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Abstract 

The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable, however data 

regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-

genome genotyping of 1,454 DLB cases and 1,525 controls to assess copy number variability. We 

used two algorithms to confidently detect CNVs, performed a case-control association analysis, 

screened for candidate CNVs previously associated with DLB-related diseases, and performed a 

candidate gene approach to fully explore the data. We identified five CNV regions with a significant 

genome-wide association to DLB, two of these were only present in cases and absent from publicly 

available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein; whilst the 

other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting CNVs in 

genes previously associated with DLB or related neurodegenerative diseases, namely SNCA and 

MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. 
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1. Introduction 

Dementia with Lewy bodies (DLB) is a common and complex form of dementia and its diagnosis 

can often be complicated by phenotypic similarities with Alzheimer's disease (AD), Parkinson’s 

disease (PD) or even Frontotemporal dementia (FTD) (Claassen et al., 2008; Heidebrink, 2002). A 

more accurate DLB diagnosis is usually obtained by integrating clinical and pathological data from 

brain autopsy (McKeith et al., 2017). 

Genetic studies in DLB have been limited, certainly in comparison with studies on AD or PD, for a 

number of reasons, most notably because DLB has not been historically considered a genetic 

disease, given the lack of multiplex kindreds where the disease segregates. Additionally, large 

cohorts of patients are difficult to collect given the frequency of the disease and the rate of 

misdiagnosis. Despite this, recent studies have conclusively shown that there is a role for genetics 

in the etiology of DLB (Bras et al., 2014; Guerreiro et al., 2018, 2016; Nalls et al., 2013). Exome 

sequencing studies have been performed in small cohorts; as have case studies and Sanger 

sequencing of specific target genes (Clark et al., 2009; Keogh et al., 2016; Koide et al., 2002; 

Ohtake et al., 2004). Copy number variants (CNVs) have not been assessed thus far in DLB, 

particularly in an unbiased manner and at a genome-wide level.  

CNVs have been widely studied in a number of neurological conditions, particularly in 

developmental phenotypes such as schizophrenia (SCZ) and autism (Glessner et al., 2009; 

Marshall et al., 2017; McCarthy et al., 2009) where several microdeletions and microduplications 

have been found to be associated with both diseases (Bassett et al., 2017; Cook et al., 1997; 

McCarthy et al., 2009; Stefansson et al., 2008; Weiss et al., 2008). In these phenotypes CNVs play 

a prominent role in the disease genetic architecture. 

Several studies have analyzed CNVs in AD, where APP duplications have been unequivocally 

shown to cause disease (Delabar et al., 1987; Ghani et al., 2012; Swaminathan et al., 2012, 2011; 

Zheng et al., 2015, 2014). In PD, pathogenic CNVs are also known to occur in SNCA and PARK2 

(Chartier-Harlin et al., 2004; Ibáñez et al., 2004; Lesage et al., 2008; Waters and Miller, 1994). 

Together, these data show that CNVs are an important mutational event in neurological conditions. 

https://paperpile.com/c/xI2BRL/yq9C+DEbz
https://paperpile.com/c/xI2BRL/3rsy
https://paperpile.com/c/xI2BRL/62d4+eCRY+h1T2+nCBM
https://paperpile.com/c/xI2BRL/FqoX+XRtk+iJjI+Y8vM
https://paperpile.com/c/xI2BRL/FqoX+XRtk+iJjI+Y8vM
https://paperpile.com/c/xI2BRL/1Usm+rTxr+3BOc
https://paperpile.com/c/xI2BRL/1Usm+rTxr+3BOc
https://paperpile.com/c/xI2BRL/Bq12+QIY1+3BOc+P0Nt+fdSM
https://paperpile.com/c/xI2BRL/Bq12+QIY1+3BOc+P0Nt+fdSM
https://paperpile.com/c/xI2BRL/88zg+7YyX+yH5m+lznh+sHbC+hJ0g
https://paperpile.com/c/xI2BRL/88zg+7YyX+yH5m+lznh+sHbC+hJ0g
https://paperpile.com/c/xI2BRL/NUPV+f05Z+zo8p+N1D2


Here, we report the first genome-wide analysis of CNVs in DLB in a large cohort of patients, many 

of which with neuropathology diagnoses of DLB. We performed a case-control association study 

that was complemented by discovery stage analyses guided by candidate genes and CNVs 

previously reported as being associated with DLB-related neurodegenerative diseases.  

 

2. Materials and Methods 

2.1. Sample selection  

A total of 1,454 patients diagnosed with DLB and of European ancestry were selected for this study. 

Diagnosis of DLB was made according to clinical or pathological criteria (McKeith et al., 2005). 

Briefly, these included 298 clinically diagnosed and 1,156 neuropathologically diagnosed cases. 

Detailed sample and processing information has been described previously (Guerreiro et al., 2018). 

Data from 1,525 control samples was obtained from The Genetic Architecture of Smoking and 

Smoking Cessation study (phs000404.v1.p1) publicly available at the database of Genotypes and 

Phenotypes (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000404.v1.p1.) Supplementary Figure 1 shows an overview of the 

study design, different QC steps and analyses performed. 

2.2. Genotyping, quality control and CNV calling 

Seven hundred and fifty four DLB samples were genotyped on HumanOmni2.5Exome-8 v1.0.B 

Illumina arrays, and 700 DLB samples were genotyped using Infinium OmniExpress-24 v1.2.A1 

Illumina arrays (Illumina, Inc., CA, USA). Control samples were genotyped on HumanOmni2.5-4 

v1.D arrays (Illumina, Inc., CA, USA). Intensity files were analysed using GenomeStudio v2011.1 

software (Illumina, Inc., CA, USA) along with the respective manufacturer’s cluster files. Quality 

control (QC) procedures were performed in GenomeStudio (GS) prior to CNV analysis as described 

by Jarick and colleagues (Jarick et al., 2014). In short, samples with call rates lower than 0.97 were 

filtered out. SNP statistics were re-calculated following visual inspection of B allele frequency (BAF) 

and Log R ratio (LRR) plots. SNPs with GenTrain Scores below 0.7 were excluded. Lastly, samples 

https://paperpile.com/c/xI2BRL/DDzL
https://paperpile.com/c/xI2BRL/h1T2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000404.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000404.v1.p1
https://paperpile.com/c/xI2BRL/6sFM


with substantial cryptic relatedness scores (PI_HAT >0.1) were removed, as previously described 

(Guerreiro et al., 2018).  

CNV calls were generated using two different algorithms: cnvPartition v2.3.0 (Illumina, Inc). and 

PennCNV v1.0.4 (Wang et al., 2007). CNV calling based on cnvPartition was performed by GS with 

default parameters. For PennCNV, probe positions, LRR and BAF values for samples that passed 

QC procedures were exported from GS. Population frequency of the B allele (PFB) files were 

calculated for each array separately. All Smoking Cessation samples were used to generate CNVs 

in cnvPartition and PennCNV, but only a subset of the best performing 700 samples was used for 

the compilation of the PFB file in PennCNV to match the number of samples used for cases. 

PennCNV GC-model files were then created based on these PFBs. Lastly, CNVs were inferred by 

PennCNV using the hidden Markov model (HMM) and the GC-model for wave adjustment. Calls for 

the X chromosome were generated separately. Chromosomes Y, MT and XY were not analyzed. 

2.3. CNV quality control and analysis 

To improve the quality of CNVs, only calls generated by both algorithms were kept, while calls made 

by a single algorithm or calls of opposing type (for example, assigned as a deletion by one algorithm 

and as duplication by the other) were discarded. Adjacent CNVs were merged if the length of the 

sequence between them was smaller than 50% of the length of the larger CNV. CNVs were 

excluded if they were overlapping telomeres, centromeres, known segmental duplications, the 

immunoglobulin or the T cell receptor loci. Samples having LRR SD > 0.28, BAF drift > 0.002, 

Waviness Factor (WF) > 0.04, or having more CNV calls than 3*SD + median were excluded 

(Marshall et al., 2017; Need et al., 2009).  

To identify potentially pathogenic CNVs, we analyzed CNVs spanning known genes. We used the 

Database of Genomic Variants (DGV) (http://dgv.tcag.ca/dgv/app/home, accessed November 2017) 

to determine the population frequency of CNVs (MacDonald et al., 2014). This information was 

complemented with the frequency from clinical samples available in DECIPHER v9.18 

(https://decipher.sanger.ac.uk/, accessed November 2017). 

https://paperpile.com/c/xI2BRL/h1T2
https://paperpile.com/c/xI2BRL/KRIv
https://paperpile.com/c/xI2BRL/v2dW+rTxr
http://dgv.tcag.ca/dgv/app/home
https://paperpile.com/c/xI2BRL/12K9


2.4 Case-control association analysis 

Case-control association analysis was implemented using ParseCNV (Glessner et al., 2013). 

Standard ParseCNV quality metrics were used to filter out low quality results. CNVs that were 

genome-wide significant (p-value < 5x10-4 as suggested by (Glessner et al., 2013)), had a minimum 

length of 50 kb, and passed visual inspection in GS were selected for further analyses. 

2.5.  Candidate CNVs approach 

CNVs previously described in AD (Ghani et al., 2012; Heinzen et al., 2010; Swaminathan et al., 

2012, 2011; Zheng et al., 2015, 2014), PD (Bademci et al., 2010; Liu et al., 2013; Mok et al., 2016; 

Pankratz et al., 2011) and FTD (Gijselinck et al., 2008) were specifically investigated in these data 

(Supplementary Table 1). This analysis was performed in the complete set of CNV results after 

QC, disregarding the filters used for the case-control association analysis performed by ParseCNV. 

2.6. Candidate genes approach 

CNVs located in known AD, PD, FTD and DLB genes were also assessed (Brás et al., 2015; 

Guerreiro et al., 2018, 2015, 2013; Jansen et al., 2015; Keogh et al., 2016; Koide et al., 2002; 

Ohtake et al., 2004; Saitoh et al., 1995). Supplementary Table 2 lists all genes studied using this 

approach. 

 

3. Results 

3.1. CNV calling and QC steps 

After QC steps at the GS level, a total of 2,819 samples (1,294 cases and 1,525 controls) remained 

for further analyses. From the 754 DLB samples genotyped with HumanOmni2.5 arrays, 616 

(81.7%) samples were kept and from the 2,567,845 probes in this array, 2,496,600 (97.2%) passed 

quality control. Six hundred and seventy-eight (96.9%) samples of the 700 samples genotyped with 

OmniExpress arrays passed quality control and from the 713,599 probes available in this chip, 

698,680 (97.9%) probes remained. All controls from the Smoking Cessation database had good 

https://paperpile.com/c/xI2BRL/2XrY
https://paperpile.com/c/xI2BRL/2XrY
https://paperpile.com/c/xI2BRL/7YyX+fhxc+yH5m+lznh+sHbC+hJ0g
https://paperpile.com/c/xI2BRL/7YyX+fhxc+yH5m+lznh+sHbC+hJ0g
https://paperpile.com/c/xI2BRL/Dxm5+8nP3+Sw1W+A8En
https://paperpile.com/c/xI2BRL/Dxm5+8nP3+Sw1W+A8En
https://paperpile.com/c/xI2BRL/SIQi
https://paperpile.com/c/xI2BRL/XRtk+iJjI+Y8vM+bIaL+YytF+h1T2+h8r2+Apbe+fuUt
https://paperpile.com/c/xI2BRL/XRtk+iJjI+Y8vM+bIaL+YytF+h1T2+h8r2+Apbe+fuUt
https://paperpile.com/c/xI2BRL/XRtk+iJjI+Y8vM+bIaL+YytF+h1T2+h8r2+Apbe+fuUt


quality genotypes (call rate > 0.97) and, consequently, no samples were excluded, and 2,390,384 

(97.8%) of the 2,443,177 probes were kept.  

After combining the results obtained by the two CNV calling algorithms (cnvPartition and PennCNV), 

excluding samples due to their relatedness and performing the PennCNV QC steps on the LRR and 

BAF values and number of calls, a final number of 2,615 individuals (1,187 DLB cases and 1,428 

control samples) and 80,416 CNVs were analysed.  

3.2. Case-control association analysis 

Of the 494 CNV regions (CNVR) resulting from the ParseCNV analysis, only 5 passed QC checks 

and were statistically significant (Table 1). Of these, two of the regions were not present in our 

control population or in public databases: a deletion overlapping LAPTM4B (p=6.29x10-7) and a 

CNVR overlapping SPAG9-NME1-NME2 (p=2.72x10-4) (Figure 1). 

3.3. Candidate CNVs approach 

Five CNVs previously associated with DLB-related neurodegenerative diseases were found in DLB 

patients (Table 1). Two of these were present in the control group with a higher frequency than in 

the patients’ group, and the remaining three are described in public databases and are detailed 

next. The duplication identified on chromosome 12 overlapping DDX11 and OVOS2 has a 

frequency tenfold higher in DGV than in the DLB cohort. The 16p11.2 microduplication found in one 

DLB patient, has a frequency of 1.69x10-4 in the DECIPHER database but does not occur in any 

control samples or in the DGV database. One of the CNVs that was previously significantly 

associated with AD locates at chr8:2792874-4852328 and overlaps CSMD1 (Swaminathan et al., 

2011). At this locus, we identified over 100 CNVs in cases and controls. Therefore, in Table 1, we 

only report the shorter interval that showed suggestive significance in the case-control association 

analysis.  

3.4. Candidate genes approach 

https://paperpile.com/c/xI2BRL/yH5m
https://paperpile.com/c/xI2BRL/yH5m


We investigated CNVs in genes known to be associated with diseases that are related to DLB 

(Supplementary Table 2) and identified a total of 8 CNVs (Table 1). These included one 

duplication in APP occurring in a clinically diagnosed case. This large duplication is not present in 

the databases or in the control cohort. Two samples were found to carry duplications spanning 

MAPT, and one neuropathologically diagnosed patient was found to carry a SNCA duplication 

(Figure 2). PARK2 was found to have many copy number losses and gains in controls (n=28) and 

cases (n=13) but none as homozygous. A duplication including CHCHD10 was also identified in a 

neuropathologically diagnosed DLB patient. 

 

4. Discussion 

We performed a systematic analysis of CNVs in a large cohort of DLB patients using three main 

approaches. The first of these approaches was a case-control association analysis which resulted in 

five significant CNVRs that have not been previously described as associated with the disease. The 

most significant result from this analysis was a deletion spanning a lysosome-associated 

transmembrane protein, LAPTM4B. Intraneuronal alpha-synuclein clearance likely occurs through a 

variety of mechanisms in order to maintain protein homeostasis. However, recent data has 

highlighted the importance of lysosomal pathways for degradation of this protein (Webb et al., 

2003). While we cannot directly link this CNV to the development of DLB in these cases, it is 

interesting that a lysosomal enzyme is the top hit in our association analysis, given the prominent 

role of the lysosome in Lewy body diseases. Interestingly, a member of the same protein family, 

LAPTM5, was one of the top hits for incidental DLB in a recent network analysis study (Santpere et 

al., 2017).  

Also associated with DLB and absent from publicly available databases was a deletion overlapping 

the NME1 locus. NME1 is involved in purine metabolism, which has been reported to be disrupted 

in AD, PD and Creutzfeldt–Jakob disease. NME1 mRNA was also found to be reduced in these 

diseases (Ansoleaga et al., 2016, 2015; Garcia-Esparcia et al., 2015). Here, we identified a deletion 

https://paperpile.com/c/xI2BRL/k1KJ
https://paperpile.com/c/xI2BRL/k1KJ
https://paperpile.com/c/xI2BRL/kuhb
https://paperpile.com/c/xI2BRL/kuhb
https://paperpile.com/c/xI2BRL/vpth+mw6s+eEuB


at the 3’-end NME1 which could be consistent with a reduced expression of the gene in DLB, 

although this was not tested in the present study. 

Using a candidate gene approach where we analyzed genes known to have a role in DLB and DLB-

related diseases we identified several CNVRs of interest. The hallmark of DLB at autopsy is the 

accumulation of alpha-synuclein protein within neurons and their processes, termed Lewy bodies 

and Lewy neurites (Spillantini et al., 1997). Variants in the SNCA gene, which encodes alpha-

synuclein, have been previously associated with the risk of developing DLB (Bras et al., 2014; 

Guerreiro et al., 2018). In addition to point mutations, CNVs including SNCA are known to cause 

PD, and over the past years evidence suggested that this gene may also be duplicated in DLB. 

Nishioka and colleagues identified a PD family with a duplication spanning all of SNCA and MMRN1 

where the proband was later neuropathologically diagnosed as DLB (Nishioka et al., 2006b; Obi et 

al., 2008). Four neuropathologically diagnosed DLB cases presented a large duplication from DSPP 

to PDLIM5 including SNCA, three of these were heterozygous and one was homozygous (Ikeuchi et 

al., 2008). A duplication in SNCA was also described in a probable DLB patient in a study with 99 

cases (Meeus et al., 2012). Here, we add to this body of evidence, by identifying another patient 

neuropathologically diagnosed with DLB carrying a SNCA duplication. In our DLB cohort this 

duplication shows a similar frequency to that provided by DGV. This frequency in DGV results from 

two entries in the database. When looking in more detail at these entries, they are associated with 

the same Human Genome Diversity Project (HGDP) sample from Cambodia (HGDP00721). Given 

that information for each HGDP samples is limited to sex of the individual, population and 

geographic origin, it is possible this sample originated from a PD or DLB patient; or from an 

asymptomatic carrier, as these have previously been reported, with SNCA multiplications having 

particular low penetrance levels in Asian populations (Ahn et al., 2008; Nishioka et al., 2006a). It is 

also possible the duplication reported is an artifact caused by the creation or passage of the 

lymphoblast cell lines used to extract DNA (Simon-Sanchez et al., 2007). 
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We also identified one heterozygous duplication encompassing CHCHD10, a gene previously 

shown to cause FTD. However, given that CHCHD10 FTD-associated mutations are loss-of-function 

(Perrone et al., 2017), it is unlikely that a duplication of the gene would be pathogenic. 

GABRB3 is a gamma-aminobutyric acid (GABA) receptor that was reported as associated with DLB 

in a recent GWAS, but that did not survive independent replication (Guerreiro et al., 2018). 

However, loss of GABA receptors could underlie the typical visual hallucinations in DLB (Khundakar 

et al., 2016), and, because of this, we specifically looked at CNVs in GABRB3, and identified a 

duplication in one case. It is tempting to speculate that, given the GWAS discovery results, the fact 

that GABA receptors neurotransmission is altered in DLB (Santpere et al., 2017), and the CNV 

detected here, genetic variability in GABA receptors may in fact modulate risk for DLB. 

We identified two clinically diagnosed DLB samples with MAPT duplications (Figure 3). MAPT was 

not found to be significantly associated with DLB in recent GWAS (Bras et al., 2014; Guerreiro et al., 

2018), but the MAPT H1 haplotype was previously described as a possible risk factor for DLB 

(Cervera-Carles et al., 2016; Labbé et al., 2016). Previous studies of small cohorts of FTD patients 

have not revealed causative MAPT duplications (Lladó et al., 2007; Skoglund et al., 2009) but the 

screening of French FTD patients including multiplex families led to the identification of an 

heterozygous partial deletion of MAPT (Rovelet-Lecrux et al., 2009) and of a 17q21.31 

microduplication in an atypical FTD case (Rovelet-Lecrux et al., 2010). More recently, MAPT 

duplications were shown to increase expression of MAPT mRNA and were found to cause tangle 

pathology without Aβ deposition in probable AD patients (Le Guennec et al., 2017).  

PARK2 homozygous CNVs are the most common copy-number cause of PD, accounting for more 

than 50% of all pathogenic mutations in the gene and more frequently affecting the region between 

exons 2 and 7 (Hedrich et al., 2004; Kim et al., 2012). Our results showed no significant differences 

between DLB cases and controls, similar to the findings by Kay and colleagues in PD (Kay et al., 

2010). Additionally, we did not find any homozygous PARK2 CNVs suggesting that CNVs in this 

gene do not play a causative role in DLB. 
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APP duplications are known to cause AD (Delabar et al., 1987; Ghani et al., 2012; Swaminathan et 

al., 2012, 2011; Zheng et al., 2015, 2014). The sample carrying an APP duplication in our cohort 

has a clinical diagnosis of DLB without neuropathological confirmation - it is therefore possible this 

is an AD case misdiagnosed as DLB. However, there have been reports in the literature of DLB 

cases associated with APP duplications. For example, in a French family presenting with a diverse 

phenotype, APP duplication was associated with DLB confirmed by neuropathological findings 

(Guyant-Marechal et al., 2008). Similarly, one case with Lewy body-variant AD was reported in a 

multigenerational dementia family from the Netherlands (Sleegers et al., 2006). DLB cases 

frequently present Aβ pathology at autopsy (Hepp et al., 2016), and it has been suggested that Aβ 

accumulation can trigger Lewy body disease (Masliah et al., 2001).  

There are two main limitations in this study: first, this is a relatively small-sized cohort, which means 

we cannot confidently assess associations of CNVs with low effect sizes on disease; second, we did 

not perform independent replication of these findings, which precludes us from establishing definite 

associations or causes of disease. Despite these limitations we report on the first systematic 

analysis of CNVs in a large cohort of DLB patients, using well-established analytical practices. We 

identify potential disease causing CNVs as well as potential novel candidate genes for DLB. 
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Figures captions 

Figure 1. Schematic representation of CNVs.  

Schematic representation of statistically significant CNVs resulting from the case-control analysis that 

were not found in controls or publicly available databases. CNVs overlapping LAPTM4B in A; and 

SPAG9/NME1 in B. Known transcripts are represented at the bottom of each panel. Passing QC 

SNPs used for the CNV calling are depicted by colour according to the genotyping array (red: 

OmniExpress, blue: Omni2.5M, green: Omni2.5M for controls). CNVs (duplications) are depicted as 

bars above the genes. The grey shadow area represents the associated region that is genome-wide 

significant.  

Figure 2. Duplication identified at the SNCA locus. 

Log R ratio and B allele frequency plots of the CNV identified in the SNCA locus. Each point 

represents a SNP according to location in chromosome 4 (position on X axis). The genomic 

duplication is indicated by an increase in log R ratio and B allele frequency clusters outside the 

expected values of 1 (B/B), 0.5 (A/B), and 0 (A/A). Genes are represented at the bottom as black 

bars. SNPs inside the CNV region are represented in red, SNPs outside the CNV region are 

represented in blue, and SNPs in SNCA are represented in green.  

Figure 3. Duplications identified at the MAPT locus. 

Log R ratio and B allele frequency plots of the CNVs identified at the MAPT locus in two clinically 

diagnosed DLB cases. Each point represents a SNP according to location in chromosome 17 (position 

on X axis). The genomic duplication is indicated by an increase in log R ratio and B allele frequency 

clusters outside the expected values of 1 (B/B), 0.5 (A/B), and 0 (A/A). Genes are represented at the 

bottom as black bars. SNPs inside the CNV regions are represented in red, SNPs outside the CNV 

regions are represented in blue, and SNPs in MAPT are represented in green.  

 



Tables 

Table 1 Results from the three types of analyses performed 

Genes Location CNV p-value Cases 
(Neuro*) Controls Cases 

frequency 
Controls 

frequency 
DGV 

frequency 
DECIPHER 
frequency 

Case-control association analysis                   
ADGRG7,TFG chr3:100357671-100439759 Gain 8.93x10-5 21 (18) 13 1.77x10-2 9.10x10-3 1.43x10-2 2.09x10-2 
PDZD2 chr5:32101400-32106628 Gain 2.94x10-6 14 (12) 0 1.18x10-2 0 3.00x10-4 1.69x10-4 
LAPTM4B chr8:98755434-98800334 Loss 6.29x10-7 12 (6) 0 1.01x10-2 0 0 0 
MSR1 chr8:15948235-16021468 Loss 1.20x10-4 13 (7) 4 1.10x10-2 2.80x10-3 4.30x10-3 7.10x10-3 
NME1,NME1-NME2,SPAG9 chr17:49177096-49231786 Loss 2.72x10-4 9 (4) 0 7.58x10-3 0 0 0 
Candidate CNVs approach                   
CSMD1 chr8:4,033,908-4,126,540 Loss 2.89x10-2# 3 (2) 0 2.53x10-3 0 3.00x10-4 0 
DDX11,OVOS2 chr12:31,249,834-31,407,303 Gain 1.41x10-2# 4 (2) 0 3.37x10-3 0 4.61x10-2 0 
CYFIP1,GOLGA8I,NIPA1,NIPA2,TUBGCP5, 
WHAMML1 chr15:22,750,305-23,272,733 Gain na 5 (5) 8 4.21x10-3 5.60x10-3 2.50x10-3 1.86x10-3 

CHRNA7,OTUD7A chr15:31,932,865-32,515,849 Loss or Gain na 6 (5) 13 5.05x10-3 9.10x10-3 6.90x10-3 8.79x10-3 
ASPHD1,BOLA2,C16orf54,CDIPT,CDIPT-AS1, 
KIF22,MAZ,MVP,PAGR1,PRRT2,QPRT,SEZ6L2, 
SPN,ZG16 

chr16:29,595,483-29,912,902 Gain na 1 (1) 0 8.42x10-4 0 0 1.69x10-4 

Candidate genes approach                   
DNAJC6,LEPR,LEPROT chr1:65,854,556-65,955,725 Gain na 1 (0) 1 8.42x10-4 7.00x10-4 1.72x10-4 2.53x10-3 

SNCA,SNCA-AS1,GPRIN3,MMRN1,CCSER1 chr4:90,035,549-91,420,358 Gain na 1 (1) 0 8.42x10-4 0 6.42x10-4 0 

PARK2 chr6:161,601,162-163,259,260 Loss or Gain na 13 (8) 28 1.10x10-2 1.96x10-2 2.30x10-3 1.69x10-1 

GABRB3,GABRA5 ,GABRG3 chr15:26,996,126-27,220,713 Gain na 1 (1) 0 8.42x10-4 0 0 1.18x10-3 
MAPT,CRHR1,KANSL1,KANSL1-AS1, 
MAPT-AS1,MAPT-IT1,SPPL2C,STH chr17:43,661,362-44,345,063 Gain na 2 (0) 0 1.68x10-3 0 1.03x10-4 1.18x10-3 

APP,ADAMTS1,ADAMTS5,ATP5J,CYYR1, 
CYYR1-AS1,GABPA,JAM2,MRPL39 chr21:25,063,840-28,522,487 Gain na 1 (0) 0 8.42x10-4 0 0 0 

CHCHD10,ADORA2A,ADORA2A-AS1,C22orf15, 
CABIN1,CES5AP1,DDT,DDTL,DERL3,DRICH1,G
GT1,GGT5,GSTT1,GSTT1-AS1,GSTT2,GSTT2B, 
GSTTP1,GSTTP2,GUCD1,GUSBP11,IGLL1, 
LRRC75B,MIF,MIF-AS1,MMP11,POM121L9P, 
RGL4,SLC2A11,SMARCB1,SNRPD3,SPECC1L, 
SUSD2,UPB1,VPREB3, ZDHHC8P1,ZNF70 

chr22:23,690,325-25,011,417 Gain na 1 (1) 0 8.42x10-4 0 6.00x10-4 1.18x10-3 

CYP2D6,NDUFA6-AS1 chr22:42,522,613-42,531,210 Loss or Gain na 1 (1) 4 8.42x10-4 2.80x10-3 2.20x10-1 3.00x10-2 
                    

 



CNVs identified as significantly associated with DLB in the case-control association analyses and 

CNVs identified using the candidate CNVs and genes approaches. 

All genomic coordinates are for the genome assembly hg19. * Neuropathological diagnosis; na – not 

applicable; p-value - these were calculated including all cases (not only neuropathologically confirmed 

cases) # – p-values resulting from the case-control association analysis. 
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Supplementary Figure 1. Study overview. 

 
Overview of methods, quality control steps, samples and different analyses performed in this 

study. 

  



Supplementary Table 1. CNVs previously associated with AD, PD and FTD studied in 

the candidate CNVs approach. 

AD 
15q11.2 Ghani et al., 2012 CYFIP1,NIPA1,NIPA2,TUBGCP5, 

WHAMML1 
15q13.3 Heinzen et al., 2010 CHRNA7 
APC2 Zheng et al., 2015  
chr16:29,554,843-
30,105,652 

Zheng et al., 2014 ASPHD1,ALDOA,BOLA2,C16orf54, 
C16orf92,CDIPT,CDIPT-AS1,DOC2A, 
FAM57B,HIRIP3,INO80E,KCTD13,KIF22,
MAZ,MVP,PAGR1,PPP4C,PRRT2, 
QPRT,SEZ6L2,SPN,TAOK2,TBX6, 
TMEM219,YPEL,ZG16 

CHRFAM7A Swaminathan et al., 2011  
CNTLN Zheng et al., 2015  
CSMD1 Swaminathan et al., 2011  
HLA-DRA Swaminathan et al., 2012  
HNRNPCL1 Swaminathan et al., 2011  
JAG2 Zheng et al., 2015  
SET Zheng et al., 2015  
ZFPM1 Zheng et al., 2015  
PD 
22q11.2 Mok et al., 2016  
DOCK5 Pankratz et al., 2011  
OVOS2 Liu et al., 2013  
TH Bademci et al., 2010  
USP32 Pankratz et al., 2011  
FTD 
RUNDC3A Gijselinck et al., 2008  
SLC25A39 Gijselinck et al., 2008  

 

  



Supplementary Table 2. Genes previously associated with DLB-related diseases and 

studied in the candidate genes approach. 

AD 
APP PSEN1 PSEN2 APOE TREM2 CLU PICALM 
CR1 BIN1 MS4A6A MS4A4E CD33 ABCA7 CD2AP 

EPHA1 HLA-DRB5 HLA-DRB1 SORL1 PTK2B SLC24A4 ZCWPW1 
CELF1 FERMT2 CASS4 INPP5D MEF2C NME8  

PD 
SNCA PARK2 PINK1 PARK7/DJ-1 LRRK2 PLA2G6 FBXO7 
VPS35 ATP13A2 DNAJC6 SYNJ1 GBA MAPT RAB7L1 
BST1 GAK ACMSD STK39 SYT11 FGF20 STX1B 

GPNMB SIPA1L2 INPP5F MIR4697HG GCH1 VPS13C DDRGK1 
MCCC1 SCARB2 CCDC62 RIT2 SREBF1   
FTD 

GRN CHMP2B HNRNPA1 HNRNPA2B1 SQSTM1 OPTN CHCHD10 
VCP SIGMAR1 PRKAR1B TMEM106B UBQLN2 ATXN2  

DLB 
CNTN1 CYP2D6 EIF4G1 BCL7C/STX1B GABRB3 GIGYF2 PRNP 
SNCB SOX17      

Additional genes 
ANG CCNF CSF1R CSF1R CTSC CYLD DCTN1 
FUS GLE1 ITM2B MATR3 NEK1 NOTCH3 PFN1 

PNPLA6 RAB38 SERPINI1 SERPINI1 SOD1 TAF15 TARDBP 
TBK1 TIA1 TUBA4A TYROBP VAPB   
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