether the asso-

ciation seen between PBC and HLA SNPS and/or classical alleles could be explained by the

amino acid substitutions encoded by the associated HLA alleles, we tested the imputed dosage

of each amino acid residue at each amino acid position for association with PBC using logistic

regression (Fig 1A, Table 2, S1 Spreadsheet). The marginal association results obtained using

classical alleles imputed from HIBAG were seen to be highly concordant with those obtained

directly from SNP2HLA; we focus here on the results from HIBAG which allows more com-

plex subsequent modelling via regression and stepwise regression approaches (on account of

outputting a posterior probability for each possible genotype, in contrast to the estimated dos-

age output by SNP2HLA, see Methods).

The strongest association (P = 6.64x10-59) was seen with residue L (the substitution leucine

for glycine) at position 11 of HLA-DPβ1; an equivalent association was seen with residue G

(reflecting the fact that at this position there are only two possible substitutions, and so the test

of L versus G is equivalent to the test of G versus L). Once the variable encoding this effect had

been included as a covariate in the regression model, the next most associated amino acid

(P = 1.73x10-39) was residue L at position 74 of HLA-DRβ1. HLA-DRβ1 74L was previously

identified as significantly associated with PBC by Donaldson et al. [1] and Invernizzi et al.

[22], as well as by an earlier small Japanese study (53 PBC patients and 60 controls) [5]. This

substitution occurs both on classical alleles HLA-DRB1�08:01 (which is strongly associated

with PBC in Europeans) and on HLA-DRB1�08:03 (which is known to be associated with PBC

Amino acid residues in five HLA genes explain associations between the MHC and PBC
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in Japanese/Chinese populations [4, 5, 25] and thus offers a potential explanation for the

HLA-DRB1�08 associations seen in these different populations. Our identification of amino

acids in HLA-DPβ1 and HLA-DRβ1 as the top contributors to HLA-induced PBC risk is con-

sistent with the results of Invernizzi et al. [22] who found in their (much smaller) Italian data

Fig 1. Stepwise logistic regression of amino acid residue dosages with up to five amino acid residue dosages included as covariates. The x axis denotes amino

acid position. A) no conditioning, B) conditioned on HLA-DPB11L, C) conditioned on HLA-DPB11L and HLA-DRB74L, D) conditioned on HLA-DPB11L,

HLA-DRB74L and HLA-DQB57D, E) conditioned on HLA-DPB11L, HLA-DRB74L, HLA-DQB57D and HLA-C155R and F) conditioned on HLA-DPB11L,

HLA-DRB74L, HLA-DQB57D, HLA-C155R and HLA-DQA-13A.

https://doi.org/10.1371/journal.pgen.1007833.g001
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Table 2. Amino acid residues significantly associated (P<4.87E-05) with PBC in forward stepwise regression analysis. Shown are odds ratios (ORs) and P-values

from stepwise and marginal logistic regression calculated using posterior probabilities from HIBAG, together with marginal associations from SNP2HLA. Classical alleles

in bold are significantly associated with PBC in the current study, see Table 1.

Gene BP position Peptide

position

Residue Stepwise

associations

(HIBAG 1.2

dosage)

Marginal

associations

(HIBAG 1.2

dosage)

Marginal associations

(SNP2HLA)

Classical HLA alleles within same gene

carrying first listed residue observed in

our study (imputed frequency in cases;

imputed frequency in controls)

Order of

entry

P to

enter

OR P OR P

HLA-DPB1 33156444 11 L/G 1 6.64E-

59

1.765 6.64E-59 1.752 1.09E-58 03:01 (0.14; 0.093), 06:01 (0.032; 0.021),

09:01 (0.0086; 0.0072), 10:01 (0.032;

0.017), 104:01 (0.017; 0.011), 11:01 (0.031;

0.026), 13:01 (0.022; 0.016), 14:01 (0.014;

0.013), 17:01 (0.025; 0.011)

HLA-DRB1 32659927 74 L 2 1.73E-

39

3.065 1.14E-46 2.828 5.65E-43 08:01 (0.056; 0.019), 08:02 (0.0010;

0.00051), 08:03 (0.0045; 0.0017), 08:04

(0.0013; 0.00082), 08:10 (0.00075;

0.00032), 13:18 (0.0000085; 0.000018)

HLA-DQB1 32740667 57 D 3 6.42E-

22

0.789 2.87E-14 0.787 9.69E-15 03:01 (0.14; 0.18), 03:03 (0.044; 0.052),

04:02 (0.059; 0.020), 06:01 (0.0051;

0.0037), 06:02 (0.095; 0.14), 06:03 (0.044;

0.053),06:14 (0.00030; 0.00030), 06:15

(0.00000; 0.00000)

HLA-C 31346910 156 R 4 2.70E-

12

1.255 7.16E-12 1.250 1.20E-11 01:02 (0.042; 0.034), 04:01 (0.11; 0.084),

04:03 (0.000025; 0.000012), 04:09

(0.00030; 0.00019), 05:01 (0.13; 0.12),

08:02 (0.037; 0.039), 14:02 (0.011; 0.0075),

14:03 (0.00016; 0.00017), 18:01

(0.0000055; 0.000016)

HLA-DQA1 32713244 -13 A 5 2.48E-

12

1.997 6.02E-29 - - 01:01 (0.14; 0.12), 01:02 (0.14; 0.19),

01:03 (0.047; 0.053), 01:04 (0.029; 0.022),

01:05 (0.0046; 0.0053), 01:06 (0.00010;

0.00015), 02:01 (0.16; 0.15), 03:01 (0.13;

0.10), 03:02 (0.0082; 0.011), 03:03 (0.093;

0.094), 04:01 (0.057; 0.019), 04:02

(0.00079; 0.00030), 05:01 (0.14; 0.14),

05:03 (0.00030; 0.00024), 06:01 (0.0053;

0.0022)

HLA-B 31432581 45 T 6 3.13E-

06

1.280 2.35E-10 1.278 1.65E-10 18:01 (0.043; 0.037), 18:02 (0.000041;

0.000035), 18:03 (0.00045; 0.00078), 18:11

(0.00023; 0.00017), 18:18 (0.000029;

0.000028), 35:01 (0.062; 0.050), 35:02

(0.0028; 0.0037), 35:03 (0.017; 0.011),

35:08 (0.0030; 0.0026), 35:17 (0.00029;

0.00034), 35:41 (0.00032; 0.00024), 35:55

(0.000020; 0.000016), 37:01 (0.017; 0.015),

44:06 (0.00026; 0.00018), 51:01 (0.046;

0.036), 51:05 (0.00022; 0.00024), 51:07

(0.00053; 0.00037), 51:08 (0.0010;

0.00068), 51:09 (0.00010; 0.00011), 52:01

(0.0054; 0.0044), 53:01 (0.0027; 0.0019),

58:01 (0.0047; 0.0051)

HLA-DQA1 32718440 207 V 7 4.38E-

06

1.400 6.35E-16 1.386 1.23E-14 01:01 (0.14; 0.12), 01:03 (0.047; 0.053),

01:04 (0.029; 0.023), 01:05 (0.0046;

0.0053), 02:01 (0.16; 0.15), 03:01 (0.13;

0.10), 03:03 (0.093; 0.094), 04:01 (0.057;

0.020), 04:02 (0.00079; 0.00030), 05:01

(0.14; 0.14), 05:03 (0.00030; 0.00024),

05:05 (0.050; 0.095), 05:09 (0.00067;

0.00093), 06:01 (0.0053; 0.0022)

(Continued)
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set that conditioning on residue L at position 11 of HLA-DPβ1 largely removed the signal at

HLA-DPB1, and who noted that, considered together, HLA-DRB1�08 and HLA-DPB1�03:01
accounted for the majority of the signal in the HLA region.

Stepwise regression analysis of amino acid substitutions

Using a stepwise regression approach similar to that used in previous studies [26–28], we con-

tinued adding amino acid residues into the regression model in a stepwise fashion to account

for their effects [29] until none reached significance level< P = 4.87x10-5 (representing a Bon-

ferroni-corrected threshold of 0.05, allowing for 1028 amino acids tested); this resulted in a

final model that included nine amino acids (Table 2). Use of a more stringent stopping thresh-

old of P = 1.0x10-8 resulted in a final model that included five amino acids in five separate

genes (Table 2, Fig 1A–1F, S1 Spreadsheet). None of the top nine or top five amino acids

dropped out of the model (all P>4.87x10-5) when allowing a backward stepwise step (S4

Table). Stepwise inclusion of the top five amino acids in association analyses carried out with

respect to individual SNPs (Fig 2, S2 Spreadsheet) or classical HLA alleles (Fig 3, S3 Spread-

sheet) indicated that these five amino acids could account for the majority of the HLA associa-

tion seen at the level of SNPs or classical alleles; once these five amino acids had been included,

the minimum significance levels achieved were P = 7.05x10-9 for SNPs and P = 1.98x10-7 for

classical alleles. Thus, although some residual association remains, inclusion of the top five

amino acids is sufficient to remove the strongest disease associations observed. Interestingly,

in spite of the strong linkage disequilibrium (LD) across the HLA region (resulting in hap-

logroups spanning multiple genes, see Table 1), visual inspection of Fig 3 suggests that each of

the five implicated amino acid residues accounts primarily for the disease association observed

with classical alleles of its own gene, although HLA-DRβ1 74L does partly account for associa-

tion seen at HLA-DQA1 and HLA-DQB1, and HLA-DQβ1 57D in turn partly accounts for

association seen at HLA-DQA1 and HLA-DRB1, probably due to the long-range correlations

Table 2. (Continued)

Gene BP position Peptide

position

Residue Stepwise

associations

(HIBAG 1.2

dosage)

Marginal

associations

(HIBAG 1.2

dosage)

Marginal associations

(SNP2HLA)

Classical HLA alleles within same gene

carrying first listed residue observed in

our study (imputed frequency in cases;

imputed frequency in controls)

Order of

entry

P to

enter

OR P OR P

HLA-DPB1 33156663 or

33161618

84 or 215 V or T 8a or 8b 2.18E-

05

1.713 0.000913 NA

(OR = 0.550 for

residue I)

NA

(P = 4.74E-34

for residue I)

15:01 (0.011; 0.0068)

HLA-B 31432689 9 H 9 2.15E-

05

1.181 1.07E-05 1.19 2.80E-06 18:01 (0.043; 0.037), 18:02 (0.000041;

0.000035), 18:03 (0.00045; 0.00078), 18:11

(0.00023; 0.00017), 18:18 (0.000029;

0.000028), 27:02 (0.0028; 0.0033), 27:03

(0.0000090; 0.000034), 27:05 (0.041;

0.040), 27:07 (0.00019; 0.00016), 27:09

(0.000045; 0.000097), 37:01 (0.017; 0.014),

40:01 (0.072; 0.056), 40:02 (0.0074; 0.010),

40:06 (0.00033; 0.00033), 40:27 (0.000030;

0.000045), 40:32 (0.00045; 0.00028), 41:01

(0.0024; 0.0021), 41:02 (0.0041; 0.0041),

42:02 (0.000077; 0.000046), 45:01 (0.0078;

0.0073), 49:01 (0.010; 0.012), 50:01 (0.014;

0.0089), 50:02 (0.00019; 0.00013), 73:01

(0.00019; 0.00013)

https://doi.org/10.1371/journal.pgen.1007833.t002
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(due to extensive LD) between alleles (and thus between amino acid substitutions and classical

alleles) at different genes.

We investigated the sensitivity of our results to the inclusion of the top 10 principal compo-

nent scores (calculated from a pruned set of SNPs—with SNPs in the extended HLA region

Fig 2. Stepwise logistic regression of individual SNPs with up to five amino acid residue dosages included as covariates. The x axis denotes base pair position on

chromosome 6. A) All SNPs, no conditioning, B) conditioned on HLA-DPB11L, C) conditioned on HLA-DPB11L and HLA-DRB74L, D) conditioned on

HLA-DPB11L, HLA-DRB74L and HLA-DQB57D, E) conditioned on HLA-DPB11L, HLA-DRB74L, HLA-DQB57D and HLA-C155R and F) conditioned on

HLA-DPB11L, HLA-DRB74L, HLA-DQB57D, HLA-C155R and HLA-DQA-13A.

https://doi.org/10.1371/journal.pgen.1007833.g002
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removed) in order to account for possible population stratification, and also to the inclusion of

gender, as covariates in the regression equation, but found (as expected from theoretical argu-

ments, see Methods), that this had little impact on the results obtained, either with respect to

the main effects of amino acids (S1 Fig, S4 Spreadsheet) or with respect to the stepwise entry of

Fig 3. Stepwise logistic regression of classical HLA alleles with up to five amino acid residue dosages included as covariates. The ordering of the alleles within a

gene along the x axis is alphabetical by allele name. A) no conditioning, B) conditioned on HLA-DPB11L, C) conditioned on HLA-DPB11L and HLA-DRB74L, D)

conditioned on HLA-DPB11L, HLA-DRB74L and HLA-DQB57D, E) conditioned on HLA-DPB11L, HLA-DRB74L, HLA-DQB57D and HLA-C155R and F)

conditioned on HLA-DPB11L, HLA-DRB74L, HLA-DQB57D, HLA-C155R and HLA-DQA-13A.

https://doi.org/10.1371/journal.pgen.1007833.g003
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predictors. With principal component scores included, exactly the same top five amino acids

entered the model, while, with principal component scores and gender included, four out of

the top five identified amino acids (all still with P<1.0x10-8) remained the same, with

HLA-DQβ1 87F entering the model in preference to the marginally less significant

HLA-DQβ1 57D, and with the order of entry slightly altered as follows: (1) HLA-DPβ1 11L/G

(P = 5.70x10-53), (2) HLA-DRβ1 74L (P = 4.67x10-33), (3) HLA-DQα1 -13A (P = 2.34x10-20),

(4) HLA-DQβ1 87F (P = 1.18x10-13), and (5) HLA-C 156R (P = 2.23x10-10).

We additionally investigated the consistency/stability of the predictors identified by the

stepwise selection procedure using a resampling approach (see Methods), and found the

approach to be highly stable in terms of the top amino acid predictors identified. In 1000 boot-

strap replicates (each containing 2/3 of our PBC cases and 2/3 of our controls, see Methods)

the top amino acid HLA-DPβ1 11L/G entered as the most significant predictor in 86.7% of

replicates (and entered as second in the remaining 13.3% of replicates). The second amino

acid to enter was HLA-DRβ1 74L in 83.1% of replicates. The third amino acid to enter was

HLA-DQβ1 57D in 51% of replicates (the closest competitor was HLA-DRβ1 67L which

entered third in 25.8% of replicates). The fourth amino acid to enter was HLA-C 156R in

33.7% of replicates (the closest competitor was HLA-C 152A which entered fourth in only

10.3% of replicates). The fifth amino acid to enter was HLA-DQα1 -13A in 27.9% of

replicates (the closest competitor was HLA-DRβ1 58A which entered fifth in only 10.5% of

replicates).

No association with KIR genes

The association seen between PBC and HLA-C 156R is intriguing, as HLA-C is known to be

not very potent in antigen presentation. Given that HLA-C has a significant role in interaction

with killer-cell immunoglobulin-like receptors (KIRs), this raises the question of whether the

HLA-C association is related to T-cell interaction, or is rather about presentation to KIRs. We

therefore used the software package KIR�IMP [30] to examine the association between PBC

and genes on chromosome 19q13.4 that encode for KIRs. In contrast to the detected HLA

associations, however, analysis of PBC association with imputed KIR haplotypes and copy

number variation detected no significant associations (minimum observed P value = 0.07)

between PBC and KIR variation. We therefore chose not to focus any further attention on the

KIR gene region at this current time.

Stepwise regression analysis of classical alleles, SNPs and amino acid

substitutions

We continued our investigation by examining the association between PBC and amino acid resi-

dues, SNPs or classical HLA alleles simultaneously, by allowing either amino acid residues and/or

SNPs and/or classical HLA alleles to enter the stepwise regression model at each step. At each of

steps 1–2, an amino acid residue (HLA-DPβ1 11L at step 1 and HLA-DRβ1 74L at step 2) entered

the model preferentially in comparison to a SNP or a classical HLA allele. This ability of amino

acid substitutions to explain the association of the MHC to PBC in a more parsimonious way

than is achieved by classical HLA alleles contrasts with results previously found using stepwise

regression in inflammatory bowel disease (IBD) [27], where classical HLA alleles (specifically

HLA-DRB1�01:03) entered the model first and better explained the association than models based

on amino acid substitutions, leading the investigators in that study to focus their subsequent

efforts on an HLA-DRB1 centric model. Our results here are more akin to those found using step-

wise regression in rheumatoid arthritis [28], where amino acid substitutions entered the model
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first and were found to provide a better fit, and a more parsimonious explanation for the observed

association, than models based on either two- or four- digit classical alleles.

Continuing the stepwise regression procedure, our results at subsequent steps (S1 Text)

illustrated the difficulty of disentangling “causal” from “hitchhiking” effects amongst highly

correlated variables such as the amino acid residues, classical alleles and SNPs considered

here—although it is noteworthy that in each of steps 1–4 an amino acid always entered the

model in preference to a classical allele. In most cases, the difference in model fit between

including the top SNP and the top amino acid or classical allele was relatively small. Given the

a priori potential functional role of amino acid substitutions, we found it most natural to focus

primarily on variables directly encoding these effects. The fact that, in some instances, inclu-

sion of a SNP provided a slightly better model fit could indicate that the SNP itself is having a

functional role (perhaps through a mechanism such as modulation of gene expression) but,

equally, could arise from the phenomenon whereby a SNP tags the combined effects of several

functional amino acids. In terms of accounting for the overall association in the region, we

found the model that included the top 5 amino acids (S2 Fig, left hand panels) performed simi-

larly to the model that included the top 5 variables of any type (S2 Fig, right hand panels, S5

Spreadsheet, S6 Spreadsheet, S7 Spreadsheet).

To explore further the degree to which amino acid substitutions could account for the

effects of classical alleles, and to investigate whether such results could occur by chance by tag-

ging classical alleles of differential risk, we used the permutation approach employed in IBD

[27]. Specifically, we repeatedly reassigned (permuted) the amino acid sequence assigned to

each of the classical HLA alleles, creating a null hypothesis distribution whereby the relation-

ship between classical HLA alleles and disease was retained, but the relationship between

amino acid substitutions and classical alleles was permuted. The results (Fig 4, S8 Spreadsheet)

indicated that the model deviance accounted for by the top 1–5 amino acids generally fell in

the tail of the empirical null distribution, suggesting that the observed amino acid associations

were unlikely to have arisen through chance tagging of classical HLA alleles.

Alternative amino acid substitution explanations

To investigate whether alternative amino acid substitutions could provide an equally good

explanation for the top amino acid associations, we examined the correlations between our top

five residues and other amino acid residues (S5 Table). Substitutions L and G at position 11 of

HLA-DPβ1 were perfectly correlated as previously noted; no other amino acid substitution

reached r2 > 0.8 with this substitution. Similarly substitutions A and T at position -13 of

HLA-DQα1 were almost perfectly correlated; no other substitution reached r2 > 0.8 with this

substitution. Five alternative residues showed r2 >0.8 with HLA-DRβ1 74L and thus might be

considered plausible alternative causal explanations for the association seen at this residue. No

alternative residues reached r2 > 0.8 with the amino acid residues implicated at HLA-DQβ1

57D and HLA-C 156R, suggesting that these effects are unlikely to be attributable to alternative

substitutions.

Similar to previous studies conducted in IBD [27], we additionally fitted multi-df omnibus

models that included predictor variables encoding the effects of all amino acid substitutions at

a position simultaneously (the maximum number of such amino acid variants at a position

was 8). This analysis strategy investigates the combined effects seen at a particular position of

the amino acid sequence, rather than the effects of individual specific amino acid residues. The

results (S1 Text, S6 Table, S3 Fig, S4 Fig, S5 Fig, S9 Spreadsheet, S10 Spreadsheet, S11 Spread-

sheet, S12 Spreadsheet) showed reasonable (albeit not perfect) concordance with the results

seen when considering individual amino acid substitutions, while incurring the expense of a
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larger number of df and an arguably less interpretable model. Given that the five individual

amino acid residues previously identified do almost as well at accounting for the association as

do the multi-df models, overall we tend to prefer the five amino acid model identified through

stepwise regression as representing the most parsimonious solution.

Fig 4. Empirical distribution of deviance in 10,000 permutations of amino acid sequences across classical HLA alleles. The vertical red lines indicate the

deviances (261.89, 434.78, 527.37, 576.27, 625.34) explained by the top 1–5 amino acids in the actual data, which generate empirical P-values (0.0330, 0.0195, 0.0515,

0.0603, 0.0333) respectively.

https://doi.org/10.1371/journal.pgen.1007833.g004
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Exhaustive and stochastic searches for best combinations of amino acid

variables

Similar to previous studies conducted in rheumatoid arthritis [28], we also performed an

exhaustive search for all pairs and all triplets of amino acid residues and amino acid positions,

in order to determine the best pairwise or three-way combination associated with PBC. The

best pairwise combination of amino acids was HLA-DPβ1 11L and HLA-DRβ1 74L, which

corresponds to the top two residues identified through stepwise analysis (Table 2). The best

(multi-df) pairwise combination of amino acid positions was position 11 of HLA-DPβ1 and

position 27 of HLA-DQβ1, again the same as the top two positions identified through stepwise

analysis (S6 Table). The best three-way combination of amino acids was HLA-DPβ1 11L,

HLA-DQα1 -13A and HLA-DQα1 53G, which includes the first and 5th amino acids identified

through stepwise analysis; this combination was only very marginally better (AIC 12311.42)

than the combination DPβ1 11L, HLA-DRβ1 74L and HLA-DQβ1 57D (AIC 12311.51) which

corresponds to the top three amino acids identified through stepwise analysis. The best (multi-

df) three-way combination of amino acid positions was position 11 of HLA-DPβ1, and posi-

tions 58 and 13 of HLA-DRβ1, corresponding to the first, 3rd and 7th positions identified

through stepwise analysis (S6 Table).

To move beyond three-way combinations of predictors in an exhaustive search is computa-

tionally challenging. We therefore used the FINEMAP [31] and GUESSFM [32] programs

which implement (slightly different) Bayesian stochastic search algorithms for selecting impor-

tant predictors within a densely genotyped candidate region. Preliminary analyses with FINE-

MAP generated many equivalently-fitting models; we circumvented this issue by filtering out

highly correlated amino acid variables, retaining an index set of 396 amino acids with pairwise

correlation values less than 0.98 for analysis. The equivalent strategy in GUESSFM was

achieved through setting the user-defined input parameter “tag.r2” (the r2 threshold for group-

ing predictors together into LD groups) as 0.9604 (= 0.982); this resulted in 354 tag groups

once monomorphic amino acid positions had been discarded. Following model fitting, the

“expand.tags” function within GUESSFM package was then used to expand the set of models

considered by GUESSFM to consider all predictors (rather than using a single “tag” amino

acid as a surrogate for the other amino acids in its LD group) and the “snp.picker” function

used to pick out the resulting amino acids that had the highest posterior probability of

inclusion.

The top models and amino acids identified by FINEMAP and GUESSFM respectively are

shown in S7 Table and S8 Table. We found the results from FINEMAP and GUESSFM to be

somewhat sensitive to the choice of user-defined input parameters, particularly the “nexp”

parameter (the expected number of causal variants) in GUESSFM and the maximum number

of causal variants in FINEMAP. The results from FINEMAP (S7 Table) were relatively concor-

dant with those from stepwise regression, strongly implicating four out of the top five amino

acids from stepwise regression (HLA-DPβ1 11L/G, HLA-DRβ1 74L, HLA-DQβ1 57D and

HLA-C 156R), but also providing some support for additional predictors HLA-DQβ1 -4V,

HLA-DQβ1 71T, HLA-DQα1 175E and HLA-B 45T (or their correlates). The results from

GUESSFM (S8 Table) were more variable and, in general, GUESSFM generated final models

that involved a relatively large number of predictors compared to stepwise regression. How-

ever, three out of the top five amino acids from stepwise regression (HLA-DPβ1 11L/G,

HLA-DRβ1 74L and HLA-C 156R) retained strong levels of support, which was maintained

following application of GUESSFM’s snp.picker algorithm (S9 Table).

Given the strong LD in the HLA region, it is perhaps not surprising that GUESSFM ended

up preferring models with large numbers of predictors which can better capture subtle
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haplotype effects. Our comparison between these different analysis approaches again illustrates

the difficulty of statistically identifying true causal variants (as opposed to good markers of

causal variants) in regions of high LD such as the HLA region. S6 Fig, S7 Fig, S8 Fig, S9 Fig,

S10 Fig and S11 Fig (see also S13 Spreadsheet, S14 Spreadsheet, S15 Spreadsheet) illustrate the

degree to which the top predictors implicated by FINEMAP and GUESSFM can account for

the amino acid, SNP and classical allele associations observed in the region. Although FINE-

MAP and GUESSFM perform well when larger numbers of predictors are included, they did

not generally outperform stepwise regression when limited to 5 predictors. The fact that the

five amino acid model identified through stepwise regression performs well at explaining the

observed SNP and classical allele association again motivates the five amino acid model as rep-

resenting arguably the most parsimonious solution.

Dominant, recessive, genotypic and interaction models

Given that non-multiplicative effects at HLA have been observed in other autoimmune diseases

[33], for each of the classical HLA alleles (Table 1) and amino acid substitutions (Table 2) iden-

tified using the 1df multiplicative allelic model, we additionally explored models that allowed

the effects to operate via dominant, recessive, genotypic or interaction effects. However, we

found little compelling support for such models from the data (S2 Text, S10 Table, S11 Table).

In most cases there was little difference in fit between the multiplicative and dominant models,

suggesting insufficient data (in particular insufficient observations with two copies of the allele

in question) as to be able to distinguish between these two scenarios. We additionally performed

pairwise interaction analysis to investigate whether particular combinations of classical HLA

alleles or amino acid residues led to increased or reduced risks (over and above their individual

multiplicative effects) (S2 Text) but found no evidence of any significant interactions, once Bon-

ferroni correction had been made for the number of tests performed.

3D protein structure modelling and calculation of electrostatic potentials

To explore the potential functional consequences of changes at the key PBC-associated amino

acid residues identified, we followed an approach previously used in primary sclerosing cho-

langitis [34]. HLA alleles carrying and not carrying the associated residues were three-dimen-

sionally modelled using the program MODELLER 9.14 [35], electrostatic potentials around

the resulting 3D structures were calculated using DelPhi 6v2 [36], and the surface of the mod-

elled molecules were coloured according to charge using Chimera [37]. We focussed on the

top three amino acid residues (HLA-DPβ1 11L, HLA-DRβ1 74L, HLA-DQβ1 57D) identified

through stepwise regression (Table 2), all of which showed strong marginal association with

PBC, and we modelled HLA molecules corresponding to alleles showing significant marginal

association with PBC (Table 1) that either carried or did not carry the associated amino acid

residue. We also investigated the electrostatic potential of residues 56, 70 and 71 in HLA-

DQβ1 on account of their strong correlation with the second top amino acid HLA-DRβ1 74L

(S5 Table). In relation to the top two residues, it has previously been suggested that polymor-

phism at position 11 of HLA-DPβ1 has the potential to influence properties of binding pocket

P9, while polymorphism at position 74 of HLA-DRβ1 may influence properties of binding

pocket P4 [38]. HLA-DQβ1 57D, the critical residue that enters third in the stepwise regression

procedure, is known to be associated with protection from type 1 diabetes [39]. Its carboxylate

group forms a salt bridge with a conserved arginine at position 76 of HLA-DQα1 that stabilises

the heterodimer and may affect peptide binding [38, 40].

Results for HLA-DPβ1 11L (Fig 5) showed a remarkable correlation between the electro-

static potential of pocket P6 in HLA-DP molecules and the HLA-DPB1 alleles/amino acid
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substitutions conferring PBC susceptibility or protection. The PBC-associated HLA alleles (Fig

5B, top right) all contain an L at position 11 of the amino acid sequence, and show negative

potentials, while the protective allele (Fig 5C, bottom right) contains a G at position 11, and

shows neutral or slightly positive. Results for the other modelled alleles (S12 Fig, S13 Fig, S14

Fig) were less compelling in terms of demonstrating clear-cut correlations between electro-

static potentials and alleles/amino acid substitutions conferring PBC susceptibility or protec-

tion, suggesting that the mechanisms underlying these detected associations may be more

complex than can be accounted for by simple amino acid substitution.

Fig 5. Structure and molecular surface electrostatic potential of pocket P6 in HLA-DP molecules. A) The structure and electrostatic potential

of HLA-DPB1�03:01. The area within the frame is depicted in expanded form in B and C, and indicates the position of pocket P6 (arrows). All

structures were superimposed on HLA-DPB1�03:01 and therefore show the same view. HLA-DPB alleles associated with an increased risk of PBC

(03:01, 06:01, 10:01, 17:01) are shown in panel B whereas those associated with a protective effect (04:01) are shown in panel C. Negatively

charged potentials (less than 5 kT/e) are coloured red, positively charged (greater than 5 kT/e) blue, and neutral potentials (0 kT/e) are coloured

white. Linear interpolation was used to produce the colour for surface potentials between these values.

https://doi.org/10.1371/journal.pgen.1007833.g005
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Discussion

In this, the largest such study carried out to date in PBC, we present results from an investiga-

tion of the association between classical HLA alleles, the amino acids they encode, and PBC,

through an analysis of pre-existing immunochip data using a variety of state-of-the-art HLA

imputation software packages. Previous HLA imputation-based studies in PBC [22] have

sought to determine whether the amino acid associations observed with PBC could be

explained by classical HLA alleles; here we took the view, in common with earlier studies of

PBC [1, 8] and of other diseases [8, 28, 34, 39, 41] that, given the functional relevance of amino

acid substitutions, a more natural question is whether the association with classical alleles (and

with SNPs in the HLA region) can be explained by the amino acid substitutions themselves.

We found that the majority of the strong association between PBC and SNPS in the HLA

region and/or classical HLA alleles could indeed be explained by variation at five separate

amino acid substitutions. These included two substitutions (HLA-DPβ1 11L/G and

HLA-DRβ1 74L) that were previously implicated (at much lower levels of significance) by

smaller earlier studies, and three substitutions that represent (to our knowledge) novel find-

ings; once these five effects had been accounted for, there remained some residual association,

but this was nowhere near as strong as the genome-wide levels of significance observed in mar-

ginal analysis. Given the a priori functional relevance of amino acid substitutions, we thus con-

sidered these amino acids (or other residues highly correlated with them) as good candidates

for being causal; we note that this viewpoint—which places a strong prior on amino acids

accounting for association at classical alleles being a more convincing explanation than classi-

cal alleles accounting for association of amino acids (given the fact that classical alleles can

effectively be considered as specific combinations of amino acid substitutions)—is, to some

extent, borne out by that fact that, in steps 1–4 of our stepwise analysis, an amino acid always

entered the model in preference to a classical allele.

In our primary analyses, we focussed on examining the effects of individual amino acid sub-

stitutions and classical HLA alleles, reserving for secondary consideration omnibus tests that

encode the effects of all amino acid substitutions at a position, or all alleles at a gene, simulta-

neously. This strategy differs from that used in previous studies of IBD [27] and RA [28], in

which the investigators focussed first on omnibus tests, reserving tests of individual amino

acid substitutions and classical HLA alleles for secondary consideration. Which analysis strat-

egy is to be preferred is perhaps debatable. We considered the individual testing strategy to be

a priori the more appealing and interpretable of the two approaches, on account of having

fewer df (one df per residue/allele), which provides higher power than testing all residues/

alleles at a position/gene simultaneously. For example, if only one residue out of 8 possible res-

idues at a particular position was actually associated with the disease, then this would be clearly

visible when testing individual amino acid substitutions, but the effect might well be drowned

out when constructing a combined test of all 8 substitutions (one of which is associated, and 7

of which are not). A further reason for preferring the test of individual residues/alleles is the

fact that individual residues/alleles may themselves have specific functional effects, separate

from the effects of any other residues/alleles at the same position/gene. In application to our

PBC data set, we did not find the multi-df omnibus approach to add substantial significance

compared to testing individual predictors, perhaps justifying retrospectively our choice of

analysis strategy.

We took forward the implicated amino acid residues from our analyses for three dimen-

sional predictive modelling and calculation of electrostatic potentials, following an approach

that was previously used in primary sclerosing cholangitis [34] but which has not, to our

knowledge, been previously used in PBC. This analysis demonstrated a correlation between
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the electrostatic potential of pocket P6 in HLA-DP molecules and the HLA-DPB1 alleles/

amino acid substitutions conferring PBC susceptibility/protection, highlighting a potential

mechanistic explanation for the observed association that warrants further investigation.

A previous study in IBD [27] addressed this question of electrostatic potentials in a slightly

different way, motivated by their finding that classical HLA alleles (specifically

HLA-DRB1�01:03) better explained the IBD association than did models based on amino acid

substitutions, leading the investigators to focus their subsequent efforts on an HLA-DRB1 cen-

tric model. In that study, Goyette et al. [27] followed three dimensional predictive modelling

with an analysis of the electrostatic properties around the seven peptide residues (at peptide

positions 1, 2, 3, 4, 5, 7 and 9) that are known to make contact within the binding grove, and

then clustered electrostatically similar HLA-DR molecules together. (A similar analysis was

also carried out focussing only on electrostatic properties in the region affected by amino acid

positions 67, 70 and 71, which had shown significant association with IBD). This analysis iden-

tified four clusters of HLA-DR molecules sharing similar electrostatic properties with respect

to the seven peptide regions (or two clusters sharing similar electrostatic properties with

respect to the region encompassing amino acid positions 67, 70 and 71). The resulting cluster-

ing of HLA-DRB1 alleles (encoding these molecules) showed that alleles associated with

increased risk of IBD generally fell into different clusters than alleles associated with decreased

risk of IBD, suggesting that the HLA-DR molecules associated with increased risk of IBD

exhibited structural and electrostatic properties within the peptide-binding grove that were

largely distinct from those associated with decreased risk.

Given the strong associations of HLA-DRB1 alleles with PBC risk (Table 1), and the fact

that our second most associated amino acid (P = 1.73x10-39) is residue L at position 74 of

HLA-DRβ1, we investigated how the HLA-DRB1 alleles associated with either increased or

decreased PBC risk in our study mapped onto the four clusters of electrostatically similar

HLA-DR molecules that had been identified by Goyette et al. In contrast to the results seen in

IBD, we did not find a consistent pattern of alleles associated with increased risk of PBC falling

into different clusters than alleles associated with decreased risk of PBC, suggesting that the

mechanisms underlying the HLA-DRB1 associations with PBC may be more specific than is

captured by this analysis.

Although the amino acid substitutions highlighted here represent the most compelling dis-

ease-causing factors implicated by our study, we note that high LD in the region and the ability

of alternative, more complex, models (such as those examined in our multi-df, FINEMAP and

GUESSFM analyses) to account for the disease associations observed means that we cannot

definitively rule out the contribution of other factors whose effects are statistically intertwined

with the substitutions we have identified; follow-up functional studies will be required to fur-

ther investigate this question. It has previously been demonstrated that HLA-DRB1�08:01
(DR0801), but not HLA-DRB1�11:01 (DR1101), can bind functional epitopes derived from the

dominant autoantigen pyruvate dehydrogenase complex-E2 (PDC-E2) [42]. We hypothesise

that epitope analysis (using resources such as the Immune Epitope Database and Analysis

Resource) may suggest that the identified significant DQ residues are likely to be equally signif-

icant immunologically, with risk, but not protective alleles being permissive for binding of

binding of epitopes derived from the immuno-dominant inner lipoyl binding domain of

PDC-E2.

The association seen between PBC and HLA-C 156R, implicated by all analysis methods, is

intriguing, as HLA-C is known to be not very potent in antigen presentation. However,

HLA-C does have a significant role in interaction with killer-cell immunoglobulin-like recep-

tors (KIRs), and this therefore raises the question of whether the HLA-C association is related

to T-cell interaction, or is rather about presentation to KIRs. The fact that, in our data set, we
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observed no association between PBC and imputed KIR haplotypes and copy number varia-

tion makes this explanation seem less plausible, but it remains an interesting topic for future

investigation.

Methods

Ethical approval

This study was approved by the Research and Development Departments of all National

Health Service (NHS) Trusts participating in this study and by the Oxford Research Ethics

Committee C (Oxford REC C reference 07/H0606/96).

Study samples and genotyping

The cases, controls and genotype data used here have been described previously [11, 13]. In

brief, a total of 2981 PBC cases were contributed by the UK PBC Consortium, a consortium

operating within 142 NHS trusts, including all UK liver transplant centres. All cases were of

self-declared British or Irish ancestry, over 18 years old with probable or certain PBC. 8,970

controls of self-declared British or Irish ancestry were provided by the 1958 British Birth

Cohort and the National Blood Service. Samples were genotyped on an Illumina iSelect HD

custom genotyping array at either the Wellcome Trust Sanger Institute (2981 cases and 4537

controls) or the Center for Public Health Genomics at the University of Virginia (4433 con-

trols). Following sample and SNP quality control, we retained 2861 cases and 8514 controls

that passed previously-derived quality control checks [13], genotyped at 143,006 SNPs, of

which 7848 fell within the extended MHC region [43] on chromosome 6 (ranging from

25,650,000 to 33,426,000 base pairs, Build36). One SNP within the region (rs2394173) showing

apparent association with disease status was subsequently excluded from analysis following

visual inspection of its cluster plots.

HLA imputation

A variety of different software packages have been developed for the imputation of classical

HLA alleles (and, in some cases, amino acid substitutions) using dense SNP data; we used the

current state-of-the-art methods implemented in the software packages HLA�IMP:03 [14],

HLA�IMP:02 [15], HIBAG [16] and SNP2HLA [17], and we compared the results obtained for

classical HLA alleles with those previously obtained [13] using HLA�IMP:01 [18, 19]. For a

detailed description of the HLA imputation and subsequent association analysis performed

using the different software packages, see S3 Text. Motyer et al. [14] recently compared the

performance of HLA�IMP:03, HLA�IMP:02, HIBAG and SNP2HLA and found that

HLA�IMP:03 and HIBAG gave generally the best (similar) levels of performance, achieving

high accuracy (in the range ~90–99%, depending on HLA locus). Earlier studies had shown

that HLA�IMP:02 and HIBAG performed well in comparison to HLA�IMP:01 [15, 16] while

SNP2HLA performed similarly to HLA�IMP:01 [17].

Although based on similar methodological approaches (and, in our investigation, produc-

ing largely concordant results, see Results), the output from the four packages that we consid-

ered is not fully comparable. HLA�IMP:03 and SNP2HLA provide the posterior probability

for each best-imputed allele (although SNP2HLA does not output this quantity directly but

rather converts it to a dosage), while HLA�IMP:02 and HIBAG produce a posterior probability

for each possible genotype (i.e. for each combination of two alleles, including combinations

that have lower probabilities than the best combination). We found this genotype-based out-

put most convenient for averaging over the possible genotype combinations (while allowing
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appropriately for imputation uncertainty) and for subsequent imputation of amino acid substi-

tutions. Neither HIBAG nor HLA�IMP:02 directly impute amino acid substitutions (as is done

by SNP2HLA) but this can be done manually using the peptide sequences of classical alleles

available in the IMGT/HLA database (see below). According to Motyer et al. [14],

HLA�IMP:03 can also impute amino acid substitutions, but this feature was not enabled in the

development version of HLA�IMP:03 to which we were given access. Given (a) the similar per-

formance of the four packages in our data set with respect to classical HLA allele imputation

(see Results), (b) the superior performance of HLA�IMP:03 and HIBAG seen by Motyer et al.

[14], and (c) the greater convenience of the output from HLA�IMP:02 and HIBAG, for all sub-

sequent detailed modelling of amino acid substitutions we used the imputations derived from

HIBAG.

KIR imputation

We also used the software package KIR�IMP [30] to examine the association between PBC and

genes on chromosome 19q13.4 that encode for killer-cell immunoglobulin-like receptors

(KIRs). In a previous evaluation of KIR�IMP, Vukcevic et al. [30] showed that KIR imputation

using the high-density Illumina Immunochip array is extremely accurate, achieving > 98%

accuracy for the majority of loci, at least 95% accuracy for half the remaining loci, and> 90%

for the rest. For distinguishing the broad A and B haplotype groups, KIR�IMP achieves

~98.5% accuracy. KIR imputation in our data set was informed by 241 genotyped SNPs in the

KIR region that matched the 301 SNPs available in the KIR�IMP training data set. The result-

ing imputed KIR allele and haplotype frequencies in our PBC data set were found to be

extremely close to those seen in the KIR training set. Case-control association analysis was car-

ried out using the Unphased package [44] and via logistic regression in R, with predictors cor-

responding to KIR�IMP’s “best-guess” genotypes (provided that both inferred alleles had

posterior probability > 0.8). Analysis of each individual KIR allele (or haplotype) was per-

formed by using the dosage of each allele (or haplotype) as a single predictor variable. Addi-

tionally, a multi-allelic (multi-df) omnibus analysis was also carried out by including predictor

variables encoding the multiplicative effects of all alleles at a position (or all haplotypes at a set

of positions) in the regression model simultaneously.

Stepwise logistic regression analysis

Stepwise logistic regression [29] was used to assess the importance of variables while account-

ing for the effects of other, previously detected, effects. Predictor variables encoding an indi-

vidual’s estimated dosage of the relevant SNP, HLA classical allele or amino acid substitution

were included as predictors in a logistic regression equation in a forward stepwise fashion (and

were subsequently considered for removal from the model in a backward stepwise fashion).

For full details, see S1 Text.

For our primary analyses, we did not consider it necessary to include additional predictors

such as principal component scores in the regression model to account for possible population

stratification, as prior analysis of this data set [11, 13, 45] has shown little evidence of popula-

tion stratification (once appropriate QC has been performed to remove outlying individuals)

in this UK-based sample. Similarly we did not consider it necessary to include gender as a

covariate–even though gender is known to be important in PBC (the disease is more prevalent

in women than in men)–as theoretical arguments dictate that inclusion of gender should not

bias the results of association tests between disease and genetic factors (outside of the X/Y

chromosomes) as gender is not a confounder (it is associated with the disease outcome, but not

with the genetic predictors). Indeed, it has been shown [46] that inclusion of known covariates
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such as gender can even reduce power to detect genetic effects in case-control studies. We sub-

sequently investigated the sensitivity of our results to the inclusion (or not) of principal com-

ponent scores and gender in the regression model, using the top 10 principal component

scores calculated from a pruned (by LD) set of SNPs with SNPs in the extended HLA region

removed.

We also investigated the stability of the stepwise selection procedure through a resampling

approach motivated by the stability selection procedure of Meinshausen and Buhlmann (2010)

[47]. In each of 1000 bootstrap replicates, we randomly selected 2/3 of our cases and 2/3 of our

controls to form a new case/control data set and applied stepwise regression to select the top

20 amino acid predictors, noting the order and significance of entry of each predictor in each

replicate.

Exhaustive and stochastic searches for best combinations of amino acid variables. A

drawback of stepwise regression is that it employs a “greedy algorithm” whereby predictors are

only included conditional on other predictors that have already been added to the model. This

is not equivalent to determining which combination of predictors best explain the outcome, and

can produce misleading inferences, especially when predictors are highly correlated [32]. To

overcome this issue, we performed an exhaustive search via logistic regression of all pairwise

and all three-way combinations of individual amino acids (generating 2 df and 3 df tests respec-

tively), and all pairwise and all three-way combinations of amino acid positions (generating

multi-df tests that include predictor variables encoding the multiplicative effects of all amino

acid substitutions at both–or all three–positions in the regression model simultaneously).

Moving beyond 3-way combinations is computationally prohibitive: the 1028 individual

amino acids substitutions considered here result in 527,878 pairwise combinations and

180,534,276 three-way combinations; modelling the full set of effects at each of the 368 posi-

tions results in 67,528 pairwise tests or 32,953,664 three-way tests, each with potentially many

df. To address this issue, we used two Bayesian stochastic search algorithm implementations

that have been proposed in the context of genetic fine-mapping to search for the best set of

genetic predictors explaining a phenotypic outcome: the GUESSFM package [32] and the

FINEMAP package [31]. For GUESSFM we used as input data the “best guess” amino acid des-

ignations from HIBAG, while for FINEMAP we used as input the Z-score from the marginal

association test of amino acid with disease status. Both packages require specification of vari-

ous user-defined parameters (such as the expected or maximum number of causal variants) in

order to inform the prior distribution of the search space; we performed some limited investi-

gations of the sensitivity of the results to the parameter choices made.

3D protein structure modelling

The atomic coordinates (3 dimensional structures) of any HLA molecules carrying or not car-

rying a significantly associated amino acid residue were determined using comparative protein

structure modelling by satisfaction of spatial restraints as implemented by the MODELLER

9.14 computer algorithm [35, 48–50]. HLA proteins of known structure suitable as modelling

templates were identified in the Protein Data Bank. The peptide sequences of the target classi-

cal alleles were downloaded from the IMGT/HLA database. Sequence alignment was per-

formed with Clustal Omega and manually corrected where necessary. The stereochemical

qualities of the modelled structures was verified using the COOT program [51] by assessment

of Ramachandran plots and by calculating the least square mean deviation between the tem-

plate molecule and computed model.

Electrostatic potential calculations. The electrostatic potentials around the resulting 3D

structures were calculated by numerically solving the Poisson Boltzmann equation using the
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finite difference method implemented in DelPhi v6.2 [36, 52]. Essential hydrogens were added

to each structure using the UCSF Chimera package [37] and the protonated molecule was sub-

sequently used to compute the electrostatic potential. Interior and exterior dielectric constants

were set at 2 and 80 respectively, with a solution with charged ions simulated by an assigned

ionic strength 0.145. The dielectric boundary between the protein and the solvent was defined

by calculating the solvent-accessible surface generated by a rolling probe sphere of radius 1.4

Å. Atomic radii and charges were taken from the CHARMM parameter set [53]. The system

was mapped into a 3D cubical grid filled by 80% solute, with the grid dimensions set at 251

grid points per axis (spacing 0.3 Å/grid point), and electrostatic potentials were calculated iter-

atively starting from the Debye-Hückel boundary conditions. The solvent accessible surface

was then colored according to charge using Chimera [37].
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S12 Fig. Structure and molecular surface electrostatic potential of pocket P4 in HLA-DR

molecules. A) The structure and electrostatic potential of HLA-DRB1�08:01. The area within

the frame is depicted in expanded form in B and C, and indicates the position of pocket P4

(arrows). All structures were superimposed on HLA-DRB1�08:01 and therefore show the same

view. HLA-DRB1 alleles associated with an increased risk of PBC (08:01, 04:03 and 04:04) are

shown in panel B whereas those associated with a protective effect (15:01,11:01,11:03 and

11:04) are shown in panel C. Negatively charged potentials (less than 5 kT/e) are coloured red,

positively charged (greater than 5 kT/e) blue, and neutral potentials (0 kT/e) are coloured

white. Linear interpolation was used to produce the colour for surface potentials between

these values.

(PDF)

S13 Fig. Structure and molecular surface electrostatic potential of associated residues 57 in

HLA-DQ molecules. A) The structure and electrostatic potential of HLA-DQB1�04:02. The

area within the frame is depicted in expanded form in B and C, and indicates the position of res-

idue 57 (arrows). All structures were superimposed on HLA-DQB1�04:02 and therefore show

the same view. HLA-DQB1 alleles associated with an increased risk of PBC (04:02 and 03:02)

are shown in panel B whereas those associated with a protective effect (06:02 and 03:01) are

shown in panel C. Negatively charged potentials (less than 5 kT/e) are coloured red, positively

charged (greater than 5 kT/e) blue, and neutral potentials (0 kT/e) are coloured white. Linear

interpolation was used to produce the colour for surface potentials between these values.

(PDF)

S14 Fig. Structure and molecular surface electrostatic potential of associated residues 56,

70 and 71 in HLA-DQ molecules. A) The structure and electrostatic potential of HLA-

DQB1�04:02. The area within the frame is depicted in expanded form in B and C, and indi-

cates the position of residues 56, 70 and 71 (arrows). All structures were superimposed on

HLA-DQB1�04:02 and therefore show the same view. HLA-DQB1 alleles associated with an

increased risk of PBC (04:02 and 03:02) are shown in panel B whereas those associated with a

protective effect (06:02 and 03:01) are shown in panel C. Negatively charged potentials (less

than 5 kT/e) are coloured red, positively charged (greater than 5 kT/e) blue, and neutral poten-

tials (0 kT/e) are coloured white. Linear interpolation was used to produce the colour for sur-

face potentials between these values.

(PDF)

S1 Text. Description of stepwise logistic regression analysis.

(DOCX)

S2 Text. Description of dominant, recessive, genotypic and interaction models.

(DOCX)

S3 Text. Details of HLA imputation.

(DOCX)

S1 Spreadsheet. Quantification of data shown in Fig 1.

(XLSX)

S2 Spreadsheet. Quantification of data shown in Fig 2.

(XLSX)

S3 Spreadsheet. Quantification of data shown in Fig 3.

(XLSX)

Amino acid residues in five HLA genes explain associations between the MHC and PBC

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007833 December 3, 2018 24 / 29

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s023
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s024
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s025
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s026
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s027
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s028
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s029
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s030
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s031
https://doi.org/10.1371/journal.pgen.1007833


S4 Spreadsheet. Quantification of data shown in S1 Fig.

(XLSX)

S5 Spreadsheet. Quantification of data shown in S2 Fig (Panel B).

(XLSX)

S6 Spreadsheet. Quantification of data shown in S2 Fig (Panel D).

(XLSX)

S7 Spreadsheet. Quantification of data shown in S2 Fig (Panel F).

(XLSX)

S8 Spreadsheet. Quantification of data shown in Fig 4.

(XLSX)

S9 Spreadsheet. Quantification of data shown in S3 Fig (Panels C and D).

(XLSX)

S10 Spreadsheet. Quantification of data shown in S4 Fig (Panels C and D).

(XLSX)

S11 Spreadsheet. Quantification of data shown in S5 Fig (Panel C).

(XLSX)

S12 Spreadsheet. Quantification of data shown in S5 Fig (Panel D).

(XLSX)

S13 Spreadsheet. Quantification of data shown in S6 Fig and S9 Fig.

(XLSX)

S14 Spreadsheet. Quantification of data shown in S7 Fig and S10 Fig.

(XLSX)

S15 Spreadsheet. Quantification of data shown in S8 Fig and S11 Fig.

(XLSX)

Acknowledgments

We thank the UK-PBC Consortium for allowing us to re-use the published data from Liu et al.

(2012). We are grateful to the PBC Foundation for helping us to establish the PBC Genetics

Study, for endorsing it and for encouraging members of the Foundation to contribute samples.

We thank all of the research nurses who assisted with participant recruitment in collaborating

centers. We thank the staff in the UK National Institute for Health Research Clinical Research

Network (NIHR CRN) and Clinical Research Collaboration (CRC) Cymru for providing invalu-

able support. We are grateful to K. Chittock and his colleagues at Source Bioscience for perform-

ing DNA extraction. We thank Oliver S. Burren for designing the participant database and for

providing information technology support, and Victoria A. Money for technical assistance.

Finally, we thank the individuals who contributed the DNA samples used in this study. We

would like to thank the UK Medical Research Council and the Wellcome Trust for facilitating the

collection of DNA for the British 1958 Birth Cohort and the WTCCC2 and WTCCC3 studies.

Author Contributions

Conceptualization: George F. Mells, Graeme J. Alexander, David E. Jones, Richard N. Sand-

ford, Carl A. Anderson, Heather J. Cordell.

Amino acid residues in five HLA genes explain associations between the MHC and PBC

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007833 December 3, 2018 25 / 29

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s032
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s033
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s034
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s035
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s036
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s037
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s038
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s039
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s040
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s041
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s042
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007833.s043
https://doi.org/10.1371/journal.pgen.1007833


Formal analysis: Rebecca Darlay, Kristin L. Ayers, Lynsey S. Hall, Jimmy Z. Liu, Mohamed A.

Almarri, Heather J. Cordell.

Funding acquisition: George F. Mells, Graeme J. Alexander, David E. Jones, Richard N. Sand-

ford, Carl A. Anderson, Heather J. Cordell.

Investigation: Heather J. Cordell.

Supervision: Carl A. Anderson, Heather J. Cordell.

Visualization: Rebecca Darlay, Heather J. Cordell.

Writing – original draft: Rebecca Darlay, Lynsey S. Hall, Heather J. Cordell.

Writing – review & editing: Kristin L. Ayers, George F. Mells, Lynsey S. Hall, Jimmy Z. Liu,

Mohamed A. Almarri, Graeme J. Alexander, David E. Jones, Richard N. Sandford, Carl A.

Anderson, Heather J. Cordell.

References
1. Donaldson PT, Baragiotta A, Heneghan MA, Floreani A, Venturi C, Underhill JA, et al. HLA class II

alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepa-

tology. 2006; 44(3):667–74. https://doi.org/10.1002/hep.21316 PMID: 16941709.

2. Gores GJ, Moore SB, Fisher LD, Powell FC, Dickson ER. Primary biliary cirrhosis: associations with

class II major histocompatibility complex antigens. Hepatology. 1987; 7(5):889–92. PMID: 3498674.

3. Invernizzi P, Selmi C, Poli F, Frison S, Floreani A, Alvaro D, et al. Human leukocyte antigen polymor-

phisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls.

Hepatology. 2008; 48(6):1906–12. https://doi.org/10.1002/hep.22567 PMID: 19003916; PubMed Cen-

tral PMCID: PMC2592501.

4. Mukai T, Sasazuki T, Kimura A, Ishibashi H, Sata M, Maruyama T, et al. Short communication: Associa-

tion of HLA-DRB1*0801 and *1602 with the susceptibility to primary biliary cirrhosis. Int Hepatol Com-

mun. 1995; 3(4):207–12. https://doi.org/10.1016/0928-4346(94)00183-6 WOS:A1995QM92200007.

5. Oguri H, Oba S, Ogino H, Inagaki Y, Kaneko S, Unoura M, et al. Susceptibility to primary biliary cirrhosis

is associated with Human-Leukocyte Antigen DRB1*0803 in Japanese Patients. Int Hepatol Commun.

1994; 2(5):263–70. https://doi.org/10.1016/0928-4346(94)90061-2 WOS:A1994PG01900004.

6. Seki T, Kiyosawa K, Ota M, Furuta S, Fukushima H, Tanaka E, et al. Association of primary biliary cir-

rhosis with human leukocyte antigen DPB1*0501 in Japanese patients. Hepatology. 1993; 18(1):73–8.

WOS:A1993LM33100012. PMID: 8100798

7. Underhill J, Donaldson P, Bray G, Doherty D, Portmann B, Williams R. Susceptibility to primary biliary

cirrhosis is associated with the HLA-DR8-DQB1*0402 haplotype. Hepatology. 1992; 16(6):1404–8.

PMID: 1359995.

8. Underhill JA, Donaldson PT, Doherty DG, Manabe K, Williams R. HLA DPB polymorphism in primary

sclerosing cholangitis and primary biliary cirrhosis. Hepatology. 1995; 21(4):959–62. PMID: 7705806.

9. Hirschfield GM, Liu X, Xu C, Lu Y, Xie G, Lu Y, et al. Primary biliary cirrhosis associated with HLA,

IL12A, and IL12RB2 variants. N Engl J Med. 2009; 360(24):2544–55. https://doi.org/10.1056/

NEJMoa0810440 PMID: 19458352; PubMed Central PMCID: PMC2857316.

10. Liu X, Invernizzi P, Lu Y, Kosoy R, Lu Y, Bianchi I, et al. Genome-wide meta-analyses identify three loci

associated with primary biliary cirrhosis. Nature genetics. 2010; 42(8):658–60. https://doi.org/10.1038/

ng.627 PMID: 20639880; PubMed Central PMCID: PMC3150510.

11. Mells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS, Shin SY, et al. Genome-wide association study

identifies 12 new susceptibility loci for primary biliary cirrhosis. Nature genetics. 2011; 43(4):329–32.

https://doi.org/10.1038/ng.789 PMID: 21399635; PubMed Central PMCID: PMC3071550.

12. Nakamura M, Nishida N, Kawashima M, Aiba Y, Tanaka A, Yasunami M, et al. Genome-wide associa-

tion study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Jap-

anese population. American journal of human genetics. 2012; 91(4):721–8. https://doi.org/10.1016/j.

ajhg.2012.08.010 PMID: 23000144; PubMed Central PMCID: PMC3484650.

13. Liu JZ, Almarri MA, Gaffney DJ, Mells GF, Jostins L, Cordell HJ, et al. Dense fine-mapping study identi-

fies new susceptibility loci for primary biliary cirrhosis. Nature genetics. 2012; 44(10):1137–41. https://

doi.org/10.1038/ng.2395 PMID: 22961000; PubMed Central PMCID: PMC3459817.

Amino acid residues in five HLA genes explain associations between the MHC and PBC

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007833 December 3, 2018 26 / 29

https://doi.org/10.1002/hep.21316
http://www.ncbi.nlm.nih.gov/pubmed/16941709
http://www.ncbi.nlm.nih.gov/pubmed/3498674
https://doi.org/10.1002/hep.22567
http://www.ncbi.nlm.nih.gov/pubmed/19003916
https://doi.org/10.1016/0928-4346(94)00183-6
https://doi.org/10.1016/0928-4346(94)90061-2
http://www.ncbi.nlm.nih.gov/pubmed/8100798
http://www.ncbi.nlm.nih.gov/pubmed/1359995
http://www.ncbi.nlm.nih.gov/pubmed/7705806
https://doi.org/10.1056/NEJMoa0810440
https://doi.org/10.1056/NEJMoa0810440
http://www.ncbi.nlm.nih.gov/pubmed/19458352
https://doi.org/10.1038/ng.627
https://doi.org/10.1038/ng.627
http://www.ncbi.nlm.nih.gov/pubmed/20639880
https://doi.org/10.1038/ng.789
http://www.ncbi.nlm.nih.gov/pubmed/21399635
https://doi.org/10.1016/j.ajhg.2012.08.010
https://doi.org/10.1016/j.ajhg.2012.08.010
http://www.ncbi.nlm.nih.gov/pubmed/23000144
https://doi.org/10.1038/ng.2395
https://doi.org/10.1038/ng.2395
http://www.ncbi.nlm.nih.gov/pubmed/22961000
https://doi.org/10.1371/journal.pgen.1007833


14. Motyer A, Vukcevic D, Dilthey A, Donnelly P, McVean G, Leslie S. Practical Use of Methods for Imputa-

tion of HLA Alleles from SNP Genotype Data. BioRxiv (Cold Spring Harbor Labs Journals, 2014). 2016.

https://doi.org/10.1101/091009.

15. Dilthey A, Leslie S, Moutsianas L, Shen J, Cox C, Nelson MR, et al. Multi-population classical HLA type

imputation. PLoS Comput Biol. 2013; 9(2):e1002877. https://doi.org/10.1371/journal.pcbi.1002877

PMID: 23459081; PubMed Central PMCID: PMC3572961.

16. Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, et al. HIBAG-HLA genotype imputation

with attribute bagging. Pharmacogenomics J. 2014; 14(2):192–200. https://doi.org/10.1038/tpj.2013.18

WOS:000333665400013. PMID: 23712092

17. Jia X, Han B, Onengut-Gumuscu S, Chen WM, Concannon PJ, Rich SS, et al. Imputing amino acid

polymorphisms in human leukocyte antigens. PLoS One. 2013; 8(6):e64683. https://doi.org/10.1371/

journal.pone.0064683 PMID: 23762245; PubMed Central PMCID: PMC3675122.

18. Dilthey AT, Moutsianas L, Leslie S, McVean G. HLA*IMP—an integrated framework for imputing classi-

cal HLA alleles from SNP genotypes. Bioinformatics. 2011; 27(7):968–72. https://doi.org/10.1093/

bioinformatics/btr061 PMID: 21300701; PubMed Central PMCID: PMC3065693.

19. Leslie S, Donnelly P, McVean G. A statistical method for predicting classical HLA alleles from SNP

data. American journal of human genetics. 2008; 82(1):48–56. https://doi.org/10.1016/j.ajhg.2007.09.

001 PMID: 18179884; PubMed Central PMCID: PMC2253983.

20. Mullarkey ME, Stevens AM, McDonnell WM, Loubiere LS, Brackensick JA, Pang JM, et al. Human leu-

kocyte antigen class II alleles in Caucasian women with primary biliary cirrhosis. Tissue Antigens. 2005;

65(2):199–205. https://doi.org/10.1111/j.1399-0039.2005.00351.x WOS:000227020100012. PMID:

15713222

21. Juran BD, Hirschfield GM, Invernizzi P, Atkinson EJ, Li Y, Xie G, et al. Immunochip analyses identify a

novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four estab-

lished risk loci and epistasis between 1p31 and 7q32 risk variants. Human molecular genetics. 2012; 21

(23):5209–21. https://doi.org/10.1093/hmg/dds359 PMID: 22936693; PubMed Central PMCID:

PMC3490520.

22. Invernizzi P, Ransom M, Raychaudhuri S, Kosoy R, Lleo A, Shigeta R, et al. Classical HLA-DRB1 and

DPB1 alleles account for HLA associations with primary biliary cirrhosis. Genes Immun. 2012; 13

(6):461–8. https://doi.org/10.1038/gene.2012.17 PMID: 22573116; PubMed Central PMCID:

PMC3423484.

23. Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference

for large data sets of trios and unrelated individuals. American journal of human genetics. 2009; 84

(2):210–23. https://doi.org/10.1016/j.ajhg.2009.01.005 PMID: 19200528; PubMed Central PMCID:

PMC2668004.

24. Mella JG, Roschmann E, Maier KP, Volk BA. Association of primary biliary cirrhosis with the allele HLA-

DPB1*0301 in a German population. Hepatology. 1995; 21(2):398–402. PMID: 7843712.

25. Zhao DT, Liao HY, Zhang X, Liu YM, Zhao Y, Zhang HP, et al. Human leucocyte antigen alleles and

haplotypes and their associations with antinuclear antibodies features in Chinese patients with primary

biliary cirrhosis. Liver Int. 2014; 34(2):220–6. https://doi.org/10.1111/liv.12236

WOS:000329308400008. PMID: 23809616

26. Carmona FD, Mackie SL, Martin JE, Taylor JC, Vaglio A, Eyre S, et al. A large-scale genetic analysis

reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility. American jour-

nal of human genetics. 2015; 96(4):565–80. Epub 2015/03/31. https://doi.org/10.1016/j.ajhg.2015.02.

009 PMID: 25817017; PubMed Central PMCID: PMCPMC4385191.

27. Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, et al. High-density mapping of the

MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous

advantage in ulcerative colitis. Nature genetics. 2015; 47(2):172–9. Epub 2015/01/07. https://doi.org/

10.1038/ng.3176 PMID: 25559196; PubMed Central PMCID: PMCPMC4310771.

28. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia XM, et al. Five amino acids in three

HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis.

Nature genetics. 2012; 44(3):291–U91. https://doi.org/10.1038/ng.1076 WOS:000300843600014.

PMID: 22286218

29. Cordell HJ, Clayton DG. A unified stepwise regression procedure for evaluating the relative effects of

polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes.

American journal of human genetics. 2002; 70(1):124–41. https://doi.org/10.1086/338007 PMID:

11719900; PubMed Central PMCID: PMC384883.

30. Vukcevic D, Traherne JA, Naess S, Ellinghaus E, Kamatani Y, Dilthey A, et al. Imputation of KIR Types

from SNP Variation Data. American journal of human genetics. 2015; 97(4):593–607. https://doi.org/10.

1016/j.ajhg.2015.09.005 PMID: 26430804; PubMed Central PMCID: PMC4596914.

Amino acid residues in five HLA genes explain associations between the MHC and PBC

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007833 December 3, 2018 27 / 29

https://doi.org/10.1101/091009
https://doi.org/10.1371/journal.pcbi.1002877
http://www.ncbi.nlm.nih.gov/pubmed/23459081
https://doi.org/10.1038/tpj.2013.18
http://www.ncbi.nlm.nih.gov/pubmed/23712092
https://doi.org/10.1371/journal.pone.0064683
https://doi.org/10.1371/journal.pone.0064683
http://www.ncbi.nlm.nih.gov/pubmed/23762245
https://doi.org/10.1093/bioinformatics/btr061
https://doi.org/10.1093/bioinformatics/btr061
http://www.ncbi.nlm.nih.gov/pubmed/21300701
https://doi.org/10.1016/j.ajhg.2007.09.001
https://doi.org/10.1016/j.ajhg.2007.09.001
http://www.ncbi.nlm.nih.gov/pubmed/18179884
https://doi.org/10.1111/j.1399-0039.2005.00351.x
http://www.ncbi.nlm.nih.gov/pubmed/15713222
https://doi.org/10.1093/hmg/dds359
http://www.ncbi.nlm.nih.gov/pubmed/22936693
https://doi.org/10.1038/gene.2012.17
http://www.ncbi.nlm.nih.gov/pubmed/22573116
https://doi.org/10.1016/j.ajhg.2009.01.005
http://www.ncbi.nlm.nih.gov/pubmed/19200528
http://www.ncbi.nlm.nih.gov/pubmed/7843712
https://doi.org/10.1111/liv.12236
http://www.ncbi.nlm.nih.gov/pubmed/23809616
https://doi.org/10.1016/j.ajhg.2015.02.009
https://doi.org/10.1016/j.ajhg.2015.02.009
http://www.ncbi.nlm.nih.gov/pubmed/25817017
https://doi.org/10.1038/ng.3176
https://doi.org/10.1038/ng.3176
http://www.ncbi.nlm.nih.gov/pubmed/25559196
https://doi.org/10.1038/ng.1076
http://www.ncbi.nlm.nih.gov/pubmed/22286218
https://doi.org/10.1086/338007
http://www.ncbi.nlm.nih.gov/pubmed/11719900
https://doi.org/10.1016/j.ajhg.2015.09.005
https://doi.org/10.1016/j.ajhg.2015.09.005
http://www.ncbi.nlm.nih.gov/pubmed/26430804
https://doi.org/10.1371/journal.pgen.1007833


31. Benner C, Spencer CC, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: efficient variable

selection using summary data from genome-wide association studies. Bioinformatics. 2016; 32

(10):1493–501. https://doi.org/10.1093/bioinformatics/btw018 PMID: 26773131; PubMed Central

PMCID: PMC4866522.

32. Wallace C, Cutler AJ, Pontikos N, Pekalski ML, Burren OS, Cooper JD, et al. Dissection of a Complex

Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping. PLoS

Genet. 2015; 11(6):e1005272. ARTN e1005272 https://doi.org/10.1371/journal.pgen.1005272

WOS:000357341600022. PMID: 26106896

33. Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S, et al. Widespread non-additive and interaction

effects within HLA loci modulate the risk of autoimmune diseases. Nature genetics. 2015; 47(9):1085–

90. https://doi.org/10.1038/ng.3379 PMID: 26258845; PubMed Central PMCID: PMC4552599.

34. Hov JR, Kosmoliaptsis V, Traherne JA, Olsson M, Boberg KM, Bergquist A, et al. Electrostatic modifica-

tions of the human leukocyte antigen-DR P9 peptide-binding pocket and susceptibility to primary scle-

rosing cholangitis. Hepatology. 2011; 53(6):1967–76. https://doi.org/10.1002/hep.24299 PMID:

21413052; PubMed Central PMCID: PMC3128712.

35. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, et al. Comparative protein

structure modeling using Modeller. Curr Protoc Bioinformatics. 2006;Chapter 5:Unit 5 6. https://doi.org/10.

1002/0471250953.bi0506s15 18428767; PubMed Central PMCID: PMC4186674. PMID: 18428767

36. Li L, Li C, Sarkar S, Zhang J, Witham S, Zhang Z, et al. DelPhi: a comprehensive suite for DelPhi soft-

ware and associated resources. BMC Biophys. 2012; 5:9. https://doi.org/10.1186/2046-1682-5-9

PMID: 22583952; PubMed Central PMCID: PMC3463482.

37. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a

visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605–12.

https://doi.org/10.1002/jcc.20084 PMID: 15264254.

38. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, et al. Three-dimensional struc-

ture of the human class II histocompatibility antigen HLA-DR1. Nature. 1993; 364(6432):33–9. Epub

1993/07/01. https://doi.org/10.1038/364033a0 PMID: 8316295.

39. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-

dependent diabetes mellitus. Nature. 1987; 329(6140):599–604. https://doi.org/10.1038/329599a0

PMID: 3309680.

40. Cucca F, Lampis R, Congia M, Angius E, Nutland S, Bain SC, et al. A correlation between the relative

predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. Human

molecular genetics. 2001; 10(19):2025–37. Epub 2001/10/09. PMID: 11590120.

41. Han B, Diogo D, Eyre S, Kallberg H, Zhernakova A, Bowes J, et al. Fine mapping seronegative and

seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of hetero-

geneity. American journal of human genetics. 2014; 94(4):522–32. https://doi.org/10.1016/j.ajhg.2014.

02.013 PMID: 24656864; PubMed Central PMCID: PMC3980428.

42. Chow IT, James EA, Gates TJ, Tan V, Moustakas AK, Papadopoulos GK, et al. Differential binding of

pyruvate dehydrogenase complex-E2 epitopes by DRB1*08:01 and DRB1*11:01 Is predicted by their

structural motifs and correlates with disease risk. J Immunol. 2013; 190(9):4516–24. https://doi.org/10.

4049/jimmunol.1202445 PMID: 23543758; PubMed Central PMCID: PMC3729472.

43. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, et al. Gene map of the extended

human MHC. Nat Rev Genet. 2004; 5(12):889–99. https://doi.org/10.1038/nrg1489 PMID: 15573121.

44. Dudbridge F. Likelihood-based association analysis for nuclear families and unrelated subjects with

missing genotype data. Hum Hered. 2008; 66(2):87–98. https://doi.org/10.1159/000119108 PMID:

18382088; PubMed Central PMCID: PMC2386559.

45. Cordell HJ, Han Y, Mells GF, Li Y, Hirschfield GM, Greene CS, et al. International genome-wide meta-

analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat Com-

mun. 2015; 6:8019. https://doi.org/10.1038/ncomms9019 PMID: 26394269; PubMed Central PMCID:

PMC4580981.

46. Pirinen M, Donnelly P, Spencer CC. Including known covariates can reduce power to detect genetic

effects in case-control studies. Nature genetics. 2012; 44(8):848–51. https://doi.org/10.1038/ng.2346

PMID: 22820511.

47. Meinshausen N, Buhlmann P. Stability selection. Journal of the Royal Statistical Society Series B-Sta-

tistical Methodology. 2010; 72:417–73. WOS:000280638400003.

48. Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000; 9(9):1753–73. https://

doi.org/10.1110/ps.9.9.1753 PMID: 11045621; PubMed Central PMCID: PMC2144714.

49. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure model-

ing of genes and genomes. Annu Rev Biophys Biomol Struct. 2000; 29:291–325. https://doi.org/10.

1146/annurev.biophys.29.1.291 PMID: 10940251.

Amino acid residues in five HLA genes explain associations between the MHC and PBC

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007833 December 3, 2018 28 / 29

https://doi.org/10.1093/bioinformatics/btw018
http://www.ncbi.nlm.nih.gov/pubmed/26773131
https://doi.org/10.1371/journal.pgen.1005272
http://www.ncbi.nlm.nih.gov/pubmed/26106896
https://doi.org/10.1038/ng.3379
http://www.ncbi.nlm.nih.gov/pubmed/26258845
https://doi.org/10.1002/hep.24299
http://www.ncbi.nlm.nih.gov/pubmed/21413052
https://doi.org/10.1002/0471250953.bi0506s15
https://doi.org/10.1002/0471250953.bi0506s15
http://www.ncbi.nlm.nih.gov/pubmed/18428767
https://doi.org/10.1186/2046-1682-5-9
http://www.ncbi.nlm.nih.gov/pubmed/22583952
https://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.1038/364033a0
http://www.ncbi.nlm.nih.gov/pubmed/8316295
https://doi.org/10.1038/329599a0
http://www.ncbi.nlm.nih.gov/pubmed/3309680
http://www.ncbi.nlm.nih.gov/pubmed/11590120
https://doi.org/10.1016/j.ajhg.2014.02.013
https://doi.org/10.1016/j.ajhg.2014.02.013
http://www.ncbi.nlm.nih.gov/pubmed/24656864
https://doi.org/10.4049/jimmunol.1202445
https://doi.org/10.4049/jimmunol.1202445
http://www.ncbi.nlm.nih.gov/pubmed/23543758
https://doi.org/10.1038/nrg1489
http://www.ncbi.nlm.nih.gov/pubmed/15573121
https://doi.org/10.1159/000119108
http://www.ncbi.nlm.nih.gov/pubmed/18382088
https://doi.org/10.1038/ncomms9019
http://www.ncbi.nlm.nih.gov/pubmed/26394269
https://doi.org/10.1038/ng.2346
http://www.ncbi.nlm.nih.gov/pubmed/22820511
https://doi.org/10.1110/ps.9.9.1753
https://doi.org/10.1110/ps.9.9.1753
http://www.ncbi.nlm.nih.gov/pubmed/11045621
https://doi.org/10.1146/annurev.biophys.29.1.291
https://doi.org/10.1146/annurev.biophys.29.1.291
http://www.ncbi.nlm.nih.gov/pubmed/10940251
https://doi.org/10.1371/journal.pgen.1007833


50. Sali A, Blundell TL. Comparative Protein Modeling by Satisfaction of Spatial Restraints. J Mol Biol.

1993; 234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626 WOS:A1993MK79900020. PMID:

8254673

51. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D

Biol Crystallogr. 2010; 66(Pt 4):486–501. https://doi.org/10.1107/S0907444910007493 PMID:

20383002; PubMed Central PMCID: PMC2852313.

52. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B. Rapid grid-based construction of

the molecular surface and the use of induced surface charge to calculate reaction field energies: Appli-

cations to the molecular systems and geometric objects. J Comput Chem. 2002; 23(1):128–37. https://

doi.org/10.1002/jcc.1161 WOS:000172934800014. PMID: 11913378

53. Brooks BR, Brooks CL 3rd, Mackerell AD Jr., Nilsson L, Petrella RJ, Roux B, et al. CHARMM: the bio-

molecular simulation program. J Comput Chem. 2009; 30(10):1545–614. https://doi.org/10.1002/jcc.

21287 PMID: 19444816; PubMed Central PMCID: PMC2810661.

Amino acid residues in five HLA genes explain associations between the MHC and PBC

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007833 December 3, 2018 29 / 29

https://doi.org/10.1006/jmbi.1993.1626
http://www.ncbi.nlm.nih.gov/pubmed/8254673
https://doi.org/10.1107/S0907444910007493
http://www.ncbi.nlm.nih.gov/pubmed/20383002
https://doi.org/10.1002/jcc.1161
https://doi.org/10.1002/jcc.1161
http://www.ncbi.nlm.nih.gov/pubmed/11913378
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1002/jcc.21287
http://www.ncbi.nlm.nih.gov/pubmed/19444816
https://doi.org/10.1371/journal.pgen.1007833

