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Abstract 

Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of 

neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic 

variants contribute substantially to ASD susceptibility, but to date no individual variants 

have been robustly associated with ASD. With a marked sample size increase from a unique 

Danish population resource, we report a genome-wide association meta-analysis of 18,381 

ASD cases and 27,969 controls that identifies five genome-wide significant loci. Leveraging 

GWAS results from three phenotypes with significantly overlapping genetic architectures 

(schizophrenia, major depression, and educational attainment), seven additional loci shared 

with other traits are identified at equally strict significance levels.  Dissecting the polygenic 

architecture we find both quantitative and qualitative polygenic heterogeneity across ASD 

subtypes, in contrast to what is typically seen in other complex disorders. These results 

highlight biological insights, particularly relating to neuronal function and corticogenesis 

and establish that GWAS performed at scale will be much more productive in the near term 

in ASD, just as it has been in a broad range of important psychiatric and diverse medical 

phenotypes. 

ASD is the term for a group of pervasive neurodevelopmental disorders characterized by 

impaired social and communication skills along with repetitive and restrictive behavior. The 

clinical presentation is very heterogeneous including individuals with severe impairment and 

intellectual disability as well as individuals with above average IQ and high levels of 

academic and occupational functioning. ASD affects 1-1.5% of individuals and is highly 

heritable, with both common and rare variants contributing to its etiology1-4. Common 

variants have been estimated to account for a major part of ASD liability2 as has been 

observed for other common neuropsychiatric disorders.  By contrast, de novo mutations, 



mostly copy number variants (CNVs) and gene disrupting point mutations, have larger 

individual effects, but collectively explain <5% of the overall liability1-3 and far less of the 

heritability. While a number of genes have been convincingly implicated via excess 

statistical aggregation of de novo mutations, the largest GWAS to date (n=7387 cases 

scanned) – while providing compelling evidence for the bulk contribution of common 

variants – did not conclusively identify single variants at genome-wide significance5-7. This 

underscored that common variants, as in other complex diseases such as schizophrenia, 

individually have low impact and that a substantial scale-up in sample numbers would be 

needed. 

Here we report the first common risk variants robustly associated with ASD by more than 

doubling the discovery sample size compared to previous GWAS5-8. We describe strong 

genetic correlations between ASDs and other complex disorders and traits, confirming 

shared etiology, and we show results indicating differences in the polygenic architecture 

across clinical sub-types of ASD. Leveraging these relationships and recently introduced 

computational techniques9, we identify additional novel ASD-associated variants that are 

shared with other phenotypes. Furthermore, by integrating with complementary data from 

Hi-C chromatin interaction analysis of fetal brains and brain transcriptome data, we explore 

the functional implications of our top-ranking GWAS results.  

Results 

GWAS 

As part of the iPSYCH project (http://ipsych.au.dk)10, we collected and genotyped a Danish 

nation-wide population-based case-cohort sample including nearly all individuals born in 

Denmark between 1981 and 2005 and diagnosed with ASD (according to ICD-10) before 

http://ipsych.au.dk/


2014. We randomly selected controls from the same birth cohorts (Table S1.1.1). We have 

previously validated registry-based ASD diagnoses11,12 and demonstrated the accuracy of 

genotyping DNA extracted and amplified from bloodspots collected shortly after birth13,14. 

Genotypes were processed using Ricopili15, performing stringent quality control of data, 

removal of related individuals, exclusion of ancestry outliers based on principal component 

analysis, and imputation16,17 using the 1000 Genomes Project phase 3 reference panel. After 

this processing, genotypes from 13,076 cases and 22,664 controls from the iPSYCH sample 

were included in analysis. As is now standard in human complex trait genomics, our primary 

analysis is a meta-analysis of the iPSYCH ASD results with five family-based trio samples 

of European ancestry from the Psychiatric Genomics Consortium (PGC, 5,305 cases and 

5,305 pseudo controls18. All PGC samples had been processed using the same Ricopili 

pipeline for QC, imputation and analysis as employed here.  

Supporting the consistency between the study designs, the iPSYCH population-based and 

PGC family-based analyses showed a high degree of genetic correlation with 𝑟𝑟𝐺𝐺 = 0.779 (SE 

= 0.106; P = 1.75 x 10-13), similar to the genetic correlations observed between datasets in 

other mental disorders19. Likewise, polygenicity as assessed by polygenic risk scores (PRS)20

showed consistency across the samples supporting homogeneity of effects across samples 

and study designs (Figure S4.4.4).  SNP heritability (ℎ𝐺𝐺2 ) was estimated to be 0.118 (SE = 

0.010, for population prevalence of 0.01221). 

The main GWAS meta-analysis totaled 18,381 ASD cases and 27,969 controls, and applied 

an inverse variance-weighted fixed effects model22.  To ensure that the analysis was well-

powered and robust, we examined markers with minor allele frequency (MAF) ≥ 0.01, 

imputation INFO score ≥ 0.7, and supported by an effective sample size in >70% of the total. 



This final meta-analysis included results for 9,112,387 autosomal markers and yielded 93 

genome-wide significant markers in three separate loci (Figure 1; Table 1a; Figures S4.2.1-

4.2.44).  Each locus was strongly supported by both the Danish case-control and the PGC 

family-based data. While modest inflation was observed (lambda=1.12, lambda1000 = 

1.006), LD score regression analysis23 indicates this is arising from polygenicity (> 96%, see 

Methods) rather than confounding. The strongest signal among 265,846 markers analyzed on 

chromosome X was P = 5.4 x 10-6. 

We next obtained replication data for the top 88 loci with p-values < 1x10-5 in five cohorts 

of European ancestry totaling 2,119 additional cases and 142,379 controls (Table S1.3.2). 

An overall replication of direction of effects was observed (53 of 88 (60%) of P < 1x10-5; 16 

of 23 (70%) at P < 1x10-6; both sign tests P < 0.05) and two additional loci achieved 

genome-wide significance in the combined analysis (Table 1a). More details on the 

identified loci can be found in Table S3.1.3 and selected candidates are described in Box1. 

Correlation with other traits and multi-trait GWAS  

To investigate the extent of genetic overlap between ASD and other phenotypes we 

estimated the genetic correlations with a broad set of psychiatric and other medical diseases, 

disorders, and traits available at LD Hub24,25 using bivariate LD score regression (Figure 2, 

Table S3.3.2). Significant correlations were found for several traits including 

schizophrenia15 (𝑟𝑟𝐺𝐺 = 0.211, p = 1.03 x 10-5) and measures of cognitive ability, especially 

educational attainment26 (𝑟𝑟𝐺𝐺 = 0.199, p = 2.56 x 10-9), indicating a substantial genetic 

overlap with these phenotypes and corroborating previous reports5,24,27,28. In contrast to 

previous reports18, we found a strong and highly significant correlation with major 

depression29  (𝑟𝑟𝐺𝐺 = 0.412, p = 1.40 x 10-25), and we are the first to report a prominent overlap 



with ADHD30  (𝑟𝑟𝐺𝐺 = 0.360, p = 1.24 x 10-12). Moreover, we confirm the genetic correlation 

with social communication difficulties at age 8 in a non-ASD population sample reported 

previously based on a subset of the ASD sample31 (𝑟𝑟𝐺𝐺 = 0.375, p = 0.0028). 

In order to leverage these observations for the discovery of ASD loci shared with these other 

traits, we selected three particularly well-powered and genetically correlated phenotypes. 

These were schizophrenia (N = 79,641)15, major depression (N = 424,015)29 and educational 

attainment (N = 328,917)26. We utilize the recently introduced MTAG method9 which, 

briefly, generalizes the standard inverse-variance weighted meta-analysis for multiple 

phenotypes. In this case, MTAG takes advantage of the fact that, given an overall genetic 

correlation between ASD and a second trait, the effect size estimate and evidence for 

association to ASD can be improved by appropriate use of the association information from 

the second trait. The results of these three ASD-anchored MTAG scans are correlated to the 

primary ASD scan (and to each other) but given the exploration of three scans, we utilize a 

more conservative threshold of 1.67 x 10-8 for declaring significance across these secondary 

scans.  In addition to stronger evidence for several of the ASD hits defined above, variants in 

seven additional regions achieve genome-wide significance, including three loci shared with 

educational attainment and four shared with major depression  (Table 1b, Box 1). 

Gene and gene-set analysis 

Next, we performed gene-based association analysis on our primary ASD meta-analysis 

using MAGMA32, testing for the joint association of all markers within a locus (across all 

protein-coding genes in the genome). This analysis identified 15 genes surpassing the 

significance threshold (Table S3.1.2). As expected, the majority of these genes were located 

within the genome-wide significant loci identified in the GWAS, but seven genes are located 



in four additional loci including KCNN2, MMP12, NTM and a cluster of genes on 

chromosome 17 (KANSLl, WNT3, MAPT and CRHRl) (Figures S4.2.46-60). In particular, 

KCNN2 was strongly associated  (P = 1.02x10-9), far beyond even single-variant statistical 

thresholds and is included in the descriptions in Box 1. 

Enrichment analyses using gene co-expression modules from human neocortex 

transcriptomic data (M13, M16 and M17 from Parikshak et al. 201333 and loss-of-function 

intolerant genes (pLI > 0.9)34,35, which previously have shown evidence of enrichment in 

neurodevelopmental disorders30,33,36, yielded only nominal significance for the latter and 

M16 (Table S3.1.4). Likewise analysis of Gene Ontology sets37,38 for molecular function 

from MsigDB39 revealed no significant sets after Bonferroni correction for multiple testing 

(Table S3.1.5).   

Dissection of the polygenic architecture 

As ASD is a highly heterogeneous disorder, we explored how ℎ𝐺𝐺2  partitioned across 

phenotypic sub-categories in the iPSYCH sample and estimated the genetic correlations 

between these groups using GCTA40-42. We examined cases with and without intellectual 

disability (ID, N = 1,873) and the ICD-10 diagnostic sub-categories: childhood autism 

(F84.0, N = 3,310), atypical autism (F84.1, N = 1,607), Asperger’s syndrome (F84.5, N = 

4,622), and other/unspecified pervasive developmental disorders (PDD, F84.8-9, N = 5,795), 

reducing to non-overlapping groups when doing pairwise comparisons (see Table S2.3.1). 

While the pairwise genetic correlations were consistently high between all sub-groups (95% 

CIs including 1 in all comparisons), the ℎ𝐺𝐺2  of Asperger’s syndrome (ℎ𝐺𝐺2  = 0.097, SE = 

0.001) was found to be twice the ℎ𝐺𝐺2  of both childhood autism (ℎ𝐺𝐺2  = 0.049, SE = 0.009, P = 

0.001) and the group of other/unspecified PDD (ℎ𝐺𝐺2  = 0.045, SE = 0.008, P = 0.001) (Table 



S3.2.1 and S3.3.1, Figure S4.3.1 and S4.4.1). Similarly, the ℎ𝐺𝐺2  of ASD without ID (ℎ𝐺𝐺2  = 

0.086, SE = 0.005) was found to be three times higher than for cases with ID (ℎ𝐺𝐺 
2 = 0.029, SE 

= 0.013, P = 0.015). 

To further examine the apparent polygenic heterogeneity across subtypes, we investigated 

how PRS trained on different phenotypes were distributed across distinct ASD subgroups. 

We focused on phenotypes showing strong genetic correlation with ASD (e.g., educational 

attainment), but included also traits with little or no correlation to ASD (e.g., BMI) as 

negative controls. In this analysis, we regressed the normalized scores on ASD subgroups 

while including covariates for batches and principal components in a multivariate regression. 

Of the eight phenotypes we evaluated, only the cognitive phenotypes showed strong 

heterogeneity (educational attainment26 P = 1.8 x 10-8, IQ43 P = 3.7 x 10-9) (Figure S4.4.8). 

Interestingly, all case-control groups with or without ID showed significantly different 

loading for the two cognitive phenotypes: controls with ID have the lowest score followed 

by ASD cases with ID, and ASD cases without ID have significantly higher scores again 

than any other group (P = 2.6 x 10-12 for educational attainment, P = 8.2 x 10-12 for IQ). 

With respect to the diagnostic sub-categories constructed hierarchically from ASD subtypes 

(Table S2.3.1), it was again the cognitive phenotypes that showed the strongest 

heterogeneity across the diagnostic classes (educational attainment P = 2.6 x 10-11, IQ P = 

3.4 x 10-8), while neuroticism27 (P = 0.0015), chronotype44 (P = 0.011) and subjective well-

being27 (P = 0.029) showed weaker but nominally significant degree of heterogeneity, and 

SCZ, MDD and BMI were non-significant across the groups (P > 0.19) (Figure 3). This 

pattern weakened only slightly when excluding subjects with ID (Figure S4.4.9). For 

neuroticism there was a clear split with atypical and other/unspecified PDD cases having 



significantly higher PRS than childhood autism and Asperger’s, P = 0.00013. Considering 

the genetic overlap of each subcategory with each phenotype, the hypothesis of homogeneity 

across sub-phenotypes was strongly rejected (P = 1.6 x 10-11), thereby establishing that these 

sub-categories indeed have differences in their genetic architectures. 

Focusing on educational attainment, significant enrichment of PRS was found for Asperger’s 

syndrome (P = 2.0 x 10-17) in particular, and for childhood autism (P = 1.5 x 10-5), but not 

for the group of other/unspecified PDD (P = 0.36) or for atypical autism (P = 0.13) (Figure 

3). Excluding individuals with ID only changes this marginally, with atypical autism 

becoming nominally significant (P = 0.020) (Figure S4.4.9). These results reveal that the 

genetic architecture underlying educational attainment is indeed shared with ASD but to a 

variable degree across the disorder spectrum. We find that the observed excess in ASD 

subjects of alleles positively associated with education attainment45,46 is confined to 

Asperger’s and childhood autism, and it is not seen here in atypical autism nor in 

other/unspecified PDD. 

Finally, we evaluated the predictive ability of ASD PRS using five different sets of target 

and training samples within the combined iPSYCH-PGC sample. The observed mean 

variance explained by PRS (Nagelkerke’s R2) was 2.45% (P = 5.58 x 10-140) with a pooled 

PRS-based case-control odds ratio OR = 1.33 (CI.95% 1.30 –1.36) (Figures S4.4.2 and 

S4.4.4). Dividing the target samples into PRS decile groups revealed an increase in OR with 

increasing PRS. The OR for subjects with the highest PRS increased to OR = 2.80 (CI.95% 

2.53–3.10) relative to the lowest decile (Figures 4a and S4.4.5). Leveraging correlated 

phenotypes in an attempt to improve prediction of ASD, we generated a multi-phenotype 

PRS as a weighted sum of phenotype specific PRS (see Methods). As expected, 



Nagelkerkes’s R2 increased for each PRS included attaining its maximum at the full model at 

3.77% (P = 2.03 x 10-215) for the pooled analysis with an OR = 3.57 (CI.95% 3.22-3.96) for 

the highest decile (Figures 4b and S4.4.6-7). These results demonstrate that an individual’s 

ASD risk depends on the level of polygenic burden of thousands of common variants in a 

dose-dependent way, which can be reinforced by adding SNP-weights from ASD correlated 

traits. 

Functional annotation 

In order to obtain information on possible biological underpinnings of our GWAS results we 

conducted several analyses. First, we examined how the ASD ℎ𝐺𝐺2  partitioned on functional 

genomic categories as well as on cell type-specific regulatory elements using stratified LD 

score regression47. This analysis revealed significant enrichment of heritability in conserved 

DNA regions and H3K4me1 histone marks48, as well as in genes expressed in central 

nervous system (CNS) cell types as a group (Figures S4.3.2 and S4.3.3), which is in line 

with observations in schizophrenia, major depression29, and bipolar disorder24. Analyzing the 

enhancer associated mark H3K4me1 in individual cell/tissue48, we found significant 

enrichment in brain and neuronal cell lines (Figure S4.3.4).  The highest enrichment was 

observed in the developing brain, germinal matrix, cortex-derived neurospheres, and 

embryonic stem cell (ESC)-derived neurons, consistent with ASD as a neurodevelopmental 

disorder with largely prenatal origins, as supported by data from analysis of rare de novo 

variants33. 

Common variation in ASD is located in regions that are highly enriched with regulatory 

elements predicted to be active in human corticogenesis (Figures S4.3.2-4). Since most gene 

regulatory events occur at a distance via chromosome looping, we leveraged Hi-C data from 



germinal zone (GZ) and post-mitotic zones cortical plate (CP) in the developing fetal brain 

to identify potential target genes for these variants49. We performed fine mapping of 29 loci 

to identify the set of credible variants containing likely causal genetic risk50 (see Methods). 

Credible SNPs were significantly enriched with enhancer marks in the fetal brain (Figure 

S4.5.1), again confirming the likely regulatory role of these SNPs during brain development.  

Based on location or evidence of physical contact from Hi-C, the 380 credible SNPs (29 

loci) could be assigned to 95 genes (40 protein-coding), including 39 SNPs within promoters 

that were assigned to 9 genes, and 16 SNPs within the protein coding sequence of 8 genes 

(Table S3.4.1, Figure S4.5.1). Hi-C identified 86 genes, which interacted with credible 

SNPs in either the CP or GZ during brain development. Among these genes, 34 are 

interacting with credible SNPs in both CP and GZ, which represent a high-confidence gene 

list. Notable examples are illustrated in Figure 5 and highlighted in Box 1. By analyzing 

their mean expression trajectory, we observed that the identified ASD candidate genes 

(Table S3.4.1) show highest expression during fetal corticogenesis, which is in line with the 

enrichment of heritability in the regulatory elements in developing brain (Figure 5e-g). 

Interestingly, both common and rare variation in ASD preferentially affects genes expressed 

during corticogenesis33, highlighting a potential spatiotemporal convergence of genetic risk 

on this specific developmental epoch, despite the disorder’s profound genetic heterogeneity.  

Discussion 

The high heritability of ASD has been recognized for decades and remains among the 

highest for any complex disease despite many clinical diagnostic changes over the past 30-

40 years resulting in a broader phenotype that characterizes more than 1% of the population. 

While early GWAS permitted estimates that common polygenic variation should explain a 



substantial fraction of the heritability of ASD, individually significant loci remained elusive. 

This was suspected to be due to limited sample size since studies of schizophrenia – with 

similar prevalence, heritability and reduced fitness – and major depression achieved striking 

results only when sample sizes five to ten times larger than available in ASD were 

employed. This study has finally borne out that expectation with definitively demonstrated 

significant “hits”. 

Here we report the first common risk variants robustly associated with ASD by using unique 

Danish resources in conjunction with results of the earlier PGC data – more than tripling the 

previous largest discovery sample.  Of these, five loci were defined in ASD alone, and seven 

additional suggested at a stricter threshold utilizing GWAS results from three correlated 

phenotypes (schizophrenia, depression and educational attainment) and a recently introduced 

analytic approach, MTAG. Both genome-wide LD score regression analysis and the fact that 

even among the loci defined in ASD alone there was additional evidence in these other trait 

scans indicate that the polygenic architecture of ASD is significantly shared with risk to 

adult psychiatric illness and higher educational attainment and intelligence. It should be 

noted that the MTAG analyses were carried out as three pairwise analyses. This way we 

avoid the complex interactions that could arise if we ran three or four correlated phenotypes 

at a time9. Indeed, what we get, despite the secondary summary statistics coming from large, 

high-powered studies, are relatively modest weights to the contributions from these statistics, 

because the genetic correlations are modest. The largest weight was 0.27 for schizophrenia, 

followed by 0.24 for major depression, and 0.11 for educational attainment. Thus all loci 

identified by MTAG have substantial contributions from ASD alone (Table 1a, b) and will 

most likely also be identified in future ASD-only GWAS with increasing sample sizes.  



In most GWAS studies there has been little evidence of heterogeneity of association across 

phenotypic subgroups.  In this study, however, we see strong heterogeneity of genetic 

overlap with other traits when our ASD samples are broken into distinct subsets.  In 

particular, the excess of alleles associated with higher intelligence and educational 

attainment was only observed in the higher functioning categories (particularly Asperger’s 

syndrome and individuals without comorbid ID) – and not in the other/unspecified PDD and 

ID categories.  This is reminiscent, and logically inverted, from the much greater role of 

spontaneous mutations in these latter categories, particularly in genes known to have an even 

larger impact in cohorts ascertained for ID/DD51. Interestingly, other/unspecified PDD and 

atypical autism also have a significantly higher PRS for neuroticism than childhood autism 

and Asperger’s.  These different enrichment profiles observed provide evidence for a 

heterogeneous and qualitatively different genetic architecture between sub-types of ASD, 

which should inform future studies aiming at identifying etiologies and disease mechanisms 

in ASD. 

The strong differences in estimated SNP heritability between ASD cases with and without 

ID, and highest in Asperger’s provide genetic evidence of longstanding observations. In 

particular, this aligns well with the observation that de novo variants are more frequently 

observed in ASD cases with ID compared to cases without comorbid ID, that IQ correlates 

positively with family history of psychiatric disorders52 and that severe ID (encompassing 

many syndromes that confer high risk to ASD) show far less heritability than is observed for 

mild ID53, intelligence in general54 and ASDs. Thus it is perhaps unsurprising that our data 

suggests that the contribution of common variants may be more prominent in high-

functioning ASD cases such as Asperger’s syndrome.  



We further explored the functional implications of these results with complementary 

functional genomics data including Hi-C analyses of fetal brains and brain transcriptome 

data. Analyses at genome-wide scale (partitioned ℎ𝐺𝐺2  (Figures S4.3.2-4) and brain 

transcriptome enrichment (Figure 5e-g)) as well as at single loci (Figure 5a-d, Box 1) 

highlighted the involvement of processes relating to brain development and neuronal 

function. Notably, a number of genes located in the identified loci have previously been 

linked to ASD risk in studies of de novo and rare variants (Box 1, Table S3.1.3), including 

PTBP2, CADPS, and KMT2E, which were found to interact with credible SNPs in the Hi-C 

analysis (PTBP2, CADPS) or contain a loss-of-function credible SNP (KMT2E).  

Interestingly, aberrant splicing of CADPS’ sister gene CADPS2, which has almost identical 

function, has been found in autism cases and Cadps2 knockout mice display behavioral 

anomalies with translational relevance to autism55. PTBP2 encodes a neuronal splicing factor 

and alterations in alternative splicing have been identified in brains from individuals 

diagnosed with ASD56. 

In summary, we have established a first compelling set of common variant associations in 

ASD and have begun laying the groundwork through which the biology of ASD and related 

phenotypes will inevitably be better articulated. 



Methods 

Subjects 

iPSYCH sample 

The iPSYCH ASD sample is a part of a population based case-cohort sample extracted from 

a baseline cohort10 consisting of all children born in Denmark between May 1st 1981 and 

December 31st 2005. Eligible were singletons born to a known mother and resident in 

Denmark on their one-year birthday. Cases were identified from the Danish Psychiatric 

Central Research Register (DPCRR)12, which includes data on all individuals treated in 

Denmark at psychiatric hospitals (from 1969 onwards) as well as at outpatient psychiatric 

clinics (from 1995 onwards). Cases were diagnosed with ASD in 2013 or earlier by a 

psychiatrist according to ICD10, including diagnoses of childhood autism (ICD10 code 

F84.0), atypical autism (F84.1), Asperger’s syndrome (F84.5), other pervasive 

developmental disorders (F84.8), and pervasive developmental disorder, unspecified (F84.9). 

As controls we selected a random sample from the set of eligible children excluding those 

with an ASD diagnosis by 2013. 

The samples were linked using the unique personal identification number to the Danish 

Newborn Screening Biobank (DNSB) at Statens Serum Institute (SSI), where DNA was 

extracted from Guthrie cards and whole genome amplified in triplicates as described 

previously13,57. Genotyping was performed at the Broad Institute of Harvard and MIT 

(Cambridge, MA, USA) using the PsychChip array from Illumina (CA, San Diego, USA) 

according to the instructions of the manufacturer. Genotype calling of markers with minor 

allele frequency (maf) > 0.01 was performed by merging callsets from GenCall58 and 

Birdseed59 while less frequent variants were called with zCall60. Genotyping and data 

processing was carried out in 23 waves.  



All analyses of the iPSYCH sample and joint analyses with the PGC samples were 

performed at the secured national GenomeDK high performance-computing cluster in 

Denmark (https://genome.au.dk).  

The study was approved by the Regional Scientific Ethics Committee in Denmark and the 

Danish Data Protection Agency. 

Psychiatric Genomic Consortium (PGC) samples 

In brief, five cohorts provided genotypes to the sample (n denoting the number of trios for 

which genotypes were available): The Geschwind Autism Center of Excellence (ACE; N = 

391), the Autism Genome Project61 (AGP; N = 2272), the Autism Genetic Resource 

Exchange62,63 (AGRE; N = 974), the NIMH Repository 

(https://www.nimhgenetics.org/available_data/autism/), the Montreal64/Boston Collection 

(MONBOS; N = 1396, and the Simons Simplex Collection 65,66(SSC; N = 2231). The trios 

were analyzed as cases and pseudo controls. A detailed description of the sample is available 

on the PGC web site: 

https://www.med.unc.edu/pgc/files/resultfiles/PGCASDEuro_Mar2015.readme.pdf and even 

more details are provided in Anney et al5. Analyses of the PGC genotypes were conducted 

on LISA on the Dutch HPC center SURFsara (https://userinfo.surfsara.nl/systems/lisa).  

Follow-up samples 

As follow-up for the loci with p-values less than 10-6 we asked for look up in 5 samples of 

Nordic and Eastern European origin with altogether 2,119 cases and 142,379 controls: 

BUPGEN (Norway: 164 cases and 656 controls), PAGES (Sweden: 926 cases and 3,841 

https://genome.au.dk/
https://www.nimhgenetics.org/available_data/autism/
https://www.med.unc.edu/pgc/files/resultfiles/PGCASDEuro_Mar2015.readme.pdf
https://userinfo.surfsara.nl/systems/lisa


controls not part of the PGC sample above), the Finnish autism case-control study (Finland: 

159 cases and 526 controls), deCODE (Iceland 574 cases and 136,968 controls; Eastern 

Europe: 296 cases and 388 controls). See supplementary for details. 

GWAS analysis 

Ricopili15, the pipeline developed by the Psychiatric Genomics Consortium (PGC) Statistical 

Analysis Group was used for quality control, imputation, principle component analysis 

(PCA) and primary association analysis. For details see supplementary information. The data 

was processed separately in the 23 genotyping batches in the case of iPSYCH and separately 

for each study in the PGC sample. Phasing was achieved using SHAPEIT16 and imputation 

done by IMPUTE267,68 with haplotypes from the 1000 Genomes Project, phase 369,70 

(1kGP3) as reference. Chromosome X was imputed using 1000 Genomes Project, phase 171 

haplotypes.  

After excluding regions of high LD72, the genotypes were pruned down to a set of roughly 

30k markers. See supplementary information for details. Using PLINK’s73,74 identity by state 

analysis pairs of subjects were identified with 𝜋𝜋� > 0.2 and one subject of each such pair was 

excluded at random (with a preference for keeping cases). PCA was carried out using 

smartPCA75,76. In iPSYCH a subsample of European ancestry was selected as an ellipsoid in 

the space of PC1-3 centred and scaled using the mean and 8 standard deviation of the 

subsample whose parents and grandparents were all known to have been born in Denmark 

(n=31500). In the PGC sample the CEU subset was chosen using a Euclidian distance 

measure weighted by the variance explain for each of the first 3 PCs. Individuals more 

distant than 10 standard deviations from the combined CEU and TSI HapMap reference 

populations were excluded. We conducted a secondary PCA to provide covariates for the 



association analyses. Numbers of subjects in the data generation flow for the iPSYCH 

sample are found in the descriptive table Table S1.1.1. 

Association analyses were done by applying PLINK 1.9 to the imputed dosage data (the sum 

of imputation probabilities P(A1A2) + 2P(A1A1)). In iPSYCH we included the first four 

principal components (PCs) as covariates as well as any PC beyond that, which were 

significantly associated with ASD in the sample, while the case-pseudo-controls from the 

PGC trios required no PC covariates. Combined results for iPSYCH and for iPSYCH with 

the PGC was achieved by meta-analysing batch-wise and study-wise results using METAL77 

(July 2010 version) employing an inverse variance weighted fixed effect model22. On 

chromosome X males and females were analyzed separately and then meta-analyzed 

together. Subsequently we applied a quality filter allowing only markers with an imputation 

info score ≥ 0.7, maf ≥ 0.01 and an effective sample size (see supplementary info) of at 

least 70% of the study maximum. The degree to which the deviation in the test statistics can 

be ascribed to cryptic relatedness and population stratification rather than to polygenicity 

was measured from the intercept in LD score regression23 (LDSC) as the ratio of (intercept-

1) and (mean(χ2)-1).

MTAG9 was applied with standard settings. The iPSYCH-PGC meta-analysis summary 

statistics was paired up with the summary statistics for each of major depression29 (excluding 

the Danish sampled but including summary statistics from 23andMe78, 111,902 cases, 

312,113 controls, and mean χ2=1.477), schizophrenia15 (also excluding the Danish samples, 

34,129 cases, 45,512 controls, and mean χ2=1.804) and educational attainment26 (328,917 

samples and mean χ2=1.648). These are studies that have considerably more statistical power 

than the ASD scan, but the genetic correlations are modest in the context of MTAG, so the 



weights ascribed to the secondary phenotypes in the MTAG analyses remain relatively low 

(no higher than 0.27). See supplementary methods for details.  

The results were clumped and we highlighted loci of interest by selecting those that were 

significant at 5 x 10-8 in the iPSYCH-PGC meta-analysis or the meta-analysis with the 

follow-up sample or were significant at 1.67 x l0-8 in any of the three MTAG analyses. The 

composite GWAS consisting of the minimal p-values at each marker over these five analyses 

wsa used as a background when creating Manhattan plots for the different analyses showing 

both what is maximally achieved and what the individual analysis contributes to that.  

Gene-based association and gene-set analyses.  

MAGMA 1.0632 was applied to the summary statistics to test for gene-based association. 

Using NCBI 37.3 gene definitions and restricting the analysis to SNPs located within the 

transcribed region, mean SNP association was tested with the sum of -log(SNP p-value) as 

test statistic. The resulting gene-based p-values were further used in competitive gene-set 

enrichment analyses in MAGMA. One analysis explored the candidate sets M13, M16 and 

M17 from Parikshak et al. 201333 as well as constrained, loss-of-function intolerant genes 

(pLI>0.9)34,35 derived from data of the Exome Aggregation Consortium (see supplementary 

methods for details). Another was an agnostic analysis of the Gene Ontology sets37,38 for 

molecular function from MsigDB 6.039. We analyzed only genes outside the broad MHC 

region (hg19:chr6:25-35M) and included only gene sets with 10-1000 genes. 

SNP heritability  

SNP heritability, ℎ𝐺𝐺2 , was estimated using LDSC23 for the full sample and GCTA40-42 for 

subsamples too small for LDSC. For LDSC we used precomputed LD scores based on the 

European ancestry samples of the 1000 Genomes Project71 restricted to HapMap379 SNPs 



(downloaded from the https://github.com/bulik/ldsc). The summary stats with standard 

LDSC filtering were regressed onto these scores. For liability scale estimates, we used a 

population prevalence for Denmark of 1.22%21. Lacking proper prevalence estimates for 

subtypes, we scaled the full spectrum prevalence based on the composition of the case 

sample.  

For subsamples too small for LDSC, the GREML approach of GCTA40-42 was used. On best 

guess genotypes (genotype probability > 0.8, missing rate < 0.01 and MAF > 0.05) with 

INDELs removed, a genetic relatedness matrix (GRM) was fitted for the association sample 

(i.e. the subjects of European ancestry with 𝜋𝜋� ≤ 0.2) providing a relatedness estimate for all 

pairwise combinations of individuals.  Estimation of the phenotypic variance explained by 

the SNPs (REML) was performed including PC 1-4 as continuous covariates together with 

any other PC that was nominally significantly associated to the phenotype as well as batches 

as categorical indicator covariates. Testing equal heritability for non-overlapping groups was 

done by permutation test (with 1000 permutations) keeping the controls and randomly the 

assigning the different case labels. 

Following Finucane et al47, we conducted an enrichment analysis of the heritability for SNPs 

for functional annotation and for SNPs located in cell-type-specific regulatory elements. 

Using first the same 24 overlapping functional annotations (stripped down from 53) as in 

Finucane et al. we regressed the 𝜒𝜒2 from the summary statistics on to the cell-type specific 

LD scores download from the site mentioned above with baseline scores, regression weights 

and allele frequencies based on European ancestry 1000 Genome Project data. The 

enrichment of a category was defined as the proportion of SNP heritability in the category 

divided by the proportion of SNPs in that category. Still following Finucane et al. we did a 

similar analysis using 220 cell type–specific annotations divided into 10 overlapping groups. 

https://github.com/bulik/ldsc


In addition to this, we conducted an analysis based on annotation derived from data on 

H3K4Me1 imputed gapped peaks data from the Roadmap Epigenomics Mapping 

Consortium80,81; more specifically information excluding the broad MHC-region (chr6:25-

35MB).  

Genetic correlation 

For the main samples, SNP correlations, 𝑟𝑟𝐺𝐺 , were estimated using LDSC23 and for the 

analysis of ASD subtypes and subgroups where the sample size were generally small, we 

used GCTA42. In both cases, we followed the same procedures as explained above. For all 

but a few phenotypes, LDSC estimates of correlation were achieved by uploaded to LD 

hub25 for comparison to all together 234 phenotypes.  

Polygenic risk scores 

For the polygenic risk scores (PRS) we clumped the summary stats applying standard 

Ricopili parameters (see supplementary methods for details). To avoid potential strand 

conflicts we excluded all ambiguous markers for summary statistics not generated by 

Ricopili using the same imputation reference. PRS were generated at the default p-value 

thresholds (5e-8, 1e-6, 1e-4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1) as a weighted sum of the 

allele dosages. Summing over the markers abiding by the p-value threshold in the training 

set and weighing by the additive scale effect measure of the marker (log(OR) or β) as 

estimated in the training set. Scores were normalized prior to analysis.  

We evaluated the predictive power using Nagelkerke’s 𝑅𝑅2 and plots of odds ratios and 

confidence intervals over score deciles. Both 𝑅𝑅2 and odds ratios were estimated in regression 

analyses including the relevant PCs and indicator variable for genotyping waves.  



Lacking a large ASD sample outside of iPSYCH and PGC, we trained a set of PRS for ASD 

internally in the following way. We divided the sample in five subsamples of roughly equal 

size respecting the division into batches. We then ran five GWAS leaving out each group in 

turn from the training set and meta-analyzed these with the PGC results. This produced a set 

of PRS for each of the five subsamples trained on their complement. Prior to analyses, each 

score was normalized on the group where it was defined. We evaluated the predictive power 

in each group and on the whole sample combined. 

To exploit the genetic overlap with other phenotypes to improve prediction, we created a 

series of new PRS by adding to the internally trained ASD score the PRS of other highly 

correlated phenotypes in a weighted sum. See supplementary info for details.  

To analyze ASD subtypes in relation PRS we defined a hierarchical set of phenotypes in the 

following way: First hierarchical subtypes was childhood autism, hierarchical atypical 

autism was defined as everybody with atypical autism and no childhood autism diagnosis, 

hierarchical Asperger’s as everybody with an Asperger’s diagnosis and neither childhood 

autism nor atypical autism. Finally we lumped other pervasive developmental disorders  

and pervasive developmental disorder, unspecified into pervasive disorders developmental 

mixed, and the hierarchical version of that consists of everybody with such a diagnosis and 

none of neither preceding ones (Table S2.3.1). We examined the distribution over the 

distinct ASD subtypes of PRS for a number of phenotypes showing high 𝑟𝑟𝐺𝐺 with ASD (as 

well as a few with low 𝑟𝑟𝐺𝐺 as negative controls), by doing multivariate regression of the 

scores on the subtypes while adjusting for relevant PCs and wave indicator variables in a 

linear regression. See supplementary methods for details.   



Hi-C analysis 

The Hi-C data was generated from two major cortical laminae: the germinal zone (GZ), 

containing primarily mitotically active neural progenitors, and the cortical and subcortical 

plate (CP), consisting primarily of post-mitotic neurons49. We first derived a set of credible 

SNPs (putative causal SNPs) from the identified top ranking 29 loci using CAVIAR50. To 

test whether credible SNPs are enriched in active marks in the fetal brain81, we employed 

GREAT as previously described49,82. Credible SNPs were, sub-grouped into those without 

known function (unannotated) and functionally annotated SNPs (SNPs in the gene promoters 

and SNPs that cause nonsynonymous variants) (Figure S4.5.1). Then we integrated 

unannotated credible SNPs with chromatin contact profiles during fetal corticogenesis49, 

defining genes physically interacting with intergenic or intronic SNPs (Figure S4.5.1).  

Spatiotemporal transcriptomic atlas of human brain was obtained from Kang et al83. We used 

transcriptomic profiles of multiple brain regions with developmental epochs that span 

prenatal (6-37 post-conception week, PCW) and postnatal (4 months-42 years) periods. 

Expression values were log-transformed and centered to the mean expression level for each 

sample using a scale(center=T, scale=F)+1 function in R. ASD candidate genes identified 

by Hi-C analyses (Figure S4.5.1) were selected for each sample and their average centered 

expression values were calculated and plotted.  

Summary statistics 

The summary statistics are available for download the iPSYCH download page 

http://ipsych.au.dk/downloads/ and at the PGC download site: 

https://www.med.unc.edu/pgc/results-and-downloads. 

http://ipsych.au.dk/downloads/
https://www.med.unc.edu/pgc/results-and-downloads
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Box1. Selected loci and candidates (ordered by chromosome). 

Gene Locus* and supporting evidence Gene function  

NEGR1 Chr1:72,729,142 

Shared ASD-MDD locus 

Locus also significant in depression29,78, obesity and BMI84-88  

NEGR1 is the only protein-coding gene in the locus  

NEGR1 is supported by brain Hi-C and eQTL analyses29 

NEGR1 (neuronal growth regulator 1) is an adhesion molecule modulating synapse formation in 
hippocampal neurons89,90 and neurite outgrowth91,92. It is member of the IgLON protein family 
implicated in synaptic plasticity and axon extension93-95. 
Predominantly expressed (and developmentally upregulated) in hippocampus and cortex96 and 
also hypothalamus97.  

PTBP2 Chr1:96,561,801 

ASD locus 

Locus also significant in BMI84,86,88 and weight84. In schizophrenia the locus show p-value of 
6.5x10-6 15

PTBP2 is the nearest protein-coding gene, approx. 625kb from index SNP. 

De novo and rare variants in PTBP2 have been reported in ASD cases1,3,98.   

PTBP2 is supported by Hi-C results in this study (Fig. 5d) 

PTBP2 is also known as nPTB (neuronal PTB) or brPTB (brain PTB) and is a splicing regulator. PTBP1 
and its paralog PTBP2 bind to intronic polypyrimidine tracts in pre-mRNAs and target large sets of 
exons to coordinate alternative splicing programs during development99. Several switches in the 
expression of PTBP1 and PTBP2 regulate alternative splicing during neurogenesis and neuronal 
differentiation 100-103.  

CADPS Chr3:62,481,063 

Shared ASD-Educational attainment locus 

Locus also significant in study of cognitive decline rate104  

CADPS is supported by Hi-C results in this study (Fig. 5a). 

CADPS encodes a calcium-binding protein involved in exocytosis of neurotransmitters and 
neuropeptides. In line with CAPDS mRNA being mainly expressed in brain and pituitary 
(gtexportal), immunoreactive CAPS-1 is localized in neural and various endocrine tissues105. In 
hippocampal synapses, CADPS regulates the pool of readily releasable vesicles at pre-synaptic 
terminals106,107  

KCNN2 Chr5: 113,801,423 

ASD locus (gene-wise analysis) 

Locus also significant in educational attainment26,108.  

KCNN2 synaptic levels are regulated by the E3 ubiquitin ligase UBE3A109, of which overexpression 
has been linked to ASD risk109,110. 

KCNN2 is a voltage-independent Ca2+-activated K+ channel that responds to changes in intracellular 
calcium concentration and couples calcium metabolism to potassium flux and membrane 
excitability. In CNS neurons, activation of KCNN2 modulates neuronal excitability by causing 
membrane hyperpolarization111. Hippocampal KCNN2 has roles in the formation of new 
memory112, encoding and consolidation of contextual fear113, and in drug-induced plasticity114. 

KMT2E Chr7:104,744,219 

ASD locus  

Locus also significant in schizophrenia15,115 and in ASD-schizophrenia meta-analysis5. 

KMT2E de novo mutations are associated with ASD at FDR<0.1116  

A KMT2E credible SNP is a loss-of-function variant (Table S3.4.1)

KMT2E encodes Histone-lysine N-methyltransferase 2E and forms a family together with 
SETD5117,118. Evidence suggest that recognition of the histone H3K4me3 mark by the KMT2E PHD 
finger can facilitate the recruitment of KMT2E to transcription-active chromatin regions119,120. 
KMT2E has been implicated in chromatin regulation, control of cell cycle progression, and 
maintaining genomic stability121.  
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MACROD2 Chr20: 14836243 

ASD locus 

Locus found significant in previous ASD GWAS61 but not supported in larger study122  

MACROD2 is the only protein-coding gene in the locus 

MACROD2 is a nuclear enzyme that binds to mono-ADP-ribosylated (MARylated) proteins and 
functions as an eraser of mono-ADP-ribosylation123. Intracellular MARylated histones and GSK3β 
are substrates of MACROD2, and the removal of MAR from GSK3β is responsible for reactivating of 
its kinase activity123. This gene is expressed in lung and multiple regions of the brain. Low or no 
expression across most other tissue (https://www.gtexportal. org).  

*position of index SNP is listed.
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Table 1. Genome-wide significant loci. Independent loci (r2 < 0.1, distance > 400kb) with index variant (Index var), chromosome (CHR), 
chromosomal position (BP), alleles (A1/A2), allele frequency of A1 (FRQ), estimate of effect (β) with respect to A1, standard error of β (SE), 
and the association p-value of the index variant (P). The “Analysis” column shows the analysis that generated the particular result. The column 
“Support from other scans” lists the analyses that also support the locus. For the ASD scan results, this shows the genome wide significant 
results in the locus from the other scans, and for results from any other analysis, it shows the result from the ASD scan. An * indicate different 
lead SNP. The column “Nearest genes” lists nearest genes from within 50kb of the r2≥0.6 LD friends of the index variant (intergenic variants 
marked with a dash).  a. Loci from the ASD scan and the combined analysis with the follow-up sample. Column “Analysis” indicates which 
results stem from the original scan and which comes from the combined. b. Loci from the three MTAG analyses with schizophrenia (SCZ)15, 
educational attainment (Edu)26 and major depression (MD)29 – loci not already represented in section a.  

Index var CHR BP P β SE A1/A2 FRQ Analysis Support from other scans Nearest genes 
Scan P β 

a rs910805 20 21248116 2.04 x 10-9 -0.096 0.016 A/G 0.76 ASD ASD-SCZ 1.5 x10-10 -0.069  KIZ, XRN2, NKX2-2, NKX2-4
ASD-Edu* 2.0 x10-8 -0.061

rs10099100 8 10576775 1.07 x 10-8 0.084 0.015 C/G 0.331 ASD Comb ASD 9.6 x 10-9 0.078  C8orf74, SOX7, PINX1 
ASD-Edu 1.6 x 10-8 0.056 

rs201910565 1 96561801 2.48 x 10-8 -0.077 0.014 A/AT 0.689 Comb ASD ASD 3.4 x 10-7 -0.033 LOC102723661, PTBP2
rs71190156 20 14836243 2.75 x 10-8 -0.078 0.014 GTTTT 0.481 ASD Comb ASD 3.0 x 10-8 -0.072  MACROD2

TTT/G ASD-Edu 1.2 x 10-8 0.053 
rs111931861 7 104744219 3.53 x 10-8 -0.216 0.039 A/G 0.966 Comb ASD ASD 1.1 x 10-7 -0.094 KMT2E, SRPK2

b rs2388334 6 98591622 3.34 x 10-12 -0.065 0.009 A/G 0.517 ASD-Edu ASD 1.0 x 10-6 -0.068 MMS22L, POU3F2
rs325506 5 104012303 3.26 x 10-11 0.057 0.009 C/G 0.423 ASD-MD ASD 3.5 x 10-7 0.071 NUD12 
rs11787216 8 142615222 1.99 x 10-9 -0.058 0.010 T/C 0.364 ASD-Edu ASD 2.6 x 10-6 -0.030 MROH5
rs1452075 3 62481063 3.17 x 10-9 0.061 0.010 T/C 0.721 ASD-Edu ASD 2.1 x 10-7 0.035 CADPS 
rs1620977 1 72729142 6.66 x 10-9 0.056 0.010 A/G 0.26 ASD-MD ASD 1.2 x 10-4 0.062 NEGR1 
rs10149470 14 104017953 8.52 x 10-9 -0.049 0.008 A/G 0.487 ASD-MD ASD 8.5 x 10-5 -0.056 MARK3, CKB, TRMT61A,

BAG5, APOPT1, KLC1, 
XRCC3 

rs16854048 4 42123728 1.29 x 10-8 0.069 0.012 A/C 0.858 ASD-MD ASD 5.9 x 10-5 0.082 SLC30A9, BEND4, TMEM33, 
DCAF4L1 
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Applying the same procedure to the internally trained ASD score did not display systematic 

heterogeneity (p=0.068) except as expected for the ID groups (p=0.00027) (Figure S4.4.10). 

Figure 4. Decile plots (Odds Ratio (OR) by PRS within each decile): a. Decile plot with 95%-CI 

for the internally trained ASD score (P-value threshold is 0.1). b. Decile plots on a weighted sums 

Figure legends 

Figure 1. Manhattans plots. a: The main ASD scan with the results of the combined analysis with 

the follow-up sample in yellow in the foreground. GWS clumps are painted green with index SNPs 

as diamonds. b-d:  Manhattan plots for three MTAG scans of ASD together with, respectively, 

schizophrenia15, educational attainment26 and major depression29 (see Figures S.2.71-74 for full size 

plots). In all panels the results of the composite of the five analyses (consisting for each marker of 

the minimal p-value of the five) is shown in grey in the background. 

Figure 2. Genetic correlation with other traits. Significant genetic correlations between ASD and 

other traits after Bonferroni correction for testing a total of 234 traits available at LDhub with the 

addition of a handful of new phenotypes. The results here corresponds to the following GWAS 

analyses: IQ43, educational attainment26, college124, self-reported tiredness125, neuroticism27, 

subjective well-being27, schizophrenia15, major depression29, depressive symptoms27, ADHD30, and 

chronotype44. See Table S3.3.2 for the full output of this analysis. 

* Indicates that the values are from in-house analyses of new summary statistics not yet included in 

LD Hub.

Figure 3. Profiling PRS load across distinct ASD sub-groups for 8 different phenotypes 

(schizophrenia15, major depression29, educational attainment26, human intelligence43, subjective 

well-being27, chronotype44, neuroticism27 and BMI88. The bars show coefficients from multivariate 

regression of the 8 normalized scores on the distinct ASD sub-types (adjusting for batches and 

PCs). The subtypes are the hierarchically defined subtypes for childhood autism (hCHA), atypical 

autism (hATA), Asperger’s (hAsp), and the lumped pervasive disorders developmental group 

(hPDM). Beware that the orientation of the scores for subjective well-being, chronotype and BMI 

have been switched to improve graphical presentation. The corresponding plot where subjects with 

ID have been excluded can be seen in Figure S4.4.9, and with ID as a subtype in Figure S4.4.8. 



of PRSs starting with the ASD score of panel a and successively adding the scores for major 

depression29, subjective well-being27, schizophrenia15, educational attainment26, and 

chronotype44=44. In all instances the P-value threshold for the score used is the one with the highest 

Nagelkerke’s R2. Figures S4.4.5 and S4.4.7 show the stability across leave-one out groups that was 

used to create these combined results.  

Figure 5. Chromatin interactions identify putative target genes of ASD loci. a-d. Chromatin 

interaction maps of credible SNPs to the 1Mb flanking region, providing putative candidate genes 

that physically interact with credible SNPs. Gene Model is based on Gencode v19 and putative 

target genes are marked in red; Genomic coordinate for a credible SNP is labeled as GWAS; -

log10(P-value), significance of the interaction between a SNP and each 10kb bin, grey dotted line 

for FDR=0.01; TAD borders in CP and GZ. e-f. Developmental expression trajectories of ASD 

candidate genes show highest expression in prenatal periods. g. ASD candidate genes are highly 

expressed in the developing cortex as compared to other brain regions.   
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Figure 5. Chromatin interactions identify putative target genes of ASD loci
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