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Abstract 

China has experienced high rates of urbanisation due to the increasing housing demand 
in cities, resulting in high energy consumption and high carbon dioxide emissions from 
buildings. Moreover, transport-related carbon dioxide emissions will also show a 
dramatic increase because of the growing number of vehicles in the process of the rapid 
urbanisation. This research aims to investigate building energy consumption and 
transport-related carbon dioxide emissions due to mobilities of users from buildings 
and propose strategies to reduce their energy demand and carbon dioxide emissions in 
cities. 

The main contributions of this research are two-fold. Firstly, in the theoretical aspect, 
this research fills the research gap on the combination of the carbon dioxide emissions 
quantification with buildings and the transport. Secondly, in the practical perspective, 
this research presents examples study of the carbon dioxide emissions quantification, 
analyses potential factors affecting energy consumption and carbon dioxide emissions, 
and provides strategies for low carbon city development.  

This study adopts an on-site survey, questionnaires, modelling simulation, and regression 

analysis to explore the situations of carbon dioxide emissions in three cases, with each 

representing one typical location type. The study provides an understanding of the low 

carbon city development, investigates energy demand and carbon dioxide emissions and 

compares energy demand with the simulation; it examines factors including street 

orientation, the layout of building clusters, overshadows, and urban heat island effects with 

carbon dioxide emissions from building sectors. Meanwhile, this study regresses modal 

splits with three aspects relating to socioeconomic characteristics, travel patterns from 

respondents, and self-evaluation on travelling. All of these provides implications for both 

theoretical and practical research on low carbon city development. 
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Chapter 1 Introduction 

1.1 Research background 

1.1.1 The practical situations for low carbon development in 

China 

Urban areas are predicted to use 71 % of the global energy-related carbon dioxide 

emissions, and in China, it is around 73% (Miao 2017). Moreover, China has 

experienced high rates of urbanisation due to increasing housing demand in cities. The 

floor area of buildings completed in the whole country shows a steady increase 

(National Bureau of Statistics of China 2017), which can be seen in Fig. 1.1. The 

projection of the urban energy consumption in China will increase with the continuous 

process of urbanisation. 

Figure 1.1 Floor space of buildings completed in China by the year 2015 

Source: National Bureau of Statistics of China (2017) 
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The number of cities in China has increased from 193 in 1978 to 657 in 2010. By the 

end of the year 2017, the urbanisation rate in China was about 58.5% of the population 

(Fig. 1.2 shows). This rate is rapidly increasing and is expected to rise to with 75% of 

the population estimated by 2050 (Khanna 2014; Zhang 2015). 

Figure 1.2 China’s urbanisation rate from 2006 to 2017 

Source: National Bureau of Statistics of China (2017) 

More urban infrastructure and services will be needed to satisfy the demands of city 

residents, resulting in higher energy consumption and higher carbon dioxide emissions. 

Furthermore, the energy consumption in large-scale public buildings is almost ten times 

that of residential buildings in China (Li and Yao 2009). All these can contribute to 

more substantial energy demand in the process of urbanisation. 

In addition, the increase in energy consumption in cities does not only result from 

urbanisation, but also from the development in the transport sector. Automobile 

emissions remain the most significant source of air pollution in cities. The pollution is 
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the result of factors such as inappropriate urban and transport planning, inadequate 

public transport provision, growing vehicle numbers, and low gas emission control 

standards. 

As stated above, there should be a new modal for urban development (i.e. the modal of 

green urban development in cities), and existing cities should set clear targets for carbon 

dioxide emissions and energy reduction (Kennedy & Sgouridis 2011). In the year 2004, 

the State Council approved the first Chinese Medium-and-long-term plan network, 

focusing on energy conservation in the transport and building sectors (Li 2006). In the 

following year, suggestions about prioritising the development of urban public transport 

systems were proposed by the Ministry of Housing and Urban-rural Development 

(MoHURD), and the National Development and Reform Commission (NDRC). The 

recent carbon dioxide emissions reduction has received unprecedented attention in the 

12th Five Year Plan (2011-2015) to address climate change. During the previous 12th

Five Year periods, China will comprehensively utilise various measures such as 

adjusting its energy structure, energy conservation, and energy efficiency, and 

increasing forest carbon sinks to reduce the energy consumption intensity and carbon 

dioxide emission intensity to a large extent. As a result, carbon dioxide emission can be 

controlled efficiently (Yuan and Zuo 2011). 

In the worldwide context, many developed countries have taken actions and measures 

to achieve sustainable urban development. One of the theses actions includes promoting 

low carbon development in cities. These projects can be categorised into different levels, 

from the building level to the urban level. Regarding urban-scale projects, the Sino-

Singapore Tianjin Eco-city in China and Masdar city in the United Arab Emirates have 

shown more comprehensive plans, including urban sustainable transport systems, 

renewable energy applications, innovative passive design strategies, and advanced 

public infrastructure systems (Premalatha et al. 2013). For the building level, there is 
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more of a focus on low carbon building technology development and refurbishment 

(Gupta 2009; Anderson et al. 2015). Due to limited resources and environmental 

capacity at home and abroad, China is impelled to explore a path of sustainable 

development. Confronted with these challenges, low-carbon city development in China 

must become a top priority (Qiu 2009). 

1.1.2 National policies to control carbon dioxide emissions 

The areas around transport hubs feature more transport–related activities and different 

functional buildings (i.e. commercial, residential), with high density, high floor area 

ratio, and high urbanisation rate (Li et al. 2014). Studies show that energy demand and 

carbon dioxide emissions in urban areas mainly come from transport and buildings (Dai 

2009; Li 2012). The problems of high-energy consumption and high carbon dioxide 

emissions around passenger transport hubs have become the bottleneck slowing the 

process of low-carbon city development. For example, a large number of automobile 

exhausts are polluting the ecological environment; traffic congestion has become a 

regular part of everyday life in hubs especially during rush hours, and therefore, the 

efficiency has declined sharply. 

Furthermore, large areas of high-density building clusters occupy more land resources, 

and this can attract rural residents to flow into cities, resulting in higher energy 

consumption. The reason is, on the one hand, cities have been expanding their urban 

areas continuously, and various provinces tend to interact with each other more 

frequently than before; thus mobilities are constantly increasing, resulting in more 

transport-related energy consumption. On the other hand, the growing land 

development intensity has converted the simple, functional building into a more 

complex and multifunctional design, and this causes an increasing building energy 

consumption (Liang et al. 2007).  
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Based on the above contexts, the issues with which we are confronted are how to reduce 

building energy demand; how to reduce carbon dioxide emissions from the transport 

sector in cities, and how to guide a low carbon city development. All of these problems 

should be solved urgently given the backdrop of rapid urbanisation rate in China. As a 

result, various policies relating to low carbon development from the building sector and 

transport sector are proposed by the central government and carried out by the local 

government. For example, from the building sector, the concepts of eco-city, low carbon 

city, and low-carbon eco-city were initiated by the central government in 2003, 2008, 

and 2010 respectively. For the transport sector, the central government promotes the 

use of low carbon emission transport mode in cities’ activities and intercity’s interaction 

as well. NDRC promulgated the revised Mid-term and long-term railway network 

scheme in 2008. According to the plan, China will build more than 120,000 km of 

operational railway lines, including 16,000 km of passenger lines, by 2020 (NDRC 

2008). Except for the existing around 10,000 km high-speed railway passenger lines 

that have been in operation by the end of 2013, other railway passenger railway lines 

are mostly designed for trains running at the speeds of 200 km/h and are due for future 

upgrades to reach 350 km/h. Along with the speeding up of the progress on planning 

and construction of passenger lines, as well as the development of building cluster 

towards to railways lines (i.e. TOD), China has entered a“High-speed Rail and New 

Urban District Times.” 

1.1.3 Limited research on the investigation of carbon dioxide 

emissions integrating buildings with transport sectors 

A considerable amount of research has been carried out, at varying degrees of depth 

and sophistication, on how the built environments influence travel demand (Cao et al. 

2009; Handy et al. 2002). The built environment is characterised by land use, densities, 
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design features—can affect not only the number of trips generated but also modal splits 

and routes of travel. On the other hand, for the building sector, much of the literature 

on modelling building energy consumption use either the method of bottom-up or top-

down at the city level or even regional level (Foliente and Seo 2012; Dall’O’ et al. 2012). 

The problem is that both fields mentioned above researching on the energy consumption 

and associated carbon dioxide emissions consider the building sector and transport 

sector as separate aspects. The basic fact is that the high-density building clusters also 

always generate the amount of transport-related carbon dioxide emissions due to the 

mobility of users from buildings. This study combines the above two aspects, 

operational building energy demand and their interactions on the transport-related 

carbon dioxide emissions, and this can fill in the research gap which is the separate 

study on the energy consumption and carbon dioxide emissions from buildings and the 

transport. 

1.2 Definitions within the Chinese contexts in this research 

This sector presents clear definitions relating to the low carbon city, railway passenger 

transport hubs, and high-density building clusters based on the Chinese contexts. 

1.2.1 Definition of low carbon city in this research 

There are various concepts related to “low carbon”, including low-carbon economy 

(DTI 2003; Xin and Zhang 2008), low-carbon society (Yang and Li 2013), low-carbon 

life (Goodall 2012), and low-carbon city (Qiu 2009), which reflect the issue of global 

climate changes caused by increasing carbon dioxide emissions from human activities. 

As the rapid economic growth continues and energy consumption and consequent 

carbon dioxide emissions increase, China is facing enormous pressure both at home and 

abroad to reduce its CO2 emissions and improve its energy efficiency. 
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There exist different definitions of a low carbon city, but all solve the problems of 

increasing carbon dioxide emissions. Liu et al. (2009a) highlight that the low carbon 

city should integrate both elements of a low-carbon economy and a low-carbon society, 

provide a new model of sustainable urbanisation for China toward ecological 

civilisation and scientific development, and maintain safe, sustainable energy and 

ecological system within certain urban areas. The low carbon city is the mode of the 

urban construction and social development that aims to reduce carbon dioxide emission 

and change citizens’ behaviours and ideas without compromising the quality of their 

life (Dai 2009). A low-carbon city in which its citizens have to promote a low-carbon 

economy that includes low-carbon production and low-carbon consumption in the city. 

Such actions help to establish an energy-saving and environment-protecting society and 

to build a sustainable ecological system (Yang and Li 2013). Researchers (Long et al. 

2010) point out low-carbon cities must have clear, measurable evaluation indicators. 

The so-called “low carbon” could be an empty talk without any specific emission targets, 

and relevant indicators (such as per capita CO2 emission and CO2 emission per GDP 

unit) were proposed. Li et al. (2012) insist that the low carbon city is a city with clear 

aims and specific actions scheduled to realise both a considerable reduction of CO2

emissions intensity in the short-term and a smooth transition to a low-carbon economy 

and society in the long-term.  

As stated above, the definition of low-carbon city is seemly vague, but the common 

feature is that the low carbon city should at least have characteristics relating to sharply 

reduce CO2 emissions, rely on energy efficient resources and renewable energy 

applications; have compact urban forms. However, what is the real low carbon city 

based on Chinese contexts? The low carbon city in this study includes sustainable urban 

forms, applications of renewable energies, low carbon transport, and energy-efficient 

buildings. Nevertheless, this research focuses specifically on the reduction of carbon 
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dioxide emissions as the aim for buildings and the transport sector in cities.

Indicators used to measure low carbon cities are detailed in Table 1.1

Table 1.1 Key indicators for low carbon city 

Source: Adapted from Baeumler et al. (2012)  

Considering this, a conceptual low-carbon model should consist of the following 

primary components (also illustrated in Fig. 1.3): 

 Sustainable urban forms  

 Low carbon buildings 

 Low carbon transport 

 Applications of renewable energies  

Categories Key indicators for the low-carbon city 

CO2

CO2 emissions per capita 

CO2 intensity 

Energy 

Energy consumption per capita 

Energy intensity 

The share of renewable energy 

Transport Green transport modes 

Land use Population and building density 
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Low carbon city 

Low –carbon 

transport 

Low -carbon 
buildings

Sustainable urban 

forms 
Applications of 

renewable energies  

Figure 1.3 Elements for the low carbon city in this research 

Source : Adapted from Baeumler et al.(2012) 
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1.2.2 Definition of railway passenger transport hubs 

The transport hub is the functional space based on the traffic function as the primary 

body. Railway passenger transport hubs include the conventional railway transport hubs 

(Fig. 1.4, one example of the case studies) and newly built high-speed railway transport 

hubs (Fig. 1.5, one example of another case studies). The traditional railway transport 

hubs feature trains of low speed (often less than 180 km/h), small-scale, and simple 

function. In contrast, the high-speed railway transport hubs are the exact opposite 

features compared to the conventional ones. The following three aspects form the 

definition of a railway passenger transport hub in this study: 

1) The station should be the hub of urban transport systems, covering the cities of 
external transport, the transfer of internal transport, and links. 

2) The station should be the hub of the urban space, which leads the development and 
the formation of urban form and the city's most vibrant space system. 

3) The station and its surrounding should be the perfect combination of mixed-land 
use and transport functions. 
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Figure 1.4 Land use around Wuchang railway station (the traditional one)  

Source: Author

Figure 1.5 Land use planning around Wuhan Railway station (high-speed)  

Source：Author 
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1.2.3 Definition of high-density building clusters around HSR 

stations  

The high-density building cluster around HSR stations is based on the group of 

buildings, integrating the function of residence, commerce, office, etc. This is different 

from the multi-functional buildings, which is the comprehensive accumulation of the 

number and the categories on the synthesis. In contrast, high-density building clusters

are the best combination of the various components. Moreover, high-density building 

clusters usually have the feature of the large spatial scales, modern urban design, and 

are a landmark of the local area. A typical example of high-density building clusters 

around HSR stations is shown in Fig. 1.6. The station seems to be a bridge that connects 

the two parts of the city: the existing urban centre and the HSR new urban centre.

Figure 1.6 One of the high-density building clusters around HSR stations: Tianjin West station  

Source: Chen (2013) 
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1.3 Research aims, questions, and objectives  

The aim of this research is:  

 To investigate operational energy consumption and associated carbon dioxide 
emissions from building clusters and transport in order to reduce CO2 emissions 
for low carbon city development. 

The following questions are raised: 

1) What should crucial factors be considered relating to energy consumption and 
associated carbon dioxide emissions from building clusters and from associated 
mobilities of users from buildings?  

2) What are the appropriate methods and models that can be applied to predict 
operational carbon dioxide emissions from both buildings and travel activities? 
How do transport-related carbon dioxide emissions relate to the building sector? 

3) To what extent do the selected factors (street orientation, layout, overshadowing, 
UHI effects, etc.) affect energy consumption and associated carbon dioxide 
emissions? That is, what is the relationship between energy use and selected factors? 

4) What strategies can generate from this research that can be applied to control and 
reduce energy demand and carbon dioxide emissions from building clusters and 
transport in cities?  
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By achieving the main aims and finding answers to the research questions, this research 

has the following objectives:  

1) To review the development of high-speed railway stations and its new urban 
districts in China, and to identify factors affecting energy consumption and carbon 
dioxide emissions largely from the field of the built environment. 

2) To investigate available methods and appropriate models to predict energy 
consumption and associated carbon dioxide emissions from building clusters and 
transport due to the mobilities of users from buildings. 

3) To model and simulate the energy demand and associated carbon dioxide emissions; 
to analyse selected variables and thus to develop a better understanding of their 
impacts on energy consumption and associated carbon dioxide emissions. 

4) To summarise and propose strategies to reduce the energy consumption and carbon 
dioxide emissions from both the buildings and transport sector in cities. 
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1.4 Research subject and scopes 

The development areas of railway passenger transport hubs can be divided into three 

zones, which are primary, secondary, and tertiary. These three zones are illustrated in 

Fig. 1.7. The primary development zones are the core area, within about 5~10 minutes 

walking distance from the station, and this zone plays the role of traffic services and 

influences the spatial layout of stations. The secondary development zones are 

10~15min walking distance from the station and there are intensive and mix land uses 

with the function of business, office, residence, etc. The tertiary development zones 

form the periphery of the influencing area compared with the first two zones (Zheng 

and Du 2007). 

Figure 1.7 Three zones development of railway passenger transport hubs  

The issues are that travel activity and building energy consumption in these zones are 

complex due to the various functions of buildings. The study area is in high-density 

building clusters located around Passenger Railway Transport Hubs (PRTHs) focusing 

on the second and tertiary development zones. This is because these zones are high-

density, intensive development and filled with various building functions, and have 

more complicated travel activities and more travel demands compared with the 
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primary zone. 

This research, firstly, adopts models to predict carbon dioxide emissions from building 

clusters and transport-related CO2 caused by mobilities of users from buildings. The 

simulation and regression analysis have been conducted on the aspects of buildings and 

transport sectors, respectively. For the building sector, factors relating to street 

orientations, the layout of building clusters, overshadow, and UHI effects have been 

analysed. For the transport-related carbon dioxide emissions, three aspects relating to 

socioeconomic characteristics of the respondents, travel patterns from the interviewees, 

and self-evaluation of travelling are all investigated and analysed. Finally, strategies are 

proposed from this research to promote low carbon city development from both the 

building and transport sectors.  

1.5 Structure of this thesis 

This thesis consists of eight chapters, and it is organised as follows:  

Chapter One introduces the research background. It includes the situation of high 

energy consumption and high carbon dioxide emissions in cities, national policies to 

control carbon dioxide emissions, and limited research on carbon dioxide emissions 

integrating buildings with transport sectors. The definitions of railway passenger 

transport hubs and high-density building clusters based on Chinese contexts are also 

clearly explained. Additionally, the research questions, aims, objectives, and 

contributions made by this study are also presented.  

Chapter Two is the literature review and focuses on four aspects. The first aspect 

presents the development of high-speed railways and its stations in China as current 

building clusters in cities are rail-oriented development for the low-carbon purpose. 
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Then the theories and projects of green urban development in China have been reviewed 

as well as the globally typical projects. The major causative factors affecting energy 

consumption and carbon dioxide emissions on buildings and road transport sectors are 

also reviewed. Finally, approaches to modelling energy consumption and associated 

carbon dioxide emissions from buildings and road d transport are reviewed. 

Chapter Three investigates available methods and appropriate models to understand, 

analyse, and predict operational energy consumption and its associated carbon dioxide 

emissions from buildings and transport due to mobilities of users from buildings. This 

study adopts methods that combine both quantitative and qualitative research. 

Quantitative analysis is carried out by building energy models, activities-based 

transport demand models, parametric analysis and multinomial logistic regression. The 

qualitative research includes methods of the literature analysis, on-site surveys, and 

questionnaires. 

Chapter Four selects three high-density building clusters around three stations as case 

studies. Firstly, these three Cases can represent three different locations: outer city, inner 

city and new urban districts. Secondly, data collection relating to energy use from 

buildings and travel activities from the transport sector is much easier to obtain for these 

Cases. The purpose of this chapter is to get a better understanding of the background of 

three cases before modelling in the following chapter. The information relates to the 

geographic and climate conditions, and the general built environment development 

focus on buildings and the transport, all of which can help get a comprehensive 

understanding of these three case studies. 

Chapter Five focuses on answering the question: “for the fundamental research related 

to the quantification of energy consumption from building clusters, what kinds of 

methods can be used, and how can technical tools be used to quantify carbon dioxide 
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emissions from building clusters?” These are the questions that are answered in this 

chapter. 

The purpose of this chapter is to apply technical tools to simulate building energy 

consumption, from different building categories (such as residential, office, commercial, 

and hotel) by integrating HTB2, VirVil Plug-in and modelling tool SketchUp. The 

simulation is based on building energy modelling to understand and analyse the energy 

performance of different building types. Additionally, the results explain differences in 

energy consumption of various building types. 

Chapter Six focuses on answering the following question: 

 What models can be applied to predict transport-related carbon dioxide emissions 
from travel activities due to the mobilities of users from buildings? 

To answer the questions above, this research applies activities-based transport demand 

model to predict the transport-related carbon dioxide emissions. The results are 

described and analysed, and then suggestions are proposed for the reduction of 

transport-related carbon dioxide emissions. 

Chapter Seven answers the question:  

 To what extent do the selected factors affect energy consumption and associated 
carbon dioxide emissions.  

To answer this questions, the parametric and regression analysis explore the relationship 

between these selected factors and their energy demand and CO2 emissions. For 

building clusters, these factors focus on street orientation, the layout of building clusters, 

over-shadowing between buildings, and the UHI effects. For the transport sector, 

multinomial logistic regression analysis is applied in the option of modal splits from 
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three aspects relating to socioeconomic characteristics of the respondents, travel 

patterns of the respondents, and self-evaluation on travelling. 

Chapter Eight presents the conclusions of this research. Questions raised in Chapter 

one are answered, and the stated objectives are achieved. Implications of findings 

relating to strategies of low carbon city development are proposed regarding buildings 

and transport sectors. Finally, limitations and recommendations are discussed. Overall, 

this research not only presents a way to investigate the carbon dioxide emissions from 

an existing built environment relating to buildings and transport sectors but also gives 

practical suggestions for low carbon city development.  



20 

1.6 Framework of this research 
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Figure 1.8 is the flowchart of this research framework. Firstly, literature review has 

been conducted relating to four aspects from building and transport sectors in Chapter 

2. Then the methodology, building energy modelling, and activities-based transport 

demand modelling are conducted and analysed in Chapter 3, 5 and 6 respectively. 

Chapter 4 presents the essential background of the research object relating to three cases 

but is not reflected in the framework. After that, quantitative analysis from the transport 

sector and building sector are carried out in Chapter 7. Finally, Chapter 8 presents the 

conclusions, limitations, implications and recommendations of this research. 
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Figure 1.9 The conception model of carbon dioxide emissions from building cluster and transport 
due to the mobility of users from buildings 

Figure 1.9 describes the process of carbon dioxide emissions from building clusters and 

transport sectors. For the building sector, energy supply from electricity and gas to 

energy demand relating to heating and cooling, lighting, small power, and hot water 

will generate carbon dioxide emissions. For the transport-related carbon dioxide 

emissions, which are caused by mobilities of users from buildings, heavily depend on 

the modal splits and travelled distances.    

Energy use and carbon dioxide emissions in the study area 

Energy demand from buildings Transport-related carbon dioxide emissions  

Energy supply 

Modal splits and travelled distance, such 
as walking/ cycling, public transport, 

private cars. 

Carbon dioxide emissions due to travel 

 Heating and cooling 
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 Hot water 

Carbon dioxide emissions from 
building clusters 
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users from building 

 Electricity 
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1.7 Creativity and innovation 

For this research, the innovative points are presented: 

(1) Most research investigates carbon dioxide emissions from buildings typically on 
the individual or the whole cities’ scale. By contrast, this study selects three cases 
in a particular area,high-density building clusters around railway passenger station 
hubs, and each case represents one typical location relating to outer city, inner city 
and the new urban district. Moreover, this research explores and examines the 
relationship between selected factors and carbon dioxide emissions. 

(2) This research is comprehensive and involves different fields, i.e. architecture, 
urban planning and transport planning. Moreover, past research has mainly studied 
the energy consumption and associated carbon dioxide emissions from buildings 
and the transport, separately. However, this study brings energy consumption and 
carbon dioxide emissions from both sectors together. 
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Chapter 2 Literature Review  

2.1 Introduction  

Chapter Two is the literature review and focuses on four aspects. The first aspect 

presents the development of high-speed railways and its stations in China as current 

building clusters in cities are rail-oriented development for the low-carbon purpose. 

Then the theories and projects of green urban development in China have been reviewed 

as well as the globally typical projects. The major causative factors affecting energy 

consumption and carbon dioxide emissions on buildings and road transport sectors are 

also reviewed, which diretly answer the question one from theretical aspects. 

Finally, approaches to modelling energy consumption and associated carbon dioxide 

emissions from buildings and road transport are reviewed. Fig. 2.1 presents the 

flowchart of Chapter 2. 
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Figure 2.1 The flowchart of literature review 

2.2 High-speed railway development in China 

Noticeable achievements in urban transport are the rapid development of high-speed 

railway systems in China. The high-speed railway (HSR) systems have given priority 

to urban transport development. China's HSR network became one of the largest 

countries in the world in 2010 due to strong government support and consistent 

investment (Li 2009). The HSR networks consist of four primary north-south HSR lines 

(four vertical lines) and four east-west HSR lines (four horizontal lines) in the 2004-

2008 plan (Fig. 2.2). These eight HSR trunks lines connect most of the provincial capital 

cities and cover most of the cities with the population of more than one million (Sun 

2015). 

Review relevant urban green theories and projects 2.4

Review the energy consumption and carbon dioxide emissions from 
building stocks and the transport in China 2.5

Review factors affecting carbon dioxide emissions from building 
stocks and the transport 2.6

Building energy modelling 2.7.1

Modelling carbon dioxide emissions on the transport 2.7.2

Review High-speed railway and its stations development in 
China 2.2 &2.3 
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Figure 2.2 China’s high-speed railway construction in the mid-to-long term plan (2008 revision)  

Source: Sun (2015) 
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The 11th Five-year Plan (2006–2010) strengthens Beijing, Shanghai, Guangzhou, and 

Wuhan rail linkages, turning them into major railway transport hubs. The 12th Five-year 

Plan (2011–2015) extends the high-speed network to more than 11,000 km by the end 

of 2013 from the early around 670 km in 2008 (National Bureau of Statistics of China 

2014) (Fig. 2.3).  

Figure 2.3 Length in the operation of HSR in China 

Source: National Bureau of Statistics of China, Yearbook (2014) 

The new stations are planned as a large distribution centre, and the dimension of stations 

are set according to the estimated number of passengers by the year 2020, making it 

necessary to locate in peripheral urban areas where it is relatively distant from the city 

centre (Li 2012). Taking Wuhan-Guangzhou line for example, it is operated in late 2009, 

17 out of 18 HSR stations are newly built and are in the periphery (Takagi 2011). The 

first operation of the Guangzhou–Wuhan High-Speed Rail in 2009, marked a new era 

of China high-speed railway transport. As a result, travel time has sharply decreased 

from previous 12 hours to current 4 hours between Guangzhou to Wuhan. These stations 

usually on the edge of large cities. According to the revised medium-and long-term 
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railway network plan of China, the total mileage of China's over-250 kilometre-per-

hour railway lines (high-speed railway lines) will reach 16,000 km and will link all 

provincial capital cities with a population of over five million by 2020 NDRC (2008).  

2.3 High-speed railway stations and new urban districts 

development in China  

The international theoretical and practical studies suggest that the construction of high-

speed rail (HSR) usually influences the development of surrounding area (Yu et al. 

2012). China’s HSR is promoting the construction of a series of new railway stations, 

which is intended to improve urban development and urban sprawl by way of rail-

oriented development. Areas around the HSR station can become the new urban 

district, and a major node of the urban transit network (Tang et al. 2011).

In China, the large-scale construction of HSR, together with the rapid urbanisation, 

makes such influence more complex and profound. In the development of HSR, it 

works as an "amplifier". Thus it promotes suburbanisation. As for the construction of 

HSR stations, it can be grouped into three categories by the location to the city centre: 

located in the city periphery, located in the existing city centre, and located in the new 

districts (Sun 2015). Figure 2.4 describes the spatial distribution of HSR lines, stations, 

city centre, and the urban territory where the lines pass through. Stations in type 2 and 

3 are all located in the urbanised areas, while station in type 1 is situated on the 

periphery of the city. The total difference between the station in type 2 and 3 is their 

development process. In other words, stations in type 3 are in the new urban district 

formed by the development of the stations (also called HSR new urban district), while 

station in type 2 is in the existing city centre of redeveopment. 
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Figure 2.4 Three types of HSR stations in China  

Source: Sun (2015)  

Furthermore, in attempt to capitalise on the high property values caused by high-speed 

railway stations development, many cities have planned new urban districts next to 

HSR stations. Taking Beijing-Shanghai HSR lines for an example, 16 out of 24 cities 

have planned new urban areas around the HSR stations, as local authorities view HSR 

as opportunities to boost economic growth, and always take these HSR stations as seeds 

to develop or redevelop cities (Li 2012). The proliferation of these HSR stations will 

fundamentally change the existing urban structure and environments. If the HSR 

stations are completely newly built in the city’s periphery, the HSR new urban district 

around HSR stations will generate (Sun 2015). 

2.4 Theories and projects of green urban development in China 

In modern society, the ecological theory of urban development has evolved with an 

increasingly better understanding of green development. The modern theory also linked 

with commonly used terms back in urban planning and architecture, from the beginning 

of the green city to low carbon eco-city. 

Theories about low-carbon city development are illustrated elaborately, especially 
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based on Chinese contexts. At the same time, good examples of the low-carbon city are 

presented in both China and the worldwide. The correlation and comparison of some 

relevant concepts, aims, and their concerns are analysed.  

There are some related terms relating to low-carbon, such as low carbon life, low carbon 

transport, low carbon city. In 2003, the British government published “Our future 

energy: creating a low-carbon economy” (Department of Trade and Industry 2003), 

whose aims were to achieve more economical products and high-quality living 

standards with less energy consumption and environmental pollution and emphasises 

on high energy efficiency, optimised energy structure and rational use. “Low-carbon 

economy” came up with for the first time but did not give precise definitions. 

In 2007, scholars (Skea and Nishioka 2013) proposed the concept of low carbon society, 

focusing on the transformation of living styles and the consumption concept. As Skea 

and Nishioka (2013), cited in National Institute for Environmental Studies (2006, pp. 

ii-iii), defines a low carbon society as follows: 

 take actions that are compatible with the principles of sustainable 
development, ensuring that the development needs of all groups within 

society are met 

 make an equitable contribution towards the global effort to stabilise the 
atmospheric concentration of CO2 and other greenhouse gases at a level 

that will avoid dangerous climate change, through deep cuts in global 

emissions 

 demonstrate a high level of energy efficiency and use low-carbon energy 

sources and production technologies 

 adopt patterns of consumption and behaviour that are consistent with 

low levels of greenhouse gas emissions.



31 

In 2009, South Korea launched low-carbon green city project (Kwang-ik 2010). The 

provincial government formed a Green Growth Board, and Gangneung city was 

selected as the low-carbon green city pilot project. It was under construction 

collaborated by Gangwon-do government and Ministry of Environment. 

Steady economic growth and social development are accompanied by the process of 

rapid urbanisation since China implemented reform and open-up policy. A policy of 

restraining the scale of large cities and developing small cities was employed as the 

primary approach for achieving urbanisation at the earlier of the 1980s (Li 2011). The 

overall number of cities in China increased dramatically during these periods. On the 

contrary, existing cities were expanded through migration from the countryside in 

developed countries (Anderson and Ge 2005).  

Recognising the limited resource and environmental challenges of its current urban 

development patterns, Chinese leaders have made ambitious commitments to reduce 

carbon dioxide emissions intensity and proposed different concepts and approaches to 

urban development in various periods based on Chinese contexts. Since the earlier of 

the 1990s, China began to explore some more sustainable ways to urban development. 

Central governments proposed numerous green concepts of city development and local 

authorities implemented these projects at different times, such as green city, national 

garden city, and national environmental protection model city (Peng 2010). Following 

entry into the 21st century, China’s urban development has been under pressure to move 

towards a more self-sufficient, energy efficient, and environmentally-friendly model. 

Through central government policy guidance, local implementation, and cooperation 

with international partners, China has proposed more comprehensive green city 

concepts and the growth of city initiatives in the post-2000 era. Examples include the 

concept of the eco-city, low-carbon city, and low-carbon eco-city (ibid.). 
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2.4.1 Green city 

The "Green City" was firstly seen in the exhibition "Bright City" plan in the 1930s 

whose ideas are to embody the city centralisation. The evolution of the green cities 

theory has gone through three stages, which are embryonic, formative and 

establishment stage (Zhao and Zhang 2013). Over the past two decades, scholars all 

over the world have tried to define green cities regarding development patterns, 

ecosystem, and city design. In China, there is no evidence showing that any official 

departments or organisations came up with this concept, but it has been utilised at the 

local level, such as governments, companies, and NGOs since the 1990s. 

In the beginning, the green city concept has been explained as expanding green spaces 

or landscape in cities in China, but this changed later as sustainable development 

gradually began to come into the eye of local and central governments (Liu et al. 2014). 

Now it is also interpreted as environmental, economic and social aspects of 

development in China (ibid.). However, this concept is only used as a theory rather than 

in practical projects in the Chinese contexts due to its extreme ambiguity and various 

definitions and guidelines. China should learn from that overseas experience of urban 

transition, such as institutional design, cultural construction, technological innovation 

and urban planning, thus promoting urban transition based on national conditions. 

2.4.2 National garden city 

The concept of garden city was proposed back to 1898, and the goal was to combine 

the attractions of town life with access to nature and a healthier lifestyle (Howard 2010). 

In his words:  
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Its (the Garden City’s) chief claim upon the attention of the public lies in the 

fact that it combines the important features of several schemes which have 

been advocated at various times, and so combines them so as to secure the 

best results of each, without the dangers and difficulties which sometimes, 

even in the minds of their authors, were clearly and distinctly seen. Shortly 

stated my scheme is a combination of three distinct projects which have, I 

think, never been united before (Howard 1985, Chapter 10 p.83)

However, the ideology is different from the garden city and the green city. The garden 

city reflects the urban decentralisation. In contrast, the green city emphasises city on 

centralisation. Although the viewpoint of urban layout between urban decentralisation 

and centralisation is opposite, the fundamental starting points of two ideas are 

consistent. Both reflect the principles of green, maximise the urban public green spaces 

and increase open spaces to achieve the harmony of city and nature using the overall 

size reduction or density increase.

In China, one of the central governments, the Ministry of Housing and Urban-Rural 

Development (MoHURD) came up with a concept entitled National Garden City as 

early as in 1992 and by the end of 2010. In June 2004, MoHURD decided to initiate the 

establishment of Eco-garden City based on the program on National Garden City.

MoHURD also issued a series of rules and regulations and then updated them frequently 

to encourage the construction, evaluation, and promotion. In these rules, the concept of 

National Garden City focuses heavily on landscape and green space coverage in cities, 

and the aims are to improve the environmental quality of urban ecology (Liu et al. 2014).

2.4.3 National environmental protection model city 

The Ministry of Environmental Protection (MEP) initiated the National Environmental 
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Protection Model City’s theory in 1997, and its concept was defined it as a city with 

rapid economic growth, a clean and beautiful environment, and healthy ecosystems (Liu 

2014 ). However, the focus is not just on environmental aspects and the evaluation 

indicators but also on economic growth, energy efficiency, environmental protection, 

and construction of infrastructure (MEP 2009). By early 2012, many cities had been 

awarded as the National Environmental Protection Model City status, seeing Tables 2.1: 

Table 2.1 National model city for environmental protection list  

Source: http://english.mep.gov.cn/inventory/Model_cities/

Year Number Cities 

2012 10 
Langfang City, Zhenjiang City, Jurong City, Daqing City, Shaoxing City, Zhuji City, Weihai 

City, Rongcheng City, Wendeng City, Rushan City 

2011 12 
Yichang City, Lin’an City, Huai’an City, Foshan City, Liaocheng City, Qingpu District of 

Shanghai City, Linyi City, Dongguan City, Xuzhou City, Yinchuan City, Wujiang City, 
Zhongshan City 

Former Model Cities to be Examined and Approved 

2007 4 Guangzhou City, Shouguang City, Taizhou City, Yiwu City 

2006 11 
Tianjin City, Ma’anshan City, Langfang City, Pudong New District of Shanghai City, Beifu 

District of Chongqing City, Nantong City, Huzhou City, Zhaoqing City, Quanzhou City, 
Yixing City, Jimo City, Pingdu City 

2005 9 
Chengdu City, Fuyang City, Baoji City, Guilin City, Jiaonan City, Laixi City, Rizhao City, 

Penglai City, Weifang City 

2004 11 
Mianyang City, Wuxi City, Jintan City, Liyang City, Fuzhou City, Changzhou City, Shenyang 

City, Karmay City, Korla City, Jiangmen City, Yubei District of Chongqing City 

2003 2 Nanjing City, Dongying City 

2002 6 Huizhou City, Zhaoyuan City, Haimen City, Changchun City, Yangzhou City, Jiaozhou City 

2001 4 Hangzhou City, Ningbo City, Changshu City, Taicang City 

2000 2 Qingdao City, Jiangyin City 

1999 5 
Haikou City, Shantou City, Suzhou City, Dagang District of Tianjin City, Minhang District of 

Shanghai City 

1998 3 Kunshan City, Yantai City, Laizhou City, 

1997 5 Zhangjiagang City, Shenzhen City, Dalian City, Zhuhai City, Xiamen City 

http://english.mep.gov.cn/inventory/Model_cities/
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These three above major green theories in China were mainly proposed between the 

year 1990 and 2000, but after entering the 21 centuries, the environment has continued 

to deteriorate. The Chinese government has taken further steps to establish a national 

sustainable development as the urban development strategy. Due to the different 

responsibilities, the Ministry of Environmental Protection (MEP), the National 

Development and Reform Commission (NDRC), and the Ministry of Housing and 

Urban-Rural Development (MoHURD), launch three programmes of eco-city, low 

carbon city, and low carbon eco-city, respectively.  

2.4.4 Eco-city  

The term “eco-city” was coined by Register in 1987, who provided inspirational 

guidance for making cities ecological in a visionary book entitled Eco-city Berkeley 

(Register 1987). However, there has not been a commonly accepted definition. Much 

of our understanding of the concept and the practical initiatives of eco-cities resulting 

from this concept has been influenced by the research of urban ecology. 

In China, applying ecological principles to urban planning started in the late 1980s at 

the local level and later to the national level. “Guidelines for Building National Eco-

Demonstration Communities (1996-2050)” was issued in 1995 by the MEP, where the 

concept of “Eco-community” was first proposed officially (Liu et al. 2014). The target 

of building eco-demonstration communities is to protect and rebuild the eco-

environment, improve the traditional resource-dependent development model, achieve 

higher economic development at a lower resource and environment cost. Also, the aim 

is to make socially, economically and environmentally sustainable development. 

The concept of some much larger initiatives such as Eco-counties, Eco-cities and Eco-

regions were proposed by the MEP in 2003 under its “Development of indicators for 
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the national ecological county, municipality and province (trial)” and a revised version 

of the standards in 2005 (World Bank 2009). Another concept similar to the Eco-city in 

China is the Eco-garden City, first proposed in 2004 by the MoHURD, which is based 

on the idea of Garden City in 1992. However, the standards of guidance and evaluations 

focus more on the construction of urban infrastructure. The Eco-city plan stresses the 

eco-environment of the city, but the Eco-garden city program places more emphasis on 

the quality and coverage of cities’ public infrastructure services and pollution control.

Between the local initiatives of Eco-city, China has witnessed another type of projects, 

collaborating with international partners, bringing their experiences and aimed at 

building eco-city at a larger scale. Recent eco-city projects that have received 

international attention included Sino-Singapore Tianjin Eco-city, Tangshan Bay Eco-

city, and Shenzhen Guangming New District (Yu 2014). These projects led by the 

central, provincial, or municipal governments are often notable, therefore attracting 

much attention from the public and private sectors. The report from Chinese Society 

for Urban Studies (2011) showed that around 600 cities across China have planned to 

develop eco-city. 

2.4.5 Low-carbon city 

Chinese scholars introduced the concept of a low carbon city based on the low carbon 

economy (Department of Trade and Industry 2003), low carbon society (Ashina et al. 

2012) and low –carbon lifestyles, etc. to reflect the issue of climatic change challenges. 

These concepts must be the reference to direct the future urban development in China 

(Liu et al. 2009a).  

The World Wide Fund for Nature (WWF), formerly named the World Wildlife Fund, 

initiated a project called low carbon city initiative in China in 2007 to explore a new 
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way of urban development as the government plans to decrease energy intensity. Low 

carbon city initiatives will explore low carbon development models in different cities, 

attach importance on improving building energy efficiency in construction and 

transport sectors and addressing the development of renewable energy. Baoding and 

Shanghai were selected as the first stage of pilots (WWF 2007).

NDRC (2010) formally proposed the low-carbon city in China and launched the 

national pilots of the first five low-carbon provinces and eight low-carbon cities. Two 

years later, another one low-carbon province and twenty-eight low-carbon cities were 

planned. These national low-carbon cities are listed in Table 2.2. 

Table 2.2 National low-carbon city/province pilots proposed by NDRC 

Source: Zhou (2015)  

Year Low-carbon City/Province National Low-Carbon Pilots 

2010 

Low-Carbon Province   
(Total of 5) 

Guangdong, Liaoning, Hubei, Shanxi and Yunnan 

Low-Carbon City
(Total of 8) 

Tianjin, Chongqing, Shenzhen, Xiamen, Hangzhou, 
Nanchang, Guiyang and Baoding 

2012 

Low-Carbon Province   
( Total of 1) 

Hainan 

Low-Carbon City 
( Total of 28) 

Beijing, Shanghai, Shijiazhuang, Qinhuangdao, 
Jincheng, Hulunbeier, Jilin, 

Daxinganling, Suzhou, Huaian, Zhenjiang, Ningbo, 
Wenzhou, Chizhou, Nanping, 

Jingdezhen, Ganzhou, Qingdao, Jiyuan, Wuhan, 
Guangzhou, Guilin, Guangyuan, Zunyi, Kunming, 

Yanan, Jinchang and Wulumuqi

The low carbon concept could be the reaction to the issues of China’s carbon dioxide 

emissions. In fact, the low-carbon city is a relatively newer concept than the eco-city 
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and extensively used at the international level. The goal is to tackle the issue of global 

climate warming, reduce carbon emission intensity, and promote green economic 

development. However, the NDRC has neither provided a precise definition for a low 

carbon city nor recommended specific guidance and methods on how to compile a low 

carbon city development. As a result, many scholars attempt to define the concept and 

develop evaluation methodologies in worldwide (Li et al. 2012; Price et al. 2013), but 

the definition of a low-carbon city is similarly vague because there is no comparable 

benchmark for all countries. Table 2.3 is the action plan of the first eight low-carbon 

pilots. 

Table 2.3 The first eight low-carbon pilot cities plan by NDRC 

Sources: Zhou (2014); Zhou (2015) 

City Low-Carbon Action Plan Relevant Documents 

Baoding 
Reduce 35% CO2 emission intensity by 

2020 compared to 2010; 

“Opinion on Constructing Low 
Carbon City(draft),” 2008;“Baoding 

Low Carbon City Development 
Plan,”December 2008 

Guiyang 
Reduce 40% energy consumption per unit of 

GDP and 40% CO2 intensity by 2020 
compared to 2005; 

“Guiyang city low carbon 
development action plan framework”, 

July 2010 

Nanchang 
Reduce 38% CO2 intensity by 2015 

compared to 2005, and 45-48% by 2020; 
“The action plan for Nanchang low 
carbon pilot city”, November 2011 

Chongqing 
Reduce 40% CO2 emission intensity by 

2020 compared to 2005; 

“Chongqing Low Carbon 
Transformation Research: Case Study 
in Chemical, Automobile and Energy 

Industries,” 2010 
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Hangzhou 
Reduce 50% CO2 emission intensity by 

2020 compared to 2005; 

“Implemented opinion on the 
construction of low-carbon city,” 

December 2009. 

Shenzhen 
Reduce 39% CO2 emission intensity by 

2015 and 45% by 2020 compared to 2005; 

“Middle- and Long-term Plan for 
Shenzhen low carbon development,” 

February 2012 

Tianjin 
Reduce 15% CO2 emission intensity  by 
2015 compared to 2010, and 45% 2020 

compared to 2005; 

“Tianjin Climate Change Program,” 
March 2010 

Xiamen 
Reduce 40% energy consumption per unit of 

GDP by 2020 compared to 2005; 
“Xiamen Low Carbon Development 

Master Plan,” January 2010. 

2.4.6 Low-carbon Eco-city 

In 2007, the environmental issues were reported at the 17th National Congress of the 

Chinese Communist Party for the first time. Since then, there is a broad range of 

discussions about eco-civilisation implementation at the different level of governments, 

mass media, academia, etc. In 2009, MoHURD formally issued the idea of low-carbon 

eco-city under this context. Low-carbon eco-city, a much newer concept that combines 

low-carbon and eco-city concepts, has been emerging in China (Qiu 2009). Low-carbon 

eco-city concept came from the idea of “eco-civilisation”. The concept has recognised 

an extension of the low-carbon city, adding features of harmony between human beings 

and the natural environment; it is highly supported at official level in China and is 

viewed as the future direction of China’s economy and urban development, which can 

be consolidated in the 12th-Five-Year Plan (Liu 2014). 
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In 2009, the Chinese Society for Urban Studies released the Chinese low carbon eco-

city development strategy, which discusses techniques and policies to promote low-

carbon development (Chinese Society for Urban Studies 2009). It shows that the low 

carbon eco-city has placed more emphasis on energy efficiency, carbon dioxide 

emissions mitigation and environment conservation (ibid.). The central government 

makes effects define the concept, theoretical framework and carry out some pilot 

projects. In 2010, MoHURD launched national low-carbon eco-city program in 

Shenzhen and Wuxi. Three years later, MoHURD launched international low-carbon 

eco-city program pilots collaborating with the US in Langfang, Weifang, Rizhao, Hebi, 

Jiyuan and Hefei. These pilot projects aimed to explore pathways of low-carbon 

transition and reduce energy consumption, as leadership in low-carbon eco-city 

development (Zhou 2015). 

2.4.7 Green theories summary  

The above sessions discuss the evolution of ecological theories development in China. 

This part will summarise relevant, important concepts of green theories from both 

international (Table 2.4) and domestic level (Table 2.5). Points like the definitions of 

selected critical theories, the major contents, indicators and their concerns will be 

summarised.  

Table 2.4 Popular relevant theories development in the world  

Source: Adapted and reorganised from Zhou (2014); Khanna et al. (2013) 

Concept of 
theory 

Background, Definition, and Major Content Aims and focus 
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Garden City 

Initiated by Howard in 1898, Garden cities were 
intended to be planned, self-contained communities 
surrounded by "greenbelts"(parks) and containing 

areas of residences, industry, and agriculture. 

Supports the building of cities 
that optimise parks and green 

spaces. 

Sustainable 
City 

This concept calls for considering the planning into 
the operation of cities. The concept is that “it meets 
the needs of the present without compromising the 

ability of future generations to respond to their 
needs” (Brundtland 1987, P16) 

Speech at the opening of the UNESCO International 
Conference on: “Culture for Sustainable Cities” 

(Kumaresh 2015) 

Focus on natural environment 
and built environment, 

including energy, industry, as 
well as human settlements 

“Cities are engines of economic 
growth, social prosperity and 
environmental sustainability. 
Culture is at the heart of this 

prosperity”. 

Livable City 

Stresses on the quality of life in cities. The living 
standards refer to the level of wealth, comfort, 
material goods, and necessities available to the 

socioeconomic classes in a city. 

Focuses on living standard and 
the quality of urban 

development 

Eco-city 

Ecological cities enhance the well-being of citizens 
and society through integrated urban planning and 

management that harness benefits of ecological 
systems, protects and nurtures assets for future 

generations (Khanna et al. 2013, P650). 

Achieve higher economic 
development with least 

resource and environment cost. 
Also, the ultimate aim is to 

achieve socially, economically 
and environmentally 

sustainable development. 
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Low-carbon 
city 

Low-carbon cities separate economic growth from 
the use of fossil fuel resources, and it should rely on 

renewable energy, energy efficiency, and green 
transport. 

This concept raises an 
awareness of carbon dioxide 

emissions and climate change 
to city development. 

The main reason that so many concepts emerged in China is that different government 

departments have different responsibilities. Specifically, MEP focuses primarily on the 

environmental aspects, while MoHURD attaches great importance to the urban 

development of the city, such as the built environment and infrastructure construction. 

NDRC should be responsible for drawing up some policies to battle against climatic 

change, reduce carbon emission intensity, and promote green economic development. 

General, there are certain overlaps between the functions of these different departments, 

but they are essentially responsible for their fields by issuing various standards and 

guidelines. The different concepts differ in focus, but environmental protection has 

always been a paramount aspect. For example, the green city and national garden city 

focus heavily on the landscape and green space coverage, whereas the low-carbon city 

focuses more on GHGs reduction. However, what is the relationship between low 

carbon city and eco-city? First, the core ideology is consistent: both focus on the 

ecological and environmental issues. On the other hand, there are also some differences. 

The eco-city concerned the natural and built environment with human beings. 

Conversely, global climate change is the main target of the low-carbon city. As a result, 

the content of eco-city is much broader and comprehensive, while low-carbon city 

particularly emphasises on the reduction of carbon dioxide emissions and increase 

carbon sequestration. To some extent, the low-carbon city is a degree of a subset of the 

eco-city. The low-carbon eco-city proposed in China is a combination of low –carbon 

city and eco-city. Table 2.5 describes and compares the differences between the green 
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concept from China.

Table 2.5 Popular relevant theories development in China 

Source: Reorganised from Liu et al. (2014) 

Concept Proposed 
Date 

Proposed 
organisations Concerned aspects 

Carbon-
efficient 
economy 

Environmental 
protection 

Energy 
efficiency 

Economic 
growth 

Social 
aspects 

Green City 1970s   

National Garden 
City 2000 MoHURD 

Eco-demonstration 
Communities 1995 MEP   

National 
Environmental 

Protection Model 
City 

1997 MEP  

Eco-counties 

Eco-city 

Eco-province 

2003 MEP   

Eco-Garden City 2004 MoHURD 

Low-carbon City 2010 NDRC   

Low-carbon Eco-
city 2010 MoHURD     

2.4.8 Practical projects in China and worldwide 

Due to the environmental consequences of global warming and unavoidable climate 

change, urban planners and designers have placed greater emphasis on energy 

conservation and carbon emission reduction (Ballarini and Corrado 2009). Many 

organisations and municipalities around the world have set low carbon goals for 2020 

(Gomi et al. 2010). Furthermore, more than 500 of the international coalition for local 
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environmental initiatives have established GHGs baselines and benchmarks and have 

carried out some projects (Hoornweg et al. 2011). For example, the Low carbon cities 

programme in the UK was supported by the carbon trust. Bristol, Leeds, and 

Manchester were selected as the pilot projects to assist them to develop city-wide 

strategies for reducing carbon dioxide emissions across city regions (Carbon trust [no 

date]). Another example is Masdar City in the United Arab Emirates where it is aimed 

for its zero waste, zero carbon and fossil fuel free city (Reiche 2010). Because of limited 

resources and environmental capacity at national and international levels, the Chinese 

government and some organisations jointly launched a series of programmes named 

“low carbon city initiative in China” to explore new ways for low carbon development 

in urban areas to protect people and nature from dangerous environmental threats 

(WWF 2007). This initiative will explore low carbon development models in different 

cities, improve energy efficiency in construction and transport sectors, and then other 

cities in China can learn from these successful experiences and replicate them in 

practical projects. For example, Shanghai and Baoding were selected and became the 

low-carbon cooperative pilot cities in the first stage. The objective of this initiative in 

Shanghai is to focus on: 

 Policy research on eco-building promotion on ecological building development to 
reduce residents living carbon dioxide emissions  

 Energy efficiency improvement of existing large-scale public buildings, strategies 
include to promote energy consumption management, auditing and retrofitting, 
energy efficient operation, and international cooperation 

 Launch energy-saving campaign to raise public awareness of energy efficiency. 

For Baoding city, the target is to attach greater importance to the field of:  

 New energy and renewable energy industry development including information 
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database and service platform on renewable energy, technology exchange, and 
training 

 Comprehensive application of new energy and energy-saving measures and explore 
the low carbon model city development including policy research on promotion of 
the renewable energy development. 

 Low carbon city development-oriented planning including design and 
implementation and development of certification service and public technology 
platforms 

For some other projects, Sino-Singapore Tianjin Eco-city (Baeumler et al. 2009), 

Tangshan Bay Eco-city (Ma 2009) and Guangming Low-Carbon New Town in 

Shenzhen (Yu 2014) have showed more comprehensive plans, which cover advanced 

transport systems, renewable energy applications, innovative passive design strategies, 

and advanced public infrastructure systems (Cales 2014). However, Liu (2010) argued

that low carbon cities in China are “high carbon” per capita in fact, with many places 

in China adopting this label in reality.  

（（1））Pilot projects in China 

 Sino-Singapore Tianjin Eco-city (SSTEC) 

The Sino-Singapore Tianjin Eco-city (SSTEC) is located within the Tianjin Binhai New 

Area (Fig. 2.5). SSTEC is scheduled as a compact city, and a good mix of land uses, 

including public amenities and commercial facilities are located close to residential 

areas, similar to how new towns are planned in Singapore (SSTEC 2009; Wikipedia 

2015). This project has received much attention by the central government due to the 

target of becoming a model pilot of eco-city replicated by other cities in China 

(Baeumler 2009). Many implementations are conducted in this project, including: 
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(1) Integrating land use plans and corresponding detailed transport planning into 
supporting green trips based on Transit-Oriented Development (TOD) principles; 

(2) Developing its greening building standards and these standards are more advanced 
than the national or provincial levels and hope to set a new benchmark for China; 

(3) Utilising technologies to promote new urban development towards sustainability 
and guarantee that these new urban developments provide a comfortable living and 
working environment.  

Figure 2.5 SSTEC 

Source: http://www.kepcorp.com/en/news_item.aspx?sid=2045 

The China Academy of Urban Planning and Design, the Tianjin Institute of Urban 

Planning and Design, and the Singapore planning team jointly developed Master Plan 

of SSTEC. In the planning of the Tianjin Eco-city, one of the main guiding principles 

was to adopt an approach towards creating and designing a livable, efficient compact 

and green transport city, which would be developed ecologically. The planning focuses 

on the development of Key Performance Indicators (KPIs) jointly formulated by experts 

from Singapore and China, covering its environmental, economic and social 
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development to confirm the effective coordination and monitoring (Sino-Singapore 

Tianjin Eco-city Administrative Committee, 2008). The Master Plan can be summarised 

as "One Axis – Three Centres – Four Districts"( SSTEC 2009). (Fig. 2.6 illustrates)

Figure 2.6 Masterplan overview of SSTEC 

Source: http://www.tianjinecocity.gov.sg/bg_masterplan.htm

To create an eco-city model, the Master Plan of SSEC outlined the following strategies 

for green development (Li et al. 2012, p.13): 

 Promote energy savings in transport and buildings 

http://www.tianjinecocity.gov.sg/bg_masterplan.htm
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 Raise public awareness of energy efficiency 

 Consolidate industrial energy savings 

 Support the clean energy industry 

 Promote the “circular economy”model 

 Consolidate eco-agriculture 

 Consolidate forestry management 

However, “SSTEC has ambitiously tackled the technological side, but without adequate 

education of the public, the full potential of green technologies will not be fulfilled. 

Some resources to be spent on public education remain uncertain” (Li et al. 2012, p.15). 

In addition, the codes of constructing green buildings are higher than that of 

conventional buildings, but the information on construction costs is limited, developers 

may have less incentive to engage in green development.  

 Tangshan Bay Eco-city 

A new environmentally-friendly city is situated in the Tangshan region 250 kilometres 

East of Beijing, which is supported by Chinese and Swedish organisations initiated in 

2007. Beijing Capital Steel Group Corporation, SWECO from Sweden and Qinghua 

Urban Planning and Design Institute were appointed to complete the feasibility study 

and detailed Master Plan for Tangshan Bay Eco-city, using innovative examples from 

Malmö as a source of inspiration shown in Fig. 2.7. 

In the planning and design stage, sustainable development concepts and technologies 

are adopted. Tangshan Bay Eco-city adopt the strategy of land-use and green transport 

integration and advocate the city of short distance (Ma 2009). To achieve this goal, 

Tangshan Bay Eco-city was planned to be mixed land-use, which could guarantee the 
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city to be a more compact city. Furthermore, the city was designed to be a transit-

oriented development. Downtown and sub-centres were linked by public transport such 

as light rail systems (LRT) and bus rapid transit (BRT). By these methods, people will 

heavily rely on transit, avoid unnecessary travel, and thus reduce trip distances. 

Therefore, the city will be the least land and fuel consumptions. For the road system 

plan, the city adopts European road pattern, which features narrow, dense road network, 

and restriction of car-use. The city will be a short distance, transit-oriented and 

pedestrian-friendly development. 

Figure 2.7 Master planning overview of Tangshan bay eco-city 

Source: http://www.sweco.se/sv/Sweden/Nyheter/2011/Sweco-utvecklar-ny-del-av-eko-stad-i-Kina/

 Guangming Low- carbon eco-city New Town, Shenzhen 

Guangming low-carbon eco-city new town is in Bao’an district of the north-west of 

Shenzhen (Fig. 2.8). The planning of Guangming New Town is to develop a low- carbon 

city. The measures include a convenient public transport network and a slow -traffic 

system, compact and TOD strategy. Apart from these, a series of green technologies 

were conducted integrated with urban development, including the ideas of green 

http://www.sweco.se/sv/Sweden/Nyheter/2011/Sweco-utvecklar-ny-del-av-eko-stad-i-Kina/
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transport, green building, green community, and green space to reduce carbon dioxide 

emissions (International New Town Institute 2015). 

Figure 2.8 Planning of Guangming low- carbon eco-city new district in Shenzhen 

Source: Google image 

For green transport, it focuses on (Energy Smart Communities Initiative 2014):

• Walkable pavement, bike lane system.  

• Slow transport system and bus-oriented development strategy. 

For green buildings, it attaches great importance to the application of green building 

technology, such as solar power lighting system and hot water system (Energy Smart 

Communities Initiative 2014). 

A brief introduction and summary of the above three typical examples of low carbon 

transport planning for low carbon city development is presented in Table 2.6.  
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Table 2.6 Three examples comparison in low carbon transport planning 

Source: Compiled from (Li 2012; Yu 2014; Liu 2014) 

Name Brief Introduction Characteristics of low carbon transport 

Sino-Singapore 
Tianjin Eco-city 

Located within the scope of Tianjin 
Binhai New Area, with a total area of 

approximately 31.23 km2

Promoting transport model development dominated by a green 
low-carbon transport system; Closely integrated with land use, 

improve the percentage of public transport, reduce car 
dependence, and create transport modes of low energy 

consumption, slow transport system. 

Tangshan Bay 
Eco-city 

In Tangshan region 250-kilometre East 
of Beijing with the total planning area 

of about 150km2

Integration the eco-city development goals and green low-
carbon transport systems overall scheme; Integration transport 

and land use patterns; give priority to the development of 
urban public transport, walking system and highlight the 

importance of bicycle system, build a walkable city. 

Guangming New 
Town, Shenzhen 

Situated in the north-west of Shenzhen 
in Bao district, Created in 2007, with 

the total area of 156.1 km2

Establish BRT service system, integrate neighbourhood and 
form an excellent environment for walking, develop bike lane 
system using the Network-like regional green space system. 

From these three typical examples, the low carbon new urban development in China 

has similar features shown in the followings:  

(1) Establish public transport as the backbone of the urban transport system to limit car 

travel. (2) Integrate land use with mix and intensive development, optimise block and 

construct different roads to form a slow transport system and encourage low-carbon 

travel. (3) Strengthen public transit linkage and eliminate car dependence on short trips. 

Figure 2.9 summarises and compares the low-carbon planning and general planning. 
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Figure 2.9 Comparison of traditional planning and low-carbon planning 

Source: Ma (2009) 

(2) Typical worldwide projects 

Around the world, cities are implemented low-carbon development. The experience of 

Masdar, Freiburg, and Curitiba are selected as examples in this research. 

 Masdar City 

The Masdar city, a carbon-neutral, zero-waste urban community in Abu Dhabi, is one 

Conventional planning Low–carbon planning 

Extensive land use  

Urban sprawl  

Detached land-use 

Road-oriented  

Car dependent 

Non-cycling 

Intensive land use  

Compact city  

Land mixed use  

Transit-oriented  

Car independent 

Re-cycling 
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of sustainable mixed-use development designed projects (Fig. 2.10). On its completion, 

it would become one of the first aimings toward a zero-carbon, sustainable settlement 

project (Nader 2009). 

Figure 2.10 Masdar city planning  

Source: http://www.fosterandpartners.com/media/Projects/1515/img0.jpg

The design of community uses strategies (a mixed-use, low-rise, and high-density 

development). Buildings are grouped close together to create narrow streets, and it 

means more shades and low temperature in the streets so that people can walk with a 

comfortable feeling. Moreover, the wind tower constructed sucks air from above and 

pushes a cooling breeze through streets.  

For the transport sector, the initial design banned automobiles. Travelling in the city are 

mainly by public transport systems with existing road and railways connecting to other 

locations outside the city. Masdar City is intended to make do entirely without fossil 

fuel use. For its energy needs, it was also to rely exclusively on a mix of renewable 

sources including solar thermal, photovoltaic, and wind (Janajreh et al. 2013). The 

majority of private vehicles will be restricted to parking lots along the city's perimeter.  

http://www.fosterandpartners.com/media/Projects/1515/img0.jpg
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 Freiburg, Germany 

The German city of Freiburg is well-known as one of the top low carbon cities in the 

world. Freiburg, a typical compact city with strong neighbourhood centres where 

people’s needs are within walking distance, has successfully adopted TOD (Gregory 

2011). At the same time, renewable energies are applied in this city. For example, 

energy-saving houses are quite common compared to other cities in Germany, as it is 

well- known for its efforts in various initiatives to promote the installation of solar 

energy systems (Fig. 2.11). 

Freiburg’s success can be found in its citizen’s participation and the city’s 

comprehensive policies aiming at sustainability. Firstly, leading research institutes of 

solar technologies are based in Freiburg, as well as small and medium-sized companies 

promote and application renewable energies. Secondly, the city’s policies and actions 

have included carbon emission reduction. For example, the local administrative devised 

the first low carbon traffic plan, aiming to improve the mobility while reducing traffic. 

Moreover, the government always steadily expanded the public transit network 

(Gregory 2011). Thirdly, to improve energy efficiency in existing buildings, the city has 

a support program for housing insulation and energy retrofits. Moreover, it requires that 

all new homes built on city must meet a new low-energy efficiency design standard. 

Finally, cycling is encouraged. The city administration has developed over 400 km of 

cycle paths (ibid.). 
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Figure 2.11 Solar settlement in Freiburg 

Source: http://ais.badische-zeitung.de/piece/00/e4/ec/2e/15002670.jpg

 Curitiba, Brazil 

The city of Curitiba, Brazil, has gained international acclaim for its planning initiatives. 

Curitiba’s Master Planning integrated transport with land use planning. It limited 

central area growth while encouraging commercial growth along the transport arteries 

radiating out from the city centre. Curitiba has transformed itself into a model of the 

low-carbon city through its innovative public transport system coupled with land use 

policy. 

The city is bus rapid transit (BRT) oriented shown in Fig. 2.12. Everyone is easy to 

access to the public transport, and the five top routes from the city centre to the suburban 

area are used as “ growth corridors” in the city. Curitiba's BRT satisfies 80% of the daily 

trips resulting in 25% lower carbon dioxide emissions per capita than the average cities. 

The advantage of BRT is efficiency: its ability to move people around the city quickly, 

thus reducing dependency on automobile use (Magalhaes and Durán-Ortiz 2009).  

http://www.urbanhabitat.org/node/344
http://ais.badische-zeitung.de/piece/00/e4/ec/2e/15002670.jpg


56 

Figure 2.12 BRT in Curitiba  

Source: http://upload.wikimedia.org/wikipedia/commons/2/2a/Bus_Stops_3_curitiba_brasil.jpg

2.5 Review energy consumption on buildings and road transport 

sector 

Buildings and the transport are a significant contributor to energy use and CO 2 

emissions. China’s building stocks are characterised by rapid new construction and 

demolition of old buildings, and large-scale urban expansion. Section 2.5.1 reviews the 

situation of Chinese building energy consumption and its associated factors that affect 

energy consumption. Section 2.5.2 reviews current carbon dioxide emissions in road 

transport sector from China and the worldwide. 

2.5.1 Building sector energy consumption 

The increased urbanisation rate in China has dramatically affected the number of 

buildings in cities with major effects on the energy consumption (Santamouris et al. 

2001). Energy demand from building sector will increase dramatically in cities, as an 

estimated another 300 million people will move to cities over the next 20 years in China 

http://upload.wikimedia.org/wikipedia/commons/2/2a/Bus_Stops_3_curitiba_brasil.jpg
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(Baeumler et al. 2012). Therefore, energy-saving from buildings faces a significant 

challenge in China. 

By the end of 2017, China’s urbanisation rate has reached 58.5% and is projected to 

75% by 2050 (Khanna et al. 2013; Chinese Society for Urban Studies 2011; Zhang 

2015). More urban infrastructure and services will be needed to satisfy the demands of 

future city residents, resulting in higher energy consumption and associated carbon 

dioxide emissions.

Energy consumption and associated carbon dioxide emission in cities mainly come 

from buildings and the transport. The global contribution from building energy 

consumption has steadily increased in developed countries and has exceeded the 

transport sector (Steemers 2003). Current predictions show that this upward trend will 

continue (Pérez-Lombard et al. 2008). Energy use from most developing countries will 

grow at an average annual rate of 3.2% and will exceed the developed countries (North 

America, Western Europe, Japan, Australia and New Zealand) at an average growth rate 

of 1.1% by 2020 (ibid.). For example, 37% of direct fuel consumption in buildings 

occurs in urban areas in the USA (Parshall et al. 2010). This figure in the UK is 28%, 

well above the Spanish 15% mainly due to a more severe climate and building type 

(Pérez-Lombard et al. 2008). 

Climatic conditions are a basic factor that affects building energy consumption. There 

is a vast territory in China, and it is impossible to design a single building code for the 

whole country. The climatic zones consist of five parts relating to severe cold zone, cold 

zone, temperate zone, hot summer and cold winter zone, and hot summer and warm 

winter zone, as shown in Fig. 2.13. 
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Figure 2.13 Five-climate zone distribution in China. 

Source: http://1t2src2grpd01c037d42usfb.wpengine.netdna-cdn.com/wp-
content/uploads/sites/2/2014/08/China-climate-zone-map-628x531.png

Buildings in the north part of China is heated mostly by district heating systems as the 

severe weather conditions. In contrast, buildings in southern China requires small 

heating demand. However, annual building energy consumption (BEC) has been 

increasing at more than 10% over the past 20 years (Cai et al. 2009). According to the 

official report, the total floor area of residential buildings in China is about 40 billion 

m2 by the end of the year 2013 (National Bureau of Statistics of China 2014). The 

overall national building energy consumption is 16 billion tons of standard coal, which 

accounts for 20.7% of the total end energy consumption (Jiang and Yang 2006). The 

current energy consumption from buildings in China can be divided into three main 

categories according to the locations and the areas—energy consumption in rural 

http://1t2src2grpd01c037d42usfb.wpengine.netdna-cdn.com/wp-content/uploads/sites/2/2014/08/China-climate-zone-map-628x531.png
http://1t2src2grpd01c037d42usfb.wpengine.netdna-cdn.com/wp-content/uploads/sites/2/2014/08/China-climate-zone-map-628x531.png
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residential buildings, residential and public buildings in cities excepting for heating, 

and northern cities for heating— and this is presented in Table 2.7:  

Table 2.7 The BEC categories in China 

Source: Cai et al. (2009) 

Items 
Building area 

(billion m2)

BEC (billion 

kWh/year)

BEC 

(kWh/m2)

Rural residential buildings 24 89 7.5 

Northern cities for heating 6.5 370 57 

Cities excluded 

heating 

Residential 10 200 10-30 

Conventional public buildings 5.5 160 20-60

Large-scale public buildings 0.5 100 70-300 

Subtotal 16 460 29

Moreover, the energy consumption in large-scale public buildings is about ten times 

than that of residential buildings in China (Li and Yao 2009). For example, the floor 

area of large public buildings in Beijing only accounts for 5.4% of the city’s total 

building floor area. However, its electrical energy demand is nearly equal to that of 

residential buildings (Liang et al. 2007). It is evident that these buildings have 

considerable opportunities for building energy saving. The survey (Jiang and Yang 2006) 

shows that annual energy consumption from large-scale public buildings in China had 

reached 100 billion kWh, which accounts for around 20% of the total national building 

energy consumption by the end of 2004. In contrast, the total floor area of these 

buildings was about 500 million m2 that only consisted of less than 4% of the national 

urban building floor area (ibid.).  

Apart from this, the BEC for heating in north China is also very high (Cai et al. 2009). 

This is because of the severe weather of north China, as well as the huge area of north 

China, accounting for 70% of the whole country. For example, the northern building 

floor area is about 6.5 billion m2
, and the building energy consumption for heating 
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stands for 45% in the total national urban building energy consumption. Figure 2.14 

shows the detailed information about the energy consumption of different building 

types and locations in China. Northern heating zones account for 36% of total energy 

consumption compared to other sectors. 

Figure 2.14 The BEC proportions of different building types in China 

Source: Cai et al. (2009)  

From the review of building energy consumption, which is a complicated issue 

influenced by both internal (weather conditions) and external factors (building floor 

area), it mainly focuses on two aspects as follows: 

1) Northern space heating: space heating in the north part of China occupied most of 
the total energy consumption for urban buildings. This is primarily because of the 
climatic conditions, and large building floor area (Chmutina 2010). 

2) Large-scale public buildings and residential buildings: a small percentage of public 
buildings consume a tremendous amount of total building energy. Larger public 
buildings are always with huge glass screen walls without any shading, and this 
can cause extra cooling demand in the summer period. Residential buildings have 
a significant energy consumption due to the large floor area caused by rapid 
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urbanisation in the cities. 

2.5.2 Energy consumption on road transport sector 

The transport sector is always the source of CO2 emitters around the world. Over the 

last 30 years (1980 to 2010), its annual growth rate (especially for oil consumption) has 

reached over 2.6%, far greater than that of the residential sector (Wang et al. 2014). 

According to the report from the Institute of Energy Economics of Japan, the final 

energy consumption by China’s transportation sector increased from 24.1 Mtoe (million 

tons of oil equivalent) in 1980 to 182 Mtoe in 2010. Moreover, the energy consumption 

in the transport sector is different from the development stage in each country. Figure 

2.15 indicates the differences and describes the final energy consumption by the 

transport sector about total domestic energy consumption in three countries: China, 

Japan, and America. The bubble size represents the final energy consumption by 

transportation sector in these countries in the main years. The percentage of the vertical 

axis indicates the proportion of final energy consumed by transportation sector relative 

to total domestic final energy consumption. It has shown that the energy consumption 

in the transport sector in the U.S.A accounts for appropriately 40% of the total domestic 

energy consumption in 2010. Similarly, Japan’s final energy consumption in transport 

sector accounts for about 25% of its total domestic energy consumption because of a 

smaller land area and higher population density. In contrast, China’s per capita energy

consumption by the transport sector is much below these two countries due to a large 

population, only 10%.  
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Figure 2.15 Proportion of final energy consumption by transport sector about total domestic 
energy consumption from three countries 

Source: Wang et al. (2014) 

Figure 2.16 represents the total amount (bubble size) of final energy consumption by 

transport sector in China, as well as its relative proportion to the total final world 

transport sector. It illustrates the total final energy used in the transport sector in China 

is increasing at an alarming rate from less than 2% in 1970 to about 8% in 2015, 

receiving the worldwide attention. 
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Figure 2.16 Total final energy consumption of China’s transport sector and its proportion in the 
world’s transport sector. 

Source: Wang et al. (2014)  

Over the next two decades, China will continue its rapid progress in the transport sector, 

and it will experience a period of rapid growth along with the booming economy and 

improving living standards (Wang et al. 2014). Many studies have explored in China's 

transport energy consumption. Yan and Crookes (2009) study the assessment of the 

effectiveness of possible measures for reducing energy consumption in China's road 

transport sector; Cai et al. (2006) analyse China's energy demand in future by 

identifying some key barriers which affect fuel consumption options in the road 

transport sector. Their research is mainly focused on the technological, financial and 

institutional aspects. The key issue for China is finding ways to develop low-carbon 

and efficient transport in the future.
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Figure 2.17 Possession of national private vehicles  

Source: National Bureau of Statistics of China (2014)  

However, there is a rising trend in the number of private vehicles shown in Fig. 2.17. 

This dramatic increase in China has resulted in the rapid growth of automobile fuel 

consumption, which has gradually become the largest source of CO2 emissions. He et 

al. (2005) analyse the status of oil consumption on road transport in China and then 

predict the future trend of the oil demand and CO2 emissions on road transport based 

on the three scenarios (Fig. 2.18 and Fig. 2.19 show). It shows that the oil demand and 

carbon dioxide emissions in China's road transport sector will increase dramatically 

even under the high-fuel economy improvement control. 
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Figure 2.18 Oil consumption of China's on-road vehicles 1997-2030  

Source: He et al. (2005) 

Figure 2.19 CO2 emissions of China's on-road vehicles, 1997-2030. 

Source: He et al. (2005) 

Currently, the reduction of energy consumption and the alternative energy development 

are the two ways to reduce the transport-related CO2 emissions in the transport sector. 

The first way focuses on improving the fuel consumption efficiency of vehicles or 

develop alternative fuels, while the second way is to develop appropriate planning to 

reduce unnecessary travel. In contrast, in some developed countries such as the U.S.A, 

the cars accounted for over 80% of the total transport energy consumption (He et al. 
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2005). This energy consumption in China remains at a relatively lower level and is still 

in its infancy. However, Hu et al. (2010) predict that for future oil consumption on road 

vehicles, the oil demand in 2030 might be 300-500 million tons, three times the present 

consumption. Moreover, many factors affect the transport-related energy use such as 

urbanisation rate and the improving living standards. The development of the road 

transport in China cannot follow the model of the U.S.A of increasing private car to 

improve people’s living standards. Instead, it is necessary for China to speed up the 

construction of the conventional transport system for energy saving. China needs to 

optimise further traffic structure and try to improve traffic technology and energy 

efficiency. This will fulfil the energy-saving potential based on infrastructural energy 

saving and accelerate the pace of China’s low-carbon transport sector. 
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2.6 Review major causative factors affecting energy consumption 

and carbon dioxide emissions in building and road transport 

sector at the macro level 

Buildings and the transport, as essential components in the city, play a significant role 

in the energy consumption and carbon dioxide emissions. Building-related CO2

emissions across the world have continued to rise by nearly 1% annually since 2010. 

Coal and oil used in buildings have remained constant since then, while natural gas use 

grew steadily by around 1% annually. Global use of electricity in buildings grew on 

average by 2.5% per year since 2010, and in non-OECD countries, it increased by 

nearly 6% per year (IEA 2017). Moreover, the transport sector accounts for nearly 25% 

of global energy-related CO2 emissions (IEA 2009), and it is regarded as one of the 

increasing energy consumption and carbon dioxide emissions sources. The actual 

energy consumption from the transport sector in China accounts for 10% to 15% of the 

national total energy consumption (Wang et al. 2014). China needs to reduce its energy 

consumption and carbon emission to improve the country's environment, addressing the 

climate change issue. Thus, a better understanding of urban energy consumption is 

necessary for decision-makers to control urban carbon dioxide emissions and local 

pollution issues at various levels of urbanisation.  

This session reviews the basic questions: what primary factors contribute to energy 

usage and CO2 emissions in buildings and road transport sectors at the macro-level in 

urban areas. Many previous studies have shown that urban geography, building design, 

systems efficiency, occupant behaviour on building energy consumption, and the 

technology improvement, transport planning and management on transport carbon 

dioxide emissions (Bruff and Wood 2000; Ratti et al. 2005). This section reviews factors 

from macro-level including policies (urban planning policies, energy efficiency 
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standards, and transport policies), urban form, urban design, accessibility, renewable 

energy applications, and finally urban heat island effect (UHI).

2.6.1 National policies for energy saving on buildings and road 

transport sector 

(1) National urban planning policies for city development  

Increasing urbanisation is a national policy priority in China, where decision-makers 

have understood the urbanisation as a necessary and efficient approach to promoting 

economic growth. Significant policies are usually formulated at the central level and 

conducted by provincial or municipal governments. A better understanding of energy 

consumption in urban areas will help the central government to set up national 

frameworks and to address urban development issues, such as climate change. In 

addition, land utilisation and transport planning policy to reduce carbon dioxide 

emissions is dependent on the urban form, location, density, and design (Owens 1992; 

Banister et al. 1997; Capello et al. 1999). Governmental guidance for reducing energy 

demand in urban areas suggest that measures should be taken on the urban form, 

including land mixed-use and intensive development, the need of vehicle travel 

reduction, and energy-saving in design by either standards of energy efficiency or the 

extensive applications of renewable energy technologies in design (Bulkeley and Betsill 

2005). Table 2.8 illustrates approaches to reducing the urban energy consumption and 

presents relevant examples. 



69 

Table 2.8 National planning guidance relating to urban energy consumption  

Source: Bulkeley and Betsill (2005) 

Approaches to addressing urban energy use Examples of national planning policy guidance 

Reduce travel demand Promote TOD and mixed land use 

Reduce the number and length of travel activities 

Focus on public transport links; promote public transport 

development, better design for the cycle and walking 

access; limit land use for roads and parking 

Design for energy-saving 

Take full advantage of the passive solar energy in the 

design stage; formulate energy-saving standards for 

buildings in design guidance 

Renewable energy applications Promote the renewable energy uses 

On the other hand, there is a fundamental policy that the land-use policy can change the 

level of energy consumption as it influences modes choices and the degree of trip 

efficiency (Mindali et al. 2004). Specifically, it can affect three aspects: 

 Intensification of land-use densities in cities  

 Shifts in the mix land-use  

 The combination of the intensification and mixed land-use, commonly known as 
the compact urban form.  

Figure 2.20 illustrates the correlation between the land use policy and the level of 

transport-related energy consumption. 
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Figure 2.20 The process of land-use policy influences energy consumption by transport  

Source: Mindali et al. (2004). 

The land use policy can affect land use mix and densities. On the one hand, the density 

affects modal splits via infrastructure and public transport investments. One the other 

hand, land use mix also affects the travel mode and trip efficiency via compatibility of 

employment and population. And finally, the transport energy consumption is affected 

by travel modes and trip efficiency. 
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(2) National building energy efficiency standards and regulations in China 

Energy efficiency standards for buildings are the tools for policy enforcement. There 

are two different national building energy standards in China: one for residential and 

another for commercial buildings. The common target of these standards is to reduce 

energy consumption as well as carbon dioxide emissions, but the standards are obsolete 

compared to the international level, and most are less stringent than EU counterparts. 

Moreover, these standards are rather narrow in scope and lack a strong framework to 

strengthen energy efficiency in construction (Yao et al. 2005). Worse still, the biggest 

problem of the energy efficiency standards is the unwillingness of local governments 

to implement specific regulations or to carry out national laws through supervision and 

penalties. Local governments placed more emphasis on the speed of construction, but 

this has resulted in the wasteful construction of the buildings (Andrews-Speed 2009). 

In addition, construction companies are in a shortage of guidelines and training for 

energy efficiency in the construction stage, and even with an inappropriate design (Yao 

et al. 2005).  

Based on this context, the central government formulates the following framework of 

standards announced and implemented since 2004.

 Introduction to “Design Standard for Energy Efficiency of Public 

Buildings” GB50189-2005 

The MoHURD released the standards of China’s “public buildings” in 2005 in order to 

improve the energy efficiency of non-residential buildings (e.g.,commercial, 

educational, and governmental buildings), covering to five Chinese climatic zones. 

The first standard (Energy Conservation Design Standard for Building Envelope and 

Air Conditioning) for non-residential buildings in China focusing on energy efficiency 
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was issued in 1993 for tourist hotels. The current standard was updated and widen its 

scope to all public buildings in 2005 (GB50189-2005). The standards aim to reduce 

total energy consumption by 50% compared to the 1980s’ buildings level. The standard 

corporates initiatives to improve energy efficiency, including natural ventilation and 

solar shading considerations, and control requirements for HVAC systems (GBPN 

2013).  

Although the standards play a significant role in the development of energy efficiency 

in commercial buildings, the enforcement of the standards is still a problem, especially 

in small and medium-sized cities due to a lack of awareness from the public and local 

governmental support. 

 The Chinese Green Building Standards  

The concept of green building was introduced into China in the 1990s (Xiao and Qiao 

2009). According to green building evaluation standard (GBES) in China, green 

buildings are defined as “buildings which can save a maximum amount of resources 

featured by energy, land, water, and materials, protect the environment, reduce pollution, 

provide healthy, comfortable, and efficient space for people, and exist in harmony with 

nature (Li 2012, p.9)”. Compared with the developed countries, the Chinese standards 

on the green buildings were launched much later. The whole development progress can 

be categorised into three stages, and the quality has been gradually improved. 

 First Stage: Released China's Eco-House Technical Evaluation Handbook

 Second Stage: Released Green Building Assessment System for Beijing Olympic 
(2002) 

 Third Stage: Released National Green Buildings Evaluation Standard (GB/T 
50378–2006) 
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Although building energy consumption can be reduced to some degree through the 

development of green building standards, there are still some disadvantages. For 

example, they are “lack of indicators on responding to climate change”, “lack of 

quantitative indicators”, “higher costs for receiving certification” and “lack applying 

innovative green technologies” (Geng et al. 2012). 

(3) National policies on road transport for carbon dioxide emissions reduction 

Road transport in cities is responsible for the huge amount of CO2 emissions. This is 

because, on the one hand, cities have been expanding urban areas continuously, and 

different cities from various provinces tend to interact with each other more frequently 

than before; thus population mobility is always increasing and contributes to more CO2

emissions. On the other hand, the growing land use in cities has contributed to the 

conversion of buildings, and then it causes an increase in building energy consumption 

in cities. Meanwhile, the diversity of transport modes and the increasing vehicles in 

every year makes it more complex for passengers to transfer to different vehicles. 

Finally, with the development of the society, people have set higher standards for the 

comfort level and convenience of a trip. 

Based on the above context, to reduce road transport energy consumption, the central 

government has issued various policy documents for public transport priority such as 

Energy Law (2007). It views transport energy conservation as optimising transport 

structure, giving priority to public transport development, enhancing the transport 

organisation and administrative ability, as well as improving the energy utilisation 

efficiency of traffic facilities. Public transport can provide a level of urban mobility 

similar to that offered by a private car, but it requires less energy and space per 

passenger-kilometre travel (PKT) (Figueroa et al. 2014) significantly. Moreover, public 

transport use can contribute not only to reducing energy consumption and emissions 
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but also to congestion level, which improves traffic flows and reduces travel times. The 

provision of high-capacity and reliability of public transport infrastructure and services 

and the physical integration of walking and cycling facilities are critical to realising the 

less energy consumption in the transport sector. In fact, the Energy Law has guided 

significance on the transport energy saving. A reliable and affordable public transport 

system is a fundamental element of the low carbon transport system. 

2.6.2 Urban form and urban energy 

Theoretical definitions of the urban form indicate the importance of the interplay 

between social norms, business activity, and mobility (Race 2013). Many scholars 

believe that urban density can interpret urban forms, such as residential and 

employment density, mixed land-use, public transport supply, and commuting distance 

(Williams 2000; Holden and Norland 2005). Anderson et al. (1996) define urban form 

as the spatial configuration of fixed elements in the city, including the spatial pattern of 

land uses and their density, as well as the spatial design of transport and infrastructure. 

Moreover, they propose three different archetypal urban forms: the concentric form, 

radial form, and multinucleated form shown in Fig. 2.21. 
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Figure 2.21 Three archetypal urban forms  

Source: Anderson et al. (1996) 

However, urban form affects energy consumption and CO2 emissions via two main 

ways. Firstly, it affects travel behaviour, such as trip distance and modes choice, and 

thus the transport energy consumption. Secondly, it controls energy use in buildings 

such as domestic and commercial building clusters, largely through the type and the 

size of buildings that are developed, and this is the building energy consumption 

(Newman and Kenworthy 2000). 
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Research on the role of urban form in energy use and environmental aspects starts since 

the 1970s, with Owens (1986) combine the theory and practices. Urban form is heavily 

affected by land-use and transport. For the land use, the higher density of residence and 

employment has been widely accepted as lower energy consumption in cities, especially 

promoted the concept of the compact city represented by high density and mixed-use 

in many European countries (Mindali et al. 2004). High densities provide public 

investment maximisation and allow the more efficient use of resources. Increased the 

residential density combining with mixed land-use, can reduce auto ownership levels 

and commuting distances (Cervero 1996). Increased employment concentration in CBD 

and inner suburbs contribute to higher transit (Schimek 1996). Low densities, on the 

other hand, increase per capita cost of land, infrastructure and services, and thus reduce 

the degree of social interaction. Moreover, residents in these areas are forced to travel 

long distances to reach nodes such as work, home, education and entertainment site. 

However, high densities mean a greater level of access for business, more productivity 

and less energy and time consumption (Acioly and Davidson 1996).  

(1) Urban form and building energy consumption  

The effect of urban form on building energy consumption is a new area of exploration. 

The impact on building energy consumption and urban form is somewhat ambiguous 

mainly due to operational energy, embodied energy, building types, and different 

climatic contexts. A noticeable example is the positive relationships between building 

energy consumption and urban density for office buildings as increasing urban density 

will reduce the availability of daylight in particular (Steemers 2003). Wright (2008) 

describes the correlation between home energy consumption and a wide range of factors 

such as built form, location, appliances, occupant behaviour, and fuel affordability. 

Ewing and Rong (2008) assume urban form can affect residential energy use in three 

different ways as illustrated in Fig. 2.22. Firstly, it directly influences residential energy 
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consumption through electricity transmission and distribution losses; secondly, it 

indirectly influences the energy consumption by the type and size of house stocks, as 

well as by the local temperature through the formation of urban heat islands. 

Figure 2.22 The relationship between urban form and residential energy consumption  

Source: Ewing and Rong (2008) 

(2) Urban form and transport energy consumption 

When it comes to the correlation between urban energy consumption and the transport 

sector, many pieces of evidence have shown a strong negative relationship between 

urban density and transport energy consumption (Williams et al. 2000; Newman and 

Kenworthy 1989; Frank 2000; Cervero 1996; Frank and Pivo 1994). Newman has 

researched and written many publications about the relationship between transport 

energy consumption and urban density of worldwide cities. Figure 2.23 shows how 

increasing urban density results in less annual transport energy consumption (Newman 

and Kenworthy 1989). 
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Figure 2.23 Transport energy vs. urban density 

Source: Newman and Kenworthy (1989) 

The results are similar when comparing per capita driven miles and energy use for high-

intensity and high-income (jobs and housing density) cities from around the world 

(Newman & Kenworthy 2006). Their research indicates U.S. cities have the lower 

density and a higher per capita energy use than Canada, Australia, and Europe. This 

implies that decreasing density will increase transport energy consumption. Compact 

cities appear as the most efficient of all urban forms, with 43% less fuel consumption 

than other forms of urban development (Magalhaes and Durán-Ortiz 2009); hence there 

are the lowest carbon dioxide emissions due to more use of public transport and reduced 

use of privately owned vehicles. A better understanding of the transport energy 

consumption can be achieved by analysing the urban spatial structure, or can 

alternatively analyse the following elements: the urban form and the human interaction 

in the city centre, etc. (Bourne 1987). Brundell-Freij and Ericsson (2005) verify the 

relationship among urban form, modes choice and driving patterns. Giuliano and 

Narayan (2003) find that differences in daily trips and vehicles miles travelled are 

explained by differences in both of the urban form and household income. Findings 
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show that the effect of income on daily travel is similar to the US and the UK, but the 

effect of density is more profound in the US. Magalhaes and Durán-Ortiz (2009) 

compare the carbon footprints of fuel consumption and light vehicles in Curitiba and 

Brasilia. The results show that Curitiba has significantly low annual average carbon 

dioxide emissions from light vehicles than Brasilia, although Curitiba has motorisation 

level that is 21.3% higher than Brasilia. However, some argue (Altshuler 1979; Gordon 

and Richardson 1997) that an increase in urban density does not necessarily reduce 

transport energy consumption. This is because vehicle ownership levels and car 

dependency are influenced by many variables apart from urban forms, but family 

income, gas price and the availability of public transport. Furthermore, Mindali et al. 

(2004), using the data from Newman and Kenworthy, conclude that there is no direct 

relationship between energy consumption and the total urban density.  

2.6.3  Urban design  

Research on the transport, urban design and planning have examined the correlation 

between physical environment variables and individuals’ walking and cycling for 

transport. Consolidating urban places and improving the design is seen to be beneficial 

not only from an environmental perspective but also as a means of improving the 

‘livability’ of urban areas, as well as providing the impetus for economic regeneration. 

Urban design does not belong to one discipline and overlaps with architecture, urban 

planning, and landscape planning, etc. Hence, urban design theorists and practitioners 

still have no agreement on the definition of what urban design is. In a broader sense, 

urban design deals with issues of urban form and the development of urban units and 

their components. Saelens et al. (2003) describe that urban design is a term that makes 

decisions about how natural and built elements in a particular space will relate to one 

another, and urban designers consider how people will perceive and interact with the 
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human-made environment. Madanipour (1997) defines the urban design as concerned 

with the quality of the public realm. Other theorists regard it as movements in cities 

(Butina-Watson and Bentley 2007). Bentley (1985) have developed seven indicators 

(permeability, legibility, etc.) that need to be included in urban design in the book 

“responsive environments —a manual for designers”. These indicators to help achieve 

sustainable urban design relating to the environments. 

Transport energy use can also be reduced by urban design mainly through minimising 

car use in cities. The original “3Ds” are density, diversity, and design (Cervero and 

Kockelman 1997), followed later by “destination accessibility” and “distance to transit”. 

The features of these “5Ds” can be interpreted as follows: 

Density— higher population, jobs and dwelling units per unit area; 

Diversity — a greater mix of land uses including residential, employment, 
and retail/services in proximity to each other; 

Design — smaller block size or larger number of intersections per square 
mile, more sidewalk coverage, smaller street width, more pedestrian 
crossings, and more street trees; 

Destination accessibility — more jobs or other attractions reachable within 
a reasonable travel time; tends to be highest in urban cores; 

Distance to transit — shorter distance from home or work to the nearest rail 
station or bus stop (Ewing and Cervero 2010, P. 267)  

Newman reviews the urban design that can reduce car dependence based on local public 

transport nodes, such as urban rail nodes (Newman et al. 2006). Frank (2000) has long 

understood that the neighbourhood design and the way of land developed and used may 

affect transport mode choices. Ewing and Cervero (2010) propose the concept of design 

focusing on street network characteristics within an area, which should be highly 

connected with the urban grid and applied meta-analytical methods that have also been 
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used in the urban design field (Bartholomew and Ewing 2008; Cervero 2002).  

In conclusion, urban design affects both building energy consumption and transport 

carbon dioxide emissions. The suitable urban design is, in part, about the balance. The 

balance between the use of public transport and individual cars, between the building 

energy consumption and transport carbon dioxide emissions, and between nature and 

the built environment.  

2.6.4 Accessibility  

Accessibility, a concept used in some scientific fields such as transport planning, urban 

planning and geography. Good accessibility is crucial to achieving low carbon transport, 

as it may reduce the length of automobile journeys or change the mode choices, thus 

reducing carbon dioxide emissions and transport energy consumption.  

Accessibility is defined in several different ways. These include definitions of the 

potential of opportunities for interaction (Hansen 1959). Handy (1993) proposes the 

“local accessibility” and the “regional accessibility”, and he believes that accessibility 

consists of a transport element and a spatial component. The former (local accessibility) 

reflects the ease of travel between points and the quality of service provided by the 

transport system and is measured by travel distance, time, and cost. The latter (regional 

accessibility) expresses the distribution of activities, such as residences, employment, 

recreation, offices. Also, he insists that an increase in both local and regional 

accessibility can lead much shorter shopping distance, but no reduction in shopping trip 

frequency. Geurs and van Wee (2004) use four components: land-use, transport, 

temporal, and individual, to describe accessibility shown in Fig. 2.24. 
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Figure 2.24 Relationships between components of accessibility 
Source: Geurs and van Wee (2004) 

Accessibility depends on the transport available to individuals, the temporal and spatial 

distribution of activities, and the social and economic roles of individuals that determine 

when, where, and for how long they must pursue various activities. However, when 

compared these different definitions of accessibility, it appears that most of the 

information is concerned with spatial data such as the location of nodes, the length of 

links, and data on transport costs measured by travel time and fares. 

Accessibility measures are also concerned. Several indicators are used to measure the 

accessibility: travel time, congestion level, and operating speed on the road network, 

which is described in infrastructure-based accessibility measures to analyse the service 

level (Neuburger 1971; Williams 1976), and is typically used in transport policies and 

planning. The advantages of this infrastructure-based measures are readily available, 

and the results are easy to understand for policymakers. However, this measure does 

not satisfy most of the theoretical criteria as it ignores potential land-use impacts on 
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transport strategies, such as the impact of improved travelling speed on urban sprawl. 

Furthermore, it does not correctly measure the impacts on land-use policies, which 

affects the spatial distribution of travel activities. 

Another common type of accessibility measures—location-based measures are also 

used in accessibility measurement studies (Bruinsma and Rietveld 1998; Gutiérrez and 

Urbano 1996). The distance measures are the simplest type of location-based 

accessibility measures. The advantage of this simplest measurement is easy to interpret 

for policy-makers, as there are no assumptions on people’s conception of transport, 

land-use and their interactions. Other types of accessibility measures, e.g. Person-based 

accessibility and utility-based accessibility (Koenig 1980; Miller 1999) are also studied. 

The former is very useful for social evaluations of land-use and transport changes 

(Miller 1999; Waddell 2001). The latter interprets the outcome of a set of transport 

choices and can be used to model travel behaviour and the benefits of different users of 

a transport system. 

Accessibility is viewed as indicators of the impacts on land use and transport 

development in the function of urban areas. It means that accessibility is integrated with 

the role of the land-use and transport systems, which will give individuals opportunities 

to participate in activities in different locations. Focusing on road transport sector, the 

accessibility is defined as the degree of easiness from the origin to destination. The 

focus is given on the distance to the public transit, which is measured by the shortest 

distance from the residences or workplaces to the nearest bus stops or the underground 

stations. Alternatively, the focus is also on the transit route density: the number of 

stations per unit area, which can illustrate individuals to cover the distance between 

origin and destination using the specific transport mode, measured by travel time, travel 

costs, and travel self-evaluation (e.g. reliability, the level of comfort, safety risk). Figure 

2.25 shows the relevant factors influencing the accessibility. 
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Figure 2.25 Factors affecting accessibility  

Source: Adapted from Arndt et al. (2014) 

2.6.5 Renewable energy applications  

The term "renewable energy" comes from a broad range of resources, which can be 

self-renewing energy sources such as sunlight, the wind, and biomass (Bull 2001). 

Renewable energy can be defined in various ways that sometimes include different 

technologies. The general definition of a renewable energy source is one that derives 

energy from a non-depleting resource. The major renewable energy systems include 

photovoltaic (PVs), solar thermal (electric and thermal), the wind, biomass (plants and 

trees), hydroelectric, ocean, and geothermal (Turner 1999). At the large scale, 

renewable energy sources mainly originate from solar power such as solar and the wind. 

Compared with fossil fuels that will eventually deplete, renewable energy will never. 

Application of renewable energy is a modern approach to energy conservation in 

buildings, which can be developed about solar energy, i.e. solar thermal in the form of 

active and passive systems, daylighting, natural cooling, and photovoltaics (Chwieduk 

Accessibility  

Residential density Employment density  

Road network Urban design  
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2003). Renewable enegy application and promotion mainly from the perspective of the 

policies and technologies, and the following part will present. 

Policy and typical projects 

The utilisation of renewable energy sources helps to reduce the environmental impacts 

of air pollution. The central government has significantly boosted the development of 

renewable energy applications. China’s 12th Five Year Plan (2011-2015) states: “the 

production capacity of solar energy, wind energy, and geothermal energy should 

increase.” Moreover, it implemented the ‘renewable energy law’ in 2005 and effected 

on 1st January 2006 which encourages the development of various types of renewable 

energy sources (State Council 2006). This law recognises that the renewable energy 

plays a pivotal role in the sustainable development in China. It also clarifies the 

responsibilities of governments, private developers and ends users during the whole 

development process (Zhao et al. 2011). 

A common renewable energy practice is launched in Dezhou city in Shandong province, 

and the local government wants to make the city become the “solar city”. As a result, 

the city widely applied solar energy technology, which includes the installation of solar 

water heaters on the roofs and facades of residential buildings; the use of solar PV to 

street lights in the main streets, and the integration of solar PV with buildings for the 

daily supply of electricity (Goess et al. 2015). Other examples from the Jiangsu 

provincial government that also issued the notices on the solar photovoltaic industry to 

encourage the solar photovoltaic power. It specified that the government would devote 

to developing the solar power industry by releasing supporting policies, establishing 

relevant standards, and providing fiscal incentives. A goal is set up to achieve 400 MW 

installed capacity of solar photovoltaic power connecting to the grid by 2012 province-

wide (Zhao et al. 2011).  
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Renewable energy technology for buildings 

Each technology has its characteristics that determine its use and suitability; it is, 

therefore, important to consider how that technology will work for a particular building. 

These include (Day et al. 2013): 

1) Building type, function, and form; 

2) The buildings’ energy demand; 

3) Building occupancy and their behaviours; 

4) Local site and climatic conditions; 

5) Regulation, planning, and other requirements; 

6) Shading from neighbouring buildings, structures, and trees, etc. 

Four most frequently major renewable energy technologies utilised on buildings are 

listed in the following parts (Chwieduk 2003; Day et al. 2013) 

 Bioclimatic building design

Using passive solar and making use of the building itself, either to gain as much solar 

energy as possible or to protect the building from the sun, depending on the season and 

climatic conditions, are connected with the proper design of building surroundings, 

such as trees and application of daylighting. 

 Shading  

Solar shading affects energy demand in buildings through solar gains caused by trees, 

buildings, and other structures. It also can modify thermal losses through windows. 

Shading devices influence daylighting levels in a room. Shading is thus closely 
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connected with energy consumption in buildings for heating, cooling demand, and 

lighting; 

 Solar PVs 

Solar PVs consist of PV cells that convert solar energy directly into electricity via the 

photovoltaic effects. Unfortunately, the voltage created by a single PV cell is tiny.

 Solar thermal  

There is a high potential for solar thermal application. It is a good choice to heat 

domestic hot water in the residential buildings because they are easy to install. However, 

the main utilisation of solar thermal is restricted due to the high cost and depends on 

the climates. Therefore, financial incentives have been made available for the 

installation of this application and are only applicable to countries with hot climates. 

2.7 Modelling building energy consumption and road transport 

carbon dioxide emissions  

An understanding of the urban building energy consumption is essential for low carbon 

development in existing buildings that are energy inefficient. Furthermore, the 

modelling approach are used to formulate policy decisions regarding on the building 

stock, both the old and new. By quantifying the energy consumption, it can be made to 

support energy supply, retrofit, and technology incentives. 

This section (2.7.1) reviews the approach to calculating the building energy 

consumption. The next section (2.7.2) examines methods to estimate transport-related 

carbon dioxide emissions on the road in urban areas. Both approaches are vital for 

studying the urban energy and associated carbon dioxide emissions reduction. 
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2.7.1 Buildings energy consumption modelling  

The attention to saving building energy consumption has always been focused on the 

single building level. However, concerning energy use and carbon emission reduction, 

it is crucial to widen its scopes to the community and urban level because there are huge 

potentials for energy-saving and carbon dioxide emissions reduction for the large-scale 

building stocks (Fracastoro and Serraino 2011). Moreover, energy consumption in the 

building stocks is highly diverse, being influenced by a range of factors such as building 

types, equipment systems, and occupant behaviours. Therefore, an approach to 

predicting urban building energy consumption can be an extremely complicated process 

because of the extensive data input, and because of the great urban building energy 

modelling, thermal modelling, and validation. 

Governments usually publish a simple estimation of the total building energy 

consumption at the urban scale through statistics approach, which compiles gross 

energy consumption submitted by energy providers (Swan and Ugursal 2009). For 

example, Chen et al. (2008) propose the framework of the national statistics for building 

energy consumption shown in Fig. 2.26. However, this method would be inaccurate as 

some unreported energy consumption may be ignored. 

Fortunately, the rapid development of computational technologies, such as Geographic 

Information Systems (GIS), some professional software such as HTB2 developed by 

Cardiff University, and Energyplus created by the US Department of Energy could 

make the calculation and decision-making more accurate on the buildings at the large 

scales.  
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Figure 2.26 National statistics framework for urban energy consumption  

Source: Chen et al. (2008) 

Some computer models have been developed that be valuable to planners seeking to 

make rational decisions on energy management in the urban environment over the past 

decade (Caputo et al. 2013; Shimoda et al. 2004; Dall’O’ et al. 2012). Table 2.9 

illustrates the energy consumption and carbon dioxide emissions estimate from the 

models at different scales: individual and urban scales. 

Table 2.9 Different carbon dioxide emissions calculators at different scales  

Source: Carney and Shackley (2009)  

Model Scale/Application Other References 

National air emissions inventory UK All six ‘Kyoto’ greenhouse gases 

DREAM City/urban region High-resolution data required 

EEP City/urban region High-resolution data required 

National statistics of energy consumption on buildings 

Statistics of energy consumption on buildings in every province of each zone

Statistics of energy consumption on buildings in every city of each province

Statistics of energy consumption on each type of buildings in every city province

Statistics in severe cold zone Statistics in cold zone 

Statistics in temperate zone Statistics in hot summer and cold winter zone 

Statistics in hot summer and warm winter zone
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Greenhouse gas protocol Company Detailed company data needed 

Leicester model City 

Various Individual Lifestyle emission calculations 

REAP Sub-national End-user including embodied energy 

Techniques used to model energy consumption are classified in two main categories: 

“top-down” and “bottom-up” approach (Swan and Ugursal 2009). The top-down 

method estimates the total sector energy consumption and allocates the energy 

consumption to the entire floor area of individual buildings by some variable such as 

the size of the house. In contrast, the bottom-up method calculates the energy 

consumption of individual or groups of buildings using small and simple models with 

similar features and then extrapolate these results to represent the region or nation based 

on the weight of the modelled sample (ibid.). The available prediction approaches of 

the “top-down” and “bottom-up” are clustered as in Fig. 2.27. 
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Figure 2.27 Modelling techniques for estimating the urban scale energy consumption  

Source: Swan and Ugursal (2009)

Jones et al. (2001) develop an energy and environment prediction model (EEP) based 

on GIS techniques to estimate the city-scale energy consumption considering the 

difference of building types. The model adopts the standard assessment procedure (SAP) 

to simulate building energy demand based on building fabric, ventilation, space heating, 

and cooling. Moreover, this model considers the environmental and surrounding 

influence on building energy performance. 

Yamaguchi et al. (2007) quantify the total end-use energy consumption from the 

commercial sector in Osaka city at the municipal level using “district clustering 

modelling approach”. However, this method is impossible to allocate a specific amount 

of energy consumption to buildings, especially the energy supply from the district 

heating and cooling systems.  
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Titheridge et al. (1996) develop a city model of DREAM (Dynamic Regional Energy 

Analysis Model) to calculate urban energy and emissions. The city model includes the 

urban domestic, services, industrial and transport sectors, which can be run 

independently, and then using the graphical or tabular results from the models to analyse 

the city’s energy demand and supply. It also predicts carbon dioxide emissions. 

Huang and Brodrick (2000) use a bottom-up engineering approach to estimate building 

energy use of the residential and commercial buildings, and then utilise top-down 

statistical approaches to scaling their results up to the national level. 

Brownsword et al. (2005) have developed urban energy consumption model using 

energy supply data and postcode information. The model simulates spatial variations in 

energy demand and the effect of energy management measures and associated 

reductions in CO2 emissions through a linear programming optimisation module. 

The common benefit of these different methods is to provide the most complete and 

comprehensive prediction of energy consumption and thermal performance in buildings. 

However, one of the problems from all these modelling approaches is heavily 

depending on the details of building and environmental parameters as the input data. 

These parameters are unavailable to many organisations and personal use. For example, 

the information of the occupants’ activities in the large office buildings is very tough to 

obtain. As a result, the lack of accurate data can lead to reducing the probability of 

precise simulation. Secondly, some of these models only focus on residential sector and 

are not applicable to commercial buildings or transport buildings, and others simulate 

energy demand on an annual basis but do not reflect the important variation in both 

energy supply and demand. Finally, many models are too tough for ordinary users to 

operate, understand other than developers themselves, making it difficult to perform 

and cost inefficient due to the need for very professional knowledge. 
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2.7.2 Road transport carbon dioxide emissions modelling  

Road vehicles are regarded as the significant sources of transport-related CO2 emissions 

(Metz 2001). It has been estimated that carbon dioxide emissions from road traffic 

worldwide will increase by 92% from 1990 to 2020 (Gorham 2002). 20% of the world’s 

energy consumption is attributed to road traffic: among this, 13% is for passenger 

transport (Schafer and Victor 1999). Meanwhile, the number of the private cars would 

increase dramatically. As a result, road transport-related CO2 emissions have received 

particular attention due to the constant rise in car numbers. Although some methods are 

used to reduce carbon dioxide emissions on the transport, i.e. better transport planning, 

and better transport demand management, the estimation of traffic flow has been used 

mostly to make decisions for policy-makers to reduce carbon dioxide emissions 

(Carmichael et al. 2008; Mensink and Cosemans 2008). What is more, the prediction 

transport-related CO2 by modelling can be a powerful method for air quality control. 

Much of the road traffic study focuses on models that can simulate real-time traffic flow 

and conditions (Nejadkoorki et al. 2008). These models are used to monitor and solve 

road traffic issues, such as predicting traffic flow demands. The output of such traffic 

models is usually expressed by vehicle speeds and traffic volume at peak hours for a 

given length of the road. Studies have shown that there have been two main approaches 

adopted to predicting road traffic carbon dioxide emissions: macro-scale approach and 

micro-scale approach (Namdeo et al. 2002; Reckien et al. 2007; Tuia et al. 2007). For 

the former method, carbon dioxide emissions are predicted to take into account the 

information about average vehicle speed, and average distance travelled for a large area 

in an extended period (usually a year ). The latter method can be applied to predict 

carbon dioxide emissions in a shorter period even an hour, using detailed traffic data 

such as speed, vehicle type, and its distance travelled (Nejadkoorki et al. 2008). It has 
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been argued that the utilisation of the micro-scale approach is much better and accurate 

than the macro-scale approach (Namdeo et al. 2002) as traffic densities and speeds can 

change significantly over a short time and a short distance.  

Nejadkoorki et al. (2008) use road traffic model (SATURN) coupled with programming 

software (MATLAB) to predict road transport-related CO2 emissions for an urban area. 

ArcGIS is used in the approach to the spatial display of the results. The modelling 

approach is shown in Fig. 2.28. 

Figure 2.28 The modelling approach for road transport  

Source: Nejadkoorki et al. (2008) 

The input data in this modelling approach include the information about a trip matrix, 

and a road traffic network (Nejadkoorki et al. 2008). The study areas are categorised 

into different zones called traffic analysis zones (TAZs) according to the similar land 

use function. Traffic demand data are represented in Passenger Car Units (PCUs) and 

are illustrated by the number of journeys that need to be made between each TAZs for 

SATURN 

Traffic measurement (speed, flows, length and width) 

MATLAB 

CO2 Emission estimation 

ArcGIS 

CO2 Emission mapping 
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each time unit. The traffic demands are coded by the matrix, which includes rows and 

columns. The traffic network is based on the information for junctions and individual 

roads (free flow speed and road length). Both the matrix and traffic network are input 

into a road choice model (ibid.). The analysis of the results is possible after the 

assignment of traffic demand, and the program is displayed in a variety of information 

such as one road specific traffic volume. 

Namdeo et al. (2002) using the Traffic Emission Modelling and Mapping Suite to 

estimate carbon dioxide emissions (CO2) on road transport. The calculation considers 

road link length, vehicle flow and speed, and fuel type and their emission factors. 

Mitchell et al. (2011) use land use and transport interaction models (LUTI) that can 

provide the potential to assess regional energy demand in a sensitive manner addressing 

mobility patterns and transport energy consumption.

The modelling approach is a highly useful tool for predicting traffic conditions in future 

scenarios. These methods are especially important in the case of traffic-generated 

emissions since there might be an opportunity to reduce total emissions by urban 

restructuring, developing road networks, and changing traffic demands. Transport 

planners and environmentalist can simulate how much road traffic related carbon 

dioxide emissions could be produced using different plans. However, one weakness of 

these modelling methods is that road network usually only contains major roads. As a 

result, it is only suitable for calculating traffic flow on the main roads. Furthermore, all 

these models are complex and challenging to understand rather than by these developers 

themselves. Finally, all these methods need extensive input data, which is a challenge 

because of the uneasy collection such as the travelled distance, and the percentage of 

each modal split. 
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2.8 Summary  

Literature review in this section consists of four parts relating to theories and practices 

in green urban development, the situation of energy consumption on buildings and road 

transport, relevant factors affecting building energy consumption and transport-related 

carbon dioxide emissions, and finally modelling development in the building stocks and 

transport sector from different scales.  

Green urban development will be the focus of the existing built environment 

Various concepts for green urban development in China have been proposed, from the 

original green city to the final low carbon eco-city, and this shows that the government 

realises its importance of the sustainable urban development, not only focus on the GDP 

development, but also on the environmental issues. Different practices and projects 

relating to green urban development from China and the worldwide are also presented. 

Some strategies are adopted to promote low carbon city development. These strategies 

focus on the idea of reducing car dependence on short trips, and of promoting public 

transport for long trips such as public transport orientation, TOD (transit-oriented 

development), and sustainable urban form development measured by mixed land use 

on transport sector and passive design and renewable energy applications on building 

sector.  

The situation of energy consumption and carbon dioxide emissions on buildings 

and transport sector 

The condition of building energy consumption and transport-related carbon dioxide 

emissions in China are reviewed and analysed. For the building energy consumption, 

firstly, there is an upward trend because of the rising construction of annual floor area 
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in cities due to the rapid urbanisation rate. Secondly, different building categories 

significantly vary in the level of energy consumption. Energy consumption on large-

scale commercial buildings is higher than other building types, even more than ten times. 

Thirdly, space heating in the north areas occupied most of the total urban building 

energy consumption due to the climatic conditions and large floor area of residential 

buildings in cities.  

For the transport-related carbon dioxide emissions, there is a rising trend in the number 

of private vehicles and more transport demand between cities than before. This dramatic 

increase has resulted in the rapid growth of transport-related carbon dioxide emissions. 

Two approaches are presented to reduce the transport-related carbon dioxide emissions 

from the technology improvement and the planning aspect (urban planning and 

transport planning). Firstly, it can improve the fuel efficiency of automobiles and 

develop the alternative energy such as renewable energy applications. Secondly, the 

core idea is to avoid unnecessary travel and reduce trip distances by appropriate 

planning.  

Influenced factors on building clusters and transport-related carbon dioxide 

emissions 

Although many factors affect energy consumption and carbon dioxide emissions in 

buildings and transport sector, this part primarily reviews selected factors including 

national policies, urban form and design, accessibility, and renewable energy 

applications. National policies about the standards and regulations focus the energy 

efficiency on residential and public buildings, and thus low energy demand from 

buildings. The problems are that these standards are very obsolete, narrow scope and 

lack a strong framework to strengthen energy efficiency, especially in the construction 

process. Moreover, the unwillingness of local governments to carry out these standards 



98 

in practice is the biggest barrier for low carbon city development. For the transport 

sector, it focuses on the reduction of road transport-related carbon dioxide emissions, 

such as the policy of optimising the transport structure, and promoting public transit. 

All these policies are to direct energy efficiency in buildings and reduce CO2 emissions 

in transport. Secondly, for the urban form and urban energy consumption, it analyses 

both the relationship of urban form between building energy consumption and 

transport-related carbon dioxide emissions. The results indicate that urban form and 

building energy consumption is somewhat ambiguous mainly due to operational energy, 

embodied energy, buildings types, and different climatic contexts. For the urban form 

and transport-related carbon dioxide emissions, numerous studies have agreed with the 

results that compact urban form can contribute to sustainable transport development 

due to the reducing trip distances and avoiding unnecessary travel. Thirdly, for the urban 

design, it reviews its definition and several indicators that contribute to low-carbon city 

development and then analyses the transport-related carbon dioxide emissions 

reduction with urban design through strategies by “3Ds” (density, diversity, and design ). 

Moreover, for the aspect of accessibility, the review focuses on the concepts, 

measurement, and factors affecting accessibility. Finally, this research reviews 

renewable energy applications relating to policies issued and joint projects applied in 

China, and then applications of renewable energy on buildings, such as solar PVs and 

shading, are presented. 

Modelling development on building energy and transport-related CO2

By reviewing the modelling of building energy consumption and transport-related 

carbon dioxide emissions, this study understands that methods to investigate carbon 

dioxide emissions from building sector and road transport are bottom-up and top-down. 

The top-down method adopts the total sector of energy consumption and allocates the 

energy consumption to the entire individual building by some variables such as climatic 
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conditions and number of occupants, and this method is used to define the long-term 

modifications of energy requirements trends. In contrast, the bottom-up method 

calculates the energy consumption of individual or building clusters with similar 

features and then extrapolates these results to identify the regional or national level 

based on the weight of the modelled samples. The potential of such models is based on 

the physical features and boundary conditions of buildings rather than statistical and 

mathematical relations. For this reason, these methods can provide the most complete 

and comprehensive prediction of energy consumption and thermal performance of 

buildings. However, one problem of all these modelling approaches heavily depends on 

data input from buildings. Secondly, some of these models are not applicable to other 

building categories; the annual-based energy demand cannot reflect the important 

variation in both energy supply and demand. Finally, many models are too tough for 

ordinary users to operate, understand other than developers themselves. 

For the prediction of transport-related carbon dioxide emissions, there are mainly two 

approaches classified by the macro-scale approach and micro-scale approach. For the 

former method, the calculation of carbon dioxide emissions considers the data from the 

aspect of annually travelled distance and modal splits. The latter one can be applied to 

predict transport-related carbon dioxide emissions for individual roads in a shorter 

period even an hour, using specific traffic data such as speed, vehicle type, and its 

travelled distance. It has been argued that the utilisation of the micro-scale approach is 

much better and accurate as traffic densities and speeds can vary shortly over a period 

and distance, but this method is more complex to obtain the data required. However, 

the weaknesses of these methods are also identified. These weaknesses revolve in the 

challenge of data input, the complex model to understand, and the limitation for CO2

computation.  
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Chapter 3 Research Methods and Framework 

3.1 Introduction 

Chapter Three investigates available methods and appropriate models to understand, 

analyse, and predict operational energy consumption and its associated carbon dioxide 

emissions from buildings and transport due to the mobilities of users from buildings. 

This study adopts methods that combine both quantitative and qualitative research. 

Quantitative analysis is carried out by building energy models, activities-based 

transport demand models, parametric analysis and multinomial logistic regression. The 

qualitative research includes methods of the literature analysis, on-site surveys and 

questionnaires. The methodologies and framework are presented in Fig. 3.1 as follows：

 Modelling development 

 Parametric & Regression analysis 

 Literature review

 Site surveys & Questionnaires

Research methods 3.2 

Application of technical tools 3.3 

Summary 3.4 

Figure 3.1 Flow chart of this chapter 
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3.2 Research methods  

3.2.1 Building energy model  

A better understanding of the energy consumption and associated carbon dioxide 

emissions from buildings in cities are essential for low carbon city development. In 

general, it is possible to distinguish two different methods to investigate energy 

consumption and associated carbon dioxide emissions from the buildings, namely top-

down and bottom-up approaches (Ho 2010; Swan and Ugursal 2009; Kavgic et al. 2010). 

The development and application of the bottom-up approach for the modelling building 

began in the mid-1990s (Foliente and Seo 2012). Since then many studies have adopted 

this approach for modelling residential building clusters or mixed use of building 

clusters (Shorrock and Dunster 1997; Swan and Ugursal 2009; Snäkin 2000; Huang and 

Brodrick 2000). Further developments and detailed comparison and analysis of the 

applications and limitations have been comprehensively discussed, and future research 

opportunities have been identified (Foliente and Seo 2012; Swan and Ugursal 2009; 

Kavgic et al. 2010). On the other hand, top-down models split into two groups: 

econometric and technological. Econometric models are based on the local population, 

income level, technology development and employment conditions. Technological 

models attribute the energy consumption to general characteristics of the entire building 

cluster such as appliance ownership trends (Swan and Ugursal 2009). Moreover, 

aggregated levels are adopted in this model typically for the national scope and is 

focused on broad econometric or technological impacts. 

However, one of the limitations of the top-down approach is that the lack of details 

regarding on the energy consumption of individual end-users eliminates the capability 

of identifying key areas for improvements in the reduction of energy consumption. 
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Conversely, the bottom-up approach provides flexibility and the powerful capability to 

investigate the full impacts on a specification at higher levels of aggregation, from the 

community level to the national level. Then again, this approach is highly dependent on 

the data of availability, reliability and capability of the model used, and the modelling 

technique may be based on building physics, statistical models or a combination of the 

two (Kavgic 2010).  

For the building cluster in this study, building energy modelling to calculate energy use 

and associated carbon dioxide emissions is implemented at the neighbourhood level. 

Energy performance simulation tools HTB2 (Heat Transfer in Buildings) and Plug-in 

VirVil (Virtual Village) is adopted to calculate carbon dioxide emissions for building 

clusters. Being a research tool rather than a simple design toolkit, HTB2, developed by 

Cardiff University, is intended to demonstrate comprehensive operation prediction of 

internal environmental conditions and energy demands of a building, during both the 

design stage and its occupancy period. It can predict the influence levels of fabric, 

ventilation, solar gains, shading and occupancy on the thermal performance and energy 

use of a building (Lewis and Alexander 1990). 

3.2.2 Activities-based transport demand model 

The principal equation for calculating carbon dioxide emissions is obtained from the 

combination of two variables: emission factors (EFs) and the data of transport activities. 

There are two main approaches currently used for predicting transport-related CO2

emissions: top-down and bottom-up (Ho 2010). 

A top-down approach starts estimating the total emissions by using total activities for 

the whole domain and average emission factors. Then, it uses several assumptions to 

distribute these emissions in space and time (Friedrich and Reis 2004). This approach 
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is easy to apply because it needs little input information and time to generate results. 

This method is particularly appropriate to estimate the total emissions on a large scale 

such as a national level. One of the main limitations of this approach is the results of 

spatial emissions inventory are usually highly uncertain (Ho 2010). 

The bottom-up approach is based on a source of oriented inquiry of all activities and 

emission data. It starts to evaluate the spatial and temporal resolution of the parameters 

used to calculate the emissions. This approach is more accurate than the top-down 

approach of evaluating the spatial and temporal resolution. It is appropriate on a smaller 

scale, such as the community level. However, one of the disadvantages of this method 

is that it needs a significant amount of input data for generating carbon dioxide 

emissions. Moreover, the time for generating carbon dioxide emissions is longer than 

the top-down approach. 

For the travel activities due to the mobility of users from buildings in this research, the 

prediction of transport-related CO2 emissions can be estimated from the bottom-up 

method based on the vehicle kilometres travelled (VKT). As a result, the activities-

based transport demand model in equation (3-1) is proposed (Cai et al. 2012): 

 =  ∗                                                                                         (  )

Where E is the amount of carbon dioxide emissions from travel activities; e is the 

emission factor, usually expressed in kg/km and primarily related to modes choice; a is 

the amount of travel activities which are one of the key input data to estimate transport-

related carbon dioxide emissions. Travel activities are defined in equation (3-2) as 

(ibid.): 

 =  ∗                                                                                     (  )
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Where n is the number of the vehicle in different categories, and i is the average distance 

travelled by each vehicle over the time unit, in km. 

3.2.3 Parametric analysis in the building sector 

After the calculation of carbon dioxide emissions, the degree of how the selected factors 

affect the energy consumption on building clusters are explored. These factors are 

categorised by street orientations, the layout of building clusters, overshadowing, and 

the UHI effects. All these factors are explored and analysed relating to their impacts on 

cooling demand, heating demand, and solar gains.

Street orientations  

Streets, as part of urban open spaces, play a significant role in creating the urban 

microclimates as street orientation influences the amount of solar radiation received by 

street surfaces as well as air flows in urban canyons. The urban streets are expressed by 

the ratio of height to width (H/W) and also the orientation which is defined by its long 

axis (Shishegar 2013). These parameters directly influence the absorption and emission 

of solar radiation. 

In this research, the slab-built form acts as the basic form, as proposed by Martin and 

March (1975), to analyse different variables on the energy performance of building 

clusters. To compare how street orientation alteration affects the cooling demand, 

heating demand, and the solar gains of building clusters, we set only the orientations as 

the variables (δ=0; 45; 90;135), variables such as the floor area ratio, building density, 

storeys, height, COP, remain constant. The parameters can be set in four different 

orientations, from 0 degrees to 135 degrees, with 45 degrees intervals. 
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The layout of building clusters 

The layout of building clusters in this research uses a horizontal and vertical layout. For 

the horizontal layout, the alteration of the ratio Wy to Wx, ΔX to Wx, △Y to Wy are 

examined. Other variables, such as the density, floor area ratio, building storeys, and 

their heights, the HAVC systems will remain the same with each case. Then, the vertical 

layout of building height difference is also explored. We use these indicators to measure 

how this alteration affects energy demand in building clusters. Detailed information 

about this section can be referred to Chapter 7. 

Overshadowing 

Overshadowing is an important and complicated issue, and there is no doubt that over-

shadowing can practically reduce the energy demand of building clusters, especially the 

cooling demand as over-shadowing offers more shading for buildings located in urban 

areas, which indirectly leads to solar gain and cooling demand reduction. 

This research examines the impacts of over-shadowing on cooling, heating demand, 

and solar gains. Three cases are analysed adopting the method of Jones et al. (2009) as 

the reference. Detailed information can be found in Chapter 7. 

UHI effect 

Temperature distribution in urban areas is highly affected by the solar radiation on the 

urban surfaces where it is absorbed and then transformed to sensible heat. Buildings, 

especially the component of vertical walls and roofs, are the solar radiation receiver. 

Although many factors are related to UHI effects, variables such as population density, 

ambient temperature, sky view factor, anthropogenic heat, building design and 
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materials play an important role in increasing heat intensity (Rizwan et al. 2008). As 

the UHI effects would be a mutual response of these variables, a comparison should 

consider all controllable factors and should not be limited to any other factors. This 

study chooses a parameter to represent the microclimate impacts on building energy 

demand to research the significance of UHI effects; the variable of ambient temperature 

increases or decreases by 1°C compared to the standard model (ambient temperature 

remains constant) are researched on the energy demand based on the reference of Ihara 

et al. (2008) who applied multiple regression analysis to analyse the relationship 

between the electricity consumption and ambient temperature. For a detailed process, 

refer to Chapter 7. 

3.2.4 The regression analysis of modal splits in the transport 

sector 

As for the regression analysis of modal splits, it analyses the travel patterns from 

respondents (such as travelled distance, travel time, frequency and their purposes), 

socio-economic characteristics, and finally self-evaluation on travelling (i.e. congestion 

situation, comfort level, and travel cost in travelling). 

Socio-economic characteristics of respondents 

Socio-economic variables were self-reported in the survey. Previous studies have found 

that socio-economic variables are strongly associated with travel mode choice (Stead 

2001; Badoe and Miller 2000). To measure the effect of travellers’ socio-economic 

characteristics on the probability of mode choice, we controlled for the gender, 

number of household cars and household income. Gender was measured as a 

nominal variable; cars were measured in numbers as a continuous, ordinal variable; 

monthly household income was ordinal, with four categories (0–10,000 CNY, 10,000–
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15,000 CNY, 15,000–20,000 CNY, and more than 20,000 CNY). A positive relationship 

was expected between mode choice and household cars and income. 

Travel patterns  

Travel patterns cover factors of travel time, distance, purposes and frequency. These 

four factors are regressed with the modal splits to analyse the probabilities of one mode 

choices with another. 

Self-evaluation on travelling from respondents 

To examine the potential impacts of self-evaluation on mode choice due to the congestion, 

comfort and economical level, the respondents were asked to answer questionnaires 

respectively. 

How would you evaluate your congestion situation while travelling?

Very smooth Fairly Smooth Common Fairly Serious Very serious 

1 2 3 4 5 

How would you evaluate your comfort level while travelling?

Very comfortable Fairly comfortable Common Fairly uncomfortable Very uncomfortable

1 2 3 4 5

How would you evaluate your economical level while travelling?

Very economical Fairly economical Common Fairly uneconomical Very uneconomical 

1 2 3 4 5
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3.2.5 Literature analysis  

Literature analysis primarily includes:  

(1) Review the development of high-speed railway stations and its new urban districts 
in China and review the theories of green urban development and its typical 
projects. 

(2) Review energy consumption on buildings and road transport sector.  

(3) Review and identify factors affecting energy consumption and associated carbon 
dioxide emissions from building clusters and transport sector, and 

(4) Review the modelling development to quantify carbon dioxide emissions from 
buildings and transport activities due to the mobilities of users from buildings.  

3.2.6 Site surveys and questionnaires for data collection 

Site surveys and questionnaires are used for data collection from both building clusters 

and travel activities due to users from buildings. In this study, basic information 

modelling building energy is from a site survey to calculate building energy 

consumption and its associated carbon dioxide emissions. This information relates to 

physical dimensions of buildings, the construction and materials details, and operating 

schedules. For the transport-related carbon dioxide emissions, data of travel patterns, 

such as modal splits and its percentage, travelled distance, and emission factors for the 

computation of CO2 emissions, are obtained by questionnaires and surveys, although it 

is a challenge to collect some data. 
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Building cluster  

Data on building clusters in the study area are collected through national and local 

authority documents, site surveys, and maps. Energy consumption around the study area 

from the buildings including residential, office, commercial, and hotels or a 

combination of at least two of the above functions is investigated. The general survey, 

key survey and data analysis are used for data collection shown in Fig. 3.2. The purpose 

of the general survey is to collect general information such as the age of constructed 

buildings, operational schedule in buildings, and building floor areas and physical 

dimensions of buildings. The key survey is on the site, and it mainly checks and records 

information such as the operational schedule from face to face interview with the clients, 

the monthly energy consumption of electricity and natural gas from the buildings. The 

data analysis is to analyse the energy consumption from buildings on the investigation. 

The data collection includes the following parts for the building cluster: 

 Population density; 

 The overall energy consumption of electricity and gas from building clusters; 

 The construction details, storey, physical dimensions, and ages of buildings; 

 The thermal physical property of materials from buildings; 

 The glass ratio; 

 The indoor design conditions, and schedules; 
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Figure 3.2 The flow chart of the on-site survey for building clusters 

For the transport sector：：

The carbon dioxide emissions from the transport are primarily based on the travel mode 

choice and travelled distance. In the survey, modal split, travelled distance, travel time, 

frequency and purpose are collected in the study area. However, the focus is on the 

travel modes and travelled distance. 

1) Travel activities survey 

In this study, students from the Wuhan University of Technology manually recorded 

travel activities by questionnaires, and they are distributed in three study areas. Travel 

modes are grouped into three categories based on the amount of carbon dioxide emissions 

features. They are non-motorised modes (walking and cycling), transit modes (bus, 

underground, and e-motor), and driving modes (car and taxi). 

Questionnaires were prepared, and several groups of students were organised to 

interview people at different building types in the three selected cases, asking questions 

Building clusters sample 

General survey  Key survey Data analysis 

Basic information collection 
such as physical dimensions of 

buildings. 

Site survey, questionnaire, 
data collection on energy 

use, etc. 

Energy demand analysis, and their 
distribution, the problems existing 
and strategy for reducing carbon 

dioxide emissions
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such as how the respondents get to their destination on weekdays, and how long they 

travelled to their destination. A video was also recorded to count the number of people 

at the only entrance of the buildings from 7:30 am to 9:30 am as this is the period for 

people travelling to work. This accurately recorded and then estimated the number of 

people in the buildings. The following information can be summarised when doing data 

collection for travel activities: 

 Number of people in the community /population density; 

 Travel modes and corresponding percentages; 

 Average daily travelled distance;  

 Travel time and frequency;  

 Travel purpose; 

2) Emission factors (EFs) 

The emission factors, measured in kg/km included, cover popular vehicle categories 

(car/ taxi, public transport, and e-motor), and this factor is not fixed as the technologies 

developed. Given the fact that over the past dozen years, China’s vehicle technology 

and fuel quality have improved, the carbon emission factor of transport modes cannot 

be maintained at the same level and should be corrected. As a result, this research 

assumes that the carbon emission coefficient decreased by 0.5% annually based on the 

reference (Liu 2014), for this is more in line with the reality.  

Table 3.1 summaries the research methods for this study in data collection, methods, 

tools and outcomes. 
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Table 3.1 Summary of research methods 

Methods Tools Outcomes

Building energy model Sketch, HTB2 and ViVil Building energy use and CO2 emissions 

Activities-based transport demand 
model 

Equation Transport-related CO2 emissions  

Building energy simulation HTB2 and ViVil 
The relationship between building energy 

consumption and factors 

Regression analysis SPSS 20 
The relationship between transport-related CO2

and modal splits

3.3 Softwares selected in this research 

3.3.1 Introduction to selected tools HTB2 

HTB2, developed at the Welsh School of Architecture, Cardiff University, is intended 

to simulate energy and environmental performance of buildings. It was initially 

programmed for thermal simulation, including fabric conduction, ventilation, heating 

and cooling systems, as well as the part of the building design process tool (Alexander 

2008). The validity and reliability of the software have tested, and it has worked well 

(Alexander 2003). After a series of improvements, HTB2 is now able to simulate a 

group of buildings. However, HTB2 is not a simple model, and beginners find it 

difficult to use it. Users must set up all parameters in each required file gradually, which 

makes it easy to make mistakes. The complicated setting process possibly affects the 

accuracy of its simulation result. Furthermore, without a virtual Windows environment 

and visualisation operation interface, it is hard to define the parameters explicitly. 

Although there are many disadvantages with HTB2 involved in describing complex 

models, HTB2 has the best performance for simulation at the urban scale.  
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HTB2 regards buildings as a series of spaces, which are connected to the outdoor 

environment by walls, roofs, windows and ventilation paths shown in Fig. 3.3. The 

calculation mechanism of HTB2 mainly considers heat exchanges from the external 

climate, heating systems, and a network of incidental heat sources, and the whole 

process is the dynamic thermal simulation (Lewis and Alexander 1990). 

Figure 3.3 Fundamental building processes and interactions  

Source: Alexander (2008)  

All the parameters of these units should be calculated together based on their time, 

which can be set between a single minute to a whole year. In short, model builders 

should decompose a building or spaces first and reorganise them, according to HTB2's 

hieratical levels (Fig. 3.4 shows). For each level and topic, there are corresponding files 

to manage the data. Then, HTB2 will calculate these data together and produce a final 

report.  
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Figure 3.4 HTB2 hierarchical structure  

Source：Alexander (2008)  

3.3.2 Introduction to selected tools Plug-in VirVil 

A VirVil Plug-in (Virtual Village) is a simulated tool for the evaluation of the impact on 

the sustainable built environment at the urban level (Jones et al. 2011). It uses dynamic 

simulation at an early stage with simple input data to reduce complication and focuses 

on the impact on the community, as well as on single buildings. The tool brings current 

state-of-the-art simulation capabilities to provide the most comprehensive and credible 

modelling software (Smith et al. 2008). The Plug-in actively considers the relationship 

between buildings and environment. The VirVil menu in SketchUp is shown in Fig. 3.5, 

and the calculation of VirVil integrating with SketchUp and HTB2 is shown in Fig. 3.6. 
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Figure 3.5 The menu of plug-in VirVil in Sketchup 

3.3.3 Introduction to selected tools SPSS 

SPSS Statistics (Statistical Package for the Social Sciences) is a software package used 

Database  

Results 

Calculation’s engine

Creation of VirVil in Sketch UP 

Total floor area Total footprint Orientation of façade Shading mask Buildings attributes 

HTB2 Calculation 

Operational energy and Carbon dioxide Renewable energy 

Figure 3.6 Flow diagrams of VirVil integrating with SketchUP and HTB2 

https://en.wikipedia.org/wiki/Computer_program
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for statistical analysis. It is a powerful statistical tool for providing the descriptive 

statistics, bivariate statistics, prediction of numerical outcomes, and prediction for 

identifying groups (Wikipedia 2016a). 

In this study, IBM SPSS Statistics 20 is used to perform multinomial logistic regression 

analysis. The regression model is to examine the relationship between modal splits and 

three selected factors (socio-economic, travel patterns and self-evaluation), and then the 

transport-related CO2 emissions. 

3.4 Summary 

Through a discussion of the methods involved in the prediction of energy consumption 

on buildings and transport sector, some important points can be summarised as follows: 

Firstly, previous research relating to the prediction of building energy and transport-

related CO2 emissions are examined and analysed. There are mainly two methods: 

bottom up and top down. The advantages and disadvantages of these two methods are 

also analysed. Then, methods in this research are also presented, which include building 

energy model, activities-based transport demand model, modal splits regression 

analysis, literature analysis, site surveys and questionnaires. Research tools used in this 

research also vary. These tools are plug-in VirVil, modelling software SketchUp, energy 

calculation engine HTB2, and regression analysis tool SPSS 20. There are also some 

challenges in this research, especially in data collection for transport-related carbon 

emissions. 

https://en.wikipedia.org/wiki/Statistical_analysis
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Chapter 4 Case Studies Introduction —High-
density Building Clusters Located around 
Passenger Railway Station in Wuhan 

4.1 Introduction 

Chapter Four selects three high-density building clusters around three stations as case 

studies. Firstly, these three Cases can represent three different locations: outer city, 

inner city and new urban districts. Secondly, data collection relating to energy use 

from buildings and travel activities from the transport sector is much easier to 

obtain for these three Cases. The purpose of this chapter is to get a better 

understanding of the background of three cases before modelling in the following 

chapter. The information relates to the geographic and climate conditions, and the 

general built environment development focus on buildings and the transport, all of 

which can help get a comprehensive understanding of these three case studies. 

4.2 The geographic location of Wuhan 

Wuhan is in the middle of Hubei Province, as well as the capital city of this province. 

It is located in the east of Jianghan Plain at the intersection of the Yangtze and Han

rivers. Water bodies account for 26.1 % of the total Wuhan land area (Huang and Yin 

2015). The Yangtze River and the Han River converge in the centre of the city and 

divide Wuhan into three parts— Wuchang, Hanyang, and Hankou (Fig. 4.1) — 

Wuhan’s Three Towns. Wuhan is also known as "Jiusheng Tongqu” (the nine provinces 

‘leading thoroughfare’); it is a major transport hub, with three railway stations (Fig. 

4.2), connecting to the major cities in mainland China (Wikipedia 2016b). Aside from 

this, Wuhan is known as the ‘‘City of Lakes’’ since 166 lakes are distributed around the 

https://en.wikipedia.org/wiki/Han_River_%28Hanshui%29
https://en.wikipedia.org/wiki/Yangtze_River
https://en.wikipedia.org/wiki/Jianghan_Plain
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city. Among them, 43 lakes are in urban areas, and 123 lakes are in the suburbs. Hence, 

conservation of water resources is a key issue and concern (Li et al. 2010). 

Figure 4.1 The city of Wuhan 

 Source: http://www.china-tour.cn/Wuhan/Wuhan-City-Map.htm

http://www.china-tour.cn/Wuhan/Wuhan-City-Map.htm
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Figure 4.2 The geographical location of the three railway stations in Wuhan  

Source: Baidu images 

4.3 Climate characteristics in Wuhan 

Wuhan is in the hot summer and cold winter zones and experiences a severe climate in 

summer and winter periods. It is also known as one of the three “furnace cities” in China. 

It is extremely hot in July and August, as well as freezing during the cold winter period 

in January.  

The average annual temperature of the city is around 18℃, while the lowest average 

temperature is minus 10 °C in January. The highest temperature usually occurs in July

and August and can reach over 40 °C (Wu 2015). Figure 4.3 shows the daily dry bulb 

temperature in Wuhan city. It can be seen that without the effect of direct solar radiation, 

http://www.chinahighlights.com/wuhan/weather/august.htm
http://www.chinahighlights.com/wuhan/weather/july.htm
http://www.chinahighlights.com/wuhan/weather/january.htm
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the temperature can reach almost 40 °C. As for the total monthly solar radiation, the 

peak value happens in July with more than 650 MJ/m2 (Fig. 4.4 shows). When it comes 

to the relative humidity, the monthly value is range from 60 % to 80% as shown in Fig. 

4.5. 

Figure 4.3 The statistics of daily dry bulb temperature in Wuhan 

Source: Special weather dataset for China's building thermal environment analysis 

Figure 4.4 Total monthly solar radiation in Wuhan 

Source: Special weather dataset for China's building thermal environment analysis 
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Figure 4.5 Relative humid in Wuhan  

Source: Special weather dataset for China's building thermal environment analysis 

Moreover, Wuhan is one of the most important cities in central China for its location. 

Due to it being one of the most major transport hubs in central China, Wuhan is 

increasingly attracting domestic and international investment from other areas in the 

world, transforming the city into one of the largest economic centres and low carbon 

city in China. 

4.4  General characteristics of the built environment in Wuhan 

The built environment is the physical form of surroundings. It includes land use patterns, 

large and small scale built and natural features (e.g., architectural details and urban 

planning.), and the transport system (the facilities and services that link one location to 

another) (Forsyth et al. 2008; Brownson et al. 2009). The term is used when referring 

to those surroundings created: 
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 for humans, 

 by humans, and 

 to be utilised for the human activity. 

The pressures of high population density and urbanisation bring many problems for the 

built environment in Wuhan city. Massive energy consumption and CO2 emissions, 

heavy traffic volume, and unsustainable buildings constructed from the 1970s to the 

1990s are easily found around the stations. Selected important issues are discussed in 

this research including energy consumption and CO2 emissions from buildings and 

transport, and the land use development in the built environment in Wuhan city. 

Firstly, there is high electricity demand due to a large number of population and the 

increasing level of construction in Wuhan city, especially in residential buildings. 

Population distribution among these three districts from the year 2011 to 2016 is shown 

in Fig. 4.6. There is the largest population in Wuchang district. Besides, according to 

the survey, the areas with the highest residential use and commercial buildings for 

business also have high energy demand. 
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Figure 4.6 Population statistics in three districts in Wuhan city  

Source: Statistics Bureau of Wuhan Municipality (2017) 

Notes: Wuchang Station is in Wuchang District; Hankou Station is in Jianghan District; Wuhan 
Station is in Hongshan District but closer to Qingshan District 

Figure 4.7 Floor spaces of residential construction in Wuhan city  

Source: Statistics Bureau of Wuhan Municipality (2017) 
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construction in Wuhan from over 45 million square metres in 2011 to over 80 million 

square metres in 2016. In contrast, a tiny increase was observed in commercial 

buildings, and the total floor space of residential buildings was largely more than that 

of public buildings. In short, the increase in floor space of buildings and larger 

population contribute to the high-energy demand in cities. 

Figure 4.8 Electricity consumption from commercial and residential use in Wuhan city  

Source: Statistics Bureau of Wuhan Municipality (2017) 

Figure 4.8 illustrates that there was an upward trend in the electricity consumption from 

residential buildings from the year 2011 to 2016，but it was steady for commercial 

buildings (referring to commerce, hotel and catering service). Moreover, the total 

annual electricity consumption from residential buildings was largely higher than that 

of commercial buildings, by more than two times by the year of 2016 due to the larger 

floor area of residential buildings than commercial buildings. More importantly, the 

annual electricity consumption in residential and commercial buildings can be 

calculated from Fig. 4.8 and Fig. 4.9, which ranged from 92 to 134 kWh/ m2 / year in 
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residential buildings and 278 to 426 kWh/ m2 / year in commercial buildings from the 

year of 2011 to 2016.  

Secondly, transport is one of the main elements which has a strong relationship to the 

increase in carbon dioxide emissions. From the year 2011 to 2016, the number of cars 

in Wuhan more than doubled from 0.95 million to 2.30 million (Statistics Bureau of 

Wuhan Municipality 2017) (Fig. 4.9 shows). And this trend will continue in the future. 

By contrast, there was a steady decrease in motorcycles. In a short, cars increase and 

motorcycles decrease for personal use have played a significant role in transport-related 

carbon dioxide emissions.  

Figure 4.9 Number of civil vehicles in Wuhan City 

Source: Statistics Bureau of Wuhan Municipality (2012-2017) 

Thirdly, land usage is another issue involved in controlling the size of a city and the 

strength of the urbanisation, especially around the stations. The land use around the 

stations has a feature of "3-Ring" spatial structure pattern in site selection, and the 

construction of high-speed rail stations is shown in Fig. 4.10. The Ring I, ranging from 
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1 to 1.5 km2, is the area that provides direct services to passengers such as hotels and 

restaurants. Ring II further extends 3 to 5 km2 outwards and is a functional sprawling 

and supplemental area to Ring I, with commercial and office use, while Ring III is the 

indirect backup area that provides the service to residential use (Hao 2008). The 

functional characteristics of the surroundings in high-speed rail terminal feature within 

Ring I, transit to Ring II, and evolve into Ring III. Hence, the emphasis on planning 

development and transport management should be placed in Rings I and II.  

Figure 4.10 “3-Ring” spatial structure pattern 

Figure 4.11 and Figure 4.12 are typical examples of the land development around the 

Hankou station. The surroundings of the stations feature commercial and office use and 
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are linked with mixed-use development. This feature maximises land use through 

resource sharing, minimises travel demands, and makes the journey more convenient.  

Figure 4.11 3-Ring land use development around Hankou Station 
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Figure 4.12 Land use around the Hankou Railway Stations  

Table 4.1 provides the general characteristics of the 3-Rings development around the 

stations. It analyses the function, scale, and area affected by each ring. 

Table 4.1 Characteristics analysis within each ring around the stations  

Ring Ring I Ring II Ring III
Distance to the station 

(km)
0.5~0.8 <1.5 >1.5 

Functions Traffic service Direct influence Indirect influence 

Influence of station on 
spatial layout 

Direct control Direct influence No direct correlation 

Major impact aspects 
Road and land layout; 
function and land price

Function, population, land 
development

No direct correlation 

Boundary definition 
Adjacent block, the 

borderline clearly defined 
The surrounding neighbourhood, 

boundary weakening 
Not directly reflected in the 
function, boundary opening 

Highly correlated 
features 

Catering, hotel, business, 
offices. 

Businesses, offices, residence, 
education, and industry 

No direct correlation 
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4.5 Summary 

This chapter mainly introduces the characteristics of three selected cases around 

Wuchang railway station, Hankou railway station, and Wuhan station. These features 

encapsulate the geographic and climatic conditions in Wuhan, and the general built 

environment development (buildings and the transport). It shows that the energy 

consumption and carbon dioxide emissions from buildings and transport have an 

upward trend due to the increase of construction in buildings and the rise of vehicles 

numbers. Moreover, the pressure on the built environment is growing with the 

convenience brought by urbanisation and the increasing vehicles available. In short, the 

rising trend of building energy consumption and massive transport carbon dioxide 

emissions can hinder the low carbon city development in Wuhan.  
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Chapter 5 Modelling Building Clusters Energy 
Consumption in Three Case Studies  

5.1 Introduction 

Chapter Five focuses on answering the question:  

“for the fundamental research related to the quantification of energy consumption from 

building clusters, what kinds of methods can be used, and how can technical tools be 

used to quantify carbon dioxide emissions from building clusters?”  

China has attached great importance to developing low carbon cities around HSR (high-

speed railway) stations recently, called high-speed railway new urban districts. The 

related research and actions are still at an initial stage and tend to revolve around 

energy-efficient buildings and sustainable transport planning. Although there are some 

limited evaluation systems and specific green building regulations that have been 

officially published by adopting existing regulations and systems from developed 

countries, such as the UK and US, a lack of fundamental research involved in China’s 

practical situation still exists. For example, the large discrepancy in energy use from 

different building types and high carbon emissions from transport seriously hinders 

research involved in low carbon development. 

Therefore, this chapter aims to apply technical tools to simulate energy consumption 

from different building types (residence, office, commerce) around three stations by 

combining HTB2, VirVil Plug-in, and the modelling tool SketchUp. The simulation is 

based on building energy model to understand and analyse the energy performance of 

different building types. Additionally, the results explain differences of energy 

consumption of various building types. The outline of this chapter is presented in Fig. 
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5.1. 

Figure 5.1 The framework of this chapter 

Building energy modelling around the stations 

Hankou station Wuchang station Wuhan station 

Cooling/heating demand and various gains analysis 

Operational energy demand from building clusters 

Energy supplied by electricity and gas 

Carbon dioxide emissions quantification from building clusters (electricity + gas) 
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5.2 Case Study 1: Modelling building clusters around the Hankou 

station 

5.2.1 Basic description in the study area 

The study area of Case 1 is on the south-west of the Hankou station, within around one 

kilometre of the station (Fig. 5.2). According to the investigation, there are four types 

of buildings: residential, commercial, office, and hotel buildings. Residential buildings 

consist of the Donghang Residential community and the Hejiadun community. Public 

buildings in the Hejiadun community include the Wuhan Bureau of Education Building, 

the Wuhan Building of Science, and the Jiangfeng Building. The survey finds that most 

of the buildings in this study area are for residential use, representing 47%, followed by 

office purposes (36%), and then commercial purposes (14%), as shown in Fig. 5.3. 

Moreover, most of the residential buildings were built before the year 2000, while the 

public buildings were built at around the year 2005. The floor area with each building 

type is presented in Table 5.1. 



133 

Figure 5.2 The geography of the study area from Case 1 

Source: Google Earth 

Table 5.1 The floor area of different building types around Hankou station from the investigation 

Building classification Area (㎡) Area（Total）㎡

Households 75073 75073 

Public 
Commercial 22187 

84206 Hotel 4881
Office 56938
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Figure 5.3 The proportion of building classification from the investigation 

According to the survey, there are 536 households with around 1760 people for 

residential use. Other three public buildings are around 2054 people. Therefore, the total 

population is around 3800. The detailed information of the population in the study area 

is summarised in Table 5.2. 

Table 5.2 The statistics of the population in the study area 

For the Donghang Residential Community, there are three residential buildings built in 

47%

14%

3%

36%
Households

Commercial

Hotel

Office

Number of people Equation to calculate 
Estimated methods 

description

Residential buildings 1761 426*3*93.2%+210*3*90% 
No. of households × persons 
per households × Occupant 

rate
Wuhan Building of 

Science
1000 Data provided by the Property 

Jiangfeng Building 624 13*3*2*8 
Storeys × No. of households 

per staircase× No. of units 
× persons per household

Wuhan Bureau of 
Education Building

430 Data provided by the official website 
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the year 1997, with 210 households in this community, and the occupancy rate is about 

90%. According to the on-site survey, it has been found that these three buildings were 

the same ways for the construction of the façade, glazing, etc. The U value for the 

external walls is very high, as these buildings were not regulated by energy-saving 

standards at the time of the construction. As a result, the electricity consumption, 

especially during the summer and winter periods, is considerably higher according to 

the reports from residents. 

For the Hejiadun Community, the function of the different buildings is diverse, 

including hotel, residential, and elderly community services use. However, the majority 

are for residential use. There are 426 households in the community, with 93.8% 

occupancy rate according to the survey. The remaining buildings are public buildings 

for office and commercial uses. The detailed data collected for this study area are 

summarised in Table 5.3.  
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Table 5.3 The statistics of the study area around Hankou Railway Station   Source: on-site survey 

ID Name Building classification Storeys Area 
（Total）㎡

No. of Parking lot 

1 

Donghang Community Household 

7 6990 

300 2 7 6931 

3 7 8618 

4 

Hejiadun Community 

Household 

7 9328 

82 

5 7 10044 

6 7 6563 

7 Hotel 8 4881 

8 
Household 

9 7199 

9 7 4532 

10 Household 4 2510 

11 Wuhan Education Bureau Office 12 12141 

12 Wuhan Building of Sci and Tech Office 20 44797 20 (on the ground) 90(underground) 

13 Hejiadun Apartment Household 12 12358 

14 Jiangfeng Building Commercial 13 22187 25 (on the ground) 40 (underground) 
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5.2.2 Simulation conditions setting for building clusters around 

Hankou station 

The simulation conditions include the meteorological conditions, the materials, 

construction of the buildings, glaze ratio of the buildings, and the interior design 

condition such as the set of services and diary. This section presents the meteorological 

conditions, internal heat gains, heating and cooling schedule, and building construction 

and materials in the HTB separately.

Meteorological conditions 

The meteorological parameters are derived from the typical meteorological year (TMY) 

of Wuhan city and are used for energy simulations with HTB2 on the energy models to 

measure the energy consumption of cooling/heating from thirteen buildings. 

Meteorological data is available from the weather data of the EnergyPlus website 

(http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm), which 

was extracted and converted from a “. epw” file into a “.met” HTB2 under logical file 

by using the HTB2 Weather File Software. 

Internal heat gains 

The internal heat gains are closely related to lighting, small power, and occupancy. The 

contributions of heat gains from lighting, small power, and occupant in buildings cannot 

be ignored as those heat gains have a big impact on an overall cooling and heating 

demand, and thus it is necessary to calculate their heat output. The heat generated by 

occupants depends on everyone’s level of activity. Table 5.4 shows the heat output rate 

of human bodies for various activities (Bansal et al. 1994). 
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Table 5.4 Heat production rate in a human body 

Source: Bansal et al. (1994) 

Lighting is also taken as one of the internal heat gains. A large portion of the energy used 

for lighting is emitted as heat, and the remainder is emitted as light, which is then 

converted into heat. Consequently, the total number of lamps in buildings when in use, 

must be considered as internal heat gains. Another source of heat gains is due to small 

power (televisions, computers, etc.), which should also be included due to their heat 

output. Figure 5.4 illustrates the interaction of outdoor and internal heat gains of 

buildings.

Figure 5.4 Heat exchange processes between a building and external environment  

Source: Lin (2013) 

Due to the lack of official benchmarks for internal heat gains in China at present, this 

Activity The rate of heat production (w/m2)

Sleeping 35 

Resting 45 

Sitting, Normal office work 55 

Typing 85 

Slow walking (3 km/h) 110 

Fast walking (6 km/h) 140 
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research estimates the internal heat gains of buildings based on CIBSE Guide A (2015) 

and related Design Standards for Energy Efficiency of Residential and Public buildings 

in China. The general use of an office building is taken as an example, with an average 

density of office buildings at 10m²per person according to Design Standard for Energy 

Efficiency of Public Buildings (MoHURD 2015). The corresponding internal heat 

outputs from a typical office building can be checked in the CIBSE Guide A (2015) in 

Table 5.5 

Table 5.5 Benchmark values of internal heat gains for general office use in the UK 

Source: CIBSE Guide A (2015) 

Although the guide does not give the value of the internal gains when the occupant 

density is 10 m2/person, an estimate of this value can be interpolated from the given 

data. This yield a value for heat gains in the office building as 45 W/m2. 

For residential buildings, the corresponding internal heat gains can be estimated to be 

5 W/m2 according to the Design Standard for Energy Efficiency of Residential 

Buildings in the Hot Summer and Cold Winter Zone (MoHURD 2010, P19). For 

commercial and hotel buildings, these heat gains can be defined as in Table 5.6

Heating and cooling 

Wuhan is in hot summer and cold winter zone. The operational schedule of heating and 

cooling periods can be determined from the Design Standard for Energy Efficiency of 

Occupant 
density 

(m2/Person) 

Sensible heat gains (W/m2) Latent heat gains (W/m2) 

Lighting people Equipment people 

8 12 10 20 7.5 

10 12 8.35 17.5 6.25 

12 12 6.7 15 5 
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Residential Buildings in Hot Summer and Cold Winter Zone (2010), and Design 

Standard for Energy Efficiency of Public Buildings (2015). The detailed information for 

this is outlined in Table 5.6: 

Table 5.6 Heating and cooling schedule 

Notes: Heating/cooling schedule refers to the Design standard for energy efficiency of residential 
buildings in hot summer and cold winter zone (2010); cooling/heating setback refers to the design 
standard for energy efficiency of public buildings (2015); air changes refer to the guidance of 
design standard for energy efficiency of public buildings (2007). 

Operational Schedule 

The operational schedules, i.e. the running time of heating and cooling systems, lighting, 

small power, ventilation, and occupants' activities during the period of use for the 

simulation, were defined through practical investigation and the national standards. 

Furthermore, the operation schedules in commercial buildings do not stop at the 

weekends. The detailed information for the different buildings type is outlined in Table 

5.7. 

Building type Heating/cooling schedule Setpoint (℃) 
Heat gains 
(W/m2) 

Air changes per hour 

Residential 
Heating 

08/Nov—04/Mar of the 
following year

18 
5 1.0 

Cooling 6/May—8/Sep 26 

Office 
Heating 

08/Nov—04/Mar of the 
following year 

20 
45 2.0 

Cooling 6/May—8/Sep 26 

Commercial 
Heating 

08/Nov—04/Mar of the 
following year 

18 
50 2.5 

Cooling 6/May—8/Sep 25 

Hotel 
Heating 

08/Nov—04/Mar of the 
following year

22 
20 2.0 

Cooling 6/May—8/Sep 25 
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Table 5.7 Interior condition and diary setting for different building classifications  

Source: The design standard for energy efficiency of residential buildings in hot summer and cold 
winter zone (2010); the design standard for energy efficiency of public buildings (2015) 

Building Construction and Materials 

The building layout, glazing ratio, location of buildings, as well as the site shading, 

which is affected by the surroundings and building orientation, are all modelled in 

SketchUp and defined in HTB2 through the VirVil Plug-in. The construction materials 

for building components and their thermal properties are specified in separate files used 

during the simulation run. Construction materials of the building components include 

roof construction, external and internal walls, internal floors and ceilings, ground 

materials, and the materials used in external windows. Since most of the buildings in 

the study area were built in the 1990s (especially for residential use), and all their façade 

constructions are very simple. As a result, their U value is much higher than the national 

standards’ level. However, there are some upgrades in the construction of public 

Residential 

building 
Office building Commercial building Hotel building 

Heating/cooling 

Setpoint & 

operational 

schedule 

Mon-Fri         
00:00 --

08:00&18:00--24:00 
Sat-Sun 00:00-24:00 

18/26℃

Mon-Fri 07:00 
18:00；20/26℃

Mon-Sun 08:00--
21:00；18/25℃

Mon-Sun 0:00-
24:00；22/25℃

Internal gains（lighting, 
occupants, and small power）

Heat gains 5 W/㎡ 45W/㎡ 50W/㎡ 25W/㎡

Operational 

schedule 

Mon-Fri 00:00-
08:00&18:00-

24:00；Sat-Sun 
00:00-24:00 

Mon-Fri 08:00-18:00 Mon-Sun 09:00-21:00 Mon-Sun 0:00-24:00 

Ventilation 
Weekday 

0.5,1.0,1.0, 26℃ 0.5,2.0,2.0,26℃ 0.5,2.0,2.0,26℃ 0.5,1.0,1.0,26℃

00:00-08:00&18:00-
24:00 ON 

07:00-18:00 ON 08:00-21:00 ON 00:00-24:00 ON 

Weekend 00:00-24:00 ON OFF 08:00-21:00 ON 00:00-24:00 ON 
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building, especially for the exterior walls. It was assumed that buildings within the same 

category have a similar construction although there are little differences as they are 

constructed in different ages and have different functions. As a result, there were at least 

two construction files– residential and public files – as shown in Table 5.8. 

Table 5.8 The real construction details for different building types around Hankou station 

Building Types Construction U-Value（W/m2/℃) Building Materials 
Thickness
（mm）

Residential 
building 

Exterior Wall (From 
Outside to Inside) 

1.42 

gravel 10

cement mortar 15

red brick 240

cement mortar 20

Interior Wall 1.61 

cement mortar 20

red brick 200

cement mortar 20 

Exterior Window (From 
Outside to Inside)

5.4 glass 4 

Floor-Ceiling (From Top 
to Bottom) 

3.46 

marble 10 

cement mortar 25 

Ferro concrete 100 

cement mortar 20 

Ground (From Top to 
Bottom) 

1.41 

marble 10

cement mortar 25

C20 fine aggregate concrete 100

compacted clay 500

Roof (From Top to 
Bottom) 

1.02 

cement mortar 30

sand 25

asbestos tiles 6

cement mortar 20

aerated concrete block B06 150

Ferro concrete 120

lime and cement mortar 20

Building Types Construction U-Value（W/m2/℃) Building Materials 
Thickness
（mm）
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Table 5.9 Glazing ratio setting for four building categories 

5.2.3 Simulation of building clusters  

Following the building classifications defined in the previous section, there are four 

prototypes in this case relating to commercial, residential, office, and hotel. The 

physical dimensions of buildings are based on Google Earth images. The real 

Office, 
commercial, and 
hotel buildings 

Exterior Wall (From 
Outside to Inside) 

0.85 

granite 20

Cement mortar 30

FH inorganic foam insulation 
board

30 

Red brick 240

Cement mortar 20

Interior Wall 1.61 

Cement mortar 20

Red brick 200

Cement mortar 20

Exterior Window (From 
Outside to Inside)

5.32 glass 6 

Floor-Ceiling (From Top 
to Bottom) 

3.35 

marble 20

Cement mortar 30 

ferroconcrete 100

Cement mortar 20 

Ground (From Top to 
Bottom) 

1.40 

marble 20

Cement mortar 30 

C20 fine aggregate concrete 100

Compacted clay 500 

Roof (From Top to 
Bottom) 

1.02 

Bitumen felt 6

Cement mortar 20 

Light concrete screed 20

Aerated concrete block 150 

ferroconcrete 120

Lime and cement mortar 20 

Building type Glazing ratio
Office

50% Commercial
Hotel

Residential 30% 
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construction, regular diary, and heating and cooling schedule were recorded through the 

on-site survey. Building cluster energy modelling from SketchUp 2015 is presented in 

Fig. 5.5, and the 3D modelling is shown in Fig. 5.6. Afterwards, the results of the 

monthly gains are presented in line and bar graphs, respectively.  

Figure 5.5 Modelling four building types in the study area 
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Figure 5.6 The 3D model in the study area  

Source: http://wuhan.edushi.com/

5.2.4 Results description and analysis  

In this section, the results of the simulation are presented classified by building types 

relating to heater gains, cooler gains, solar gains, incidental gains, fabric gains, and 

ventilation gains. Then, after the description and analysis of the results, the overall 

analysis and summary are concluded. 

Figure 5.7 and Figure 5.8 show a different monthly gains distribution for all office 

buildings. More specifically, incidental and solar gains are the major and stable factors 

to heat buildings throughout the year. Moreover, incidental gains are always markedly 

more than the solar gains— almost triple the amount of the solar gains. Secondly, the 

fabric gains fluctuate throughout a year. From September to June, buildings lose heat 

partially due to the fabric, but the fabric increases the heat retention from June to 

September, which would increase the cooling demand. Thirdly, ventilation always 

causes heat loss from buildings to the outside throughout the whole year. Fourthly, the 

http://wuhan.edushi.com/
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figure shows that there is a significant cooling demand in July, but a lower heating 

demand in January. In short, the reduction of incidental gains relating to cooling 

demand should be given priorities.  

Figure 5.7 The monthly gains from the heater to vent for office buildings 

Figure 5.8 The distribution of monthly heat gains from vent to heater for office buildings  
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Figure 5.9 and Figure 5.10 show that all commercial buildings have different gains 

distribution during the year. Firstly, incidental and solar gains are the major factors to 

heat buildings. Moreover, incidental gains are considerably greater than the solar gains. 

Secondly, the fabric gains are markedly different each month. From September to June, 

buildings lose heat due to fabric gains but increase heat from June to September. In 

contrast, the ventilation gains usually cause buildings to lose heat. Thirdly, the figures 

show that there is substantial cooling demand in July, but less heating demand.  

Figure 5.9 The monthly gains from the heater to vent for commercial buildings 
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Figure 5.10 The distribution of monthly heat gains from vent to heater for commercial buildings 

The following two modelling results (Fig. 5.11 and Fig. 5.12) show different gains in 

residential buildings. Specifically, incidental and solar gains are the major stable heat 

sources for buildings, but their effects are almost equal, which is very different from 

public buildings. Secondly, the fabric gains fluctuate throughout the year. From 

September to June, the fabric makes buildings lose heats while increasing the total heat 

from June to September, which would increase cooling demand. In contrast, ventilation 

always makes buildings lose heats throughout the whole year. Thirdly, the figures show 

that there is a significant heating demand in December and January, but less cooling 

demand in July and August. Moreover, the peaking heating demand is markedly higher 

than the peaking cooling demand. In short, for residential buildings, the reduction of 

heating demand shows huge potential for energy saving. 
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Figure 5.11 The monthly gains from heater to vent for residential buildings 

Figure 5.12 The distribution of monthly heat gains from vent to heater for residential buildings 

Figure 5.13 and Figure 5.14 show different monthly gains in hotel buildings. Firstly, 

incidental and solar gains are the major heat source for buildings. Moreover, incidental 
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throughout the year. In contrast, ventilation always makes buildings lose heat. Thirdly, 

the figures show that there is a significant requirement for cooling in July and August, 

and less of a requirement for heating. In short, for hotel buildings, reducing incidental 

gains provides huge opportunities for cutting down energy consumption. 

Figure 5.13 The monthly heat gains from the heater to vent for hotel buildings 
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Figure 5.14 The distribution of monthly heat gains from vent to heater for hotel buildings 

The modelling results in Fig. 5.15 and Fig. 5.16 show the heat gains from four building 

types (all buildings together). Firstly, the incidental and solar gains are two principal 

stable heat sources throughout the year, and the incidental gains always outweigh the 

solar gains. Secondly, the fabric gains fluctuate dramatically throughout a year. More 

specifically, from June to September, it becomes the primary heat source, which might 

increase the cooling demand; from September to June of the following year, the fabric 

gains make buildings lose heat. In contrast, ventilation gains always have a negative 

effect to heat buildings during the year. Finally, the figures show that there is a 

significant cooling demand in July and August, as well as huge heating demand in 

December and January. Additionally, the highest cooling demand is almost the same as 

the highest heating demand. 
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Figure 5.15 The monthly heat gains from the heater to vent for all buildings 

Figure 5.16 The distribution of monthly heat gains from vent to heater for all buildings 

The modelling results contribute to understanding the energy performance of buildings, 

as well as the different gains of four building types from Case 1. Moreover, differences 
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incidental and solar gains are always two stable heat resources to the buildings 

regardless of their building types and building numbers. The huge cooling demand is 

needed in commercial, office and hotel buildings, and more heating demand in 

residential buildings. Reducing the amount of incidental and solar gains can be the 

biggest opportunities to save energy for buildings. 

5.2.5 Energy demand to energy supply  

There is a broad range of benchmarks for buildings’ operating energy consumption, 

depending on what is included, such as space heating, cooling, lighting, hot water, and 

small power. Some benchmarks include all the above aspects, and some only partially 

cover them. The energy demand relates to the thermal loss associated with heating, 

cooling, and the power consumption. The energy supply refers to the delivered and 

supplied energy to the buildings. The difference between energy demand and energy 

supply relates to the system efficiency and internal loss ratio through transport and 

distribution. The energy supply is sometimes described regarding the primary energy 

sources, including the gas, oil, coal, and other fuels associated with electricity 

generation in the power stations. The carbon dioxide emissions are associated with the 

primary energy use. Figure 5.17 describes the relationship between energy demand and 

energy supply. 
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Figure 5.17 The relationship between energy demand and supply 

Source: Jones et al. (2011) 

Figure 5.18 The monthly heating and cooling demand for all buildings 
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while the largest heating demand in December and January as these periods correspond 

to an extreme weather condition. Moreover, the highest heating demand was almost the 

same as the highest cooling demand. Detailed information about the annual heating and 

cooling demand from different buildings is summarised in Table 5.10. 

Table 5.10 Summary of annual heating and cooling demand from the simulation 

Table 5.10 illustrates that residential buildings have the highest annual heating energy 

consumption of around 5.2 GWh/ year, while office buildings have the largest cooling 

demand (3.7GWh/ year). However, once one considers the building floor area, 

commercial buildings have the greatest cooling demand, with around 129 kWh/m2/ year, 

followed by hotel buildings with 114 kWh/m2/ year. In contrast, the residential 

buildings still keep the largest heating demand with about 68 kWh/m2/ year. In addition, 

another obvious characteristic is that out of these four building categories; only 

residential buildings require more heating demand than cooling demand. 

Building type 
Building floor 

area (m2) 

heating demand 

(kWh/ year) 

cooling demand 

(kWh/ year) 

heating demand 

(kWh/m2/year) 

cooling demand 

(kWh/m2/year) 

Residential_hankou 76857 5,252,873 -893,206 68 -12 

Commercial_hankou 23565 286,454 -3,036,519 12 -129 

Office_hankou 58542 1,296,668 -3,636,876 22 -62 

Hotel-hankou 4917 257,974 -559,893 52 -114 
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Figure 5.19 Annual energy demand from different building types  

Figure 5.19 shows the energy demand from heating to hot water. Different building 

types have greatly varied in energy demand for services from hot water to heating. For 

residential buildings, heating was the primary energy demand, while cooling was the 

primary energy demand for commercial buildings. In summary, commercial buildings 

have the largest total annual energy demand with 309 kWh/m2/year. In contrast, 

residential building has the lowest total energy demand with 113 kWh/m2/year (Table 

5.11). 

Table 5.11 The summary of energy demand in each building type 

Based on the data of energy demand from each component in Table 5.11, electricity 
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supply can thus be predicted according to Table 5.12 by the power ratio, energy systems 

efficiency and energy sources. In this research, the system efficiency sets at 3 for 

cooling, and 2.8 for heating. 

Table 5.12 Power ratio and system efficiency used for heating and hot water（electricity supply）

Figure 5.20 and Table 5.13 presents the annual electricity supply. It shows that 

commercial and hotel buildings have the highest electricity supply, standing at 186 

kWh/ m2/ year and 191 kWh/ m2/ year respectively. They are markedly high than that 

of office and residential buildings (88 kWh/ m2/ year vs.62 kWh/ m2/ year). 

Heating Hot water

Residentail_hankou 
Power ratio 1 0.7

System Efficiency 2.8 0.8 

Commercial_hankou 
Power ratio 1 0.4

System Efficiency 2.8 0.8 

Office_hankou 
Power ratio 1 0.6

System Efficiency 2.8 0.8 

Hotel_hankou 
Power ratio 1 1

System Efficiency 2.8 0.8 
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Figure 5.20 Annual energy supply per square metre by electricity 

Table 5.13 Summary of the overall electricity supply in each building type 

Figure 5.21 and Table 5.14 present the gas supply among these building types. Figure 

5.21 shows that commercial buildings have the largest gas supply with 62 kWh/ m2/ 

year in hot water compared to 8 kWh/ m2/ year in residential buildings and 6 kWh/ m2/ 

year in office buildings. Hotel buildings do not adopt gas for hot water use. Meanwhile, 

none of the four building types uses gas for heating purpose.  
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Table 5.14 Gas ratio and efficiency setting for four building types in heating and hot water（gas 
supply ）

Figure 5.21 Annual energy supply per square metre by gas 
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Heating Hot water

Residence_hankou 
Gas ratio 0 0.3

System Efficiency 0.84 0.85 

Commercial_hankou 
Gas ratio 0 0.6

System Efficiency 0.84 0.85 

Office_hankou 
Gas ratio 0 0.4

System Efficiency 0.84 0.85 

Hotel_hankou 
Gas ratio 0 0.00

System Efficiency 0.84 0.85 
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Finally, carbon dioxide emissions are predicted in Table 5.15 based on the emission 

factors and internal loss ratio by transport and distribution.  

Table 5.15 Annual operational carbon dioxide emissions from buildings 

Notes: carbon dioxide emission factors (0.92) is based on the reference: NDRC (National 
Development and Reform Commission) 2016. 

5.2.6 Measurement vs simulation 

The electricity demand for 14 buildings around Hankou railway station were measured 

from the Power Supply Company in two different places. One area for providing 

electricity consumption of public buildings is on Xinhua Road, and the location of the 

source of electricity provision for residential buildings is on Changqing Road. The 

electricity consumption was recorded from January 2015 to April 2016. The following 

three tables (Table 5.16 to Table 5.18) present the results of electricity consumption as 

well as the gas demand. 

Operating carbon Electricity Gas Total 

Internal loss ratio (through transport and distribution) 0.07 0.07 

Carbon dioxide emission 

factor 
tCO2/MWh 0.92 0.20 

Carbon dioxide emission 

tCO2/a 

10440 

Description: (net electricity supply(kWh/a)/1000)/ 

(1-0.07) *0.97 

521 

Description: (gas 

supply(kWh/a)/1000)/ 

(1-0.07) *0.20 

10961 

kgCO2/m2/a 64 3 67 
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Table 5.16 The real electricity consumption from public buildings  

Source: Data provided by Xinhua Power Supply Business Office  

Table 5.17 The real electricity consumption from Donghang community  

Source: Data provided by Changqing Power Supply Business Office  

Year Month 

Electricity demands from Public buildings(kWh) 

Wuhan Building of Science and 
Technology (office) 

Wuhan 
Education 

Bureau (office) 

Jiangfeng 
Building 

(commerce) 

2015 

Jan. 122400 148950 371880 

Feb. 157584 111006 314280 

Mar. 132816 103554 291120 

Apr. 68688 87534 334920 

May 57048 80478 350280 

Jun. 82056 124902 402840 

Jul. 118776 164106 528960 

Aug. 145680 128358 651720 

Sep. 111216 206445 555840 

Oct. 44736 95025 331800 

Nov. 40944 81009 311880 

Dec. 57168 88113 304080 

2016 

Jan. 57168 242736 309840 

Feb. 217752 170274 284760 

Mar. 109416 116700 254400 

Apr. 98952 91953 283800 

Cumulative values 1622400 2041143 5882400

Year Month 
Electricity demands from Donghang 

Community（kWh）

2015 

Jan. 65120
Feb. 64328
Mar. 51088
Apr. 41188
May 31456
Jun. 44800
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Table 5.18 The real electricity consumption from Hejiadun community  

Source: Data provided by Changqing Power Supply Business Office  

Table 5.16 to Table 5.18 show the real electricity consumption of the fourteen buildings 

from the January of 2015 to the April of 2016 provided by the Changqing and Xinhua 

Power Supply Business Office. The disadvantage is that it is impossible for these data 

to distinguish the electricity consumption in each component (such as the energy 

Jul. 53200
Aug. 86660
Sep. 59224
Oct. 32188
Nov. 37548
Dec. 59036

2016 

Jan. 76324
Feb. 86988
Mar. 40652
Apr. 37292

Cumulative values 867092 

Year Month 
Electricity demands from Hejiadun 

community（kWh）

2015 

Jan. 133415
Feb. 103873
Mar. 151990
Apr. 94902
May 83926
Jun. 95230
Jul. 140984

Aug. 184912
Sep. 139876
Oct. 81122
Nov. 92462
Dec. 130214

2016 

Jan. 152999
Feb. 113640
Mar. 116538
Apr. 101875

Cumulative values 1917958
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consumption on hot water, heating, cooling, lighting ), as well as individual’s building 

energy consumption, because the power company only provides the energy 

consumption for the building cluster as a whole. The measured result is smaller than 

the simulated, and this was expected. Several reasons can explain this discrepancy. 

Firstly, the operational schedule from the local standards in the simulation is longer than 

the real working conditions. Based on the standards, the heating periods started from 

8th November to 4th March of the following year, and 6th May to 8th September for 

cooling. Many locals even started to cool in July when it began extreme hot. In that 

case, more energy is calculated than the real situation. Therefore, higher energy 

consumption is bound to be calculated than the actual situation. Secondly, the occupant 

rate from buildings is not used at 100% for actual situations. According to the survey, 

for residential buildings, the occupant rate is around 96%, while for public buildings, 

this figure is even less. Taking Wuhan Building of Science and Technology as an 

example, there were refurbishment works taking place in the first five storeys. 

Moreover, some of the floors were unoccupied or utilised for other reasons such as 

business purposes. Finally, according to the local weather conditions, the monthly 

average humid is ranged from 70% to 80%, and this means the dehumidification is 

considered in the simulation. Therefore, the sensible and latent heat gains from 

buildings are all considered in the simulation, and this can also lead to a higher value 

than measurement.  

However, due to difficulties in data collection of gas supply, the gas data in the urban 

area is from Wuhan Statistical Yearbook-2016 ( Wuhan Bureau of Statistics 2017, P150) 

as the benchmark. For example, for residential buildings in Jianghan district, according 

to the Yearbook, the average of annual household gas consumption is 154.17 m3/ 

household/ year. In order to compare with the power consumption, the gas consumption 

is converted to the unit kWh/m2/year. Taking the gas consumption of residential 
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buildings in Case 1 for example, the result is 1716 kWh/ household /year (Conversion 

reference: https://www.businessenergy.com/gas/kwh-calculator.html), and 15 

kWh/m2/year based on the average residential floor area per household in Wuhan was 

113.4 m2 (Ye and Li 2012). For gas supply in public buildings, for example, no gas was 

used in hotel buildings, and this is based on the measurement. Table 5.19 calculates and 

summaries the annual energy demand for residential and public buildings from the 

measurements.  

Table 5.19 Energy demand in the study area from the measurement 

Table 5.20 and Figure 5.22 shows energy demands of measurements and simulations, 

respectively. 

Table 5.20 The measurement and simulation of energy demand 

Building types Floor areas 
（㎡）

The net area used by 
electricity（㎡）

Electricity 
demand(kWh/year) 

Electricity 
demand 

(kWh/ m2/ 
year)

Gas demand 
(kWh/ m2/ year) 

Total (kWh/ 
m2/ year) 

Residential 
buildings 75075 30,030 (40% floor 

area) 2,088,788 70 15 85 

Commercial 22187 19,968 (90% floor 
area) 4,411,800 221 76 297 

Office 56938 24978 (45% floor 
area) 2,747,657 110 6 116 

Hotel 4881 3905 (80 % floor 
area) 905,960 232 0 232 

Simulation Floor area (m2) 
Annual energy demand (kWh/ 

m2/ year)
Residential 76857 113 
Commercial 23565 309 

Office 58542 140
Hotel 4917 265

Measurement Floor area (m2) 
Annual energy demand (kWh/ 

m2/ year)
Residential 75075 85 
Commercial 22187 297

Office 56938 116

https://www.businessenergy.com/gas/kwh-calculator.html
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Figure 5.22 The energy demand of simulation vs measurement 

As can be seen in Fig. 5.22, the simulation result is higher than the measurement. 

However, this result is accepted, with the error range of 4% to 38%. And this 

discrepancy agreed with researchers of Reinhart and Cerezo Davila (2016), which is 

from 12% to 55% for urban scale models. Furthermore, this value is agreed with the 

statistics from the Wuhan municipality level (see Chapter 4 Fig. 4.8). The largest 

discrepancy occurred in the residential buildings (38%) and office (20%), which is 

followed by the hotel and commercial buildings. All these discrepancies can be 

explained by unstable factors such as occupant behaviours, ventilation and incidental 

gains. 
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5.3 Case Study 2: Modelling building clusters around the 

Wuchang Station 

5.3.1 Basic description in the study area 

Fu jiapo Community around Wuchang Railway is in Wuchang District, downtown area. 

There are 536 households in the community, with a permanent population of around 

1200 people (536*80%*3)—a total number of 20 residential groups. Figure 5.23 shows 

the study area (the red shaded area). 

Figure 5.23 The red shaded area around Wuchang railway station is the study areas 
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Figure 5.24 Building modelling in the study area 

As for the study area shown in Fig. 5.24, this research selects seventeen buildings for 

modelling, which can be classified into three types —residential, commercial, and 

office buildings. As for the commercial buildings, the total floor area is around 16,000 

square metres, with two underground storeys, and six above the ground with around 

800 people. The office building shaded in red, called China Construction Third 

Engineering Bureau CO., LTD (CCTEB), is a 45-storey above the ground with around 

1200 people. The other fifteen buildings are for residential use. The detailed 

information from the investigation is summarised in Table. 5.21: 
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Table 5.21 The statistics of the study area around Wuchang railway station …Source on-site survey  

Number 
Building 

classification 
Storey Units 

No. of 
households 

No. of 
offices 

No. of total 
buildings 

Area (per 
floor) ㎡

Area 
（Total）㎡

Community 
name 

1 Commercial 8 2674 16,042 Langhui·68 

2 

Household 

3 4 36 36 814 2441 

Fujiapo 
Community 

3 3 4 36 36 814 2441
4 3 4 36 36 814 2441
5 3 4 36 36 814 2441 
6 7 4 56 56 726 5084 
7 7 3 42 42 479 3355 
8 7 6 84 84 1197 8377
9 6 2 24 24 495 2973

10 5 2 20 20 432 2162 
11 5 2 20 20 479 2397
12 4 2 16 16 322 1288 
13 5 2 20 20 479 2397
14 7 2 28 28 349 2443
15 6 2 24 24 632 3793 
16 7 2 28 28 492 3444

17 Office 45 110,000 CCTEB 
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5.3.2 Simulation conditions settings for building clusters around 

Wuchang Station 

In the Case 2, most of the settings are the same as in Case 1. These settings include the 

meteorological conditions, internal heat gains, the rate of ventilation, and the 

operational schedule, but exclude building construction and materials. The building 

construction around Wuchang Railway Station has improved, especially in the U value 

of the external wall and the windows. Table 5.22 presents the real construction details 

of different building types from the investigation. 

Table 5.22 The real construction information for different building types around Wuchang station 

Building Types Construction U-Value（W/m2/℃℃) Building Materials 
Thickness

（mm）

Residential 

Building 

Exterior Wall 

(From Outside to Inside) 
0.69 

Cement Mortar 20

B06 Aerated Concrete Block 200 

FH Inorganic Foam Insulation 
Board

30 

Cement Mortar 20 

Interior Wall 0.98 

Cement Mortar 10

B06 Aerated Concrete Block 200 

Cement Mortar 10

Exterior Window (From 

Outside to Inside) 
2.8 

Glass 6

Cavity (Argon) 9 

Glass 6

Floor-Ceiling 

(From Top to Bottom) 
1.67 

Timber Floor 18

Polyethylene Foam Plastic 2

Core-Board 18 

Waterproof Layer 2 

Cement Mortar 20

Ferro concrete 100 

Cement Mortar 20 

Ground 0.83 Cement Mortar 20 
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(From Top to Bottom) Expansion Vitrified 
Microsphere Heat Insulation 

Mortar
60 

C20 Fine Aggregate Concrete 100 

Compacted Clay 500

Roof 

(From Top to Bottom) 
0.5 

Facing Brick 10 

Cement Mortar 25

Waterproofing Materials 
Polyurethane

3 

Cement Mortar 20

Hydrophobic Expanded Perlite 
Products

20 

Rock Wool Board 50

Ferro concrete 120 

Lime and Cement Mortar 20
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Building Types Construction U-Value（W/m2/℃℃) Building Materials 
Thickness 

（mm）

Public buildings 
including office and 

commercial 
buildings

Exterior Wall 

(From Outside to 

Inside) 

0.69 

Cement Mortar 20

B06 Aerated Concrete Block 200 

FH Inorganic Foam Insulation Board 30 

Cement Mortar 20

Interior Wall 0.98 

Cement Mortar 10

B06 Aerated Concrete Block 200

Cement Mortar 10

Exterior Window 

(From Outside to 

Inside)

2.8 

Glass 6

Cavity (Argon) 9

Glass 6

Floor-Ceiling 

(From Top to 

Bottom) 

1.08 

Cement Mortar 20

Ferro concrete 120

Expansion Vitrified Microsphere 
Heat Insulation Mortar 

55 

Cement Mortar 20

Ground 

(From Top to 

Bottom) 

0.83 

Cement Mortar 20

Expansion Vitrified Microsphere 
Heat Insulation Mortar

60 

C20 Fine Aggregate Concrete 100 

Compacted Clay 500

Roof (From Top to 

Bottom) 
0.5 

Facing Brick 10 

Cement Mortar 25 

Waterproofing Materials 
Polyurethane

3 

Cement Mortar 20 

Hydrophobic Expanded Perlite 
Products

20 

Rock Wool Board 50 

Ferro concrete 120

Lime And Cement Mortar 20 
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5.3.3 Results description and analysis  

Figure 5.25 and Figure 5.26 show the distribution of different gains in office buildings 

over twelve months. Firstly, the incidental and solar gains are the major and stable heat 

resources. Secondly, the ventilation gains fluctuate monthly. From September to June, 

ventilation gains make buildings lose heat; from June to September, they increase the 

total heat, which could increase cooling demand. Thirdly, fabric gains generally make 

buildings lose heat during most of the year. Finally, the figures show that the reduction 

of incidental gains and cooling demand would be an efficient way to save energy for 

office buildings. 

Figure 5.25 The monthly heat gains from the heater to fabric for office buildings 
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Figure 5.26 The distribution of monthly heat gains from fabric to heater for office buildings 

The following two simulation results (Fig. 5.27 and Fig 5.28) describe the different heat 

gains distribution in commercial buildings. Firstly, incidental and solar gains are the 

major factors to heat buildings throughout the year. Moreover, the incidental gains are 

significantly greater than the solar gains. Secondly, the ventilation gains fluctuate. From 

September to June, buildings lose heat through ventilation, which could increase the 

heating demand. From June to September, they increase the heat in buildings, which 

could increase cooling demand. Thirdly, fabric gains usually make buildings lose heat 

during the year, but this loss is quite small. Finally, these two figures show that there is 

a significant cooling demand in July and August, but less heating demand in January 

and December compared to the cooling demand. In short, as these two figures indicate, 

for commercial buildings, reducing the incidental gains and cooling demand would be 

the biggest opportunity to save energy. 
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Figure 5.27 The monthly heat gains from the heater to fabric for commercial buildings 

Figure 5.28 The distribution of monthly heat gains from fabric to the heater for commercial 
buildings 
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Figure 5.29 and Figure 5.30 show different heat gains in residential buildings. Firstly, 

incidental and solar gains are the two stable factors to heat buildings throughout the 

year. Secondly, the ventilation gains fluctuate. From September to June, they help 

buildings to release the heat accumulated from solar and incidental sources. From June 

to September, they increase the total heat, which could increase the cooling demand. 

Thirdly, fabric gains always make buildings lose heat throughout the year. Finally, the 

figures show that there is a large heating demand in winter periods. In addition, the peak 

heating demand is largely higher than the peak cooling demand, and this phenomenon 

is only observed in residential buildings. 

Figure 5.29 The monthly gains from the heater to fabric for residential buildings 
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Figure 5.30 The distribution of monthly heat gains from fabric to the heater for residential 
buildings 

From the simulation results for all buildings (Fig. 5.31 and Fig. 5.32), the incidental 

and solar gains are always the stable heat sources. In contrast, the ventilation and fabric 

gains vary considerably in their seasonal impacts, and this phenomenon is especially 

noticeable in the ventilation gains. Conversely, there is a significant cooling demand in 

the summer period, especially in July and August, and the peak cooling demand is 

markedly higher than the peak heating demand. Moreover, reducing incidental gains 

might be one way to save building energy. 
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Figure 5.31 The monthly heat gain from the heater to fabric for all buildings 

Figure 5.32 The distribution of monthly heat gains from fabric to heater for all buildings 

Figure 5.33 shows the monthly cooling and heating demand. It is evident that the peak 

cooling demand is higher than the peak heating demand, with around 2.5 GWh/ month 

to 1.5 GWh/ month. The highest cooling demand occurred in July and August, while 

the greatest heating demand occurred in December and January.  
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Figure 5.33 The monthly operational energy consumption for heating and cooling demand 

Table 5.23 describes the heating and cooling demand among residential, office, and 

commercial buildings. There is the largest annual heating demand with 37 kWh/m2/year 

in residential buildings, while the highest annual cooling demand with around 129 

kWh/m2/year in commercial buildings.  

Table 5.23 Summary of annual heating and cooling demand from the simulation 

Figure 5.34 shows the annual energy demand distribution in heating, cooling, small 

power, lighting, and hot water among these three building types. Cooling demand was 

the largest energy consumption in commercial buildings, followed by hot water. This 

trend was also observed in office buildings. In contrast, for residential buildings, 

heating was the highest energy demand, followed by hot water. In short, as the bar graph 
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Residence_wuchang 48672 1,820,917 -542,634 37 -11 

Office_wuchang 108274 1,753,544 -7,573,981 16 -70 

Commercial_wuchang 16200 367,965 -2,106,399 23 -129 
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Figure 5.34 indicates, for commercial and office buildings, reducing the amount of 

cooling demand is the biggest opportunity for saving energy, while for residential 

buildings, the focus could be on a reduction in the heating demand. 

Figure 5.34 Annual energy demand for different building types per square metre 

According to the power/gas ratio, and system efficiency, the energy supply can be 

predicted from the energy demand. This work uses the same condition as the previous 

case, which is the same power ratio and system efficiency (see Table 5.12) to calculate 

the electricity supply shown in Fig. 5.35 and gas supply are shown in Fig. 5.36. 
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Figure 5.35 Annual energy supply per square metre by electricity 

Figure 5.36 Annual energy supply per square metre by gas 

As can be seen from the two figures above, commercial buildings need the largest power 
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commercial buildings still have the highest demand, followed by residential buildings 

and office buildings. Table 5.24 presents the results of the carbon dioxide emissions 

from all the buildings. The total annual carbon dioxide emissions from the buildings 

generated by electricity and gas are around 11,300 tonnes. 

Table 5.24 Annual operational carbon dioxide emissions by electricity from buildings 

5.3.4 Measurement vs simulation 

Table 5.25 to 5.27 present the data for the electricity consumption of the three building 

types covering around one year. The local power supply business centre provides these 

data. 

Table 5.25 The real electricity consumption from residential buildings  

Source: Data provided by the local Power supply business centre 

Operating carbon Electricity Gas Total 

Internal loss ratio (through transport and distribution) 0.07 0.07 

Carbon dioxide emission factor tCO2/MWh 0.92 0.20 

Carbon dioxide emission 
kgCO2/m2/year 60 3 63 

tCO2/year 10355 444 10799 

Year Month Electricity demand from Fu Jiapo community（kWh）

2015 

Feb. 93329 
Mar. 134147 
Apr. 90628 
May 87062 
Jun. 108970
Jul. 160859

Aug. 188840
Sep. 126285 
Oct. 82140 
Nov. 74723 
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Table 5.26 The real electricity consumption from office buildings 

Table 5.27 The real electricity consumption from commercial buildings 

Dec. 104156 
Overall 1251139

2016 

Jan. 141011
Feb. 106418
Mar. 91865 
Apr. 87574 
May 86948 

Cumulative 1764955

Year Month 
Electricity demand from China Construction Third 

Engineering Bureau CO., LTD（kWh）

2015 

Apr. 503270 
May. 443042 
Jun. 666718
Jul. 911306

Aug. 882816
Sep. 1023350 
Oct. 450242 
Nov. 392873 
Dec. 468024 

Overall 5741642

2016 

Jan. 966144
Feb. 1250030
Mar. 728434 
Apr. 615003 

Cumulative 9,301,252 

Year Month Electricity demand from Langhui 68（kWh）

2015 

Jun. 326393
Jul. 352065

Aug. 388480 
Sep. 364550 
Oct. 318332 
Nov. 278442
Dec. 211533
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Table 5.28 summarises the annual electricity and gas demand. It shows that commercial 

buildings have the largest energy consumption with 318 kWh/ m2 / year, which is 

around 2.7 times that of office buildings and six times that of residential buildings. 

Table 5.29 presents the annual energy demand comparison between the simulation and 

measurement. 

Table 5.28 Energy demand from the measurement in the study area 

Table 5.29 The measurement and simulation of energy demand 

Overall 2239795 

2016 

Jan. 230475
Feb. 154067
Mar. 272900
Apr. 235559 
May 282947 
Jun. 314067 
Jul. 338973

Cumulative 4,068,783

Building 
types 

Floor areas 
（㎡）

Real air-
conditioned 

area

Electricity demand 
(kWh/year) 

Electricity 
demand (kWh/ 

m2/year)

Gas demand 
(kWh/ m2/year) 

Total (kWh/ 
m2/year) 

Residential 
buildings 47,476 28,486 (60% 

floor area) 1,323,716 46 7 53 

Commercial 16,042 14,438 (90% 
floor area) 3,487,528 242 76 318 

Office 110,000 77,000 (70 % 
floor area) 8,585,771 112 8 120 

Simulation Floor area (m2) Annual energy demand (kWh/ m2/year) 

Residential 48,672 81 

Commercial 16,200 320 

Office 108,274 142 

Measurement Floor area (m2) Annual energy demand (kWh/ m2/year) 

Residential 47,476 53 

Commercial 16,042 318 

Office 110,000 120 
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Figure 5.37 The energy demand for simulation vs measurement 

As it can be seen in Fig. 5.37, the simulation result is larger than the measurement. For 

commercial buildings, there is almost the same between simulation and measurement, 

with 320 kWh/ m2. /year vs. 318 kWh/ m2/year. However, for office buildings, the 

discrepancy is around 20 % between the simulation and measurement, and larger 

discrepancy in residential buildings as well. 

5.4 Case Study 3: Modelling building cluster around the Wuhan 

Station 

5.4.1 Basic description in the study area 

In Case 3, this research works with the Ganghua community and Wushang Zhongyuan 

mall as the research objects (Fig. 5.38 and Fig. 5.39), which are around three to four 

kilometres from Wuhan station. There are around 760 households with 1830 people in 
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the community. It was built in the year 2002 for dwelling use. Regarding the Wushang 

Zhongyuan mall that was completed in 2014, occupying with around 270,000 square 

metres, which includes 80,000 square metres for the underground use. The building is 

for mixed use, such as for shopping, recreation, and office, and has around 2,000 

permanent people. Case 3 uses fifteen residential buildings to inform the Ganghua 

community (Fig. 5.38), and one commercial building represents public buildings (Fig. 

5.39).  

Figure 5.38 Residential buildings in Ganghua community 
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Figure 5.39 Public building of Wushang Zhongyuan mall for mixed use 

Figure 5.40 Images of the building modelling used in Case 3: domestic (green), commercial (red) 

Figure 5.40 shows the models of the residential and public buildings in Case 3. Table 

5.30 presents the basic information of the residential and commercial buildings in Case 

3.  
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Table 5.30 The statistics of the study area around Wuhan station 

Source: an on-site survey 

5.4.2 Simulation conditions settings for building clusters around 

Wuhan Station 

Basic simulation conditions in Case 3 is similar to the previous two cases. These 

conditions include weather file, internal heat gains and operational schedule. In this 

case, theoretically, there should be two HTB files: residential and commercial. In reality, 

according to the investigation, the public building is mostly for commercial use, but use 

the standards of residential building level. Therefore, only one HTB file is included in 

the Case 3 for the simulation. Moreover, the construction of the buildings, in this case, 

is quite like the Case 2 due to the time of construction and materials used in the 

Number 
Building 

classification 
Storey Unit No. of households 

Area (per 
floor) ㎡

Area (total) ㎡

1

Households 

7 4 56 798 5584
2 7 4 56 808 5653
3 6 5 60 808 4845
4 7 4 56 561 3925 
5 6 4 48 778 4667 
6 7 3 42 640 4483 
7 6 4 48 888 5329 
8 7 2 14 447 3131 
9 6 5 60 1200 7201
10 7 5 70 1281 8966
11 7 4 56 888 6215
12 7 5 70 1072 7505
13 7 4 56 767 5371
14 7 5 70 801 5605 
15 7 5 70 968 6776 

16 
Public (Wushang 
Zongyuan Mall) 

Seven-storey（five above the ground and two under 
the ground) 

270,000 

270,000 
（above the 

ground:180,000 
underground: 90,000) 
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buildings. As a result, the construction of residential buildings in Case 2 was also 

adopted in Case 3. 

5.4.3 Results description and analysis  

Figure 5.41 and Figure 5.42 show the distribution of different gains from commercial 

buildings. Firstly, incidental gains are the major and stable heat sources for buildings 

throughout the year, significantly greater than solar gains. Secondly, the ventilation 

gains fluctuate from the entire year. Thirdly, fabric gains always make building lose 

heat. Fourthly, the figures show that there is a significant requirement for cooling 

demand in July and August, as well as a greater heating demand in December and 

January. 

Figure 5.41 The monthly heat gains from the heater to fabric for commercial buildings 
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Figure 5.42 The distribution of monthly heat gains from fabric to the heater for commercial 
buildings 

Figure 5.43 and Figure 5.44 illustrate different gains in all residential buildings 

throughout the year. Firstly, incidental and solar gains are two stable and significant 

factors. Secondly, ventilation gains fluctuate monthly. From September to June of the 

following year, ventilation gains help buildings to release the heat. In contrast, from 

June to September, they increase the total heat in buildings, which could increase 

cooling demand. Thirdly, fabric gains always contribute to a release of heat to the 

surrounding buildings. In short, the figures show that there is a significant requirement 

for cooling demand in summer and heating demand in winter. In addition, the peak 

heating demand is far greater than the peak cooling demand for residential buildings.  
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Figure 5.43 The monthly heat gains from the heater to fabric for residential buildings 

Figure 5.44 The distribution of monthly heat gains from fabric to the heater for residential 
buildings 

The following two graphs (Fig. 5.45 and Fig. 5.46) illustrate the different gains for all 

buildings in the study area. Firstly, incidental and solar gains are the two stable factors. 

Secondly, the ventilation gains fluctuate throughout a year. Thirdly, fabric gains always 

make building lose heat during the year. In short, the figures show that there are huge 
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potentials for saving energy through the reduction of incidental gains. More priorities 

should be given on the reduction of cooling demand from residential buildings and 

heating demand from commercial buildings. 

Figure 5.45 The monthly heat gains from the heater to fabric for all buildings 

Figure 5.46 The distribution of monthly heat gains from fabric to heater for all buildings 
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Figure 5.47 The monthly operational energy consumption for heating and cooling in residential 
and commercial buildings 

Figure 5.47 and Table 5.33 present and compare the heating and cooling demand for 

the residential and commercial buildings. The cooling demand in commercial buildings 

is the largest, and far greater than the heating demand. Moreover, the heating demand 

in residential buildings needs more than cooling demand. In short, cooling is the largest 

energy demand in the commercial building, while heating is the primary energy 

consumption in residential buildings. 

Table 5.31 Summary of annual heating and cooling demand from the simulation 

Figure 5.48 is the total energy demand for residential and commercial buildings. It can 

be seen clearly that the energy demand in commercial buildings is almost four times 

larger than that of residential buildings. The cooling demand is, in fact, the largest in 
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commercial buildings, while heating demand is the largest among the residential 

buildings. 

Figure 5.48 Annual energy demand per square metre for different building types  

Figure 5.49 and Figure 5.50 present the annual energy supply by electricity and gas for 

the residential and commercial buildings. The electricity supply is far greater than the 

gas supply. From these two building types, the energy supply by electricity and gas in 

commercial buildings is greater than residential buildings. Moreover, gas is not used as 

an energy source for the heating of both building types. 
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Figure 5.49 Annual energy supply per square metre by electricity 

Figure 5.50 Annual energy supply per square metre by gas 

Table 5.32 describes the results of the annual carbon dioxide emissions from the two 

building types. The annual carbon dioxide emissions generated by electricity and gas 

from commercial buildings are far more than those generated by residential buildings, 
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especially for electricity. Moreover, carbon dioxide emissions measured in the unit of 

kgCO2/m2/year from Case 3 are far greater than the previous two cases, and this would 

be explained by the large floor area of commercial buildings in case 3. 

Table 5.32 Annual operational carbon dioxide emissions from buildings 

5.4.4 Measurement vs simulation 

Table 5.33 and Table 5.34 describes the monthly electricity consumption from 

residential and commercial buildings from power supply business office. 

Table 5.33 The real electricity consumption from Ganghua residential community  

Source: Data provided by Gangdong Power Supply Business Office 

Operating carbon Electricity Gas Total 

Internal loss ratio (through transport and distribution) 0.07 0.07 

Carbon dioxide emission factor tCO2/MWh 0.92 0.20 

Carbon dioxide emission 

kgCO2/m2/year 87 2 89 

tCO2/year 23398 450 23847 

Year Month Electricity demand from Ganghua Community（kWh）

2015 

Jun. 93001 

Jul. 127118 

Aug. 259139 

Sep. 131403 

Oct. 84455 

Nov. 85550 

Dec. 118265 

Overall 898931 

2016 Jan. 139317 



196 

Table 5.34 The real electricity consumption from Wushang Zhongyuan mall 

Source: Data provided by Gangcheng Power Supply Business Office 

Table 5.35 is the summary of the energy demand from these two building types. It can 

be seen that the annual electricity demand from the commercial building of Wushang 

Zhongyuan Mall is more than three times that of the demand from residential buildings 

Feb. 114090 

Mar. 123950 

Apr. 92384 

May 81869 

Jun. 85143 

Cumulative 1,535,684

Year Month Electricity demands from Wushang Zhongyuan Mall (kWh) 

2015 

Jun. 4406299 

Jul. 4752879 

Aug. 5244481 

Sep. 4921421 

Oct. 4297488 

Nov. 3758968 

Dec. 2855701 

Overall 30237237 

2016 

Jan. 3111412 

Feb. 2079902 

Mar. 3684147 

Apr. 3180051 

May 3819788 

Jun. 4239903 

Jul. 4576132 

Cumulative values 54,928,572 
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(210 kWh/ m2/year vs 62 kWh/ m2/year). Table 5.36 shows the comparison of annual 

energy demand of the measurement and simulation. 

Table 5.35 The summary of energy demand from the measurement in the study area 

Table 5.36 Measurement and simulation comparison 

Figure 5.51 compares the results of the measurement and simulation. The simulation 

results are much higher than the measurements, and this is especially observed in the 

residential buildings. As for the commercial buildings, the discrepancy is much smaller. 

Reasons for these discrepancies could potentially be some unstable factors such as 

occupants’ activities and heat gains in the buildings. 

Building 
types 

Floor 
areas 
（㎡）

Real air-
conditioned area

（㎡）

Electricity 
demand(kWh/year) 

Electricity 
demand (kWh/ 

m2/year)

Gas demand 
(kWh/ m2/year) 

Energy demand 
(kWh/ m2/year) 

Residential 
buildings 85,256 25,313 (30% floor 

area) 1,417,554 56 6 62 

Wushang 
Zhongyuan 

Mall
180,000 

180,000 (100 % 
floor area on the 

ground)
31,428,633 174 36 210 

Simulation Floor area (m2) Annual energy demand (kWh/m2/ year) 

Residential 88,579 90 

Wushang Zhongyuan Mall 181,873 234 

Measurement Floor area (m2) Annual energy demand (kWh/m2/ year) 

Residential 85,256 62 

Wushang Zhongyuan Mall 180,000 210 
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Figure 5.51 The energy demand for simulation vs measurement 

5.5 Results comparison and conclusions 

This chapter aims to understand the energy performance and carbon dioxide emissions 

of different buildings in three cases through the simulation and measurements. The 

results not only present the energy performance of various building types but also 

recognise the differences in energy consumption and distribution among different 

building types. Additionally, the simulation contributes to indicating several potential 

variables of energy demand on buildings and verify the accuracy of the simulation 

results through a comparison with the on-site measurements. The comparison and 

analysis of carbon dioxide emissions from these three cases are presented in Table 5.37: 
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Table 5.37 Carbon dioxide emissions comparison from buildings in the three cases  

Hankou station 

Residential Public buildings 

Floor area (m2) 

Floor area (m2) 

Commercial Office Hotel Total 

75,075 22,187 56,938 4881 84,006 

Carbon dioxide 
emissions 

10961 t CO2/ year

67 kg CO2/m2/year 

Wuchang station 
Floor area (m2) 

Floor area (m2) 
Commercial Office Total 

47,476 16,042 110,000 126,042 

Carbon dioxide 
emissions 

10799 t CO2/ year

63 kg CO2/m2/year 

Wuhan Station 
Floor area (m2) Floor area (m2) 

85,256 
Commercial

180,000

Carbon dioxide 
emissions 

23847 t CO2/ year

89 kg CO2 /m2/year 

The table above compares carbon dioxide emissions from three cases. It shows that the 

annual per square metre carbon dioxide emissions around Wuhan station was the 

highest, standing at 89 kg CO2 /m2 /year, followed by Hankou and then Wuchang, 

respectively. Moreover, it can be concluded that the floor area of commercial buildings 

would have a significant impact on carbon dioxide emissions. More conclusions are 

presented as follows:  

Energy performance characteristics of building clusters 

(1) These building clusters can be classified into two types relating to non-domestic 
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and domestic building clusters. Office, commercial, and hotel buildings belong to 
the non-domestic category, and the rest of the building types belong to the domestic 
group. For the former, the cooling demand is the primary energy consumption and 
is at its highest demand from July to August. For the latter, the heating demand is 
the primary energy consumption, and this peaks in December and January.  

(2) From these three cases, one common conclusion is that the floor area of commercial 
buildings has a significant impact on carbon dioxide emissions. More specifically, 
carbon dioxide emissions from Case 3 is around 30 % higher than the other two 
cases. One possible reason for this is that the floor area of the commercial building 
in the Case 3 is the highest compared with the other two cases. 

(3) Monthly gains from incidental, solar, fabric and ventilation vary in buildings. The 

incidental gains overwhelm all other heat sources for all building types. Solar gains 

are the second greatest stable heat source. Gains associated with ventilation and 

fabric usually fluctuates during the year for all building types. Moreover, fabric 

gains help most of the buildings to release extra heat from the interior spaces to the 

outside. Reducing incidental gains might be the effective way to cut down energy 

use for buildings. 

Validation of simulation results  

Firstly, simulation conditions involved in the diary, building construction, and design 

conditions, could be defined based on national statistics, building codes, practical 

measurements, and design principles. Secondly, the simulation method is an effective 

way to get a better understanding of energy performance of building clusters with the 

minimum cost. In short, the simulation results and practical measurements not only 

revise the energy performance of building clusters but also show that the building 

energy modelling is highly reliable. On the other hand, the technical tool VirVil applied 

in this research is suitable because of the consideration of overshadowing between 
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buildings. However, by comparing the simulation results of various building categories 

with the practical measurements, although the value of the simulation is larger than the 

measurement, the discrepancy can be recognised in an accepted range in all the cases, 

and this means that the tools can be validated as being reliable.  
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Chapter 6 Modelling Carbon Dioxide 
Emissions Due to Mobilities of Users from 
Buildings  

6.1 Introduction 

Chapter Six focuses on answering the following question: 

“What models can be applied to predict transport-related carbon dioxide emissions 

from travel activities due to mobilities of users from buildings?” 

To answer this questions above, this research applies activities-based transport demand 

model to predict the transport-related carbon dioxide emissions. The results are 

described and analysed, and then suggestions are proposed for the reduction of 

transport-related carbon dioxide emissions. 

In this chapter, three representative areas of Case 1 (in the fringe district), Case 2 (inner 

city) and Case 3 (the outer city: new urban district) are selected as case studies, and 

relevant data are collected in three cases. These data cover mainly travel patterns 

relating to travelled distances and modal splits to calculate transport-related carbon 

dioxide emissions. These three study cases are: 

Case1: around Hankou railway station (outer city) 

Case2: around Wuchang railway station (inner city) 

Case3: around Wuhan railway station (High-speed new urban district) 
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6.2 The Existing issues of the current traffic travel  

6.2.1 The contradiction between traffic supply and demand 

Traffic congestion is a common phenomenon in large and medium-sized cities in China, 

and it presents a trend of normalisation and outward spreading. In some of the large and 

medium-sized cities, traffic congestion is particularly serious during the rush hours for 

commuters. The cause of traffic congestion lies in the imbalance between urban 

transport traffic supply and demand. With the acceleration of urbanisation in China and 

the increase in household income, more residents have chosen to purchase private cars, 

leading to a sharp increase in private car ownership. High-intensity use and high- 

density aggregation of private vehicles is the cause of urban traffic congestion. On the 

other hand, the infrastructure construction of urban transportation is still somewhat 

inadequate. The development of public transportation is not as fast as the increase in 

private cars, and the parking facilities are seriously inadequate, further worsening the 

traffic congestion and parking difficulties. In addition, the unreasonable layout of urban 

spatial structure and imperfect road network planning are also the causes of traffic 

congestion.

6.2.2 High carbon dioxide emissions for current travel modes 

As the main terminal energy-using sector, the transportation sector consumes energy 

from various transportation activities. At present, due to factors such as technological 

and economic development, China's urban transportation still uses fuel as its main 

driving force. Specifically, it uses gasoline, kerosene, and diesel. The fuel consumption 

of gasoline, kerosene and diesel in the transportation industry accounted for 70% of the 

total fuel consumption of the entire society (Liu 2014). The resulting gas emissions and 
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environmental pollution have brought about serious impacts on social ecology and the 

environment. At the same time, with the continuous development of urban transport, 

the oil consumption in the transportation industry has only increased, and in recent years 

there has been a further strengthening trend. As oil reserves, which are non-renewable 

resources, are continuously being consumed, China will face an increasingly serious 

energy crisis. It is imperative to adjust and optimise the energy consumption structure 

of the transportation industry.

Given a specific context, China's automobile industry is still partly in the traditional 

mode of production. There is still a long way to go before it can be completely 

transformed from modern and intensive production methods. This shows that China has 

great potential in the energy saving of automobiles. To effectively achieve energy 

saving and consumption reduction, efforts should be made to strengthen the 

technological development of the automobile and promote the use of new energy cars. 

6.2.3 Slow development of public transport 

Public transport is the most important part of the urban transport system; it is also one 

of the major means of transport as well as one of the low carbon emission modes. The 

urban public transport system has scored some progress coupled with the development 

of the urban economy. However, its overall development is rather slow, and various 

problems have surfaced along the way, which directly affect the transport 

infrastructure’s efficiency. For example, the infrastructure of urban public transport 

calls for the improvement; the coverage of the public transport network falls short of 

residents’ demand; efficient transfer cannot be achieved between different transport 

means, and the departure interval of public transport is too long to meet the residents’ 

traffic demands. Finally, the transition between transfer station, bus, and bicycle 

stations are not close enough. 
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6.3 Methods to calculation carbon dioxide emissions from travel 

activities 

6.3.1 Current method 

There are two main methods to measure transport-related carbon dioxide emissions. 

Firstly, total fuel consumption can be calculated based on the annual mileage of various 

transport modes and the average consumption of fuels per kilometre of corresponding 

transport modes. Then, by multiplying the CO2 coefficient of fuels, found in the IPCC 

(Intergovernmental Panel on Climate Change) guidelines by the total fuel consumption, 

the carbon dioxide emissions from travel activities can be predicted (Huang et al. 2015). 

Another method is to use models to calculate carbon emission factors of various 

transport modes and then to multiply the result by the mileage of corresponding 

transport modes, and then finally the carbon dioxide emissions from travel activities 

can be calculated (ibid). 

These two methods have their advantages and disadvantages. On the one hand, the first 

method is relatively authoritative and is more prevalent, but in the actual calculation, it 

is hard to acquire the fuel type and the corresponding fuel consumption of various 

modal splits, thus adding difficulty to the calculation. On the other hand, the second 

method is more flexible and concise because the carbon dioxide emissions can be 

understood by calculating the emission factors. According to the existing research, there 

are four types of methods for the calculation of carbon dioxide emissions from travel 

activities (Brand and Boardman 2008), as presented in Table 6.1. This research is based 

on the method one. 
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Table 6.1 Research on the calculation of carbon dioxide emissions from travel activities  

Source: Brand and Boardman (2008) 

Method Data Equation 

1 
Traffic activity and disaggregate 

average emissions factors 

Emission=f (emission coefficient, traffic 

activities) 

2 
Traffic activity and “official” vehicle 

specific emissions factors 

Emission=f (vehicle manufacturing, fuel, 

engine, year) 

3 Fuel consumption Emission=f (fuel consumption, type) 

4 Fuel expenditure Emission=f (fuel cost, price, type) 

6.3.2 An improved method in this research 

To conduct a more accurate calculation of transport-related carbon dioxide emissions 

from travel activities, this research is based on the annual mileage of various modal 

splits and non-fixed emission factors. The improved method delivers a more accurate 

calculation of the carbon dioxide emissions from travel activities. On the one hand, the 

data of the fuel consumption of different transport vehicles is difficult to obtain, while 

their annual mileages can be found through large-sample surveys. Therefore, this 

method overcomes the difficulty of data shortage, making it more flexible to calculate 

carbon dioxide emissions. On the other hand, given the fact that over the past twenty 

years, China’s vehicle technology and fuel quality have improved, the carbon dioxide 

emission factors for transport modes are not constant. Based on the research from the 

scholar (Liu 2014), this research assumes that the coefficient of carbon dioxide 

emissions decreases by 0.5% annually, as this more accurately reflects the reality.  

People have different choices in transport modes as well as different travel distances. 
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Therefore, the amount of carbon dioxide emissions varies from one to another. This 

research calculates carbon dioxide emissions from travel activities according to the 

different transport modes, distances, and carbon dioxide emission factors. Daily travel 

modes can be categorised in a three-fold manner: non-motorised transport, transit, and 

motorised. Transit transport includes buses, rail transit; motorised transport includes 

private cars, taxis, and e-motorcycles; and non-motorised transport includes cycling and 

walking, which produce zero carbon dioxide emissions. Considering the accessibility 

of data, this research discusses the following four types of modes: public buses, the 

metro, e-motorcycles, taxis, and private cars. The equation for the calculation of carbon 

dioxide emissions from travel activities is based on the reference Liu (2014 p.36), the 

equation is: 

 =  ∗ 


（6  1）

Where C stands for the carbon dioxide emissions, in the unit of kg per year; VKT is the 

annual vehicles kilometres travelled distance, in the unit of km, EF is the carbon 

emission factors of various transport modes, in the unit of kg per km; i signifies different 

transport modes. 

6.4 Case Study 1: Transport-related carbon dioxide emissions 

calculation around the Hankou railway station 

6.4.1 Data collection description around Hankou railway station 

The survey was conducted by interviewing and collecting responses to the 

questionnaires around Hankou railway station. In May 2016, six post-graduate students 

of master’s degree from Wuhan University of Technology formed 2- or 3-person teams 
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and were evenly distributed among the study areas. They investigated the study area by 

interviewing people mainly in locations such as entrances, major street intersections, 

and open spaces like the squares. Some people refused to participate in this survey 

because they were in a rush to get to work, perhaps worrying about their security. Three 

categories of the survey were collected, relating to socioeconomic characteristics of the 

respondents, travel patterns of the interviewees, and self-evaluation on travelling. 

6.4.2 Transport-related carbon dioxide emissions calculation  

Transport-related carbon dioxide emissions from residential buildings  

According to Equation 6-1, transport-related carbon dioxide emissions from residential 

buildings around Hankou station can be predicted. This study uses the emission factors 

from Beijing and Shanghai as the basic reference to calculate carbon emission factors 

for different transport modes in Wuhan due to the lack of emission data for Wuhan. 

Table 6.2 illustrates the emission factors of four transport modes in the year of 2006 

based on the city of Beijing and Shanghai as a reference. 

Table 6.2 Reference-based carbon dioxide emissions factors (EFi) for different transport modes in 
the year 2006 

Transport modes Public bus Underground  Taxi Cars E-motor

CO2 emissions（kg/km） 1.065 2.165 0.235 0.215 -----

Source: Zhao et al. 2009. Resident Travel Modes and CO2 Emissions by Traffic in Shanghai City, 
Research of Environmental Sciences, 22 (6) 747-752; Liu, W. 2014. Influence Factors and 
Guidance Strategy of Low Carbon Travel for Urban Resident in China, PhD Dissertation from 
Beijing Institute of Technology, P 39.

However, for the carbon emission factors of the e-motorcycle, there are limited 

references to perform the calculation. Therefore, for the calculation of emission factor 

of e-motor, based on Ni (2009), was used. 
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Taking the 48V, 12Ah new battery employed in e-motorcycle, as an example, (generally, 

the power capacity of batteries in the e-motorcycle from China has this capacity), the 

emission factors calculation is as follows:

 Battery power: 48V * 12Ah = 576 Wh = 0.576 kWh;  

 Assumption of the lead-acid battery charging efficiency is about 90%, so the 
charging power consumption is 0.576 / 90% = 0.64 kWh;  

 The assumption of the single longest mileage of the new e-motorcycle is about 50 
km. As a result, power consumption in 100 km is: 100 * 0.64 / 50 = 1.28 kWh. 

The above method for calculating carbon emission factors for e-motorcycles is based 

on the newly bought e-motorcycle. However, the power consumption depends on the 

actual condition. Riding habits, different loads, and different terrains can result in 

varying levels of energy consumption. 

In order to account for this, this work also calculates the carbon emission factor for the 

two-year used e-motorcycles and then finds the mean carbon emission factors of the 

two. 

Battery power: 48V * 12Ah = 576 Wh = 0.576 kWh;  

An assumption of the lead-acid battery charging efficiency is about 50%, so the 

charging power consumption is 0.576 / 50% = 1.15 kWh;  

An assumption of the single longest mileage of the two-year used e-motorcycle is about 

30km, as a result, the power consumption in 100 km is: 100 * 1.15 / 30 = 3.83kWh. 

Consequently, according to the above two steps for calculating the emission factor of 

e-motorcycle for 100 km, the final emission factor can be calculated by the mean value 
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of the above two steps by the equation:（1.28+3.83）/2=2.6 kWh. Based on the fact 

that the coal generates 78% of electricity in China, the conversion coefficient from coal 

electricity to carbon dioxide emissions is 0.92 (Ni 2009); therefore, carbon dioxide 

emissions for the e-motorcycle in 1 km is 2.6××0.01××0.92 ××0.78=0.019kg/km 

As mentioned before, considering the rapid evolution of the technology in the transport, 

carbon emission factors need regular revision, i.e. every 3 to 5 years. As a result, this 

research adopts the improved method of the calculation on carbon emission factors, if 

the carbon emission factor decreases by 0.5% annually, this more accurately reflects the 

reality. The updated carbon emission factors for different transport modes are presented 

in table 6.3:  

Table 6.3 The updated emission factors in the year 2016 adopted in this research 

Transport modes Public bus Underground Taxi Cars E-motorcycle 

CO2 emissions（kg/km） 1.013 2.059 0.224 0.204 0.019 

According to the investigation, there were around 1700 people from residential 

buildings (detailed information refers to Chapter 5: section 5.2.1). 72 samples were 

collected from residential buildings, and the valid sample was 60 by motor vehicle, 

accounting for around 83% shown in Table 6.4. Figure 6.1 shows the proportional 

choice of mode for the people based in the residential buildings. 
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Figure 6.1 Modal splits distribution from residential buildings around Hankou railway station 

According to Fig. 6.1, most people choose to walk (26%) as their travel mode, followed 

by the metro (23%), and then bus (22%). A small proportion of people take by taxi (3%), 

but more people tend to use private cars (21%). Table 6.4 presents the basic information 

of distance travelled from the sample by their mode of travel. 

Table 6.4 Daily distance travelled by different modes from residential buildings in samples 

Transport modes 
Daily total travelled distance 

from samples (km) 
No. of samples 

Public bus 335 21 

Underground 317 21 

Taxi 86 3 

Private car 326 11 

E-motor 74 4 

An assumption of this research is made that the sample from the transport mode is 
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independent. For instance, there are 21 samples from the public mode, which means 

that these people from 21 samples will not share the same public modes. Carbon dioxide 

emissions can thus be calculated as follows: 

Carbon dioxide emissions per capita per day due to each transport mode =daily distance 

travelled by corresponding mode * corresponding emission factor/passenger capacity 

of corresponding transport mode.  

Carbon dioxide emissions per capita per year due to each transport mode =daily carbon 

dioxide emissions per capita per day due to each transport mode *365 days. 

Therefore, according to the surveyed data of vehicle travelled distance, the emission 

factors and the above equation, daily and annual total transport carbon dioxide 

emissions per capita is calculated and presented in Table 6.5 and Table 6.6 respectively. 

Table 6.5 The calculation process for daily and annual transport carbon dioxide emissions from 
residential buildings in samples 

Transport modes 

Daily total 
transport carbon 

dioxide emissions
（kg/day/capita）

Description 

Annual total 
transport carbon 

dioxide emissions
（kg/year/capita）

Description 

Public bus 
335.4× 1.013 /80 

/21 =0.20 

daily total distance travelled 
by bus × bus carbon emission 
factor/passenger capacity for 

the bus/No. of the sample 
travelling by bus 

0.20×365=73.82 

Daily total 
transport carbon 

dioxide 
emissions by 
public bus ×

365
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Underground 
317.4×2.059 

/2280 /21 =0.014 

daily total distance travelled 
by underground ×

underground carbon emission 
factor/passenger capacity for 

the underground at the B level 
/No. of the sample travelling 

by metro 

0.014×365=4.98 

Daily total 
transport carbon 

dioxide 
emissions by 

underground ×
365 

Taxi 86×0.224/3 =6.42 

daily total distance travelled 
by taxi×taxi carbon emission 

factor /No. of the sample 
travelling by taxi 

6.42×
365=2343.79 

Daily total 
transport carbon 

dioxide 
emissions by 
taxi × 365 

Private car 
326 ×0.204/11 

=6.05 

daily total distance travelled 
by private cars×private car 

carbon emission factor /No. of 
the sample travelling by 

private car 

6.05×
365=2206.72 

Daily total 
transport carbon 

dioxide 
emissions by 

private cars×365 

E-motor 
74 ×0.019/4 

=0.35 

daily total distance travelled 
by×e-motor carbon emission 

factor /No. of the sample 
travelling by e-motor 

0.35×365=128.30 

Daily total 
transport carbon 

dioxide 
emissions by e-

motor×365 

Table 6.6 The summary of per capita carbon dioxide emissions by different transport modes from 
residential buildings in samples 

Transport modes 
Daily total transport carbon dioxide 

emissions per capita with each transport 
mode from samples（kg/day/capita）

Annual total transport carbon dioxide 
emissions per capita with each transport 
mode from samples（kg/year/capita）

Public bus 0.20 73.82 

Underground 0.014 4.98 

Taxi 6.42 2343.79 

Private car 6.05 2206.72 
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E-motor 0.35 128.30 

Note: this research regards the passenger capacity for the public bus as 80 people; metro 
passenger capacity as 285 per compartment, and usually the Wuhan underground has eight 
compartments, so the passenger capacity for underground is 285*8=2280 people.  

Finally, according to the percentage of modal splits from Fig. 6.1 and the 

corresponding annual total transport carbon dioxide emissions per capita from 

each transport mode in Table 6.6, the annual per capita transport-related carbon 

dioxide emissions from samples can be calculated as follows:

73.82*22%+4.98*23%+2344*3%+2207*21%+128*5%= 557 kg CO2 /year/capita

Furthermore, for the data in this research, there are 426 households in the He Jiadun 

community and 210 households in the Donghang community, and their household 

occupancy rate is 93.2% and 90%. Three people are generally occupied in each 

household based on the survey. Therefore, the total number of people in the study area 

is (426*93.2%+210*90%) *3=1761 people. Consequently, the total annual carbon 

dioxide emissions by residents due to the mobility from the study area can be predicted: 

Annual per capita carbon dioxide emissions from samples * a number of people in the 

study area * proportion of people by vehicle=557kg*1761 

people*69%=676,805kg=677 ton. This is summarised in Table 6.7, which uses different 

units. 

Table 6.7 Total carbon dioxide emissions due to travel activities from residential buildings  

Annual per capita carbon dioxide 
emissions from samples（kg 

/year/capita）
557 

73.82*22%+4.98*23%+2344*3%+2207*21
%+128*5% 
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Annual total carbon dioxide 
emissions from the study area（kg 

/year）
676,805 

Annual per capita carbon dioxide emissions* 
number of people in the study area* 

proportion of people by 
vehicle=557kg*1761people*69%=676,805 

Annual per square metre carbon 
dioxide emissions in the study area

（kg/m2 /year）
9.1 

Total carbon dioxide emissions/ residential 
buildings floor area =676,805/75,073 

Transport-related carbon dioxide emissions from public buildings (office, 

commercial) 

For transport-related carbon dioxide emissions from public buildings, the emission 

factors from different transport modes can be found in Table 6.3. According to the 

survey, there were around 2000 people from these buildings, and ultimately 63 valid 

samples. The distribution of transport modes in the study area is shown in Fig. 6.2: 

Figure 6.2 Modal splits distribution from public buildings around Hankou railway station 

Figure 6.2 shows the modal split distribution from public buildings, and it indicates that 
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most people take the underground and bus as their travelling modes, representing 28% 

and 27%, respectively. 21% of people tend to walk as their primary travel mode. As a 

result, the daily and annual carbon dioxide emissions per capita due to different 

transport modes can be predicted. 

Table 6.8 presents the vehicles travelled distance from the valid sample in the public 

buildings. Table 6.9 and Table 6.10 illustrates the calculation process for carbon dioxide 

emissions and the summary, respectively. 

Table 6.8 Daily distance travelled by different modes from public buildings in samples 

Transport modes 
Daily total distance travelled 

from the sample (km) 
No of samples 

Public bus 520.4 22 

Underground 630 22 

Taxi 92 6 

Private car 271.2 11 

E-motor 20 2 

Table 6.9 The calculation process for daily and annual transport carbon dioxide emissions from 
public buildings in samples 

Transport modes 

Daily total transport 
carbon dioxide 

emissions per capita
（kg/day/capita）

Description 

Annual total 
transport carbon 

dioxide emissions 
per capita

（kg/year/capita）

Description 

Public bus 
520.4×1.013 /80 /22 

=0.30 

daily total distance 
travelled by public bus 

from public buildings×
corresponding emission 
factors/ bus passenger 

capacity/ samples

0.30×365=109.32 

Daily total 
transport carbon 

dioxide 
emissions by 
public bus ×

365
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Underground 
630×2.059/2280/22 

=0.026 

daily total distance 
travelled by 

underground from 
public buildings×

corresponding emission 
factors/ underground 
passenger capacity/ 

samples

0.026×365=9.44 

Daily total 
transport carbon 

dioxide 
emissions by 

underground ×
365 

Taxi 92×0.224/6=3.43 

daily total distance 
travelled by taxi from 

public buildings×
corresponding emission 

factors/ samples

3.43×365=1250.92 

Daily total 
transport carbon 

dioxide 
emissions by 
taxi × 365

Private car 271.2×0.204/11 =5.04 

daily total distance 
travelled by private cars 
from public buildings×
corresponding emission 

factors/ samples

5.04×365=1840.18 

Daily total 
transport carbon 

dioxide 
emissions by 

private cars×365

E-motor 20×0.019/2=0.19 

daily total distance 
travelled by e-motor 

from public buildings×
corresponding emission 

factors/ samples

0.19×365=69.35 

Daily total 
transport carbon 

dioxide 
emissions by e-

motor×365

Table 6.10 The summary of per capita carbon dioxide emissions by different transport modes from 
public buildings in samples 

Transport modes 
Daily total transport carbon dioxide 

emissions per capita with each transport 
mode from samples（kg/day/capita）

Annual total transport carbon dioxide 
emissions per capita with each 
transport mode from samples

（kg/year/capita）
Public bus 0.30 109.32 

Underground 0.026 9.44 

Taxi 3.43 1250.92 

Private car 5.04 1840.18 

E-motor 0.19 69.35 

Finally, annual per capita transport-related carbon dioxide emissions （ kg 

CO2/year/capita）in public buildings from the sample can be predicted as follows  
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109.32*27%+9.44*28%+1250.92*8%+1840.18*14%+69.35*2%=391kgCO2 

/year/capita 

According to the survey, the total number of people from public buildings is around 

2054, and 77% of these people use motor vehicle as their primary transport. Therefore, 

the total transport-related carbon dioxide emissions from public buildings in the study 

area can be calculated: Annual per capita carbon dioxide emissions from samples * 

number of people in the study area * the proportion of people by vehicle=391kg*2054 

people*77%=618,398 kg CO2. This information is described in table 6.11:

Table 6.11 Total carbon dioxide emissions due to travel activities from public buildings 

Annual per capita carbon dioxide 
emissions from samples
（kg/year/capita）

391 
109.32*27%+9.44*28%+1250.92*8%+

1840.18*14%+69.35*2% 

Annual total carbon dioxide 
emissions from the study area

（kg/year）
618,398 

Annual per capita carbon dioxide 
emissions* number of people in the 

study area* proportion of the people by 
vehicle=391kg*2054 
people*77%=618,398 

Annual per square metre carbon 
dioxide emissions（kg/m2 /year）

7.4 
Total carbon dioxide emissions/ public 

building floor area =618,398/84,006 

As a result, the amount of annual transport-related carbon dioxide emissions is the 

carbon dioxide emissions generated by residential buildings (676,805 kg) and public 

buildings (618,398 kg). The annual total amount is around 1295 ton, with around 16.5 

(7.4+9.1=16.5) kg/m2 /year. 
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6.5 Case Study 2: Transport-related carbon dioxide emissions 

calculation around the Wuchang Railway Station 

6.5.1 Data collection description around Wuchang railway 

station 

For the case study 2: Wuchang railway station surroundings, the on-site survey was 

carried out from 5th July to 8th July (2016) by four students from Wuhan University of 

Technology. Due to the lack of the surveyors, the investigation was conducted on 

different days. Like the previous case study, three aspects relating to the socio-economic 

characteristics of the respondents, travel patterns of the interviewees, and self-

evaluation on travelling, are recorded. The survey was performed in residential and 

public buildings. The main purpose was to identify the occupants’ travel purpose, VKT, 

and travel mode choice. 

6.5.2 Transport-related carbon dioxide emissions calculation  

Transport-related carbon dioxide emissions from residential buildings  

According to the survey, there are 536 households with around 1200 people for 

residential use (detailed information refers to Chapter 5: Case 2). For this investigation, 

there are 81 valid samples from residential buildings, being 7% of the total population. 

The detailed information about the distribution of people by different transport modes 

from residential buildings is shown in Fig. 6.3. 



220 

Figure 6.3 Modal splits distribution from residential buildings around Wuchang railway station 

It shows that most of the people (58%) from residential buildings use public transport 

mode (bus and metro), followed by walking (13%) and then taxi (12%). Table 6.12 is 

the surveyed data of vehicle-travelled distance from the valid sample. 

Table 6.12 Daily distance travelled by different modes from residential buildings in samples 

Transport modes 
Daily total distance travelled 

from samples (km) 
No of samples 

Public bus 904.2 25 

Underground 1012.4 29 

Taxi 280.8 11 

Private car 370 10 

E-motor 169.6 6 

Based on the data in Table 6.12, the daily total transport carbon dioxide emissions per 

capita is calculated and summarised in table 6.13 and table 6.14:
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Table 6.13 The calculation process for daily and annual transport carbon dioxide emissions from 
residential buildings in samples 

Transport modes 

Daily total transport 
carbon dioxide e 

missions per capita from 
samples（kg/day/capita）

Description 

Annual total transport 
carbon dioxide 

emissions per capita 
from samples 

（kg/year/capita）

Description 

Public bus 904.2×1.013 /80 /25 
=0.46 

daily total distance 
travelled by public bus 

from public buildings×
corresponding emission 
factors/ bus passenger 

capacity/ samples 

0.46×365=167.16 

Daily total 
transport carbon 

dioxide emissions 
by public bus ×

365 

Underground 1012.4×2.059/2280/29 
=0.032 

daily total distance 
travelled by underground 
from public buildings×
corresponding emission 

factors/ underground 
passenger capacity/ 

samples 

0.032×365=11.51 

Daily total 
transport carbon 

dioxide emissions 
by underground 

× 365 

Taxi 280.8×0.224/11 =5.72 

daily total distance 
travelled by taxi from 

public buildings×
corresponding emission 

factors/ samples 

5.72×365=2087.11 

Daily total 
transport carbon 

dioxide emissions 
by taxi × 365 

Private car 370×0.204/10 =7.55 

daily total distance
travelled by private 
vehicles from public 

buildings×
corresponding emission 

factors/ samples

7.55×365=2755.02 

Daily total 
transport carbon 

dioxide emissions 
by private 
cars×365 

E-motor 169.6 ×0.019/6 =0.54 

daily total distance 
travelled by e-motor from 

public buildings×
corresponding emission 

factors/ samples 

0.54×365=196.03 

Daily total 
transport carbon 

dioxide emissions 
by e-motor×365 

Table 6.14 Summary of per capita carbon dioxide emissions by different transport modes from 
residential buildings in samples

Transport modes 
Daily total transport carbon dioxide 

emissions per capita with each transport 
mode from samples（kg/day/capita）

Annual total transport carbon dioxide 
emissions per capita with each 
transport mode from samples

（kg/year/capita）
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Public bus 0.46 167.16 

Underground 0.032 11.51 

Taxi 5.72 2087.11 

Private car 7.55 2755.02 

E-motor 0.54 196.03 

Finally, annual per capita carbon dioxide emissions（kg CO2 /year/capita）in residential 

buildings from samples can be calculated:  

167.16*27%+11.51*31%+2087.11*12%+2755.02*11%+196.03*6%=614 kg CO2

/year/capita  

The annual transport-related carbon dioxide emissions from residential buildings in the 

study area can then be predicted as follows: annual per capita carbon dioxide 

emissions from sample* number of people in the study area* the proportion of the 

people by vehicle=614kg*1215 people*81%=604,268kg=604 ton. These calculation 

processes are detailed in Table 6.15. 

Table 6.15 Total annual carbon dioxide emissions due to travel activities from residential 
buildings 

Annual per capita carbon dioxide 
emissions from samples
（kg/year/capita）

614 167.16*27%+11.51*31%+2087.11*12%+
2755.02*11%+196.03*6%=614 

Annual total carbon dioxide emissions 
from the study area（kg/year） 604,268 

Annual per capita carbon dioxide 
emissions* number of people in the study 
area* proportion of the people by vehicle= 

614kg*1215 people*81%=604,268 

Annual per square metre carbon 
dioxide emissions（kg/m2 /year） 12.7 Total carbon dioxide emissions/ residential 

buildings floor areas=604,268/47,476 

Transport-related carbon dioxide emissions from public buildings (office, 
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commercial) 

According to the data of this research, the number of people occupying public buildings 

is around 2000 (detailed information refers to Chapter 5: Case 2). Among these people, 

there were 97 valid samples from public buildings by vehicle (NMM and Driving 

modes). The detailed information on transport modes distribution in the study area can 

be shown in Fig. 6.4. 

Figure 6.4 Modal splits distribution from public buildings around Wuchang railway station 

According to Figure.6.4, most people prefer to take public buses and the underground 

as their primary transport modes, accounting for 31% and 29%, respectively. The 

smallest proportion is the e-motorcycle, accounting for only 4% of the people surveyed. 

Table 6.16 presents the vehicle-travelled distance from the public buildings in the valid 

samples 
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Table 6.16 Daily distance travelled by different modes from public buildings in samples  

Transport modes 
Daily total distance travelled 

from samples (km) 
No of samples 

Public bus 750.4 35 

Underground 716.4 33 

Taxi 248.8 12 

Private car 306.6 13 

E-motor 30 4 

The associated carbon dioxide emissions are calculated and summarised in Table 6.17 

and 6.18: 

Table 6.17 The calculation process for daily and annual transport carbon dioxide emissions from 
public buildings in samples 

Transport modes 

Daily total transport 
carbon dioxide 

emissions per capita 
from samples

（kg/day/capita）

Description 

Annual total
transport carbon 

dioxide emissions 
per capita from 

samples
（kg/year/capita）

Description 

Public bus 750.4×1.013 /80 
/35=0.27 

daily total distance 
travelled by public bus 

from public buildings×
corresponding emission 
factors/ bus passenger 

capacity/ samples 

0.27×365=99.09 

Daily total 
transport carbon 

dioxide 
emissions by 
public bus ×

365 

Underground 716.4×2.059/2280/33 
=0.02 

daily distance travelled by 
underground from public 

buildings× corresponding 
emission factors/ 

underground passenger 
capacity/ samples

0.02×365=7.16 

Daily total 
transport carbon 

dioxide 
emissions by 

underground ×
365

Taxi 248.8×224/12=4.64 

daily distance travelled by 
taxi from public buildings

× corresponding 
emission factors/ samples 

4.64×365=1695.16 

Daily total
transport carbon 

dioxide 
emissions by 
taxi × 365
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Private car 306.6×0.204/13 =4.81 

daily distance travelled by 
private car from public 

buildings×
corresponding emission 

factors/ samples

4.81×365=1756.11 

Daily total
transport carbon 

dioxide 
emissions by 

private car×365

E-motor 30 ×0.019/4 =0.14 

daily distance travelled by 
e-motor from public 

buildings×corresponding 
emission factors/ samples 

0.14×365=52.01 

Daily total 
transport carbon 

dioxide 
emissions by e-

motor×365

Table 6.18 Summary of per capita carbon dioxide emissions by different transport modes from 
public buildings in samples

Transport modes 
Daily total transport carbon dioxide 

emissions per capita with each transport 
mode from samples（kg/day/capita）

Annual total transport carbon dioxide 
emissions per capita with each 
transport mode from samples

（kg/year/capita）
Public bus 0.27 99.09 

Underground 0.02 7.16 

Taxi 4.64 1695.16 

Private car 4.81 1756.11 

E-motor 0.14 52.01 

Finally, the annual per capita carbon dioxide emissions（kg CO2/year/capita）from 

public buildings in samples can be calculated:  

99.09*31%+7.16*29%+1695.16*11%+1756.11*12%+52.01*4%=432kg 

CO2/year/capita 

The annual transport carbon dioxide emissions from public buildings in the study area 

can then be predicted: annual per capita carbon dioxide emissions* a number of people 

in the study area*the proportion of the people by vehicle=432kg*2000 

people*83%=717,120 kg=717 ton. These results are outlined in Table 6.19 
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Table 6.19 Total annual carbon dioxide emissions due to travel activities from public buildings 

Annual per capita carbon dioxide 
emissions from samples
（kg/year/capita）

432 99.09*31%+7.16*29%+1695.16*11%+175
6.11*12%+52.01*4%=432

Annual total carbon dioxide emissions 
from study areas（kg/year） 717,120 

Annual per capita carbon dioxide 
emissions* number of people in the study 

area*the proportion of the people by 
vehicle=432kg*2000 people*83%=717,120 

Annual per square metre carbon dioxide 
emissions（kg/m2 /year） 5.7 Total carbon dioxide emissions/public 

building floor area=717,120/126,042 

Finally, annual transport-related carbon dioxide emissions from residential buildings 

and public buildings in the study area are predicted. The results 1321 (604,268kg 

+717,120 kg) ton annual transport-related carbon dioxide emissions, with around 18.4 

(12.7+5.7) kg/m2 /year.

6.6 Case Study 3: Transport-related carbon dioxide emissions 

calculation around the Wuhan Station 

6.6.1 Data collection description from residential buildings 

around Wuhan Station 

For the case study three—Wuhan station surroundings— the questionnaires were 

carried out on 15 July 2016 in the meeting held at the Ganghua community area. This 

community area is mainly for residential use, and there were almost no any commercial 

or office buildings. This community lies around three to four kilometres from Wuhan 

station. This community was built in around the year 2002. Just as in the previous case 

studies, three aspects: the socio-economic characteristics of the respondents, travel 

patterns of the interviewees, and self-evaluation of travelling, are recorded. The main 
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purpose was to identify their travel purpose, VKT, and mode choices. 

6.6.2 Transport-related carbon dioxide emissions calculation 

Transport-related carbon dioxide emissions from residential buildings  

From the on-site survey, there were around 760 households, with an occupancy rate of 

about 80%, meaning that about 610 families were actually from the residential buildings. 

The total number of the people can be estimated to be around 1800 by following the 

survey of three people in each household. For this investigation, there were 72 valid 

samples from residential buildings by vehicle, representing around 5% of the total 

population. The detailed information about the distribution of people by different 

transport modes from residential buildings is shown in Fig. 6.5: 

Figure 6.5 Modal splits distribution from residential buildings around Wuhan station 

As can be seen from Fig.6.5, most of the people (44%) take public transport modes (bus 

and underground) as their main travelling modes from residential buildings, followed 
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by walking (26%) and then e-motorcycle (15%). The remaining 15% people travel are 

by car or taxi, but the proportion is almost the same. Table 6.20 presents the daily 

vehicle-travelled distance by different modes from the valid sample in residential 

buildings. 

Table 6.20 Daily distance travelled by different modes from residential buildings in samples 

Transport modes 
Daily total distance travelled 

from samples (km) 
No of samples 

Public bus 872.4 27 

Underground 556 16 

Taxi 267.2 8 

Private car 134.6 7 

E-motor 860 14 

According to the surveyed data, the daily transport-related carbon dioxide emissions 

per capita can be calculated and summarised in Table 6.21 and Table 6.22:

Table 6.21 The calculation process for daily and annual transport carbon dioxide emissions from 
residential buildings in samples 

Transport modes 

Daily total transport 
carbon dioxide 

emissions per capita
（kg/day/capita）

Description 

Annual total 
transport carbon 

dioxide emissions 
per capita

（kg/year/capita）

Description 

Public bus 
847.2×1.013 /80 /27 

=0.41 

daily total distance 
travelled by public bus 

from public buildings×
corresponding emission 
factors/ bus passenger 

capacity/ samples

0.41×365=149.36 

Daily total 
transport carbon 

dioxide emissions 
by public bus ×

365 
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Underground 
556×2.059/2280/16 

=0.031 

daily total distance 
travelled by underground 
from public buildings×
corresponding emission 

factors/ underground 
passenger capacity/ 

samples

0.031×365=11.45 

Daily total 
transport carbon 

dioxide emissions 
by underground 

× 365 

Taxi 267.2×0.224/8 =7.48 

daily total distance 
travelled by taxi from 

public buildings×
corresponding emission 

factors/ samples 

7.48×365=2730.8 

Daily total 
transport carbon 

dioxide emissions 
by taxi × 365 

Private car 134.6×0.204/7 =3.92 

daily total distance 
travelled by private car 
from public buildings×
corresponding emission 

factors/ samples

3.92×365=1431.8 

Daily total 
transport carbon 

dioxide emissions 
by private 
car×365

E-motor 860 ×0.019/14 =1.17 

daily total distance 
travelled by e-motor from 

public buildings×
corresponding emission 

factors/ samples 

1.17×365=426.01 

Daily total 
transport carbon 

dioxide emissions 
by e-motor×365 

Table 6.22 Summary of per capita carbon dioxide emissions by different transport modes from 
residential buildings in samples 

Transport modes 
Daily total transport carbon dioxide 

emissions per capita with each transport 
mode from samples（kg/day/capita）

Annual total transport carbon dioxide 
emissions per capita with each transport 
mode from samples（kg/year/capita）

Public bus 0.41 149.36 

Underground 0.031 11.45 

Taxi 7.48 2730.8 

Private car 3.92 1431.8 

E-motor 1.17 426.01 

Finally, annual per capita carbon dioxide emissions（kg CO2 /year/capita）generated 

from residential buildings in the sample can be predicted:  
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149.36*28%+11.45*16%+2730.8*8%+1431.8*7%+426.01*15%=426 kg CO2

/year/capita 

The annual total transport carbon dioxide emissions from residential buildings in the 

study area can then be predicted: Annual per capita carbon dioxide emissions* a number 

of people in the study area*the proportion of the people by vehicle=426 kg*1830 

people*59%=459,952kg=460 ton. This process is detailed in Table 6.23.  

Table 6.23 Total transport annual carbon dioxide emissions due to travel activities from 
residential buildings 

Annual per capita carbon dioxide 
emissions from samples
（kg/year/capita）

426 
149.36*28%+11.45*16%+2730.8*8%+143

1.8*7%+426.01*15%= 426 

Annual total carbon dioxide emissions 
from study area（kg/year）

459,952 

Annual per capita carbon dioxide 
emissions* number of people in the study 

area* proportion of the people by 
vehicle=426kg*1830 people*59%=459,952 

Annual per square metre carbon dioxide 
emissions（kg/m2 /year）

5.4 
Total carbon dioxide emissions/ residential 

building floor areas=459,952/85,256 

Transport-related carbon dioxide emissions from Public buildings  

According to the survey carried out on 18th July on the WuShang ZhongYuan Mall, the 

mall is a city complex combined with recreation, commercial, and shopping buildings, 

etc. There are around 2000 people, including the population mobility from the estimate 

on the site. In this survey, there were more than 130 samples collected, accounting for 

around 7% of the total population. The detailed information about the distribution of 

people by different transport modes from public buildings is shown in Fig. 6.6: 
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Figure 6.6 Modal splits distribution from public buildings around Wuhan station 

Figure 6.6 indicates that most people (37%) take the bus as their main travel mode, 

followed by the underground (19%), and then walking (17%). These values combined 

with the travelled distance can be used to calculate the daily transport carbon dioxide 

emissions per capita by different modes. The following table presents the distance 

travelled by vehicle from the sample. 

Table 6.24 Daily distance travelled by different modes from public buildings in samples  

Transport modes 
Daily total distance travelled 

from the sample (km) 
No of samples 

Public bus 1174.4 51 

Underground 883.6 26 

Taxi 648.8 12 

Private car 550.2 17 

E-motor 94 9 

The daily transport-related carbon dioxide emissions per capita can then be summarised 
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in Tables 6.25 and 6.26. 

Table 6.25 The calculation process for daily and annual transport carbon dioxide emissions from 
public buildings in samples 

Transport modes 

Daily total transport 
carbon dioxide 

emissions per capita
（kg/day/capita）

Description 

Annual total 
transport carbon 

dioxide emissions 
per capita

（kg/year/capita）

Description 

Public bus 
1174.4×1.013 /80 /51 

=0.29 

daily total distance 
travelled by public bus 

from public buildings×
corresponding emission 
factors/ bus passenger 

capacity/ samples 

0.29×365=106.43 

Daily total 
transport carbon 

dioxide emissions 
by public bus ×

365 

Underground 
883.6 ×2.059/2280/2

6 =0.031 

daily total travelled 
distance by underground 
from public buildings×
corresponding emission 

factors/ underground 
passenger capacity/ 

samples

0.031×365=11.20 

Daily total 
transport carbon 

dioxide emissions 
by underground ×

365 

Taxi 
648.8×0.224/12 

=12.11 

daily total distance 
travelled by taxi from 

public buildings×
corresponding emission 

factors/ samples 

12.11×
365=4420.49 

Daily total 
transport carbon 

dioxide emissions 
by taxi × 365 

Private car 550.2×0.204/17=6.60 

daily total distance 
travelled by private car 
from public buildings×
corresponding emission 

factors/ samples 

6.60×365=2409.8
8 

Daily total 
transport carbon 

dioxide emissions 
by private 
car×365 

E-motor 94 ×0.019/9 =0.2 

daily total distance 
travelled by e-motor from 

public buildings×
corresponding emission 

factors/ samples

0.2×365=72.43 

Daily total 
transport carbon 

dioxide emissions 
by e-motor×365 
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Table 6.26 Summary of per capita carbon dioxide emissions by different transport modes from 
public buildings in samples 

Transport modes 
Daily total transport carbon dioxide 

emissions per capita with each transport 
mode from samples（kg/day/capita）

Annual total transport carbon dioxide 
emissions per capita with each 
transport mode from samples

（kg/year/capita）

Public bus 0.29 106.43 

Underground 0.031 11.20 

Taxi 12.11 4420.49 

Private car 6.60 2409.88 

E-motor 0.20 72.43 

Finally, annual per capita carbon dioxide emissions（kg CO2/year/capita）from public 

buildings in the sample can be predicted:  

106.43*37%+11.20*19%+4420.49*9%+2409.88*12%+72.43*6%=732kg 

CO2/year/capita 

The annual transport carbon dioxide emissions from public buildings in the study area 

can then be predicted by the annual per capita carbon dioxide emissions* a number of 

people in the study area* proportion of people by vehicle=732kg*2000 

persons*77%=1,127,280kg=1127 ton. This information is detailed in Table 6.27. 

Table 6.27 Total annual carbon dioxide emissions due to travel activities from public buildings 

Annual per capita carbon dioxide 
emissions from samples
（kg/year/capita）

732 
106.43*37%+11.20*19%+4420.49*9%+2

409.88*12%+72.43*6%=732 

Total carbon dioxide emissions from 
study area（kg/year）

1,127,280 

Annual per capita carbon dioxide 
emissions* number of people in the study 

area* proportion of people by 
vehicle=732kg*2000 

persons*77%=1,127,280 



234 

Annual per square metre carbon 
dioxide emissions（kg/m2/year）

6.3 
Total carbon dioxide emissions/ public 
building floor area=1,127,280/180,000 

The total amount of annual carbon dioxide emissions from the transport is the combined 

total of the carbon dioxide emissions generated by residential buildings and public 

buildings. This is around 1587 ton/ year (459,952kg +1,127, 280kg), with 11.7 

kg/m2/year. 

6.7  Results analysis and conclusions  

Table 6.28 summarises and compares the transport-related carbon dioxide emissions 

from three cases discussed in this research. It presents and compares the information 

relating to the floor-area of different building types, the population size in the study 

area, the percentage of motor vehicle, and finally the annual transport-related carbon 

dioxide emissions.  

Table 6.28 Summary of transport-related carbon dioxide emissions from three cases 

Hankou station 
(Case 1) 

Residential Public buildings 

Floor area (m2) 
Population in 
the study area 

Motor vehicle 
proportion 

Floor area (m2) 
Population in the 

study area 
Motor vehicle 

proportion 

75,073 1761 69% 84,206 2054 77% 

Carbon dioxide 
emissions 

676,805 kg/year 618,398 kg/year

557 kg/year/capita 391 kg/year/capita

9.1 kg/m2/year 7.4 kg/m2/year 

Wuchang station 
(Case 2) 

Floor area (m2) 
Population in 
the study area 

Motor vehicle 
proportion 

Floor area (m2) 
Population in the 

study area 
Motor vehicle 

proportion 

47,476 1215 81% 126,042 2000 83% 

Carbon dioxide 
emissions 

604,268 kg/ year 717,120 kg/ year

614 kg/year/capita 432 kg/year/capita

12.7 kg/m2/year 5.7 kg/m2/year 
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Wuhan Station 
(Case 3) 

Floor area (m2) 
Population in 
the study area 

Motor vehicle 
proportion 

Floor area (m2) 
Population in the 

study area 
Motor vehicle 

proportion 

85,256 1830 59% 180,000 2000 77% 

Carbon dioxide 
emissions 

459,952kg/year 1,127,280 kg/ year

426kg/year/capita 732kg/year/capita

5.4 kg/m2/year 6.3 kg/m2/year 

Figure 6.7 describes distributions of modal splits from samples in these three cases, and 

Figure 6.8 compared annual per capita carbon dioxide emissions from three cases. It 

finds out that annual per capita carbon dioxide emissions from residential buildings in 

Case 2 were the highest, standing at around 614 kg/ year/capita, followed by 557 kg/ 

year/capita in Case 1, and 426 kg/ year/capita in Case 3. However, for annual per capita 

carbon dioxide emissions from public buildings, Case 3 was the highest, followed by 

Case 2 and Case 1. 
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Case 2 

Case 3 

Figure 6.7 Modal splits distribution among three cases 

Figure 6.8 Annual per capita transport-related carbon dioxide emissions between residential and 
public buildings  
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One of the possible reasons is the distribution of travel modes from these three cases. 

According to the survey shown in Fig. 6.7, there is 23% of people taking private travel 

modes (12% taxi plus 11% car) from residential buildings in Case 2. Although people 

from residential buildings in Case 1 had the highest motorisation rate 24% (3% taxi 

plus 21% car), these two travel modes were uneven distribution compared to Case 2 

from residential buildings. For Case 3, there was 15 % of private travel modes (8% taxi 

and 7%), and this percentage was largely less than Case 2 (22 %) and Case 1 (24%). 

The distribution of the locations is another possible reason. Case 2 is inner-city district 

and Case 1 is outer city centre. Both districts are better developed, with more than three 

decades. Infrastructure and public service are available around public buildings from 

these two Cases; many travel activities can be locally completed. The distribution of 

public transport nodes is shown in Fig. 6.9, which indicates the rail and public bus are 

well covered in Case 1 and Case 2. Moreover, the percentage of private travel modes 

from public buildings in Case 1 and Case 2 was larger than corresponding public 

buildings (Case 1: 24% vs 22%; Case 2: 22% vs 22%). Therefore, annual per capita 

carbon dioxide emissions from public buildings in Case 1 and Case 2 are less than those 

from corresponding residential buildings.  
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Figure 6.9 The distribution of public transport nodes in three cases 

However, annual carbon dioxide emissions from public buildings of Case 3 have the 

largest value of around 732 kg/ year/capita, and this is far more than those of from Case 

2 (432 kg/ year/capita) and Case 1 (391 kg/ year/capita). One possible reason is the 

status of urban development. For Case 3, this is the new urban district, oriented with 

high-speed rail development, and it is at the initial stage, less than one decade. Many 

public services are not available. Rail transits are not covered, and only public routes 

are available, which can generate more chances to use private cars from public buildings. 

According to the survey, there was no rail transit available around the Case 3. In other 

words, many travel activities cannot be complete locally. Moreover, from the modal 

splits’ distribution in Case 3, 21% people are by private modes from public buildings 

versus 15% people from residential buildings. Therefore, annual per capita transport 

CO2 emissions from public buildings are higher than those from residential buildings 

in Case 3. 
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Figure 6.10 Annual transport-related carbon dioxide emissions with each case 

To compare CO2 emissions with building sector, this study converts the units of 

kg/year/capita from transport-related carbon dioxide emissions to the units of 

kg/m2/year shown in Fig. 6.10. The carbon dioxide emissions from both sectors can 

then be compared.  

This chapter has answered the questions  

 “What models can be applied to predict transport-related carbon dioxide emissions 

from travel activities due to mobilities of users from buildings?” 

This chapter aims to understand and predict transport-related CO2 emissions using the 

activities-based transport demand model based on the data from respondents (e.g., 

travelled distance, modal split) found through on-site surveys. The results not only 

present the transport-related carbon dioxide emissions but also recognise the differences 

in carbon dioxide emissions from different building types and locations. Additionally, 

the quantitative assessment helps to identify the mode preferences from travellers in 

various building types around different locations. Several important conclusions can be 
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drawn from these findings: 

Firstly, based on the calculation of emission factors from different transport modes, it 

shows that the underground, public buses, and e-motorcycles have the lowest daily per 

capita transport-related carbon dioxide emissions, and their values are significantly less 

than those of private cars and taxis. Therefore, travelling by underground, public bus, 

and e-motorcycles, should be strongly promoted for commuting considering the low 

CO2 emissions.  

Secondly, compared with three cases, annual carbon dioxide emissions from residential 

buildings are higher than those of public buildings in the well-developed area. This is 

because public services and infrastructures are provided and available, and many travel 

activities from public buildings can be fulfilled locally. This phenomenon can be well 

observed in three cases. Carbon dioxide emissions from public buildings in Case 1 and 

Case 2 are noticeably less than those of from Case 3 as the land development in Case 3 

is in its early development stage, and the public transport services and infrastructure are 

limited and insufficient. In contrast, public buildings in Case 1 and Case 2 are very 

close to the CBD, with high accessibility and more public transport services available. 

Thirdly, to understand the transport-related carbon dioxide emissions, this research uses 

the activities-based transport demand model with the improved emission factors that 

the carbon emission factor decreases by 0.5% annually, as this more accurately reflects 

the reality. Therefore, the results are more accurate compared with the previous studies.  
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Chapter 7 Parametric and Regression Analysis 
of Selected Factors Affecting Energy 
Consumption and Associated Carbon Dioxide 
Emissions on Building Clusters and Travel 
Activities  

7.1 Introduction 

Chapter 5 and 6 focus on the quantification of carbon dioxide emissions from buildings 

and the transport sector, respectively. This chapter answers the following question:  

“To what extent do the selected factors affect energy consumption and associated 

carbon dioxide emissions.” 

To answer the questions above, the parametric and regression analysis explore the 

relationship between these selected factors and their energy demand and CO2 emissions. 

For building clusters, these factors focus on street orientations, the layout of 

building clusters, over-shadowing between buildings, and the UHI effects. For the 

transport sector, multinomial logistic regression analysis is applied in the option of 

modal splits from three aspects relating to: 

 socioeconomic characteristics of the respondents, including gender, household 
income, and family car ownership;  

 travel patterns of the respondents, which are travel modes, travel distance, 
frequency, purpose and travel time; 

 and finally self-evaluation on travelling, including the condition of the travel 



242 

congestion, comfort level, and economical level 

Earlier in this work, Chapter 2 has reviewed factors affecting carbon dioxide emissions 

from buildings and road transport. For issues relating to building energy demand, 

factors such as policies and urban forms are difficult to examine because the technical 

tools can only do the quantitative calculation, assessment, and analysis. This study 

examines energy consumption and carbon dioxide emissions related to factors shown 

in Table 7.1. These factors are chosen based on the literature review at the 

community and urban scale. Moreover, this research still attempts to develop deeper 

into a stricter discussion, by simulation and regression analysis, about the issues 

strongly related to the reduction of energy use and carbon dioxide emissions. 

Table 7.1 The selected variables for quantitative analysis in this research 

7.2 Parametric analysis of a list of variables on building clusters  

Before discussing the following parts, the overall urban geometry is illustrated first. A 

representative urban geometry is quite impossible to find if all parameters must be 

considered, including archetypal building form, the urban degree of compactness, street 

Sectors 
Quantitative 

methods
Variables Description 

Building clusters 
Simulation 

analysis 

Street orientation Four street orientations are analysed (0,45, 90,135)
The layout of building 

clusters
Vertical and horizontal layouts for building clusters 

Over-shadowing Open, normal, and dense situations between buildings
Urban heat island effects Ambient temperature changes within one degree

Travel mode 
choice 

Regression 
analysis 

Socioeconomic 
characteristics of 

respondents
Gender, household income, and vehicle ownership 

Travel patterns of the 
respondents

Travelled distance, time, frequency and travel purpose 

Self-evaluation on 
travelling

The conditions of the travel congestion, comfort level, 
and travel cost
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aspect ratio, and the orientation. For this reason, Martin and March (1972) introduce 

simplified archetypal building forms to limit the complexities found in real urban 

textures and to examine and compare the impact of geometry alone. In their study, they 

classify buildings into three basic types: The Slab or Street, the Pavilion or Tower, and 

the Court (Fig. 7.1). The Street or Slab extends, potentially, infinitely along one axis. 

The Pavilion or the Tower is finite on its plan form. The Court extends along two. Table 

7.2 describes the basic elements for studying at the community scale in this research. 

For the building cluster analysis, the cooling and heating demand, and the solar gains 

are presented and analysed. 

Figure 7.1 Three different built forms: slab or street, pavilion or tower, and court (from left to 
right) 
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Table 7.2 Basic elements of the built forms at the community scale  

Street Scale 

Type 

The basic parameters of urban form: Block Azimuth (δ), Building height (H), 
building length (Lx) Building width (Ly), building distance along the X-axis (Wx) 
and the Y-axis (Wy) 

Indicators 

Building storeys: n 
Building length, width, and height: Lx, Ly, H 
Depth ratio l=Lx/Ly

Building distance along X-axis: Wx

Building distance along Y-axis: Wy

Building relative displacement along X-axis: △x 
Building relative displacement along Y-axis: △y 
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7.2.1 Street orientation  

Streets are significant parts of urban open spaces and have a significant role in creating 

urban microclimates. The street orientation influences the amount of solar radiation 

received by the street surfaces and also airflow in urban canyons. The urban streets vary 

in geometry, as defined by the ratios of height to width, length to width, and the 

orientation that is defined by a long axis (Shishegar 2013). These parameters directly 

influence the absorption and emission of solar radiation.  

This study uses the slab-built form as the basic form to analyse different variables on 

the energy performance of commercial building clusters, focusing on cooling and 

heating demand and solar gains. In order to compare how different street orientations 

affect the cooling, heating demand, and the solar gains of the building cluster, this work 

set only the orientation as the variable (δ=0; 45; 90;135), and other factors such as the 

floor area ratio, building density, storeys, height as constant. The parameters are set in 

Table 7.3. Then Figure 7.2 sets four different street orientations, from 0 degrees to 135 

degrees, split by 45-degree interval. 
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Figure 7.2 Four street orientations (Block Azimuth (δ)) change from 0 to 135 degrees (45degrees 
intervals) 
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Table 7.3 Parameters setting for street orientation alteration 

Figure 7.3 Cooling demand for four street orientations 
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Slab Floor area ratio building density 
Floor areas
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Building 
height (m)

Storeys 

3.93 0.33 259,200 36 12 

Case 1 δ=0 259,200 36 12 

Case2 δ=45 259,200 36 12 

Case 3 δ=90 259,200 36 12 

Case 4 δ=135 259,200 36 12 
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Figure 7.4 Heating demand for four street orientations 

Figure 7.5 Annual solar gains per square metre for different street orientations 

Figure 7.3 and Figure 7.4 present the effect of street orientations on heating and cooling 

demand, and solar gains are also analysed with four different street orientations in Fig. 

7.5. The results show that the energy demand for heating and cooling is totally different, 
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as well as the solar gains. From the four different orientations, the following 

conclusions can be drawn. Firstly, there is the least energy demand for building clusters 

on the N-S orientation (δ=0), standing at around 54.5 kWh/m2/year (cooling demand 

plus heating demand). Moreover, the cooling demand was almost double the heating 

demand for all the cases, almost 36 kWh/ m2/year vs.18 kWh/ m2/year. Secondly, for 

the street orientation of 45-degrees and 135-degrees, the heating demand was almost 

the same, as well as the cooling demand, but in different values. Thirdly, buildings on 

E-W orientation (δ=90) has the highest energy, with around 56.3 kWh/ m2/year out of 

these four different orientations, and this indicates that this orientation is the worst one 

among them for energy-saving. 

Figure 7.5 illustrates that solar gains vary in the different street orientations. Figure 7.3 

and Figure 7.4 describe why buildings on N-S orientation (δ=0) have the least energy 

demand, and the cooling demand is greater than the heating demand. The results can be 

explained by the fact that among these four orientations, the highest solar gains from 

the buildings are for those buildings in the N-S orientation. In the winter, those solar 

gains contribute to positive effects for heating, while in the summer, the gains lead to 

the adverse effects on the cooling demand, which means a larger energy demand needed 

to cool these extra gains. Therefore, the cooling demand is greater than the heating 

demand. 

The above analysis indicates that the orientation of building clusters has proved that it 

is critical for the heating and cooling demand. Based on the modelling commercial 

prototype for this analysis, if the long axis of buildings faces the south-north, then the 

building would consume far less energy during the summer time. However, energy 

demand is determined by many factors when a group of buildings exists, which all affect 

each other. For example, the effect of over-shadowing from other buildings can block 

the accessibility of light, as well as the wind directions. Consequently, to explore the 
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best street orientation for building clusters, a group of factors should be considered 

together in order to balance their effects, and these points are crucial, especially in the 

Master Planning stage. 

7.2.2 The layout of building clusters 

The layout of building clusters focuses on two aspects: horizontal layout (Wy/Wx, 

△X/Wx, △Y/Wy) and vertical layout (△H). The details are presented in the following 

parts. 

1) Horizontal layout (Wy/Wx) 

For the horizontal layout study, firstly, this work examines the alterations of the ratio 

Wy to Wx, from 0.5 to 4, which are 0.5, 1, 1.5, 2, 2.5, and 4. Other variables, such as 

building cluster density, floor area ratio, building storeys, and their heights, remain 

constant. The indicator (Wy/Wx) is used to measure how this alteration affects energy 

consumption of the building cluster. 
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Figure 7.6 Horizontal layout alteration: Wy/Wx from 0.5 to 4 (from left to right) 

Case1: Wy/Wx=1 Case2: Wy/Wx=0.5 Case3: Wy/Wx=1.5

Case4: Wy/Wx=2 Case5: Wy/Wx=2.5 Case6: Wy/Wx=4
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Table 7.4 Variables setting for Wy/Wx 

Figure 7.6 is the visualisation of the horizontal layout Wy/Wx alteration from one to 

four, and more specific parameter settings can be found in Table 7.4. All the variables, 

such as building density, floor area, floor area ratio, remain constant, apart from the 

indicator of Wy/Wx. It is clear that how heating and cooling demand from buildings 

changes with the ratio of Wy to Wx. 

Figure 7.7 Cooling demand for the horizontal layout Wy/Wx alteration 
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Case 
Building 
density 

Floor area 
(m2) 

Floor area 
ratio 

Building 
storey and 
Height (m) 

Wy (m) Wx(m) Wy/Wx 

1 0.23 172800 2.77 12 /3m 20 20 1 

2 0.23 172800 2.77 12 /3m 20 40 0.5 

3 0.23 172800 2.77 12 /3m 15 10 1.5 

4 0.23 172800 2.77 12 /3m 20 10 2 

5 0.23 172800 2.77 12 /3m 20 8 2.5 

6 0.23 172800 2.77 12 /3m 32 8 4 
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Figure 7.8 Heating demand for the horizontal layout Wy/Wx alteration 

Figure 7.9 Annual solar gains for the horizontal layout Wy/Wx alteration 

Figure 7.7, 7.8, and Figure 7.9 illustrate the annual cooling and heating demand, and 

the solar gains for building clusters, respectively. For the annual cooling energy 

consumption (Fig. 7.7), the highest value is required when the ratio of Wy to Wx is 
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quite small (0.5 or 1) or very large (4). While for the heating demand, the relationship 

between the heating demand and the ratio of Wy to Wx is ambiguous. It seems that the 

larger the ratio, the greater the heating demand needed. For the overall energy demand, 

there is a positive effect on the ratio of Wy to Wx. As for the solar gains, they increased 

the ratio of Wy to Wx, from 1.5 to 4. The largest solar gains for building clusters are 

the ratio of 4 (Fig. 7.9), which is larger than any other conditions. 

2) Horizontal layout (ΔX/Wx) 

Case1: Δx/Wx=0.5 Case2: Δx/Wx=1         Case3: Δx/Wx=1.5
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Figure 7.10 Horizontal layout alteration: ΔX/Wx  

Table 7.5 Parameters conditions for horizontal layout alteration: ΔX/Wx 

Case 
Building 
density 

Floor area 
(m2) 

Floor area 
ratio 

Building 
storey and 
Height (m)

ΔX Wx △X/Wx 

1 0.14 76800 1.64 12 /3m 10 20 0.5 

2 0.14 76800 1.64 12 /3m 20 20 1 

3 0.14 76800 1.64 12 /3m 30 20 1.5 

4 0.14 76800 1.64 12 /3m 40 20 2 

5 0.14 76800 1.64 12 /3m 50 20 2.5 

6 0.14 76800 1.64 12 /3m 80 20 4 

Case4: Δx/Wx=2 Case5: Δx/Wx=2.5 Case6: Δx/Wx=4
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This section analyses the impact of the factor (Δx /Wx) on the energy demand. The 

visualisation ofΔx/Wx can be seen in Fig. 7.10. The variable details can be seen in 

Table 7.5. 

Figure 7.11 Cooling demand for the horizontal layoutΔX/Wx alteration 

Figure 7.12 Heating demand for the horizontal layout ΔX/Wx alteration 
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Figure 7.13 Annual solar gains for the horizontal layout Δx/Wx alteration 

Figure 7.11, 7.12 and Figure 7.13 describe the simulation result. Energy demand in 

cooling and heating is reflected in Fig. 7.11 and 7.12. According to these two graphs, 

firstly, both the heating and cooling demands fluctuate. The highest cooling demand 

occurred when the ratio ofΔx to Wx was four. However, the same ratio was the lowest 

for heating demand. In fact, this indirectly validates that the simulated results are 

accurate since the highest cooling demand means the lowest heating demand, which is 

as anyone would expect. However, for the total energy demand, it seems that there is a 

little impact on the ratio ofΔx to Wx since the total energy demand either did not 

change with the ratio ofΔx to Wx, or there were only very small fluctuations. As for 

the solar gains, the highest value was in the ratio of four (Δx/Wx), and there is no 

obvious relationship between the solar gains and the factor (Δx/Wx) according to these 

changes, but one feature can be confirmed—there is an opposite trend between the 

heating demand and solar gains. The more solar gains from the buildings, the lower 

heating demand from the building clusters. 
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3) Horizontal layout (ΔY/Wy) 

Case1: Δy/Wy=0.5 Case2: Δy/Wy=1 Case3: Δy/Wy=1.5
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Figure 7.14 Horizontal layout alteration: Δy/Wy 

Table 7.6 Parameters conditions for horizontal layout alteration Δy/Wy 

The previous section has discussed the horizontal layout ofΔx/Wx changing with 

heating and cooling demand and the solar gains on buildings. In this section, the 

horizontal layout factor Δy/Wy is analysed with energy demand as well as their solar 

gains. Figure 7.14 is the visualisation of building clusters with different ratios of Δy to 

Wy, from 0.5 to 4. The detailed parameter information can be found in Table 7.6. 

Case 
Building 
density 

Floor area 
(m2) 

Floor area 
ratio 

Building 
storey and 
Height (m) 

Δy Wy △y/Wy 

1 0.10 38400 1.19 12 /3m 10 20 0.5
2 0.10 38400 1.19 12 /3m 20 20 1
3 0.10 38400 1.19 12 /3m 30 20 1.5
4 0.10 38400 1.19 12 /3m 40 20 2 
5 0.14 76800 1.64 12 /3m 50 20 2.5 
6 0.14 76800 1.64 12 /3m 80 20 4

Case4: Δy/Wy=2 Case5: Δy/Wy=2.5 Case6: Δy/Wy=4
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Figure 7.15 Cooling demand for the horizontal layout Δy/Wy alteration 

Figure 7.16 Heating demand for the horizontal layout Δy/Wy alteration 
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Figure 7.17 Annual solar gains for the horizontal layout Δy/Wy alteration 

Figure 7.15 and Figure 7.16 reflect the correlation between energy demand and the 

variable Δy/Wy. It shows that the ratio of Δy to Wy has a positive effect on the cooling 

demand, while a negative effect for heating demand. The less the ratio has, the greater 

the heating demand requires. For the total energy demand, there is no obvious 

relationship with the ratio of △Y to Wy. When it comes to the solar gains (Fig. 7.17), 

it is evident that the larger the ratio, the greater the solar gains. This can be explained 

by the distance between buildings. The highest ratio represents the buildings being 

entirely exposed to each other without any shading, and this provides a greater chance 

for all buildings to obtain the solar gains for all buildings from different faces. 
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4) Vertical layout  

Case 1 (Uniform building height H) 

Case 2 (South-high and North-low) 

Case 3 (South-low and North-high) 

Figure 7.18 Vertical layout changes from south to north 
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Table 7.7 Parameters conditions on vertical layout changes with △H 

Figure 7.18 describes the visualisation of different building heights and Table 7.7 

provides conditions about the variables in three case conditions. All variables stay 

constant, save for the vertical height, and this is in order to analyse the impact of their 

height alteration on energy demand. 

Figure 7.19 Cooling demand for the vertical layout △H alteration 
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Figure 7.20 Heating demand for the vertical layout △H alteration 

Figure 7.21 Annual solar gains for the horizontal layout △H alteration 

Figure 7.19 and Figure 7.20 show the cooling and heating demand among buildings, 

while Figure 7.21 describes the changes in solar gains with height differences. It found 

that the energy demand largely varies in building height as well as the solar gains. For 
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the cooling demand, it requires 7% of more than the control group (uniform height: case 

1), while the heating demand largely less than (15%) the control group. Overall, the 

total energy demand can be cut down by around 2% when there is a height difference 

between buildings. Meanwhile, building height difference can reduce 8% of solar gains 

compared to the uniform height of building clusters shown in Fig. 7.21.  

7.2.3 Over-shadowing 

There is no doubt that over-shadowing can reduce the energy demand by offering more 

shading for buildings, which indirectly leads to a reduction in cooling demand. Three 

cases are analysed, adopting the research of Jones et al. (2009) as the reference. The 

detailed conditions are described in Table 7.8. 

Table 7.8 Parameters setting for overshadowing 

Over-shadowing Visual representation Case 

Open 
20 storeys (60m) 

obstruction 120 m 
away 

1 
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Figure 7.22 Cooling demand with over-shadowing alteration 

-46.1

-42.8

-40.6

-47.0

-46.0

-45.0

-44.0

-43.0

-42.0

-41.0

-40.0
1 2 3

kW
h/

ye
ar

/㎡㎡

Case

Normal 
20 storeys (60m) 

obstruction 
50 m away 

2 

Dense 
20 storeys (60m) 
Obstruction 30 m 

away 

3 



267 

Figure 7.23 Heating demand with over-shadowing alteration 

Figure 7.24 Annual solar gains with over-shadowing alteration 
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open situation is 30% more than the dense situation, and this can be explained by the 

fact that buildings in dense areas provide shading for each other, thus reducing the 

heating demand but increase cooling demand as Fig. 7.22 and Fig. 7.23 illustrate. For 

the cooling demand, due to the shading effects offered by the surrounding buildings, it 

is less than 5% in the dense situations but increases by around 9% in the open situation 

compared with the normal level. As for the heating demand, it is less than 2% in the 

opening situation but greater than 5% in the dense situation compared with the normal 

level. Overall, for the total energy consumption, dense conditions can contribute to 

saving 4% of energy and 23% of reduction in solar gains compared to open conditions.

7.2.4 Urban heat island effects 

The urban heat island (UHI) effects are the cumulative result of the urban impact 

leading to a rise in temperature within the built environment, resulting in “warm islands” 

within the city centre in comparison to rural environments (Corburn 2009; Zeng et al. 

2010). The UHI phenomenon has been well-studied and is now an important planning 

consideration for urban sustainability (Lowry 1977; Nichol 2005). The rise in ambient 

temperature could have a potential impact on energy consumption in buildings, and the 

one-degree ambient temperature rise could result in an increase of electricity 

consumption by 9.2% and 3.0% in domestic and commercial sectors, respectively 

(Tarleton and Katz 1995). The main causes of the UHI phenomenon are due to the 

characteristics of urban construction and anthropogenic heat emissions. Urban surfaces 

usually consist of impermeable roads made from concrete and asphalt, which have a 

large thermal capacity and high thermal conductivity rates. As a result, these surfaces 

absorb solar radiation. Buildings absorb and store heat during daytime by absorbing 

shortwave radiation, and then release the heat into the atmosphere at night, increasing 

the ambient temperature (Bouyer et al. 2009). Li and Yu (2008) study the city heat 
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environment in Wuhan deeply by the combinative method of Remote Sensing and CFD 

simulation. Based on their findings, the temperature distribution of Wuhan city is shown 

clearly in Fig. 7.25. Li and Yu point out that the temperature around the Yangtze River 

is relatively high, and the reason is the high building density beside the Yangtze River 

and the poor city ventilation.  

Figure 7.25 City heat environment simulation of Wuhan city in daytime 

Source: Li and Yu (2008) 

Many factors affect the urban heat island covering the climatic variations (clear sky, 

partially cloudy and cloudy periods), geographical variation (core city, semi-city and 

rural areas) and on-site variables such as the ambient temperature, ventilation and wind 

direction. However, the relationship between the ambient temperature and UHI is quite 

complicated due to the uncertainty of the space and time. This study assumes that the 

temperature changes linearly with the time to simplify the model. Three cases are 

studied within UHI effect on energy demand by an increase or decrease of 1℃ in the 
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ambient temperature compared to the standard model in which the ambient temperature 

remains constant. 

Table 7.9 Parameters setting for ambient temperature changes with 1℃

Figure 7.26 Cooling demand with one-degree temperature alteration 
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3 Decrease 1℃ 60 30 36 12 
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Figure 7.27 Heating demand with one-degree temperature alteration 

Figure 7.28 Annual solar gains with one-degree temperature alteration 
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temperature and reduce by 15.4% with one-degree decrease. Figure 7.27 shows that the 

heating demand can increase by 16.3% with the one-degree decrease when compared 

to the standard temperature, while it can reduce by 17.7% with the one-degree increase. 

When it comes to solar gains, it seems that there is no difference between the 

temperature alteration and solar gains, which is shown in Fig. 7.28. In a short, the results 

indicate that in terms of the overall effects, one-degree temperature reduction can 

contribute to around 2% to 3% (15.4% minus 13.6% or 17.7% minus 13.9%) energy-

saving, and this range (2% -3%) is in agreement with the previous studies (Tarleton and 

Katz 1995). 

7.3 Multinomial logistic regression of travel mode choices 

Based on the data collected through the questionnaires, this section first describes and 

analyses the sample from the respondents on socioeconomic features, travel patterns, 

and self-evaluation on travelling. Following this, travel modes choice with these 

selected factors are regressed, analysed and compared from three cases so that the 

similarities and differences of their evaluations on mode choices can be explored. The 

holistic samples (the three study cases, N=427) are also analysed to eliminate the data 

shortage for the sake of accurate regressed results. By combining the above analysis, 

factors affecting travel modes choice can be concluded. 

7.3.1 Sample description and analysis 

Most scholars believe that compact urban development is the most important principle 

for low carbon development, which can lead to improving energy efficiency and 

shortening travel distances, and thus reducing transport energy consumption (Dhakal 

2009; Mindali et al. 2004; Anderson et al. 2015). This section describes and analyses 

factors of three aspects from the surveyed samples: socioeconomic characteristics, 
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travel patterns, and self-evaluation on travelling from the respondents. The sample size 

was decided to be by 5% to 10% of the overall population of the community for all the 

cases. It presents and analyses socioeconomic features, travel patterns, and self-

evaluation from the respondents using the surveyed data.

(1) Socioeconomic characteristics of the respondents

Figure 7.29 Gender distribution of the respondents in the three cases 

According to Fig. 7.29, among these respondents from the three cases, firstly, in the 

case of Hankou station around, most people were female from both dwelling and public 

buildings, accounting for around 58 % and 69 % respectively. This trend was also 

observed in the case of Wuhan station (69 % female from public buildings vs 62% 

female from residential buildings). Lastly, around the Wuchang station around, most 

respondents were female from public buildings and male from dwellings (78% vs 58%). 

Overall, the respondents were female from both residential and public buildings. 
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Figure 7.30 Distribution of family income of the respondents in the three cases 

Figure 7.30 shows the monthly household income distribution from the respondents in 

the three cases. Most family monthly earnings were less than 10000 CNY (around 1100 

GBP) from the respondents in the three cases, and this feature is quite noticeable from 

the respondents in public buildings around Hankou station and the residential buildings 

around Wuhan station. The average family monthly income level of the interviewees 

around Wuchang Station was the highest, while that of around Hankou Station was 

lowest. 
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Figure 7.31 Distribution of car ownership of the respondents in the three cases 

Regarding car ownership, Figure 7.31 shows that most of the families did not have a 

car, excluding the respondents from residential buildings around Wuchang stations. 

Meanwhile, very few families had two or more than two cars, and this phenomenon is 

evident from the people in the public buildings around Hankou and Wuchang stations. 

In general, 66% of the respondents did not have a car, followed by 30 % of individuals 

who had one car in their families. The remaining 4% of people had two or more cars.  
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(2) Travel patterns of the respondents 

Figure 7.32 Distribution of modal splits of the respondents in the three cases 

Figure 7.32 shows that the most three preferred transport modes are the underground, 

public buses, and walking in respondents from both public and residential buildings 

around the three case areas. Moreover, cars or taxis were also the prevalent transport 

modes among these interviewees, and this phenomenon was quite noticeable from the 

respondents in residential buildings around Wuchang station, as well as from those in 

the public buildings around Wuhan station. 

In contrast, very few respondents took bicycle and e-motorcycle as their travel modes, 

with both less than 5%. Public buses were the most popular travel modes for 

respondents from all these three cases, accounting for 34%, followed by the 

underground (23%), and walking (19%). The remainder was by car or taxi (15%), e-

motorcycle (5%), and bicycle (4%), respectively. 

Regarding the travel time as shown in Figure 7.33, the majority of the respondents spent 
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under 30 minutes for commuting, especially around the Hankou station. In contrast, 

very few respondents took more than one hour on their travelling, and around 35% of 

the people spent between 30mins and 60mins. Additionally, these results are also 

reflected from the average level, which is 49 % of respondents travelling for less than 

30mins, and 35% between 30mins and 60mins. The rest travelled for more than 60mins. 

Figure 7.33 Travel time distribution on weekdays 

54%

53%

45%

42%

47%

55%

49%

33%

32%

36%

36%

37%

34%

35%

13%

15%

19%

22%

16%

11%

16%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Hankou station_residence N=52

Hankou station_public N=59

Wuchang station_residence N=62

Wuchang station_public N=78

Wuhan station_residence N=62

Wuhan station_public N=80

Total N=393

less than 30 minutes between 30 and 60 minutes more than 60 minutes



278 

Figure 7.34 Travel distance distribution in the three cases

As for the travel distance shown in Fig. 7.34, it is quite noticeable that most of the 

respondents (around 30%) travelled more than 10 kilometres, followed by 16% between 

3km and 5km, and 15% between 2km and 3km, respectively. In contrast, the lowest 

proportion, around 7% respondents, travelled within 1km. This figure indicates that 

most of the people lived far away from their working places, and this phenomenon was 

most apparent for the respondents around Hankou station. 
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Figure 7.35 Travel purpose distribution in the three cases 

Figure 7.35 presents and compares the travel purposes of the respondents around the 

three cases. The main purpose of respondents was travelling for work, representing 

around 80%. Conversely, only about 1% was for social purposes. Meanwhile, the 

purpose of going to school and shopping was equal, both standing at 5%. The remaining 

of around 7% was for other purposes. These data indicate that travelling for work is the 

respondents’ primary purposes. 
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Figure 7.36 The distribution of daily trip frequency on weekdays in the three cases 

Figure 7.36 above shows the daily travelling frequency on weekdays from the 

respondents around the three case areas. Most people (70%) travel to two times per day, 

and this is in accordance with their primary travel purpose. In contrast, very few 

respondents (around 1%) travelled more than five times per day. 

(3) Travelling on self-evaluation 

The following three graphs show and compare the respondents’ evaluation of their 

travelling in the situations of congestion, comfort, and cost around the three stations.  
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Figure 7.37 The distribution of travel congestion self-evaluation in the three cases 

From Figure 7.37, it is evident that many respondents gave a “common level” of their 

judgments, accounting for around 50%, followed by a “fairly smooth” level (27%), and 

“fairly serious” level (14%). Meanwhile, the evaluation of “very smooth” and “very 

serious” occupied a much lower few proportions— less than 10%.  
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Figure 7.38 The distribution of comfort level self-evaluation in the three cases 

Figure 7.38 shows and compares the distribution of comfort level self-evaluation from 

respondents around the three case areas. Generally, most of the respondents thought 

that the comfort level during their travelling was “common,” representing around 60%, 

followed by “fairly comfortable” (23%), which was twice more than of “fairly 

uncomfortable” (11%). Finally, the remainder (around 6%) ranges between of “very 

comfortable” and“very uncomfortable.” 
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Figure 7.39 The distribution of economical level self-evaluation in the three cases 

Figure 7.39 describes and compares the respondents’ travelling cost assessments. 

Around half of the respondents believed that the travel cost was “common”, followed 

by those who felt that it was “fairly economical” (34%). In contrast, only 1% of 

respondents thought it was “very uneconomical”, and 10% thought it was “very 

economical.” The remaining 6% thought it was “fairly uneconomical.” 

7.3.2 Multinomial logistic regression modelling 

For multinomial logistic regression modelling of travel mode choice, the first step is to 

select and confirm the influencing factors. In this research, ten factors are selected, 

characterised by three categories: travel patterns, self-evaluation, and socioeconomic 

features (see Table 7.10). For the simplicity and clarity of the analysis, some variables 

are regrouped. For example, travel modes are regrouped into three categories based on 

their carbon dioxide emission characteristics, and trip purposes are classified into two 

groups: work and non-work purpose.
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Following the modelling framework of discrete choice, Equations (7-1) and (7-2) 

express the probability of one travel mode being chosen as a function of a vector of 

explanatory variables X: 

ln( −⁄ ) = 0 + 11 + 22 + ⋯+ 1010         (7  1)     

ln� −⁄  = 0 + 11 + 22 + ⋯+ 1010         (7  2)

where= P is the probability of mode choice; X is independent variables, consisting of 

the socioeconomic characteristics of the travellers, the characteristics of travel patterns 

and the self-evaluation on travelling; β is the coefficients; 0 and 0 are constants. 

In the modelling process, all the ten potential independent variables were considered. 

Then, based on the statistical test results, less-significant independent variables were 

removed. The best models of the travelling mode choices were established with all 

significant variables. 
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Table 7.10 Description of variables 

Categories
Factors Description Type of 

Variables Factor grouping 

Dependent Trip modes 1 ="non-motorised "; 2 ="transit";3 ="driving"

Independent 

Travel patterns of 
the respondents 

Travel time (x1) 

1="less than 30 minutes";
2="between 30 and 60 minutes";
3="between 60 and 90 minutes";
4="between 90 and 120 minutes";

5="more than 120 minutes";

Travel distance(x2) 

1="less than 1 km";
2="between 1 and 2 km";
3="between 2 and 3 km";
4="between 3 and 5 km";
5="between 5 and 7 km";
6="between7 and 10 km";

7="more than 10 km."
Travel purpose(x3) 1 = "work"; 2 = "non-work";

Daily travel frequency (x4) 1= "no more than 2 times ";2="between 2 and 5 
times ";3="more than 5 times"

Self-evaluation 
on travel from 

the respondents 

Congestion situation in the 
process of travelling(x5) 

1 ="very smooth"; 2=" fairly 
smooth";3="common";4=" fairly serious";5="very 

serious"

Comfort level in the 
process of travelling(x6) 

1 ="very comfortable";
2 =" fairly comfortable”; 3 ="common”;

4 =" fairly uncomfortable”;
5 ="very uncomfortable"

Economical level in the 
process of travelling(x7) 

1="very economical";2=" fairly economical"; 
3="common"; 4=" fairly uneconomical";

5="very uneconomical."

Socioeconomic 
characteristics of 
the respondents 

Gender(x8) 0 ="male", 1 ="female"
Car ownership in family 

(x9) 
0="no cars"; 1="has one car";

2="has two cars"; 3="no less than 3 cars"

Household monthly 
income(x10) 

1="no more than 10000 CNY ";
2="between 10000 and 15000";
3=" between 15000 and 20000."

4="more than 20000."

Note: £1 equals to around 9.0 CNY 
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7.3.3 Results of the logistic regression modelling 

For this section, the results of logistic regression modelling from three cases are 

presented in the following parts. For each case, the results of the Case Processing 

Summary, Model Fitting Information, Likelihood Ratio Tests, and finally, the Parameter 

Estimates, are displayed. The travel mode choice from holistic samples is also presented 

and analysed. 

Case1: around Hankou railway station  

Table 7.11 presents the basic information of the Case 1 (Around Hankou Station). There 

were around 131 samples from Case 1, with about 55% female respondents being 

female. For the transport modes distribution, most people use transit as their travelling 

modes, followed by non-motorised transport and driving. Regarding the trip purposes, 

around 90% of respondents travelled for work, and the remainder was for other the non-

working purposes.

Table 7.11 Case processing summary 

Case Processing Summary
N Marginal Percentage 

Trip modes 
non-motorised 45 34.4% 

transit 67 51.1% 
driving 19 14.5%

Gender 
male 59 45.0%

female 72 55.0% 

Trip purpose 
work 117 89.3% 

non-work 14 10.7% 
Valid 131 100.0%

Missing 0
Total 131 

Subpopulation 123a

a. The dependent variable has only one value observed in 121 (98.4%) subpopulations. 
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Table 7.12 shows the model fitting information (Final) against one in which all the 

parameter coefficients are zero (Null hypothesis). From Table 7.12, it reads that the 

final model is better than the model with the intercept only because the value of -2 Log 

Likelihood is smaller. Secondly, since the significance level (P value) of the test is less 

than 0.05, the Null hypothesis can be rejected. 

Table 7.12 Model fitting information 

Model Fitting Information

Model 
Model Fitting 

Criteria Likelihood Ratio Tests 

-2 Log Likelihood Chi-Square df Sig.
Intercept Only 256.612

Final 166.102 90.510 20 .000

Table 7.13 describes the Likelihood Ratio Tests, and the independent variables with the 

boldface show the statistical significance that exists in the model. For example, 

variables such as family monthly income, travel distance, genders of the respondents, 

their purposes, etc. have statistical significance in the modelling. 

Table 7.13 Likelihood ratio tests 

Likelihood Ratio Tests

Effect 

Model Fitting 
Criteria Likelihood Ratio Tests 

-2 Log 
Likelihood of 

Reduced Model
Chi-Square df Sig. 

Intercept 166.102a .000 0 .
Income 182.639 16.537 2 .000
Number 167.560 1.459 2 .482

Frequency 168.947 2.845 2 .241
Time 170.992 4.890 2 .087

Distance 181.023 14.921 2 .001
Congestion 172.867 6.765 2 .034

Comfort 172.193 6.092 2 .048
Economical 168.692 2.590 2 .274

Gender 180.192 14.091 2 .001
Purpose 173.342 7.241 2 .027

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a 
reduced model. The reduced model is formed by omitting an effect from the final model. The 
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null hypothesis is that all parameters of that effect are 0.
a. This reduced model is equivalent to the final model because omitting the effect does not 
increase the degrees of freedom.

In Table 7.14, the non-motorised mode is set as the reference category in the model. 

The parameters in the table with boldface have a significant level in the modelling.  

Table 7.14 Parameter estimates 

Parameter Estimates

Trip modesa B Std. 
Error Wald df Sig. Exp(B) 

95% Confidence 
Interval for Exp(B)
Lower 
Bound

Upper 
Bound

Transit 

Intercept -4.260 1.711 6.198 1 .013
Income .188 .309 .371 1 .543 1.207 .659 2.212
Number -.409 .520 .618 1 .432 .665 .240 1.841

Frequency .806 .578 1.946 1 .163 2.239 .721 6.947
Time .591 .317 3.480 1 .062 1.806 .970 3.361

Distance .343 .125 7.534 1 .006 2.027 1.103 1.801
Congestion -.019 .317 .004 1 .953 .981 .527 1.828

Comfort .161 .340 .224 1 .636 1.174 .604 2.285
Economical -.073 .332 .048 1 .827 .930 .486 1.781
[Gender=0] 1.017 .480 4.485 1 .034 2.765 1.079 7.086
[Gender=1] 0b . . 0 . . . .
[Purpose=1] .777 .858 .820 1 .365 2.175 .404 11.698
[Purpose=2] 0b . . 0 . . . .

Driving 

Intercept -9.580 3.482 7.568 1 .006
Income 1.702 .529 10.362 1 .001 5.484 1.946 15.456
Number .284 .733 .151 1 .698 1.329 .316 5.589

Frequency -.328 1.135 .084 1 .773 .720 .078 6.665
Time .133 .465 .082 1 .774 1.143 .460 2.841

Distance .706 .226 9.748 1 .002 1.409 1.301 3.158
Congestion -1.214 .566 4.595 1 .032 3.367 1.110 10.217

Comfort -1.171 .621 3.550 1 .060 .310 .092 1.048
Economical .778 .570 1.863 1 .172 2.177 .712 6.655
[Gender=0] 3.417 1.149 8.852 1 .003 3.482 3.209 289.522
[Gender=1] 0b . . 0 . . . .

[Purpose=1] -2.612 1.276 4.188 1 .041 .073 .006 .895
[Purpose=2] 0b . . 0 . . . .
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a. The reference category is: non-motorised .
b. This parameter is set to zero because it is redundant.

Analysis of travel mode choice in Case 1 

The Parameter Estimates include two parts for each trip purpose. Part 1 shows the 

effects of the independent variables on the odds ratio (EXP(B)) of choosing transit over 

the reference mode, which is NMM. Part 2 shows the odds ratio of choosing driving 

over NMM. 

The significant coefficient (B value) for the variable of trip distance is positive and 

statistically significant in both two models (part 1 and part 2). The positive sign 

indicates that for longer trip distances the travellers around Hankou station are less 

likely to choose non-motorised modes. Rather, they tend to use transit and automobile. 

This result confirms the expected importance of the public transport system 

performance to travellers’ decision on travel mode choice. The odds ratios Exp (B) in 

Table 7.14 show that the models allow quantitative assessment of travellers’ mode 

preferences. For example, the odds ratio of taking transit over non-motorised has a 

value of 2.027, meaning that the likelihood of choosing transit is 2.027 times higher 

than choosing to NMM for every kilometre increase in trip distance, or else being equal. 

Similarly, the probability of choosing the driving mode is 1.409 times higher than 

choosing walking or cycling when the trip distance becomes one kilometre longer. 

Furthermore, from these two odds ratios, one can infer the travellers’ preference of 

transit outweighing driving when travel distance increases. This is because both odds 

ratios use NMM as the reference category, and the ratio of the two odds ratio, 

2.027/1.409 = 1.44, gives the odds of choosing transit over driving. When the trip 

distance increases by one kilometre, the likelihood of a traveller choosing transit is 1.44 

times greater than choosing driving. This result is not surprising, given the public 
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transport available around the Hankou station. 

Results of the regression analysis also verify the expected effects of income on driving 

mode choice. As income increases, people are more likely to choose the drive mode, 

and this phenomenon is obvious as the magnitudes of income effects on mode choice 

are statistically significant with the odds ratio of 5.484. Other variables such as 

congestion, gender, and purpose also influence driving decisions.  

The final model in Case 1: 

Y = ln( −⁄ ) = 4.260 + 0.343  + 1.017=0

Y = ln� −⁄ 

= 9.580 + 1.702  + 0.706  + 3.417=0
 1.214congestion  2.612=1

Case2: around Wuchang railway station 

Table 7.15 presents the basic information of Case 2. There were around 152 samples, 

with about 63% being female respondents. For the transport modes distribution, 58.6% 

of people use transit as their travel mode, followed by non-motorised (23.7%) and 

driving (17.8%). Regarding the trip purposes, 89.5% of respondents travelled for work, 

and the remaining 10.5% travelled for non-work purposes. 
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Table 7.15 Case processing summary  

Case Processing Summary
N Marginal Percentage

Trip modes 
non-motorised 36 23.7%

transit 89 58.6%
driving 27 17.8%

Gender 
male 57 37.5%

female 95 62.5%

Trip purpose 
work 136 89.5%

non-work 16 10.5%
Valid 152 100.0%

Missing 0
Total 152

Subpopulation 142a

a. The dependent variable has only one value observed in 140 (98.6%) subpopulations.

Table 7.16 Model fitting information 

Model Fitting Information

Model Model Fitting Criteria Likelihood Ratio Tests
-2 Log Likelihood Chi-Square df Sig.

Intercept Only 289.521
Final 172.928 116.593 20 .000

Table 7.17 likelihood ratio tests 

Likelihood Ratio Tests

Effect 
Model Fitting Criteria Likelihood Ratio Tests
-2 Log Likelihood of 

Reduced Model Chi-Square df Sig. 

Intercept 172.928a .000 0 .
Income 175.342 2.414 2 .299

Number 183.154 10.226 2 .006
Frequency 174.431 1.503 2 .472

Time 182.644 9.716 2 .008
Distance 201.663 28.735 2 .000

Congestion 176.576 3.648 2 .161
Comfort 185.289 12.361 2 .002

Economical 180.662 7.734 2 .021
Gender 176.684 3.756 2 .153
Purpose 178.045 5.117 2 .077

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced 
model. The reduced model is formed by omitting an effect from the final model. The null hypothesis 
is that all parameters of that effect are 0.
a. This reduced model is equivalent to the final model because omitting the effect does not increase 
the degrees of freedom.
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Table 7.16 and Table 7.17 describes the Likelihood Ratio Tests and Parameter Estimates, 

respectively. These two tables show that parameters within bold are statistically 

significant and these variables would exist in the final model. For example, variables 

such as the number of cars owned, trip time, distance, etc. have statistical significance 

in the model. 

Table 7.18 is the result of parameter estimates. The coefficient for the variable of trip 

distance is positive and statistically significant in both two models (transit vs. non-

motorised and driving vs. non-motorised). The odds ratios Exp (B) in Table 7.18 allow 

quantitative assessment of the modal preferences. For example, the odds ratio of taking 

transit over non-motorised modes has a value of 2.549, meaning that the likelihood of 

choosing transit is 2.549 times higher than choosing to walk or cycling for every 

kilometre increase in trip distance. Similarly, the likelihood of choosing the driving 

mode is 2.535 times greater than choosing walking or cycling when the trip distance 

becomes one kilometre longer. Furthermore, from these two odds ratios, one can infer 

the travellers’ preference of transit is almost the same as driving because both odds 

ratios use NMM as the reference category, the ratio of the two odds ratios, 2.549/2.535 

=1.001, gives the odds of choosing transit marginally over driving when the trip 

distances increase one kilometre. Other variables, such as car ownership and travel cost, 

also have significant effects on the driving choice. 

Table 7.18 Parameter estimates 

Parameter Estimates

Trip modesa B Std. Error Wald df Sig. Exp(B) 

95% Confidence 
Interval for Exp(B)
Lower 
Bound

Upper 
Bound

Transit 

Intercept -8.330 2.733 9.288 1 .002
Income -.481 .345 1.950 1 .163 .618 .314 1.215
Number .963 .685 1.973 1 .160 2.619 .683 10.033

Frequency -.594 .716 .688 1 .407 .552 .136 2.246
Time 1.343 .710 3.573 1 .059 3.830 .952 15.410



293 

Distance .936 .225 17.287 1 .000 2.549 1.640 3.962
Congestion -.126 .435 .084 1 .772 .881 .376 2.068
Comfort 1.266 .540 5.494 1 .019 3.547 1.230 10.223

Economical .619 .435 2.026 1 .155 1.858 .792 4.358
[Gender=0] -.370 .642 .333 1 .564 .690 .196 2.429
[Gender=1] 0b . . 0 . . . .
[Purpose=1] .435 .858 .257 1 .612 1.545 .287 8.305
[Purpose=2] 0b . . 0 . . . .

Driving 

Intercept -10.456 3.244 10.387 1 .001
Income -.571 .419 1.852 1 .174 .565 .248 1.286

Number 2.134 .759 7.904 1 .005 8.450 1.908 37.417
Frequency -1.011 .835 1.467 1 .226 .364 .071 1.868

Time .367 .785 .218 1 .640 1.443 .310 6.724
Distance .930 .249 13.989 1 .000 2.535 1.557 4.f

Congestion .522 .490 1.135 1 .287 1.685 .645 4.402
Comfort -.153 .657 .054 1 .816 .858 .237 3.108

Economical -1.529 .593 6.654 1 .010 4.615 1.444 14.749
[Gender=0] .680 .738 .849 1 .357 1.974 .465 8.386
[Gender=1] 0b . . 0 . . . .
[Purpose=1] 2.532 1.340 3.573 1 .059 12.585 .911 173.881
[Purpose=2] 0b . . 0 . . . .

a. The reference category is: non-motorised.
b. This parameter is set to zero because it is redundant.

Final model in the Case 2 

 = ln( −⁄ ) = 8.330 + 0.936  + 1.266 

    Y =  ln� −⁄ 

= 10.456 + 2.134  + 0.930   1.529

Case3: around Wuhan railway station 

As with the previous cases, Table 7.19 presents the basic information of the Case 3. 

There were around 143 samples, with around 66% being female respondents. For the 

transport modes distribution, 60.8% of people use transit as their travel modes, followed 

by non-motorised (27.3%) and driving (11.9%). Regarding the trip purposes, 67.8% of 
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respondents travelled for work, and the remainder travelled for non-work purposes.

Table 7.19 Case processing summary 

Case Processing Summary 
N Marginal Percentage 

Trip modes 
non-motorised 39 27.3%

transit 87 60.8% 
driving 17 11.9% 

Gender 
male 49 34.3% 

female 94 65.7% 

Trip purpose 
work 97 67.8%

non-work 46 32.2% 
Valid 143 100.0%

Missing 0
Total 143 

Subpopulation 141a

a. The dependent variable has only one value observed in 141 (100.0%) subpopulations.

Table 7.20 shows the modelling fitting information. From this table, one can see that 

the overall significance level for the final model is zero (P value <.05), and this means 

that the final model has statistical significance. Therefore, the next step is to explore 

which variables show statistical significance and in the final model. 

Table 7.20 Model fitting information 

Model Fitting Information

Model Model Fitting Criteria Likelihood Ratio Tests
-2 Log Likelihood Chi-Square df Sig.

Intercept Only 260.218
Final 186.587 73.631 20 .000

Table 7.21 describes the Likelihood Ratio Tests. From this table, it can be seen that the 

variables such as family monthly- income, travel time, the degree of comfort level, and 

travel cost has a statistical significance that would exist in the model. 
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Table 7.21 Likelihood ratio tests 

Likelihood Ratio Tests

Effect 
Model Fitting Criteria Likelihood Ratio Tests
-2 Log Likelihood of 

Reduced Model Chi-Square df Sig. 

Intercept 186.587a .000 0 .
Income 203.379 16.792 2 .000
Number 191.508 4.921 2 .085

Frequency 187.724 1.137 2 .566
Time 193.302 6.715 2 .035

Distance 192.329 5.742 2 .057
Congestion 192.193 5.606 2 .061
Comfort 192.620 6.033 2 .049

Economical 192.901 6.314 2 .043
Gender 186.905 .318 2 .853
Purpose 190.324 3.737 2 .154

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced 
model. The reduced model is formed by omitting an effect from the final model. The null hypothesis 
is that all parameters of that effect are 0. 

a. This reduced model is equivalent to the final model because omitting the effect does not increase 
the degrees of freedom.

Table 7.22 is the result of parameter estimates. The coefficient for the variable of trip 

distance in transit modes is positive and statistically significant. The odds ratio Exp(B) 

in Table 7.22 has a value of 1.433, meaning that the likelihood of choosing transit is 

1.433 times higher than choosing non-motorised modes for every kilometre increase in 

trip distance. In addition, in the driving model, variables such as family monthly income, 

and three evaluation indices also have significant effects on the choice of driving over 

NMM. However, the variable of travelled distance shows no significance in the driving 

model of the Case 3. 
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Table 7.22 Parameter estimates 

Parameter Estimates 

Trip modesa B Std. 
Error Wald df Sig. Exp(B)

95% Confidence 
Interval for Exp(B)
Lower 
Bound

Upper 
Bound

Transit 

Intercept -1.167 1.436 .660 1 .416 

Income .508 .352 2.092 1 .148 1.663 .835 3.312 

Number -.291 .408 .509 1 .475 .748 .336 1.662 

Frequency -.450 .425 1.122 1 .289 .638 .277 1.466 

Time .875 .459 3.640 1 .056 2.398 .976 5.891 

Distance .360 .173 4.316 1 .038 1.433 1.021 2.013 

Congestion .072 .300 .058 1 .809 1.075 .597 1.937 

Comfort -.174 .397 .192 1 .661 .840 .386 1.831 

Economical -.096 .330 .085 1 .770 .908 .476 1.733 

[Gender=0] -.222 .500 .198 1 .656 .801 .301 2.131 

[Gender=1] 0b . . 0 . . . . 

[Purpose=1] -.066 .498 .018 1 .894 .936 .353 2.484 

[Purpose=2] 0b . . 0 . . . . 

Driving 

Intercept -7.433 2.728 7.425 1 .006 

Income 1.626 .464 12.299 1 .000 5.083 2.049 12.611 

Number .720 .515 1.956 1 .162 2.054 .749 5.630 

Frequency -.345 .756 .208 1 .648 .708 .161 3.118 

Time -.020 .711 .001 1 .977 .980 .243 3.947 

Distance .580 .310 3.488 1 .062 1.786 .972 3.281 

Congestion -1.217 .557 4.767 1 .029 3.376 1.133 10.062 

Comfort 1.570 .715 4.822 1 .028 .208 .051 .845 

Economical -1.140 .575 3.928 1 .047 3.127 1.013 9.656 

[Gender=0] -.466 .927 .252 1 .615 .628 .102 3.861 

[Gender=1] 0b . . 0 . . . . 

[Purpose=1] -1.531 .887 2.977 1 .084 .216 .038 1.231 

[Purpose=2] 0b . . 0 . . . . 

a. The reference category is: non-motorised. 
b. This parameter is set to zero because it is redundant. 
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The final model in Case 3 

Y = ln( −⁄ ) = 0.360 

Y = ln� −⁄ 

= 1.626 income  1.217  + 1.570 

 1.140   7.433

Three cases combined analysis 

To eliminate the lack of the samples data, this part uses the data from three selected 

areas as a whole in order to analyse mode choices between the selected factors. Table 

7.23 is the Case Processing Summary of 426 samples. It clearly shows that most of the 

respondents are female, accounting for 61.3% of the total number of respondents. As 

for the trip purpose, 82.3% of people are travelling for work. Finally, for the travel 

modes, 56.8% people use transit, followed by 28.2% using non-motorised modes and 

15% with driving modes. 

Table 7.23 Case processing summary 

Case Processing Summary
N Marginal Percentage 

Trip modes 
non-motorised  120 28.20% 

transit 242 56.80%
driving 64 15.00% 

Trip purpose 
work 350 82.20% 

non-work 76 17.80%

Gender 
male 165 38.70% 

female 261 61.30%
Valid 426 100.00% 

Missing 0
Total 426

Subpopulation 384a
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a. The dependent variable has only one value observed in 375 (97.7%) subpopulations. 

Table 7.24 shows the modelling fitting information. From this table, one can see that 

the overall significance level for the model is zero (P value <=.05), and this means that 

the model has statistical significance. 

Table 7.24 Model fitting information 

Model Fitting Information

Model Model Fitting Criteria Likelihood Ratio Tests
-2 Log Likelihood Chi-Square df Sig.

Intercept Only 805.492
Final 583.641 221.851 20 .000

Table 7.25 and Table 7.26 describes the Likelihood Ratio Tests, and Parameter 

Estimates, respectively. For these two tables, the parameters in bold are the effective 

factors that would exist in the final model. For example, factors such as family monthly 

income, travel time, the degree of comfort level, and travel cost have statistical 

significance in the model. 

Table 7.25 Likelihood ratio tests 

Likelihood Ratio Tests

Effect 
Model Fitting Criteria Likelihood Ratio Tests

-2 Log Likelihood of Reduced 
Model Chi-Square df Sig. 

Intercept 583.641a .000 0 .
Income 595.142 11.501 2 .003
Number 595.089 11.449 2 .003

Frequency 585.147 1.506 2 .471
Time 603.119 19.478 2 .000

Distance 632.451 48.810 2 .000
Congestion 599.654 16.013 2 .000

Comfort 600.350 16.709 2 .000
Economical 591.706 8.066 2 .018

Gender 590.725 7.085 2 .029
Purpose 583.963 .322 2 .851
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The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced 
model. The reduced model is formed by omitting an effect from the final model. The null hypothesis 
is that all parameters of that effect are 0. 
a. This reduced model is equivalent to the final model because omitting the effect does not increase 
the degrees of freedom.

Table 7.26 Parameter estimates 

Parameter Estimates 

Trip modesa B Std. Error Wald df Sig. Exp(B)
95% Confidence Interval for Exp(B) 
Lower Bound Upper Bound

transit 

Intercept -2.791 .875 10.165 1 .001
Income .076 .162 .219 1 .640 1.079 .786 1.481 
Number -.225 .263 .732 1 .392 .798 .476 1.338

Frequency .028 .281 .010 1 .920 1.029 .593 1.783
Time .657 .229 8.234 1 .004 1.928 1.231 3.020 

Distance .511 .084 36.851 1 .000 1.855 1.414 1.966 
Congestion -.027 .183 .022 1 .883 .974 .680 1.393

Comfort .209 .219 .910 1 .340 1.233 .802 1.894 
Economical -.040 .187 .047 1 .829 .961 .666 1.385 
[Gender=0] .104 .280 .138 1 .710 1.110 .641 1.920
[Gender=1] 0b . . 0 . . . . 
[Purpose=1] -.020 .347 .003 1 .955 .980 .497 1.934 
[Purpose=2] 0b . . 0 . . . . 

driving

Intercept -5.695 1.294 19.377 1 .000
Income .594 .199 8.910 1 .003 1.812 1.226 2.677 
Number .637 .302 4.456 1 .035 1.891 1.047 3.416 

Frequency -.408 .413 .975 1 .323 .665 .296 1.495
Time -.126 .312 .164 1 .685 .881 .479 1.623 

Distance .618 .119 26.781 1 .000 1.667 1.468 2.344 
Congestion -.843 .260 10.501 1 .001 0.324 1.395 3.869

Comfort .888 .311 8.141 1 .004 .411 .223 .757
Economical -.623 .274 5.171 1 .023 1.864 1.090 3.188 
[Gender=0] .944 .389 5.872 1 .015 2.570 1.198 5.514 
[Gender=1] 0b . . 0 . . . .
[Purpose=1] -.257 .487 .279 1 .597 .773 .298 2.007 
[Purpose=2] 0b . . 0 . . . . 

a. The reference category is: non-motorised. 
b. This parameter is set to zero because it is redundant. 
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The modelling outcome shows the effects of the independent variables on the odds ratio 

EXP (B) of choosing transit model vs. the reference model (non-motorised modes), as 

well as the odds ratio of choosing driving vs. the non-motorised modes (NMM) 

Firstly, the variable of trip distance is positive and statistically significant in both 

models (transit and driving). The positive sign shows that, for longer trips, travellers 

around the three stations are less likely to use non-motorised modes. Rather, they tend 

to take transit and driving modes. The odds ratios Exp (B) shown in Table 7.26 allow 

quantitative assessment of the modal preferences. For example, the odds ratio of taking 

transit over NMM has a value of 1.855, meaning that the likelihood of the option in 

transit is 1.855 times higher than NMM for every one-kilometre increase in trip distance. 

Similarly, the probability of choosing driving mode is 1.667 times greater than NMM 

when the trip distance becomes one kilometre longer. Furthermore, from these two odds 

ratios, one can infer the preference is for transit over driving. Because both odds ratios 

use NMM as the reference mode, the ratio of the two odds ratios, 1.855/1.667 = 1.113, 

gives the odds of choosing transit over driving. This means that when the trip distance 

increases by one kilometre, the likelihood of choosing transit modes is 1.113 times 

greater than driving modes. This result is not surprising around three stations due to 

huge population mobility and a significant number of public transport networks and 

nodes provided. Results of the regression analysis also verify the expected effects of 

travel time on the choice of transit modes but do not show statistical significance on the 

choice of driving modes. As travel time increases, people are more likely to choose the 

transit modes than NMM. The magnitudes of travel time on the choice of transit modes 

are statistically significant with the odds ratio of 1.928.  

Secondly, in the driving model, variables such as family income, car ownership, 

indicators of self-evaluation, and the number of males is also statistically significant. 

The effects of income on driving mode choice are small yet statistically significant (with 
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an estimated odds ratio of 1.812). The number of cars-owned has noticeable effects on 

driving decisions, with an odds ratio of 1.891 of driving over NMM when there is 

another motor vehicle added to the household. In conclusion, travel time and distance 

are the primary factors to transit modes, while family monthly income, car 

ownership, and their travel self-assessment on congestion and comfort are the 

main driving forces of driving modes. 

Nevertheless, travel time and travel frequency seem to have no significant effects on 

driving mode choice. Interestingly, variables representing travellers’ self-evaluation 

indicators almost display a negative relationship with driving modes. However, 

decisions between transit and NMM, their coefficients show no statistical significance. 

This result suggests that, despite the rapid growth in family income and motorisation 

rate, travellers prefer transit modes because of long-time and long- distance travelling. 

The final model in three cases 

 = ln( −⁄ ) = 2.791 + 0.657  + 0.511 

   Y =  ln� −⁄ 

= 5.695 + 0.594  + 0.637  + 0.618 distance

 0.843 congestion + 0.888 comfort  0.623 economical

+ 0.944=0

7.3.4 Comparison of these three cases 

This section compares and analyses three selected cases. The statistically significant 

variables in the regression model from each case are sorted, and then compared and 

analysed. Travelled distance is one of the most important factors in the model from 
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three cases, both in transit model and driving model. In these three cases, most travellers 

prefer transit to driving modes. Conversely, the factor of family income level shows the 

most significant magnitude in the driving model around Wuhan station, with an odds 

ratio 5.083. 

According to the on-site survey, although there are more underground stations and 

public bus routes available around Wuchang and Hankou stations compared to Wuhan 

station (especially in the city centre), there are many other options of modal splits such 

as driving and taxis. Around Wuhan station, there are very few travel modes available 

save for the underground stations and limited public buses due to the underconstruction 

of these areas and the poor infrastructure services. Therefore, commuting is 

inconvenient for people around Wuhan station compared to the other two cases, 

especially for the driving mode. This indicates that the availability of major public 

transport can have a powerful influence on the modal splits. According to these three 

cases, commuters’ decisions on transit modes do not vary across different locations but 

heavily depend on the wide coverage of transit services.  

Table 7.27 The statistically significant variables in each of three cases  

Case 1 (around Hankou Station)

Trip modesa B Sig. Exp(B) 

Transit  
Intercept -4.260 .013
Distance .343 .006 2.027

[Gender=0] 1.017 .034 2.765

Driving  

Intercept -9.580 .006
Income 1.702 .001 5.484
Distance .706 .002 1.409

Congestion -1.214 .032 3.367
[Gender=0] 3.417 .003 3.482
[Purpose=1] -2.612 .041 .073

Case 2 (around Wuchang Station)

Trip modesa B Sig. Exp(B) 

Transit Intercept -8.330 .002
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Distance .936 .000 2.549
Comfort 1.266 .019 3.547

Driving  

Intercept -10.456 .001
Number 2.134 .005 8.450
Distance .930 .000 2.535

Economical -1.529 .010 4.615

Case 3 (around Wuhan station) 

Trip modesa B Sig. Exp(B) 

Transit  Distance .360 .038 1.433 

Driving  

Intercept -7.433 .006 
Income 1.626 .000 5.083 

Congestion -1.217 .029 3.376 
Comfort 1.570 .028 .208 

Economical -1.140 .047 3.127 

Table 7.27 shows variables with statistical significance in the model from each case. In 

Case 1, the travelled distances and number of males have significance in the transit 

model. In contrast, factors such as family income, travelled distance, congestion level, 

number of males, and working purpose show effects in the driving model. In the Case 

2, the factor of “comfort level” on travelling is in transit model rather than the factor 

“number of males” from Case 1. On the other hand, in the driving model, the additional 

factors such as car ownership, travelled distance, and economical level show 

significance in the model. Finally, in the Case 3, general factors such as family monthly 

income and three self-evaluation indicators show the influence of the driving model, 

while only travelled distance shows significance in the transit model. However, the 

common feature is that the variables such as “travelled distance” is in all transit models. 

For the driving model, indicators of self-assessment shared the same features in all 

driving model. 
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Due to data limitations, this study did not test whether there is significant travel mode 

preference associated with community type and size when the effects of socioeconomic 

factors and self-evaluation are controlled. Logistic regression analyses show that travel 

time and distance affect modes choice preferences when the effects of socioeconomic 

and self-evaluation factors are controlled. Rail-oriented development makes the non-

motorised modes feasible.  

7.4 Conclusions 

This chapter quantitatively analyses the energy consumption from building clusters and 

transport-related carbon dioxide emissions due to the mobilities of users. The research 

examines selected factors related to energy demand from building clusters, which are 

street orientations, the layout of building clusters, overshadowing and UHI effects. 

Meanwhile, transport-related carbon dioxide emissions, including three aspects of 

socioeconomic factors, travel patterns, and self-evaluation, are also examined. The 

analysis in this research reveals the relationship between these selected factors and 

energy demand and associated carbon dioxide emissions from building clusters and 

transport. In addition, the analysis of the modelling helps to determine a better 

development path to reduce the energy consumption of buildings and carbon dioxide 

emissions of transport. The following parts are conclusions: 

The impact of different variables on energy demand from building cluster: 

(1) Firstly, the least energy demand is in N-S street orientation (δ=0). Secondly, for 

the street orientation of δ=45 and δ=135, the heating demands are almost the 

same, which were also observed in the cooling demands, but their values are 

different. Finally, buildings in the E-W out of these four street orientations is 

the worst regarding energy consumption. 
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(2) Building energy simulation on the layout of building cluster includes the ratio of 
Wy to Wx, ΔX to Wx, ΔY to Wy, and the building height differences (ΔH). Firstly, 

the relationship between heating demand and the ratio of Wy to Wx is 

ambiguous. It seems that the larger the ratio, the greater the heating demand. 
However, the highest cooling demand is needed when the ratio of Wy to Wx is either 
small or very large. Secondly, the highest cooling demand occurs when the ratio 

of Δx to Wx is the largest, while this corresponds to the lowest heating demand.

Thirdly, a positive effect is observed between the cooling demand and the ratio 

of ΔY to Wy. In contrast, there is a negative effect on the ratio of ΔY to Wy and 

the heating demand. The lower the ratio, the higher the heating demand. Lastly, 

energy demand fluctuates with building heights as well as solar gains. For the 
cooling demand, the energy consumption is higher than the control group (uniform 
height), and a similar trend is also observed in the heating demand, but largely less 
than the control group when there is the height difference. Moreover,results also 
show that building height differences can reduce the solar gains compared to 

the control group.  

(3) Based on the analysis of over-shadowing on energy demand, dense conditions 

can contribute to 4% of total building energy consumption and 23% reduction 

of solar gains compared to open conditions. 

(4) Lowering the ambient temperature to relieve the heat island effects have been 

proved to reduce energy demand in buildings (Tarleton and Katz 1995). This 

study shows that the reduction of one-degree ambient temperature can 

contribute to saving around 3% of total building energy consumption. 

It should be noted that these factors cannot be separately analysed on energy demand, 

especially relating to overshadowing and the layout of building clusters, because these 

factors have affected each other. For example, when given the ratio of Wy to Wx, 

although the ratio ofΔX to Wx is undefined, shading between buildings are affected, 

which is like the impact of the overshadowing on energy demand. 
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The impact of different factors on transport-related carbon dioxide emissions: 

(1) According to the on-site survey from these three cases, transit modes are the 

most preferred travel modes.  

(2) Travel time and travel distance are the primary factors of transit modes (metro 

and public transport), while family monthly income, car ownership, and self-

assessment of travelling congestion and comfort level are the main influencing 

factors of driving modes (cars and taxis).  

(3) For the increase of 1 km in travel distance, the likelihood of the option in transit 

modes is 1.113 times higher than driving modes. The probability of the choice 

on transit modes is 1.928 times greater than non-motorised modes (walking 

and cycling) when one minute of travel time increase.  
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Chapter 8  Conclusions, Limitations, 
Implications and Recommendations  

8.1 Introduction 

This chapter presents the conclusions of this research. Questions raised in Chapter one 

are answered, and the stated objectives are achieved. Implications of findings relating 

to strategies of low carbon city development are proposed regarding buildings and 

transport sectors. Finally, limitations and recommendations are discussed. Overall, this 

research not only presents a way to investigate the carbon dioxide emissions from an 

existing built environment relating to buildings and transport sectors but also gives 

practical suggestions for low carbon city development. 

8.2 Conclusions 

As discussed in Chapter 1, the aim of the research is: 

“to investigate operational energy consumption and associated carbon dioxide 

emissions from building clusters and transport in order to reduce CO2 emissions for low 

carbon city development”. 

The findings of this research are arranged into three aspects. The first is the method to 

understand, predict and analyse the energy performance and carbon dioxide emissions 

from buildings and transport sectors. The second is to examine and understand selected 

factors of low carbon city development in an existing built environment relating to 

buildings and transport sectors. Finally, the implications of findings include strategies 

to reduce CO2 emissions in buildings and associated transport for low carbon city 

development.  
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8.2.1  Methods to predict energy consumption and associated 

carbon dioxide emissions  

 Technical tools used in this research are suitable, and research methods are 

reliable. 

For the building sector, this research presents an example of a bottom-up method based 

on three case study simulations. The research focused on building clusters, using the 

VirVil simulation tool for building energy simulation. This tool is able to consider the 

shading between buildings, which can lead to more accurate simulation. Measurements 

were available from the case study buildings, and these were used to compare with the 

simulation results, summarised in Table 8.1. For all three case studies, the simulation 

results were within a reasonable fit with the measured data.  

Table 8.1 Building energy comparison between simulations and measurements among three Cases 

Simulations (kWh/year/m2) Measurements (kWh/year/m2) 

Case 1 
Res. Commer. Office Hotel Res. Commer. Office Hotel 

113 309 140 265 85 297 116 232 

Case 2 
Res. Commer. Office Res. Commer. Office 

81 320 142 53 318 120 

Case 3 
Res. Commer. Res. Commer. 

90 234 62 210 

More specifically, for the Case 1, the range of the error is from 4% to 38%; for the Case 

2, this range is from 0.6% to 50%, and 11% to 45% for the Case 3. These discrepancies 

generally agree with researchers Reinhart and Cerezo Davila (2016), where differences 

between measured and simulated results varied from 12% to 55% for urban scale 



309 

studies. Moreover, the simulation results also agree with the statistics of the city 

government of Wuhan, which ranged from 92 to 134 kWh/ m2 /year in residential 

buildings and 278 to 426 kWh/ m2 / year in commercial buildings from the year of 2011 

to 2016. Therefore, the method and technical tools used in building energy calculation 

were considered to be reliable. 

For the transport sector, based on the literature review, there are only two methods for 

the calculation of transport-related CO2 emissions. One is based on the total fuel 

consumption and emission factor, and the other is based on total travelled distance and 

emission factor. This research used the method based on travelled distance and emission 

factors to calculate associate transport CO2 emissions. Meanwhile, this study used the 

non-fixed emission factors (annually decrease of 0.5%) based on the year 2006 to 

calculate the emission factors for the year 2016. This provides a better reflection of the 

real situations taking account of the advancement in fuel efficiency and vehicle 

technologies. Moreover, data collection of travelled distance is based on the 

investigation from respondents. Considering both aspects of non-fixed emission factors 

and real collected data of travelled distances provides a more accurate prediction of 

associated transport carbon dioxide emissions. 
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8.2.2 A better understanding of energy consumption and carbon 

dioxide emissions on building and transport sectors 

 Building energy simulation shows that there is the highest heating demand 

for residential buildings. By contrast, commercial buildings have the 

highest cooling demand. Therefore, reducing heating demand from 

residential buildings and cooling demand from commercial buildings 

should be considered. 

From the energy simulation of all three cases, the common features show that heating 

demand from residential buildings and cooling demand from commercial buildings 

were the highest. Case 1 exhibited the highest residential buildings heating demand of 

68 kWh/m2/year among the four building types, as well as the highest cooling demand 

of 129 kWh/m2/year from commercial buildings. This similar feature (highest heating 

demand from residential buildings and highest cooling demand from commercial 

buildings) was also observed in Case 2 and Case 3 summarised in Table 8.2. The reasons 

for this are various. For residential buildings, the weather in Wuhan belongs to hot 

summer and cold winter, and one typical feature is that most people in domestic 

buildings use air-conditioning for heating in winter. Moreover, the heating efficiency is 

generally less than the cooling when air conditioning for heating purposes. For non-

domestic buildings, especially for large-scale commercial buildings, the cooling 

demand is their primary energy consumption because these large-scale public buildings 

generally have a high occupant density. In addition, for non-domestic buildings, 

ventilation gains are also considered for cooling demand. These performances can help 

decision-makers, building designers, clients and researchers to understand the energy 

performance of buildings better, and thus energy-saving for buildings. 
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Table 8.2 Comparisons of cooling and heating demand among three Cases 

Heating demand (kWh/year/m2) Cooling demand (kWh/year/m2) 

Case 1 
Res. Commer. Office Hotel Res. Commer. Office Hotel 

68 12 22 52 12 129 62 114 

Case 2 
Res. Commer. Office Res. Commer. Office 

37 23 16 11 129 70 

Case 3 
Res. Commer. Res. Commer. 

33 24 11 115

 A list of variables relating to street orientations, the layout of building clusters, 
overshadowing and UHI effects are simulated. Results show that the least 

energy demand was in N-S street orientation, and the highest energy 

demand in E-S orientation; creating height difference among building 

clusters can reduce 8% of solar gains and save 2% of total building energy;

the overshadowing in dense conditions shows that the solar gains can 

reduce 23% compared to the open conditions and can save 4% of total 

building energy; the reduction of one-degree ambient temperature on 

urban heat island effects can save to around 2% to 3% of total building 

energy.

 Based on the investigation and the calculation of transport-related CO2

emissions, results show that transport-related carbon dioxide emissions by 

car and taxi are the primary sources of CO2 emissions in all three cases. In 
contrast, transit modes have the lowest transport-related carbon dioxide 

emissions because of their low per capita carbon emission factors. Moreover, 
the distribution of travel modes from three cases are compared by the 
investigation, and results show transit modes are preferred, accounting for 

more than 50%. 

 Regression modelling analysis shows that travel time and distance have 
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statistical significance in relation to transit modes (metro and public bus). 

Moreover, family monthly income, car ownership and their travel self-

assessment on congestion and comfort level are the driving forces for 

driving modes. 

Based on the samples from three cases together, as travel time increases, people are 

more likely to choose transit modes than non-motorised modes (walking and cycling). 

The probability of the choice on transit modes is 1.928 times greater than the choice of 

non-motorised modes when an increase in one minute of travel time. 

Meanwhile, the likelihood of the option of transit modes is 1.855 times higher than non-

motorised modes for an increase of every 1 km of travel distance. Similarly, the 

probability of taking driving mode is 1.667 times greater than non-motorised modes 

when the trip distance becomes one kilometre longer. Because both odds ratios use non-

motorised modes as the reference model; therefore, the odds ratio of taking transit over 

driving mode is 1.113 (1.855/1.667). This ratio means that when the trip distance 

increases in one kilometre, the likelihood of transit option is 1.113 times greater than 

driving modes. 

Finally, the last conclusion answers the following question:  

“How do transport-related carbon dioxide emissions relate to the building sector?”  

 Energy consumption and carbon dioxide emissions from building clusters 

are higher than those of transport-related CO2, with the range of four to 

seven times.  

Based on the prediction of carbon dioxide emissions from buildings in Chapter 5 and 

the transport in Chapter 6, the comparisons are summarised in Table 8.3. 
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Table 8.3 Carbon dioxide emissions comparison between buildings and the transport 

Building carbon 
dioxide emissions 

(kg/m2/year) 

Transport-related carbon 
dioxide emissions  

(kg/m2/year) 

Residential building 
floor area (m2) 

Public building  
floor areas (m2) 

Hankou station 67 17 75073 84,006 

Wuchang station 63 18 47476 126,042 

Wuhan station 89 12 85256 180,000 

Comparisons from Table 8.3 show that carbon dioxide emissions from buildings are 

higher than those of transport-related CO2 emissions, with the range of from four to 

seven times. By comparison, the research from Lee et al. (2017), suggests that ‘energy 

consumption of buildings (home and commercial) is two times higher than the 

transportation energy consumption (transport)’ in the city of Seoul. They state that the 

high energy consumption of buildings is continuously increasing if there are many high-

rise buildings for the compact development in cities (ibid.). Moreover, the comparisons 

of CO2 emission between buildings and the transport also indicate that to promote low 

carbon city development, the reduction of building energy consumption is the principal 

task.  

8.3 Implications of findings for low carbon city development 

combining building and transport sector 

Based on the conclusions of this study, strategies are given for low carbon city 

development, combining the building and transport sectors. 

 For the energy saving on building clusters, reducing gains, especially 

incidental gains for all buildings, are one of the strategies to save building 

energy. Furthermore, the focus on the reduction of heating demand from 
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residential buildings and cooling demand from commercial buildings is 

another effective strategy to save energy.  

Gains from buildings relating to solar gains, incidental gains, ventilation gains and 

fabric gains were analysed in all three cases. Meanwhile, features of building energy 

consumption from different building types were analysed. The results show that, on the 

one hand, incidental gains were dominant among all gains; on the other hand, most 

heating demands were on residential buildings, and cooling demand on commercial 

buildings. Therefore, the reduction of incidental gains and heating demand is one 

way to reduce energy consumption for residential buildings, and the reduction of 

incidental gains and cooling demand for commercial buildings. 

 For the reduction of transport-related carbon dioxide emissions, one 

method is to improve the percentage of the modal shift from private modes 

(car and taxi) to transit modes (public bus and metro). 

Based on the prediction of transport-related CO2 emissions from three case, cars and 

taxis were the primary sources of CO2 emissions, while the least transport-related CO2

emissions were from transit modes due to the smallest emission factors. As a result, the 

percentage of private modes had powerful impacts on CO2 emissions. Taking transport-

related CO2 emissions from residential buildings as an example, the largest CO2

emissions were from Case 2 (614 kg/ year/capita), followed by Case 1 (557 kg/ 

year/capita) and Case 2 (426 kg/ year/capita). The intensity of transport-related CO2

emissions is associated with the percentage of private modes of cars and taxis (Case 2: 

23%, Case 1: 24%; Case 3:15%). Therefore, improving the percentage of transit 

modes by providing the wide coverage of public transit nodes in the working and 

residential areas is one of the ways to reduce transport-related CO2 emissions. 
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 For the reduction of transport-related carbon dioxide emissions, the 

locations, infrastructure and public services available can significantly 

affect transport-related CO2 emissions. 

The level of urban development is significant to transport-related CO2 emissions. Based 

on these three case studies, the location of Case 3 is in the new urban district and is at 

the initial development stage. Many public services and infrastructure are not available. 

Rail transits are not covered, and only public bus routes are available. In other words, 

many travel activities cannot be complete locally. However, the locations of Case 1 and 

Case 2 was outer and inner city and were better developed. Public services and 

infrastructures are provided, and many travel activities can be fulfilled locally. Carbon 

dioxide emissions from public buildings in Case 1 (391 kg/year/capita) and Case 2 (432 

kg/year/capita) are noticeably less than those of from Case 3 (732 kg/year/capita). 

Therefore, sufficient public services and infrastructure provided can reduce 

transport-related CO2 emissions.  

 Urban energy is consumed mostly by the transportation and building 

sectors. Base on the findings of the CO2 emissions between the building and 

transport sector, the focus for low carbon city development should be on 

the building sector. 

All the conclusions and implications presented in this research can be the references for 

low carbon city development and then expand to the general situations. For example, 

for the reduction of transport-related carbon dioxide emissions, especially communities 

with the similar locations in the city: outer city, inner city, and new urban districts, these 

conclusions and findings can be duplicated to different projects across the country. For 

the building sector, these findings are directly applied to the reduction of building 

energy demand, especially among the hot summer and cold winter area, which is the 

same climatic conditions as Wuhan city.  
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8.4 Limitations of this study 

This study aimed to predict carbon dioxide emissions from building clusters and the 

transport sector around the passenger railway stations, identify the relationship between 

energy consumption and selected factors, and propose strategies assisting in the 

reduction of urban carbon dioxide emissions. However, it must be admitted that there 

are limitations to this research, as discussed below. 

Firstly, three cases are selected in one city rather than a nation-wide study. Although 

these three cases, in different locations, can represent a typical case for each one, the 

problems found in the cases may only be relevant in its specific contexts, such as 

different emission factors from various travel modes in different cities when 

considering the transport-related carbon dioxide emissions. Moreover, for building 

carbon dioxide emissions, weather conditions are closely related to energy demand, and 

this research only covers cold winter and hot summer zones, so this may lead to an 

inaccuracy in the building energy demand when applied in different weather zones. 

Therefore, some of the recommendations and strategies that are given in this research 

may not apply to the general context. 

Secondly, it has been acknowledged that there are limitations to the self-evaluation on 

travel based on the survey from respondents, as the subjective evaluation by travellers 

may not represent a true assessment. The combination of subjective and objective 

evaluation can provide a more comprehensive and accurate assessment of travelling 

characteristics. Moreover, the lack of samples in this research may also lead to 

inaccuracy when doing regression analysis. 

Thirdly, energy consumption and carbon dioxide emissions from building clusters exist 

in the life cycle, from the cradle to the grave. This research only considers the 
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operational carbon dioxide emissions and neglects the embodied energy consumption, 

such as energy consumption from materials production and transport to the construction 

site. Therefore, this limitation can also lead to inaccuracy of the real situation. 

Fourthly, due to the complexity and challenge of data collection, this research did not 

consider the interaction of travel activities between the study areas and the passenger 

railway stations, only considering the travel activities within the study area. As a result, 

it cannot analyse how the locations of railway stations affect the travel activities and 

thus transport-related carbon dioxide emissions. 

Lastly, low carbon city development that focuses on a series of aspects (environmental, 

social, economic, and cultural) may lack certain elements in this study. This research 

mainly considers the environmental aspect from the elements of building and transport 

sectors, which is probably a deficiency in low carbon city development. The study was 

based on the professional perspective of carbon dioxide emissions in building clusters 

and the transport sector and adopted a building energy model consisting of different 

building types and activities-based transport demand model covering three categories 

by their carbon emission features. Due to the limited time, money, and complexity of 

data collection, this study had a comprehensive scope associated with low carbon city 

development from the aspects of urban and transport planning, yet it may overlook 

some issues related to low carbon, and lack depth in its discussions of the chosen issues. 

8.5 Recommendation for future studies 

Through the application of modelling in building clusters and transport sectors, this 

research has developed understanding of energy performance and carbon dioxide 

emissions of buildings and the transport sector around passenger railway stations. The 

following are some suggestions for future studies. 
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Firstly, the default setting of building energy modelling and travel activities in the 

transport are based on local, national statistics and on-site measurements. One possible 

reason for this is that this research aims to focus on the general situation in a city, not a 

specific building type or an area. However, for future studies, the variety of existing 

building types and related travel activities should be deeply understood and investigated, 

relating to construction ages, electricity usage, and travel patterns. Solid fundamental 

background information on buildings and transport sectors are not only helping to 

understand carbon dioxide emissions in specific areas clearly but also support future 

researchers on urban level situations and related strategies. 

Secondly, the scope of this research does not cover all kinds of building in Wuhan and 

the building energy modelling only depicts the most general and typical building types. 

Therefore, aside from fundamental research to investigate related data on buildings, 

more simulations for specific building types and situations need to be discussed, such 

as community types and sizes. Moreover, the strategies for low carbon city development 

can be devised for various situations instead of one general situation. 

Thirdly, technical tools should be improved continuously by considering more variables, 

particularly concerning microclimates. For the outdoor environment, to get more 

precise results and develop more strategies, there are other variables which should be 

calculated together, such as heat gains from urban heat islands and the transport. 

Fourthly, for travel activities, it is better to consider the interaction of travel activities 

between the railway stations and the study areas. Moreover, small samples in this 

research can also lead to being inaccurate results, especially for transport-related carbon 

dioxide emissions. For the accurate calculation, it heavily based on sufficient samples 

and real data. 
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Lastly, the method applied in this research to predict carbon dioxide emissions from 

building clusters and the transport sector can be better integrated with the GIS system 

and then expanded to other critical issues such as social interaction and public health. 

These could further help to define the best solution for buildings and transport to reduce 

carbon dioxide emissions.   
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