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Abstract 46 

A subset of gastric cancer (GC) patients have mutations in genes that participate in or regulate 47 

Wnt signaling at the level of ligand (Wnt) receptor (Fzd) binding. Moreover, increased Fzd 48 

expression is associated with poor clinical outcome. Despite these findings, there are no in vivo 49 

studies investigating the potential of targeting Wnt receptors for treating GC, and the specific Wnt 50 

receptor transmitting oncogenic Wnt signaling in GC is unknown. Here we use inhibitors of 51 

Wnt/Fzd (OMP-18R5/Vantictumab) and conditional gene deletion to test the therapeutic potential 52 

of targeting Wnt signaling in preclinical models of intestinal-type gastric cancer and ex vivo 53 

organoid cultures. Pharmacological targeting of Fzd inhibited the growth of gastric adenomas in 54 

vivo. We identified Fzd7 to be the predominant Wnt receptor responsible for transmitting Wnt 55 

signaling in human gastric cancer cells and mouse models of GC, whereby Fzd7-deficient cells 56 

were retained in gastric adenomas but were unable to respond to Wnt signals and consequently 57 

failed to proliferate. Genetic deletion of Fzd7 or treatment with Vantictumab was sufficient to inhibit 58 

the growth of gastric adenomas with or without mutations to Apc. Vantictumab is currently in 59 

phase Ib clinical trials for advanced pancreatic, lung, and breast cancer. Our data extend the 60 

scope of patients that may benefit from this therapeutic approach as we demonstrate that this 61 

drug will be effective in treating gastric cancer patients regardless of Apc mutation status.  62 

 63 

Statement of significance 64 

The Wnt receptor Fzd7 plays an essential role in gastric tumorigenesis irrespective of Apc 65 

mutation status therefore targeting Wnt/Fzd7 may be of therapeutic benefit to gastric cancer 66 

patients. 67 

 68 
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Introduction 69 

Gastric cancer (GC) is a common malignancy, ranking in the top 4 of global cancer incidence [1]. 70 

Often due to advanced stage diagnosis, gastric cancer patients have a very poor 5-year survival 71 

rate [1]. This highlights a desperate need for novel clinical treatments as there are very few 72 

approved targeted therapies for GC [2, 3]. Gastric cancer is divided histologically into two groups; 73 

intestinal-type and diffuse-type, with intestinal-type being more prevalent. Members of the cell-74 

surface Frizzled (Fzd) receptor family are deregulated or overexpressed in several cancer types, 75 

including GC [4]. Wnts are lipid-modified glycoproteins that initiate signal transduction by binding 76 

to Fzd via a palmitate group, which is appended by the palmitoyltransferase Porcupine (PORCN) 77 

[5, 6]. Wnts also bind cell surface co-receptors, such as Lrp5/6, forming a ternary complex [7]. 78 

Formation of the Wnt-receptor complex leads to inhibition of a multiprotein ‘destruction complex’ 79 

comprised of Axin, glycogen synthase kinase-3 (GSK3), calcium kinase-1 (CK1) and 80 

adenomatous polyposis coli (APC), which targets β-catenin for proteosomal degradation. Newly 81 

synthesised cytoplasmic β-catenin can now escape degradation, accumulate and translocate to 82 

the nucleus, where it forms a transcriptionally active complex with T-cell factor (TCF)/lymphoid 83 

enhancing factor (LEF) family of transcription factors to induce Wnt target gene transcription [8]. 84 

However, deregulated Wnt signaling can initiate cell transformation and subsequent 85 

carcinogenesis [8].  86 

 87 

Furthermore, several Wnt/Fzd antagonists [9] are epigenetically silenced through promoter hyper-88 

methylation, including DKK3 (67.6% of gastric tumors [10]), sFRP1 (91%), sFRP2 (96%), sFRP5 89 

(65%) [11], whilst others such as the E3 ligase RNF43, which regulates Fzd turnover on the cell 90 

surface [12], are mutated in 54% and 4.8% of microsatellite instable (MSI) and microsatellite 91 

stable (MSS) gastric tumors, respectively [13]. Exogenous re-introduction of sFRP or DKK can 92 

significantly reduce gastric tumor burden in APC or β-catenin-mutant gastric cancer cells by 93 

attenuating Wnt signaling [11, 14]. Critically, this provides proof-of-principle that modulation of 94 

ligand/receptor signaling components can further regulate Wnt signaling irrespective of 95 

downstream mutations that constitutively activate the pathway, which has been reported in 96 

colorectal cancer cells [15-18]. Together, these data strongly implicate a role for Wnt/Fzd in GC 97 

which could be exploited for targeted therapy. 98 

 99 

We recently demonstrated that Frizzled-7 (Fzd7) regulates stem cell function in the gastric and 100 

intestinal epithelium [19, 20]. In addition, FZD7 is abundantly expressed in human gastric cancer 101 

tissue [21-23], which is also associated with poor patient outcome [24]. Despite compelling 102 
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evidence implicating Fzd receptors in GC, there has been no formal investigation of the 103 

therapeutic benefit of targeting Fzd receptors in GC in vivo. These types of in vivo studies are 104 

crucial to fully understand the potential of novel therapeutic strategies due to the complex cellular 105 

and molecular interactions of a tumor, which can directly inform clinical trials and cannot be 106 

replicated in vitro. Our results demonstrate that Fzd receptors, specifically Fzd7, are rate-limiting 107 

for the growth of gastric adenomas with or without Apc mutations in vivo. These findings have 108 

significant clinical utility as targeted Fzd therapeutics (OMP-18R5/Vantictumab), currently being 109 

tested in other solid cancer types (http://www.oncomed.com/Pipeline), can now be extended to 110 

GC patients with and without APC mutations.  111 

 112 

Materials and Methods 113 

Mice  114 

The Tff1CreERT2 [25], Fzd7fl/fl [20], Apc580 (Apcfl/fl) [26], c-Mycfl/fl [27], Rosa26LacZ [28] and gp130F/F 
115 

[29] are previously described. Mice were interbred to generate compound mice with appropriate 116 

alleles on an inbred C57Bl/6 genetic background. Mice were co-housed using appropriate 117 

littermates as controls. All animal experiments were approved by the Animal Ethics Committee, 118 

Office for Research Ethics and Integrity, University of Melbourne.  119 

 120 

Treatments  121 

In vivo Cre induction was performed in 8-10 week old mice with a single daily intraperitoneal (ip) 122 

injection of 2mg of tamoxifen/mouse/day over four consecutive days. gp130F/F mice aged 8-9 123 

weeks were injected ip with 20mg/kg of OMP-18R5 (OncoMed) or vehicle control 124 

(2.5%DMSO+IgG) twice weekly over the course of 30 days at which point animals were sacrificed 125 

and tissues harvested.  126 

 127 

Tumor xenografts 128 

A total of 4x106 cells in 100µl of PBS were injected subcutaneously into the hind flank of 6-8 week 129 

old nude mice (nu(ncr)-foxn1 nu/nu). 7 mice were used for each cohort which were treated with 130 

20mg/kg OMP-18R5 or vehicle control (2.5%DMSO+IgG) once tumors were palpable, five days 131 

following injection of cells. Xenografts were measured with calipers twice a week to monitor tumor 132 

growth.  133 

 134 

 135 

 136 
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Tissue collection and histological analysis 137 

Mouse stomachs were isolated, flushed with PBS, fixed overnight at 4°C in 10% neutral buffered 138 

formalin (NBF) and processed for immunohistochemistry and immunofluorescence as we 139 

previously described [20, 30, 31], with antibodies used on Table S2. 140 

 141 

Isolation and culture of normal and tumor organoids  142 

Organoids were cultured from mouse stomachs as previously described [31]. Adenomas from 143 

gp130F/F mice were isolated from the stomach, washed in PBS, roughly minced and incubated in 144 

digestion buffer (Dispase I (125µg/ml), Collagenase IV (75U/ml) and DMEM+2.5% FCS) at 37°C 145 

until epithelial fragments dissociate from tumor bulk. Dissociated cells were passed through a 146 

70µM cell strainer, counted, centrifuged and resuspended in Matrigel. In vitro Cre recombinase 147 

was activated by treating gastric organoid cultures with 100nM 4-hydroxytamoxifen (4-OHT) as 148 

previously described [31]. R-Spondin and Wnt conditioned medium were withdrawn from 149 

Tff1Cre+;Apcfl/fl organoid cultures following 4-OHT treatment. Differential interference contrast 150 

(DIC) images were captured as Z-sections and final image generated as previously described 151 

[20, 32]. 152 

 153 

RNA extraction and analysis  154 

Gastric glands were homogenized in TRizol and total RNA purified, DNAse treated, quantified 155 

and subjected to quantitative reverse transcriptase PCR (qRT-PCR). qRT-PCR and calculating 156 

gene expression levels relative to the house-keeping gene 18S (2-∆∆CT) were performed as 157 

previously described [16].  158 

 159 

MTT assay 160 

Following treatment, gastric organoids were mechanically dissociated, washed with ADF, 161 

resuspended in fresh Matrigel and seeded in a flat bottom 96 well tissue culture plate for 162 

enumeration using the MTT assay performed exactly as we previously described [19, 20]. 163 

 164 

Cell culture and transfection 165 

Human gastric cancer cell lines (MKN28, MKN74, MKN7, MKN1, AGS and MKN45) were 166 

maintained in RPMI 1640 medium (Invitrogen) supplemented with 10% fetal calf serum (FCS) 167 

(Invitrogen) and 1% penicillin/streptomycin (Invitrogen) and L-Glutamine (Invitrogen) and were 168 

not taken past passage 15 for experimental use. All cells were tested for Mycoplasma, 169 

authenticated and cultured at 37°C in 5% CO2. Gastric cancer cells were transfected with Short-170 
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hairpin RNA (shRNA) and expression constructs designed to knockdown and stably express 171 

FZD7 respectively, as previously described [16, 33] or MSCV-MYC from Addgene (18119).  172 

 173 

Soft agar colony assay 174 

Cells were cultured in 60mm tissue culture dishes until 50% confluency and transfected with 5µg 175 

of plasmid DNA using Lipofectamine LTX (Invitrogen) following manufacturer’s instructions. After 176 

48hrs incubation, cells were washed in PBS, detached using trypsin, resuspended 177 

RPMI+10%FCS, counted and mixed with pre-warmed 1% agar/RPMI culture medium to a final 178 

concentration of 500 cells/well of a 6-well plate. Once agar/cell suspensions solidified, cultures 179 

were overlaid with RPMI+10% FCS culture medium and incubated at 37°C in 5% CO2 for 14 days. 180 

For Wnt inhibition experiments, cells were treated with OMP-18R5 (10µg/ml), IWP-2 (10µM) [34] 181 

or vehicle control (2.5%DMSO+IgG) 3 days after plating. Treatments were removed and replaced 182 

every 4 days over the 2 weeks. Cells were fixed in 4%PFA and stained with crystal violet and 183 

colonies consisting of ≥50 cells scored and imaged.  184 

 185 

Genomic recombination PCR 186 

Conventional PCR to detect the Fzd7 and Apc mutant alleles following recombination in genomic 187 

DNA extracted from compound transgenic mice was performed as previously described [20, 35]. 188 

See also supplementary experimental procedures.  189 

 190 

Luciferase assay 191 

Cells were cultured in 24-well tissue culture plates until 50% confluency and transfected with a 192 

total of 1µg plasmid DNA/well (500ng of SuperTOPflash or SuperFOPflash TCF reporter plasmids 193 

expressing firefly luciferase [36], plus 500ng of either “control” or “treatment” DNA, plus 2ng of 194 

renilla luciferase plasmid to normalize transfection efficiency). Cells were transfected using 195 

Lipofectamine LTX with Plus reagent (Invitrogen) according to manufacturer’s instructions. Cells 196 

were harvested 48hr later and analysed using the dual luciferase reporter assay system 197 

(Promega). Ratio of luciferase/renilla reporter activity was calculated and results expressed 198 

relative to control cultures. 199 

 200 

Analysis of gastric adenocarcinoma genomic dataset 201 

Analysis of somatic mutations and copy number alterations (CNA) for a panel of 21 Wnt pathway 202 

genes was performed on the TCGA stomach adenocarcinoma dataset [37] using the cBioPortal 203 
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platform [38]. Only samples with sequencing and CNA data were assessed across all molecular 204 

subtypes, n = 287.  205 

 206 

Statistical analysis 207 

Data are expressed as mean ± SEM, where mean represents number of mice (≥ 3 per genotype) 208 

or number of independent experiments (≥3). Statistical tests used are Mann-Whitney with Prism7 209 

(GraphPad software) where P values of ≤ 0.05 were considered significant. Heatmap generated 210 

in R version 3.0.2 using the heatmap function in the stats base package. Raw Ct values were 211 

transformed to delta Ct values using β2M as housekeeping gene. 212 

 213 

Results 214 

Gastric cancer cells require cell intrinsic Wnt signaling for growth  215 

Gastric cancer, like many malignancies, is genetically heterogeneous, which complicates 216 

identifying non-redundant signaling pathways suitable for targeted therapy. To investigate the 217 

expression of Fzd receptors, which transmit oncogenic Wnt signals, we performed qRT-PCR for 218 

all 10 mammalian Fzd genes on a panel of human GC cell lines. Several Fzd receptors were 219 

abundantly expressed, including FZD7 (Figs. 1A, B and Supplementary Fig. S1A-D), suggesting 220 

these might be attractive therapeutic targets. Although the pan-Fzd antibody, OMP-18R5 221 

(Vanticumab) has shown efficacy in several solid cancer types [39], its therapeutic potential for 222 

GC has not been explored. MKN28 (APC mutant), MKN74 (APC mutant) and MKN45 (APC wild-223 

type) GC cells treated with OMP-18R5 formed significantly fewer anchorage-independent 224 

colonies compared to vehicle control treated cells (Figs. 1C, D and Supplementary Fig. S1E). Of 225 

note, MKN28 and MKN45 cells grown as conventional 2D monolayers do not show growth 226 

inhibition following OMP-18R5 treatment (Supplementary Fig.1F and G), which highlights the 227 

importance of testing drug efficacy in conditions that better mimic tumor biology. This suggests 228 

that cell intrinsic Wnt ligands are required for the 3D-growth of GC cells, which we confirmed by 229 

treatment with IWP-2, which prevents Wnt secretion [40] (Figs. 1C and D). TOPflash assays and 230 

qRT-PCR demonstrate that either IWP-2 or OMP-18R5 treatment inhibit Wnt signaling in GC cells 231 

(Figs. 1E-H). These data demonstrate cell intrinsic secretion of Wnt ligands and Fzd receptor 232 

availability are required for the sustained growth of GC cells. To determine whether Fzd regulates 233 

the growth of established gastric tumors, MKN28 and MKN45 cells were subcutaneously injected 234 

into the hind flanks of nude mice and allowed to develop into palpable gastric tumors. Compared 235 

to vehicle control treated gastric tumor xenografts, OMP-18R5 treated mice had significantly 236 

smaller gastric tumors (Supplementary Figs. 2A-D), which demonstrates Fzd inhibition is sufficient 237 
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to block the initiation (Figs 1C and D) and progression (Supplementary Figs. 2A-D) of human 238 

gastric cancer cells.   239 

 240 

Inhibiting Fzd receptors limits gastric tumorigenesis in vivo 241 

We next utilised the well-characterised gp130F/F mouse-model of intestinal-type gastric 242 

tumorigenesis [29, 41], which develop prominent antral lesions with adenomatous hyperplasia to 243 

explore the relative expression of Fzd receptors. Compared to normal gastric epithelium, 244 

upregulation of several Fzds was observed in gp130F/F gastric adenomas (Figs. 2A-C), supporting 245 

expression levels observed in human GC cells (Figs. 1A, B, and Supplementary Figs. S1A-D). 246 

Expression of Wnt ligands and target genes are also increased in gp130F/F gastric adenomas 247 

compared to non-adenoma gastric epithelium (Figs. 2A-C, Table S1). To determine if Fzd 248 

inhibition could also reduce the growth of antral gastric adenomas in vivo, we treated 8-week-old 249 

gp130F/F mice, which at this age have small antral gastric adenomas (Supplementary Fig. S2E), 250 

with OMP-18R5 twice a week for 30 days, following published protocols (Supplementary Fig. S3A) 251 

[39]. Gastric adenomas were significantly smaller and fewer in OMP-18R5-treated gp130F/F mice 252 

compared to vehicle control treated mice (Figs. 2D-F), which was associated with a significant 253 

reduction in the expression of Wnt target genes and cell proliferation (PCNA IHC) (Figs. 2G-J). 254 

As previously reported [39], no toxicity was observed in OMP-18R5-treated mice, which displayed 255 

consistent bodyweight, no signs of morbidity and no reduction in proliferation of normal non-256 

adenoma gastric epithelial cells for the duration of treatment (Supplementary Figs. S3B-D). These 257 

data strongly suggest Fzd receptors are rate-limiting for the growth of gastric adenomas in vivo, 258 

and in human GC cells in vitro. Given that Wnts and Fzds can be expressed by non-epithelial 259 

cells, we established gastric organoids from gp130F/F antral adenomas using defined culture 260 

conditions to determine if the anti-growth effects observed in gp130F/F mice following OMP-18R5 261 

treatment was systemic or cell intrinsic. gp130F/F gastric adenoma organoids treated with OMP-262 

18R5 or IWP-2 displayed reduced viability (MTT assay) and growth compared to vehicle control 263 

treated organoids (Figs. 2K-M). This data confirms that Wnt ligands and Fzd receptors are 264 

required cell intrinsically for the growth of gastric adenoma cells ex vivo.   265 

 266 

Targeted FZD7 knockdown reduces gastric cancer colony formation  267 

Inhibition of cell growth following OMP-18R5 treatment suggest that one of several Fzds targeted 268 

by OMP-18R5 (FZD1, 2, 5, 7 and 8) is responsible for transmitting Wnt signals to GC cells. Gene 269 

expression analysis narrows this down to FZD2 and/or FZD7, as FZD1, FZD5 and FZD8 are 270 

undetectable in these cell lines (Figs. 1A and B). We have previously shown that Fzd2 is unable 271 
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to compensate for the loss of Fzd7 in the intestinal epithelium [20], which may indicate Fzd7 plays 272 

a predominant role in Wnt signal transmission in gastric tissue. Indeed, FZD7 is commonly 273 

upregulated in a variety of different cancer types, including gastric cancer, which is associated 274 

with poor clinical outcome [24, 42]. To determine the specific requirement of FZD7 for the growth 275 

of human GC cells we performed colony formation assays. Cells transfected with FZD7-targeted 276 

shRNA (shFZD7) [16] had a marked decrease in colony growth, compared to scrambled shRNA 277 

(shSCRAM) or empty vector (EV) controls (Figs. 3A and B), associated with decreased Wnt 278 

signaling (Figs. 3C and D). These data suggest that Fzd7 is the predominant Wnt receptor 279 

transmitting oncogenic Wnt signaling in GC cells. Importantly, growth inhibition following FZD7-280 

knockdown was rescued by co-transfection with a full-length FZD7 expression construct [33], 281 

demonstrating the specificity of the shRNA and FZD7-regulated growth in human GC cells 282 

(Supplementary Figs. S4A and B). 283 

 284 

Conditional deletion of Fzd7 from gp130F/F gastric tumors reduces cell proliferation  285 

To determine the functional requirement of Fzd7 for gastric adenoma growth in vivo, we 286 

conditionally deleted Fzd7 in the gastric adenomas of 8-week old Tff1CreERT2/+;gp130F/F;Fzd7fl/fl 287 

mice (Cre+;gp130F/F;Fzd7fl/fl) (Supplementary Fig. S4C), which allows robust recombination in 288 

these adenomas [25]. Tamoxifen injected Cre+;gp130F/F;Fzd7fl/fl mice developed significantly 289 

smaller and fewer antral gastric adenomas than their Cre-negative (Cre-;gp130F/F;Fzd7fl/fl) 290 

tamoxifen-treated littermates (Figs. 3E-G and Supplementary Fig. S4D), supporting our previous 291 

in vitro experiments demonstrating FZD7 inhibition is sufficient to block gastric adenoma growth 292 

(Figs. 3A-D).  293 

 294 

Fzd7 deficient cells are retained in gastric tumors and fail to proliferate 295 

The growth of gp130F/F gastric adenomas requires Stat3 [43]. Therefore we performed p-Stat3 296 

IHC and Socs3 qRT-PCR which identified no alterations in Stat3 activity, and did not cause the 297 

reduced growth of gastric adenomas in Cre+;gp130F/F;Fzd7fl/fl mice (Figs. 4A and B). This identifies 298 

that Fzd7-mediated Wnt signaling is rate-limiting for Stat3-driven gastric adenomas, which have 299 

no Wnt-activating mutations. Deletion of Fzd7 in normal, non-transformed gastric epithelium 300 

causes repopulation with Fzd7-proficient cells [19]. To monitor if repopulation occurs in 301 

Cre+;gp130F/F;Fzd7fl/fl adenomas, we performed PCR for the recombined Fzd7 floxed allele 302 

(Fzd7Δ), which we have previously shown is lost during repopulation in the normal gastric 303 

epithelium following Fzd7 deletion [19]. However, in gastric adenomas of Cre+;gp130F/F;Fzd7fl/fl 
304 

mice 30 days post tamoxifen, we detect robust recombination of the Fzd7Δ allele, demonstrating 305 



10 

 

that Fzd7 deleted cells are retained in these adenomas (Fig. 4C). In support, the expression of 306 

Fzd7 and many Wnt pathway components and target genes remain low in these adenomas (Fig. 307 

4D, Supplementary Fig. S4E and Table S1). This suggests that the mechanism underlying smaller 308 

gastric adenomas following Fzd7 deletion is due to retention of Fzd7-deficient cells in the 309 

adenoma that are unable to respond to proliferative Wnt signals, and thus fail to proliferate (Fig. 310 

4E). To investigate this further, we performed IHC on serial sections to detect recombined (β-gal+, 311 

Fzd7 deleted) cells and proliferating cells (PCNA+) in Cre+;gp130F/F;Fzd7fl/fl;LacZ mice and 312 

observed a marked co-localisation of non-proliferative (PCNA-) cells with recombined cells (β-313 

gal+) (Fig. 4F).  314 

 315 

To monitor cellular changes following Fzd7 deletion in Cre+;gp130F/F;Fzd7fl/fl mice, IHC for 316 

apoptosis (Caspase-3) and differentiation (Muc5a and Gastrin) was performed (Supplementary 317 

Fig. S4F). Muc5a+ and Gastrin+ cells were increased following Fzd7 deletion in 318 

Cre+;gp130F/F;Fzd7fl/fl mice compared to Fzd7-proficient gastric adenomas (Cre-;gp130F/F;Fzd7fl/fl). 319 

This also suggests that gastric adenomas do not repopulate following Fzd7 deletion, as 320 

repopulation in the normal gastric epithelium following Fzd7 deletion is associated with reduced 321 

cell differentiation [19]. No change in the frequency of Caspase-3+ cells was observed 322 

(Supplementary Fig. S4D), indicating that deletion of Fzd7 from adenoma cells does not trigger 323 

apoptosis.  324 

 325 

Cell intrinsic Wnt signaling via Fzd7 is required for Wnt-driven gastric adenomas  326 

The gp130F/F mice and MKN45 GC cells are wild-type for APC, and have no known Wnt-activating 327 

mutations, suggesting that targeting Fzd7 may be effective in gastric adenomas and GC cells 328 

without mutations to the Wnt pathway. However, some of the GC cell lines that responded to Fzd 329 

therapy (MKN28 and MKN74) have mutant APC (https://portals.broadinstitute.org/ccle), 330 

suggesting that Fzd therapies can be effective in gastric adenomas with and without mutant APC. 331 

In silico analysis of GC patient datasets identify mutations in several genes that regulate Wnt 332 

signaling, demonstrating that this pathway is aberrantly activated in GC (Supplementary Fig. 333 

S5A). To functionally investigate this, gastric organoids established from Tff1CreERT2/+;Apcfl/fl 334 

(Cre+;Apcfl/fl) mice were treated with tamoxifen, to truncate Apc, and showed significant increase 335 

in growth and proliferation (Fig. 5A), which was confirmed by Ki-67 staining and increased cell 336 

viability (MTT assay) (Figs. 5A-C). A concordant increase in Wnt target gene expression was 337 

observed in hyperproliferative Apc mutant organoids (Fig. 5D). Treatment of Apc mutant 338 

organoids with IWP-2 or OMP-18R5 prevented upregulation of the Wnt pathway and blocked 339 
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organoid proliferation (Figs. 5A-D), demonstrating that cell intrinsic Wnt secretion and Fzd 340 

receptors are required for gastric cells to activate Wnt signaling and regulate growth, even after 341 

mutation of Apc (Figs. 5A-D).  342 

 343 

Fzd7 expression was increased in Apc mutant gastric organoids and subsequently downregulated 344 

in IWP-2 or OMP-18R5 treated organoids (Fig. 5E), therefore we examined whether Fzd7 is 345 

responsible for transmitting Wnt signaling in Apc mutant gastric adenoma cells in vivo. 30 days 346 

following tamoxifen, Cre+;Apcfl/fl mice developed multiple, large intestinal-type gastric adenomas 347 

with extensive hyperplasia in the antral stomach (Figs. 6A and B), which were not observed in 348 

tamoxifen-treated Cre-;Apcfl/fl mice (Fig. 6A). Remarkably, co-recombination of Apc and Fzd7 349 

alleles in Cre+;Apcfl/fl;Fzd7fl/fl mice inhibited the ability of Apc mutant cells to develop antral 350 

adenomas (Figs. 6A and B). Gastric adenomas of Cre+;Apcfl/fl;Fzd7fl/fl mice had significantly less 351 

PCNA+ cells compared to Cre+;Apcfl/fl mice (Figs. 6A and C). In common with gp130F/F tumors, 352 

deletion of Fzd7 in Apc deficient gastric adenomas also results in retention of Fzd7-deficient cells 353 

as monitored by expression of the Fzd7Δ allele (Fig. 6D).  354 

 355 

As expected, Wnt signaling is increased in gastric adenomas of Cre+;Apcfl/fl mice, however, Wnt 356 

signaling is not elevated in the non-adenoma antral epithelium of Cre+;Apcfl/fl;Fzd7fl/fl mice (Fig. 357 

6E). This is supported by IHC for the surrogate markers of active Wnt signaling, β-catenin and 358 

Myc (Supplementary Fig. S6A). IHC revealed a decrease in Muc5a+ and Gastrin+ cells following 359 

Apc mutation (Supplementary Fig. S6B), while tamoxifen-treated Cre+;Apcfl/fl;Fzd7fl/fl mice display 360 

a modest restoration of mucus-secreting and gastrin-producing cells, similar to that observed in 361 

Cre+;gp130F/F;Fzd7fl/fl mice (Supplementary Fig. S4D). Collectively, these data demonstrate that 362 

Apc-mutant gastric phenotypes require functional Fzd7. 363 

 364 

Fzd7-dependant Myc expression is required for the growth of gastric adenomas. 365 

The transcription factor c-Myc is a well-characterised β-catenin/TCF target gene in the 366 

gastrointestinal tract as c-Myc is required for all intestinal tumor phenotypes following Apc-367 

mediated activation of Wnt signaling [35]. Myc is upregulated in our gastric adenoma mouse 368 

models and human GC cell lines, and inhibition of Fzd7 prevents this upregulation (Figs. 2H, 3C, 369 

4D, 5D and 6E). Conditional deletion of c-Myc in Tff1CreERT2/+;Apcfl/fl;c-Mycfl/fl (Cre+;Apcfl/fl;Mycfl/fl) 370 

mice showed complete absence of antral adenoma formation and Wnt activation compared to 371 

Cre+;Apcfl/fl mice (Supplementary Fig. S7), indicating Fzd7-dependant expression of Myc is 372 

required for the growth of Apc mutant gastric adenomas. 373 
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To determine whether elevated levels of MYC can rescue GC cell growth suppression following 374 

FZD7 knockdown, GC cells were co-transfected with FZD7shRNA and MSCV-MYC expression 375 

plasmids and grown as colonies in soft agar for 2 weeks. Compared to control (EV) transfected 376 

cells, co-transfected cells (FZD7shRNA and MSCV-MYC) showed no difference in the number of 377 

colonies formed (Supplementary Fig. S7G-I), which suggests that overexpression of MYC is able 378 

to rescue the growth suppressive effects of FZD7 knockdown in GC cells. 379 

 380 

Discussion 381 

Expression of Fzd receptors is deregulated in several cancers, including gastric cancer [4, 21, 382 

42]. Here we show for the first time that Fzd receptors are rate-limiting for the growth of gastric 383 

adenomas in vivo. We further elucidate that Fzd7 is the predominant Wnt receptor transmitting 384 

cell-intrinsic Wnt signals in human GC cells.  385 

 386 

In vitro studies have shown that targeted inhibition of Fzd is sufficient to block growth of GC cells 387 

[24, 44]. However, it is well documented that in vitro studies do not fully recapitulate the complex 388 

cellular and molecular interactions present in tumors [45]. Here, we demonstrate that gastric 389 

adenomas require Fzd7 for optimal growth using genetic and pharmacological strategies in two 390 

independent mouse models. Our findings support our previous work [39] demonstrating that 391 

targeting multiple Fzd receptors blocks the growth of several different cancers, which we now 392 

extend to GC. Using ex-vivo adenoma-derived organoids we demonstrate these anti-growth 393 

effects are cell intrinsic as OMP-18R5 blocks the growth of gastric adenoma-derived organoids in 394 

the absence of immune or stromal cells.  395 

 396 

As previously observed in the normal gastric epithelium [19], genetic inhibition of Fzd7 in gastric 397 

adenomas induces upregulation of other Fzd genes (Table S1), however, these are insufficient to 398 

compensate and promote gastric adenoma growth. This suggests that specific targeting of Fzd7 399 

is an attractive therapeutic strategy for the treatment of gastric cancer.  400 

 401 

Deletion of Fzd7 in the normal gastric epithelium triggers repopulation [19] which could be a 402 

possible explanation for why Fzd7-deficient gastric adenomas are smaller. Epithelial repopulation 403 

is an effective tissue mechanism that helps the gastric epithelium to survive the harsh conditions 404 

of the stomach. Here we show that repopulation is not preserved in gastric adenomas, which 405 

contain aberrant cell signaling and tissue architecture, and therefore Fzd7-deficient cells remain 406 

in the adenoma but are unable to respond to Wnt signals and thus do not proliferate. 407 
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One feature of inflammation-associated tumors in the gastrointestinal tract is phosphorylated 408 

Stat3 (p-Stat3), which regulates many cancer hallmarks [43]. Gastric adenomas in gp130FF mice 409 

do not harbor any Wnt-activating mutations [41], however, they display high levels of Wnt 410 

signaling. Stat-3 has been shown to activate Wnt signaling, which would allow pathway activation 411 

in the absence of Wnt mutations in gp130FF adenomas [46, 47]. Indeed, Wnt and gp130/Stat3 412 

signaling operate in parallel during gastric tumorigenesis as active p-Stat3 levels remain high in 413 

Fzd7 deleted adenomas, demonstrating that Wnt/Fzd7 signaling is rate-limiting for Stat3-driven 414 

gastric adenomas. Similarly, mTORC1 signaling is also rate-limiting for gp130FF adenoma growth 415 

independent of Stat3 [41].  416 

 417 

Recent large-scale sequencing of human gastric tumors has identified environmental and genetic 418 

factors associated with increased pathology, which include aberrant Wnt signaling [48-50]. 419 

Importantly, these genomic studies are yet to be validated with functional interrogation in vivo, 420 

which are essential to understand the therapeutic potential of targeting Wnt signaling in gastric 421 

cancer [21]. We and others have demonstrated that Fzd7 inhibition is sufficient to block Wnt 422 

signaling in cells with mutant APC [17, 51]. Interestingly, ~37% of APC mutant gastric tumors are 423 

mutant for RNF43 (regulates Fzd on the cell surface [12]), demonstrating that Fzd is deregulated 424 

in a subset of APC mutant gastric tumors (http://www.cbioportal.org/). Interestingly RNF43 and 425 

APC mutations are mutually exclusive in colon tumors suggesting that CRC and GC cells 426 

preferentially select different Wnt mutations that confer optimal or ‘just-right’ levels of Wnt 427 

signaling required for tumor growth [52, 53].  428 

 429 

Furthermore, we have shown that Myc is required for the gastric adenoma phenotypes associated 430 

with Apc mutation. These findings are reminiscent of the role played by Myc in the intestinal 431 

epithelium following Apc mutation [35], and thus place the Wnt/Fzd7/Myc signaling axis as an 432 

attractive therapeutic target for gastric cancer. Encouragingly, next generation bromodomain 433 

(BET) inhibitors are effective in killing patient-derived GC cells [54]. Importantly, this provides 434 

justification for testing a combination of BET and Wnt inhibitors in GC, which we have previously 435 

shown is effective at blocking the growth of human colon cancer cells [55]. 436 

 437 

New generation PORCN inhibitors are in clinical trials for solid tumors, which our results show 438 

may be effective in gastric cancer, however these target the secretion of all Wnt ligands. 439 

Collectively, we demonstrate that targeted inhibition of Wnt receptors, specifically Fzd7, is rate-440 

limiting for the growth of gastric adenomas with and without Apc mutations. This provides a broad 441 
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scope for the application of this therapeutic strategy for the treatment of GC, with potentially less 442 

side effects than targeting all Wnt secretion with PORCN inhibitors, and will directly inform clinical 443 

trials to treat GC patients with OMP-18R5 (Vantictumab), which only targets 5 out of the 10 Fzd 444 

family.  445 
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Figure Legends 579 

 580 

Figure 1. Inhibition of Wnt or Fzd blocks gastric cancer cell growth.  581 

A. qRT-PCR for FZD gene expression in MKN28 gastric cancer cells. Expression shown 582 

relative to housekeeper (β2M), n=4 biological replicates.  583 

B. qRT-PCR for FZD gene expression in MKN74 gastric cancer cells. Expression shown 584 

relative to housekeeper (β2M), n=4 biological replicates.  585 

C. Quantification of cell colonies (>50 cells) from MKN28 gastric cancer cells grown in agar 586 

for 2 weeks following treatment with vehicle control (2.5%DMSO+IgG), IWP-2 (10µM) or 587 

OMP-18R5 (10µg/ml). Treatments were replaced every 4 days for the duration of 2 weeks. 588 

Individual experiments were repeated three times. Colonies were counted with ImageJ (*= 589 

p<0.05, mean ±SEM, Mann-Whitney).  590 

D. Quantification of cell colonies (>50 cells) from MKN74 gastric cancer cells grown in agar 591 

for 2 weeks following treatment with vehicle control (2.5%DMSO+IgG), IWP-2 (10µM) or 592 

OMP-18R5 (10µg/ml). Treatments were replaced every 4 days for the duration of 2 weeks. 593 

Individual experiments were repeated three times. Colonies were counted with ImageJ (*= 594 

p<0.05, mean ±SEM, Mann-Whitney).  595 

E. TOPflash assay on MKN28 cells treated 24hrs with DMSO, IWP-2 (10µM) or OMP-18R5 596 

(10µg/ml) (**= p<0.005, mean ±SEM, n=9 biological replicates, Mann-Whitney). Individual 597 

experiments were repeated three times.  598 

F. TOPflash assay on MKN74 cells treated 24hrs with DMSO, IWP-2 (10µM) or OMP-18R5 599 

(10µg/ml) (**= p<0.005, mean ±SEM, n=9 biological replicates, Mann-Whitney). Individual 600 

experiments were repeated three times.  601 

G. qRT-PCR for CD44 in MKN28 and MKN74 cells described in E and F (mean ±SEM, n=6 602 

biological replicates, Mann-Whitney). Individual experiments were repeated twice.   603 

H. qRT-PCR for AXIN2 in MKN28 and MKN74 cells described in E and F (mean ±SEM, n=6 604 

biological replicates, Mann-Whitney). Individual experiments were repeated twice.   605 

 606 

Figure 2. Inhibition of Fzd receptors reduces cell intrinsic Wnt signaling and gastric 607 

adenoma burden. 608 

A. qRT-PCR for Wnt ligands in gp130F/F adenomas compared to normal gastric epithelium 609 

(*= p<0.05, mean ±SEM, n=4 mice, Mann-Whitney). 610 

B. qRT-PCR for Fzd receptors in gp130F/F adenomas compared to normal gastric epithelium 611 

(*= p<0.05, mean ±SEM, n=4 mice, Mann-Whitney). 612 

C. qRT-PCR for Wnt target genes in gp130F/F adenomas compared to normal gastric 613 

epithelium (*= p<0.05, mean ±SEM, n=4 mice, Mann-Whitney). 614 

D. Whole mount images of 8-9 week old gp130F/Fmice treated with control IgG or OMP-18R5 615 

over the course of 30 days and harvested. Black and white arrows show gastric tumors.  616 

E. Weights of gastric adenomas from mice described in D (***= p<0.001, mean ±SEM, n=9 617 

mice, Mann-Whitney). 618 

F. Quantification of gastric adenomas in mice described in D (***= p<0.001, mean ±SEM, 619 

n=9 mice, Mann-Whitney).  620 

G. qRT-PCR for Fzd receptors in mice described in D (**= p<0.005, mean ±SEM, n=9 mice, 621 

Mann-Whitney). 622 

H. qRT-PCR for Wnt target genes in mice described in D (**= p<0.005, mean ±SEM, n=9 623 

mice, Mann-Whitney). 624 
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I. Immunohistochemistry for PCNA on adenomas sections from mice described in D. Scale 625 

bars = 100µm.  626 

J. Quantification of PCNA+ cells from adenomas sections described in I (*= p<0.05, mean 627 

±SEM, n=4 mice, Mann-Whitney). 628 

K. Representative DIC images of gp130F/F adenoma-derived organoids treated with vehicle 629 

control (2.5%DMSO+IgG), IWP-2 (10µM) or OMP-18R5 (10µg/ml) and cultured for 5 days. 630 

Green arrows indicate viable organoids. Red arrows indicate dying/atrophic organoids. 631 

Scale bar = 200 µm 632 

L. MTT viability assay performed on organoids described in K (*= p<0.05, mean ±SEM, n=3 633 

biological replicates, Mann-Whitney).  634 

M. Measurement (diameter) of organoids described in K. Measurements were quantified in 635 

ImageJ (*= p<0.05, mean ±SEM, n=3 biological replicates, Mann-Whitney). 636 

 637 

Figure 3. Targeted inhibition of Fzd7 reduces gastric cancer clonogenicity and adenoma 638 

burden.  639 

A. Representative DIC images of MKN28 and MKN74 cells transfected with empty vector 640 

(EV), scrambled (shSCRAM) or FZD7-specific shRNA (FZD7shRNA) and grown in agar. 641 

Scale bars = 200µm 642 

B. Quantification of cell colonies from experiment described in A (*= p<0.05, mean ±SEM, 643 

n=3 biological replicates, Mann-Whitney). Individual experiments were repeated twice.   644 

C. qRT-PCR for Wnt taget genes on MKN28 and MKN74 cells transfected with empty vector 645 

(EV), scrambled (shSCRAM) or FZD7-specific shRNA (Fzd7shRNA) (*= p<0.05, mean 646 

±SEM, n=3 biological replicates, Mann-Whitney). 647 

D. TOPflash assay on MKN28 and MKN74 cells described in C (***= p<0.001, mean ±SEM, 648 

n=9 biological replicates, Mann-Whitney). Individual experiments were repeated three 649 

times.  650 

E. Representative images of tamoxifen-treated Tff1CreERT2/- (Cre-) or Tff1CreERT2/+ (Cre+) 651 

stomachs following Fzd7 deletion. Black arrows indicate gastric tumors.  652 

F. Weights of gastric adenomas per mouse described in E (**= p<0.005, mean ±SEM, n=7 653 

mice, Mann-Whitney).  654 

G. Quantification of gastric adenomas per mouse described in E (**= p<0.005, mean ±SEM, 655 

n=7 mice, Mann-Whitney).    656 

 657 

Figure 4. Deletion of Fzd7 from gastric tumors decreases cell proliferation. 658 

A. Immunohistochemistry (IHC) for p-Stat3 on adenoma sections from Fzd7fl/fl;gp130F/F mice 659 

(Cre- or Cre+) 30 days after tamoxifen treatment. Scale bars = 100µm. 660 

B. qRT-PCR for Socs3 on gastric adenomas from mice described in A (*= p<0.05, mean 661 

±SEM, n=4 mice, Mann-Whitney).    662 

C. Conventional PCR to detect recombination of Fzd7fl/fl allele (Fzd7Δ) in gastric adenomas 663 

from mice described in A. 664 

D. qRT-PCR for Wnt target genes in gastric adenomas from mice described in A (**= 665 

p<0.005, mean ±SEM, n=7 mice, Mann-Whitney). 666 

E. Quantification of PCNA+ cells from adenoma sections described in A (*= p<0.05, mean 667 

±SEM, n=3 mice, Mann-Whitney).  668 

F. Representative IHC images for β-galactosidase (detecting allelic recombination) and 669 

PCNA (proliferation) on serial sections from Tff1Cre-;Fzd7fl/fl;gp130F/F;LacZ or 670 

Tff1Cre+;Fzd7fl/fl;gp130F/F;LacZ mice 30 days following tamoxifen. Note, yellow dashed 671 
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lines demarcate areas of allelic recombination, which correspond to reduced proliferation 672 

and black dashed lines represent areas of non-recombined cells. Scale bars = 100µm. 673 

 674 

Figure 5. Wnt/Fzd inhibition reduces Apc mutant gastric organoid proliferation. 675 

A. Representative DIC and immunofluorescence images of Tff1Cre;Apcfl/fl organoids treated 676 

for 24hrs with tamoxifen (tmx, 100nM), IWP-2 (10µM) or OMP-18R5 (10µg/ml). Green 677 

arrows indicate hyperproliferative organoids. Red arrows indicate growth-constrained 678 

organoids. Scale bars = 200µm. 679 

B. MTT viability assay performed on organoid cultures described in A (***= p<0.001, mean 680 

±SEM, n=3 biological replicates, Mann-Whitney). Individual experiments were repeated 681 

twice.   682 

C. Measurement of organoid size (µm) from cultures described in A (***= p<0.001, mean 683 

±SEM, n=3 biological replicates, Mann-Whitney).  684 

D. qRT-PCR for Wnt target genes on organoid cultures described in A (*= p<0.05, mean 685 

±SEM, n=3 biological replicates, Mann-Whitney).  686 

E. qRT-PCR for Fzd receptors on organoid cultures described in A. Expression of Fzd shown 687 

as Log2 ratio.  688 

 689 

Figure 6. Deletion of Fzd7 rescues gastric adenoma formation following Apc truncation. 690 

A. Representative whole mount and IHC (PCNA) on wild-type (Tff1Cre-;Apcfl/fl), Apc mutant 691 

(Tff1Cre+;Apcfl/fl) and Apc/Fzd7 mutant mice (Tff1Cre+;Apcfl/fl;Fzd7fl/fl) 30 days following 692 

tamoxifen. Black arrows indicate gastric adenomas in top panels. Scale bars = 100µm. 693 

B. Weights of gastric adenomas from harvested mice described in A (**= p<0.005, mean 694 

±SEM, n=7 mice, Mann-Whitney).  695 

C. Quantification of PCNA+ cells in adenoma sections from mice described in A (***= p<0.001, 696 

mean ±SEM, n=3 mice, Mann-Whitney). 697 

D. Conventional PCR for recombined Fzd7 (Fzd7Δ) and Apc (ApcΔ) alleles in mice described 698 

in A.  699 

E. qRT-PCR for Wnt target genes on tamoxifen-treated mice described in A (**= p<0.005, 700 

mean ±SEM, n=4 mice, Mann-Whitney). 701 

 702 
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