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Abstract  
 

Mutations that lead to hyperactivation of Ras signaling are hallmarks of carcinomas. 

However, Ras signaling also mediates cell fate decisions and cellular differentiation 

without causing hyperproliferation during development. It is not known what dictates 

whether Ras signaling drives differentiation vs. proliferation.  Here we show that the 

Hippo pathway is critical for this decision. Loss of Hippo signaling switches Ras 

activation from promoting cellular differentiation to aggressive cellular proliferation. 

Transcriptome analysis combined with genetic tests show that this excessive 

proliferation depends on the synergistic induction of Ras target genes. Using ChIP-

nexus, we find that Hippo signaling keeps Ras target genes in check by directly 

regulating the expression of two key downstream transcription factors of the Ras 

pathway: the ETS-domain transcription factor Pointed and the transcriptional 

repressor Capicua. Our results highlight how independent signaling pathways can 

impinge on each other at the level of transcription factors, thereby providing a safety 

mechanism to keep proliferation in check under normal developmental conditions. 

 
Introduction 
 

The development of cancer usually requires the accumulation of multiple genetic 

aberrations, with most tumors having 2 to 6 driver mutations (Kandoth et al., 2013, 

Tomasetti et al., 2015). Some of the most frequent driver mutations occur in 

components of the Epidermal Growth Factor Receptor (EGFR)-Ras-Raf-MAPK 

pathway, hereafter referred to as the Ras pathway. EGFR is mutated or amplified in 

nearly one-fifth of all cancers tested, and mutations in the downstream effectors 

KRAS and BRAF are found in 22.4% and 18.7% of all cancer samples tested, 

respectively, as tabulated in the Catalogue of Somatic Mutations in Cancer 

(COSMIC) database (Forbes et al., 2015). These cancer-associated mutations cause 

hyperactivation of the Ras pathway and have a major contribution to transformation 

of a normal cell into a cancer cell (Lemmon and Schlessinger, 2010, Burgess, 2008, 

Vakiani and Solit, 2011). However, hyperactivation of Ras signaling by itself is not 

sufficient to cause cellular transformation. Thus, activating mutations in the Ras 

pathway cause only a mild excess in proliferation in different animal models, but can 

lead to aggressive and metastatic tumors in combination with mutations in other 

genes such as p53, the cell polarity proteins Scribbled and Discs-large, or 

components of the JNK and Hedgehog (Hh) signaling pathways (Xia and Land, 
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2007, Pagliarini and Xu, 2003, Wu et al., 2010, Schnidar et al., 2009, Pearson et al., 

2011, Brumby and Richardson, 2003, Chabu et al., 2017, Uhlirova and Bohmann, 

2006). However, the underlying mechanisms leading to excess proliferation in 

response to these combinatorial mutations remain largely unknown. Here, we show 

that mutations in Hippo signaling strongly synergize with activated Ras signaling and 

dissect out the underlying mechanism of this synergistic interaction using genomics, 

genetics and computational approaches. We find that the transcriptional output of 

Ras signaling is under the tight control of the Hippo pathway. Given that p53, Hh, 

Scribbled and Discs-large all modulate Hippo signaling (Colombani et al., 2006, 

Richardson and Portela, 2017, Kagey et al., 2012), our findings also provide a model 

for how these molecules synergize with Ras during tumorigenesis. 

 

The Hippo pathway is known for its key role in controlling organ growth and 

progenitor cell proliferation (Hariharan, 2015, Halder and Johnson, 2011, Pan, 2010, 

Barry and Camargo, 2013). Named after its founding kinase Hippo (Hpo), the 

pathway coordinately regulates cell proliferation and cell death. Cells that lack Hippo 

signaling proliferate faster and are resistant to apoptotic stimuli, a combination that 

leads to dramatic tissue overgrowths in flies and mice. Notably, loss of Hippo 

signaling in the mouse liver leads to tumor formation (Zhou et al., 2009, Song et al., 

2010, Lee et al., 2010, Lu et al., 2010) and YAP, the transcriptional effector of Hippo 

signaling, is an established oncogene in the ovary, lung, liver and breast (Harvey et 

al., 2013, Zanconato et al., 2016).  

 

The components and mechanisms of Hippo signaling are highly conserved in 

animals. At the core of the Hippo pathway is a kinase cascade where in Drosophila 

the Hpo kinase (Mst1/2 in mammals) phosphorylates and activates the Warts kinase 

(Wts, Lats1/2 in mammals). The main substrate of activated Wts/Lats is the 

transcriptional co-activator Yorkie (Yki, YAP/TAZ in mammals), which is retained in 

the cytoplasm upon phosphorylation. In the absence of Hpo pathway activity, Yki 

translocates into the nucleus and binds to the TEAD family transcription factor 

Scalloped (Sd, TEAD1-4 in mammals) and other transcription factors. By default, Sd 

is a repressor, but the binding of Yki converts Sd into an activator and together they 

then drive the expression of pro-survival and proliferation genes, such as cyclin E, 

diap-1 and bantam microRNA (Koontz et al., 2013, Hariharan, 2015). Multiple 

upstream regulators including the FERM domain proteins Merlin (Mer) and Expanded 

(Ex), the atypical cadherins Fat and Dachsous, cell polarity and mechanical forces 
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have been shown to activate the Hpo kinase (Grusche et al., 2010, Piccolo et al., 

2014, Legoff et al., 2013, Mao et al., 2013, Karaman and Halder, 2017). 

 

Here, we studied the effects of combining mutations in the Ras and Hippo pathways. 

Notably, reducing Hippo signaling in cells harboring activating mutations in the Ras 

pathway caused strongly synergistic overgrowth in Drosophila imaginal discs. We 

find that in such discs, the differentiation program is shut down. We investigated the 

molecular basis of this synergy using genomics and show that the Hippo pathway 

acts as a gatekeeper for Ras signaling output by restricting the expression levels of 

its transcriptional targets. This is achieved via direct transcriptional control of the 

transcription factors of the Ras pathway. In Drosophila, MAPK regulates gene 

expression via modulating the protein stability of three transcription factors: the 

repressor Capicua (Cic) and the ETS domain proteins Pointed (Pnt) and Yan (Shilo, 

2014, Jiménez et al., 2012). We show that Cic and Pnt are direct Yki/Sd targets. 

Thus, in healthy cells, Hippo signaling acts as a break that restrains the tumorigenic 

potential of activating mutations in the Ras pathway. Inactivating mutations in the 

Hippo pathway, however, unmask this potential and synergistically promote 

hyperproliferation and tumor development.  

 

Results 

Simultaneous deregulation of Ras and Hippo signaling induces synergistic 

overgrowth 

To study the effects of combinatorial mutations in the Ras and Hippo pathways, we 

simultaneously activated Ras signaling and repressed the Hippo pathway in 

Drosophila imaginal discs, simple epithelial structures that are widely used to 

investigate mechanisms of growth control and tissue patterning. To activate Ras 

signaling, we expressed constitutively active oncogenic versions of EGFR (EGFRtop), 

Ras (RasV12), or Raf (RafGOF) (Queenan et al., 1997, Scholz et al., 1997, Stemerdink 

and Jacobs, 1997, Brand and Perrimon, 1994). To deregulate Hippo signaling, we 

used animals that were homozygous for null mutations in the Hippo pathway 

component expanded (ex) (Hamaratoglu et al., 2006). Loss of ex does not fully 

abolish Hippo pathway activity and ex mutant wing discs showed mild overgrowth 

characteristic for hypomorphic Hippo loss-of-function phenotypes (Fig.1A-B). 

Similarly, overexpression of activated EGFR in a central stripe in wing discs using 

the dpp-Gal4 driver only caused a widening of the expression domain marked by 

GFP co-expression (Fig.1C). Strikingly, however, expressing activated EGFR in ex 

mutants caused massive overgrowth of mutant wing discs (Fig.1D-D’). Double 
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mutant larvae pupated up to two days later than controls when discs continued to 

grow and eventually folded onto themselves. Such cooperative over-proliferation in 

response to EGFR/Ras activation was formerly described in cells that harbor 

mutations in the Hippo pathway components fat (Garoia et al., 2005) and wts 

(Pagliarini and Xu, 2003). Notably, expression of activated Ras or Raf in ex mutants 

caused the same dramatic overgrowth phenotypes (Fig.S1A). Furthermore, the 

enormous overgrowths in the presence of EGFRtop and ex mutants was evident in 

multiple tissues including eye, antenna, wing, leg, and haltere imaginal discs (Fig.1E-

H and not shown). Therefore, activated Ras signaling synergistically interacts with 

deregulated Hippo signaling to drive tissue overgrowth and this interaction is 

independent of the type of imaginal discs.  

 

The synergy between Ras and Hippo signaling occurs via the downstream 

effectors Cic and Yki 

We next investigated at which level of the signal transduction cascades the synergy 

operates. First, we overexpressed EGFR together with Yki, the downstream 

transcriptional co-activator of the Hippo pathway. Again this caused highly synergistic 

overgrowth phenotypes (Fig.S1A), indicating that the synergy operates at the level of 

the downstream transcription effector of the Hippo pathway.  

 

To determine the level of interaction in the Ras pathway, we next tested mutations in 

the Cic transcription factor. Cic is a HMG domain transcriptional repressor that 

mediates the effect of Ras on cell proliferation during imaginal eye disc development 

(Tseng et al., 2007). Cic is a suppressor of cell proliferation in imaginal discs and 

activated MAPK phosphorylates Cic, causing its degradation. Ras signaling is 

required for cell proliferation and cell type specification. Thus, cells with a complete 

loss of Ras signaling, due to mutations in egfr, ras, or raf, do not proliferate and fail to 

differentiate (Fig.2B) (Yang and Baker, 2001, Yang and Baker, 2003). The failure of 

ras mutant cells to proliferate is due to ectopic Cic activity because ras, cic double 

mutant cells proliferate normally (Fig.2C) (Tseng et al., 2007). Despite the strong 

rescue in cell proliferation, removal of Cic does not rescue the photoreceptor 

specification defects of ras mutant cells. Double mutant cells contribute to the adult 

eye, but cannot differentiate into photoreceptor cells (Fig.2C). Therefore, Cic is a 

major effector of Ras signaling in proliferation control (Tseng et al., 2007).  

 

We then analyzed the interaction between loss of Cic and loss of Hippo signaling. 

While deletion of cic alone increased cell proliferation in eye discs only slightly, if at 
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all (Fig.2A), simultaneous deletion of cic together with wts enhanced the wts mutant 

phenotype and triggered massive overgrowth beyond the wts phenotype (Fig.2D-E). 

As previously observed, wts mutant cells occupied the majority of the tissue and led 

to overgrown organs (Justice et al., 1995, Xu et al., 1995), and a few animals made it 

into adults (Fig.2D). However, no adults with cic wts clones were recovered (Fig.2E).  

 

We then induced clones with the pan-eye and wing disc drivers ey-FLP and ubx-FLP 

in combination with the Minute technique to produce imaginal discs that were nearly 

entirely mutant (Fig.3) (Morata and Ripoll, 1975). Eye and wing discs with cic wts 

double mutant clones had dramatic overgrowth phenotypes that caused the discs to 

fold onto themselves (Fig.3A-D). Time course analysis and quantifications showed 

that animals with cic wts double mutant wing discs had extended larval periods by 

about four days similar to animals with wts mutant discs. Mutant cells continued to 

proliferate during this extra time, and cic wts double mutant discs were consistently 

larger than wts discs reaching up to 10 times the normal disc size (Fig.3E-F). 

Importantly, ectopic Yki also synergized with Cic knock-down in causing tissue 

expansion (Fig.S1B-C). Hence, deregulating the Ras and Hippo pathways at the 

level of their downstream transcription factors produced the same highly synergistic 

overgrowths. Altogether, these data show that the synergy between the Hippo and 

Ras pathways is at the level of transcription.  

 

Loss of Wts and Cic synergistically activates Ras target genes 

Because the synergy between the Ras and Hippo pathways is at the level of the 

downstream transcription factors, the two pathways may converge on a set of 

synergistically regulated target genes that are activated only when both pathways are 

deregulated. We therefore performed genome-wide expression analyses (RNA-seq) 

in control, cic and wts single mutant, as well as cic wts double mutant wing discs to 

identify synergistically regulated target genes.  

 

Mutations in wts cause developmental delay and we thus produced gene expression 

profiles by RNA-seq at day 5 in all genotypes and at day 9 in wts single mutant and 

cic wts double mutant wing discs generated using ubx-FLP and a Minute 

chromosome (as shown on Fig.3E). We focused on genes with a minimum average 

expression of 50 counts across all samples and significant upregulation was defined 

as a minimum 1.4-fold increase, with less than 1% false discovery rate (log FC > 0.5 

and adjusted P-value < 0.01). We found that the expression of 350 genes was 

significantly upregulated in day 5 cic wts double mutant wing discs compared to discs 
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with wild-type control clones. Importantly, cell polarity was intact in the day 5 cic wts 

discs (not shown) and hence the transcriptional changes we see at this stage are not 

a consequence of polarity loss. We then classified these genes into four different 

groups, based on day 5 expression levels, using SOTA (self-organizing tree 

algorithm), an unsupervised clustering method (Herrero et al., 2001, Dopazo and 

Carazo, 1997). The first and largest group comprised 295 genes (84% of 

differentially expressed genes) that were up-regulated in wts single and cic wts 

double mutant discs, but not affected in cic mutants (Fig.4A). The upregulation of 

these genes was thus mostly attributed to the wts mutation and we refer to this group 

as the “Wts cluster”. Notably, this cluster contained the known Yki targets kibra, ex, 

wts, dm (a.k.a. Myc) and Ilp8 (a.k.a. Dilp8) (Pan, 2007, Boone et al., 2016, Neto-

Silva et al., 2010, Park et al., 2016, Ziosi et al., 2010), validating the gene expression 

data (Fig.4B). CycE and DIAP1 were also induced in wts and cic wts mutant discs 

but their fold increase was below our cutoff with logFC values of 0.37 and 0.35 

respectively (Fig.4B). The second and smallest cluster contained only 12 genes, 

which were upregulated in cic and in cic wts mutant discs, but were not significantly 

influenced by loss of wts, hence we named it the “Cic cluster” (Fig.4C). The genes in 

this cluster were mostly uncharacterized and non-conserved genes. The third 

“additive” cluster had 17 genes that were mildly upregulated in wts and cic single 

mutants and showed additive upregulation in the double mutant (Fig.4D). These 

genes are potentially shared target genes of Yki and Cic and included sdr (secreted 

decoy of InR), a modulator of insulin signaling (Okamoto et al., 2013); shifted (shf), a 

modulator of Hh signaling (Glise et al., 2005, Gorfinkiel et al., 2005); and the 

ribosomal protein RpL38 (Marygold et al., 2005).  

 

The most interesting fourth cluster had 26 genes that were strongly induced in cic 

wts double mutants but were largely unaffected in cic and wts single mutants; hence 

we coined this set the “synergistic cluster” (Fig.4E). In addition to these genes, closer 

inspection of the wts cluster revealed that 28 of the 295 genes were more than 1.3 

fold higher in the cic wts double mutants compared to wts alone although they were 

not induced or even down-regulated in cic clones. These genes were thus also 

synergistically regulated by Cic and Wts and were reclassified into the synergistic 

group (Fig.4F).  

 

Surprisingly, the most striking feature of the synergistic genes was a strong signature 

of Ras pathway target genes. Synergistically upregulated Ras target genes included 

argos (aos), which encodes a secreted antagonist of Ras signaling (Golembo et al., 
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1996, Schweitzer et al., 1995); sprouty (sty), an intracellular inhibitor of Ras signaling 

(Casci et al., 1999); and Nf1, a negative regulator of Ras activity (Ballester et al., 

1990, Martin et al., 1990, Xu et al., 1990, Buchberg et al., 1990). These genes are 

feedback regulators of Ras signaling in multiple tissues and cell types. Most 

prominently, the major transcriptional activator of the pathway pointed (pnt) (Shilo, 

2014) was also synergistically induced in the double mutants. These data thus show 

that Ras signaling output is strongly upregulated in cic wts double mutant cells, much 

above the levels detected in cic or wts mutant cells. Therefore, simultaneous loss of 

cic and wts resulted in a synergistic hyperactivation of Ras output. 

 

The discovery of 54 genes that were synergistically upregulated in response to 

concomitant loss of wts and cic reveals that the synergistic overgrowth phenotype of 

the double mutant is not a trivial consequence of simultaneous deregulation of two 

unconnected growth control pathways. Rather, the existence of this synergistic gene 

set shows that activation of one or the other pathway is not sufficient to upregulate 

their expression and thus that Cic and Wts act as dominant inhibitors on their 

expression. The discovery of this synergistically deregulated gene set then prompted 

two questions: First, what are the transcription factors that regulate the synergistically 

regulated genes? And second, how does the deregulation of the Hippo pathway 

induce their expression?  

 

iRegulon identifies three key transcription factors that mediate the synergy  

To understand the mechanisms that regulate the transcription of the synergistic 

genes and to elucidate how Ras target genes were hyper-induced in double mutant 

cells, we searched for transcription factor binding sites that were enriched near the 

genes of the four gene clusters using iRegulon, a sequence-based motif discovery 

tool (Janky et al., 2014). iRegulon reverse-engineers a gene regulatory network from 

the expression data by identifying enriched motifs for transcription factors in a given 

set of genes (Janky et al., 2014). We focused our search on the introns and 5kb 

upstream region of each gene. Reassuringly, one of the top motifs (normalized 

enrichment score (NES) of 4.3, see Methods) in the Wts cluster belonged to the Sd 

transcription factor, and high confidence Sd binding sites were detected in 123 of 295 

genes in this cluster and in all known direct Sd target genes (Atkins et al., 2016). The 

very top motif, however, belonged to the AP-1 transcription factors (NES=4.76), 

found enriched near 154 genes, indicating the involvement of JNK signaling. Notably, 

the AP-1 transcription factors, Atf3 and Pdp1, are themselves part of the Wts cluster, 
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suggesting that JNK activation is a downstream effect of Yki activity consistent with 

the recent literature (Ma et al., 2015). 

 

Surprisingly, the Cic cluster was not enriched for Cic binding sites, as only one gene, 

CG32354, had a Cic motif. However, iRegulon analysis on the synergistically 

induced genes (Fig.S2A) identified the Cic binding motif as the top hit with very high 

confidence (NES=6.3), followed by Stat92E (NES=4.3) and Pnt (NES=3.4) motifs 

(Fig.5A). Indeed, the previously identified Cic target genes pnt and aos (Roch et al., 

2002, Jin et al., 2015) were in this synergistic cluster. Therefore, we embarked on to 

determine whether other synergistically regulated genes are also direct Cic targets.  

 

Cic directly regulates synergistically induced genes 

We defined Cic target genes genome-wide using ChIP-nexus (chromatin 

immunoprecipitation experiments with nucleotide resolution through exonuclease, 

unique barcode and single ligation), a robust ChIP-exo protocol that allows high 

resolution mapping of binding sites (He et al., 2015). We used the Cic signal in cic 

wts mutant discs as background. Combining the ChIP-nexus signal with motif 

enrichment to determine high confidence Cic peaks, we identified over 100 regions 

bound by Cic. We then further selected those peaks that were near genes that are 

induced in cic wts discs compared to wild-type. These strict criteria gave us a list of 

19 high-confidence Cic target genes (Fig.S2B). Strikingly, this set contained many 

regulators of the Ras pathway: the Spitz (Spi) ligand, and the negative feedback 

regulators Aos, Sty, Nf1, and Sulfated (Sulf1) (Butchar et al., 2012). Hence, Cic is a 

key factor for feedback regulation of Ras signaling.   

 

Next, we asked which factors might regulate the expression of these 19 Cic target 

genes using iRegulon. As expected, iRegulon identified the Cic motif as the top hit 

(NES=7.3). In addition, regulatory regions of Cic target genes were also enriched for 

Pnt (NES=4.5) and Stat92E (NES=4.4) binding motifs (Fig.5B), similar to the 

predictions for synergistically induced genes. Indeed, seven of the 19 Cic target 

genes were part of the synergistically induced gene set. These were the two known 

Cic targets pnt and aos; three other Ras pathway genes sty, nf1 and sulf1; Leucine-

rich tendon-specific protein (Lrt) and Brinker (Brk), the transcriptional repressor of 

Dpp signaling. Therefore, induction of genes that are normally repressed by Cic is 

the main feature of our synergistic network and at least seven of our synergistic 

target genes are direct Cic targets.  
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The finding that synergistically regulated genes are highly enriched for Cic target 

genes is striking as it shows that the repressor function of Cic on its target genes is 

dependent on the level of Yki activity. Thus, while Cic represses the expression of 

Ras target genes, loss of this break needs to be combined with activation of Yki-Sd 

to strongly induce their expression. This then prompted the question whether the Yki-

Sd complex directly regulates Cic target genes.  

 

Sd and Cic do not compete for DNA binding 

Intriguingly, the consensus DNA-binding sequences of Sd (CATTCC) and Cic 

(CATT(C/G)A) are very similar and differ only at one position. Hence, Sd may directly 

compete with Cic for binding to regulatory sequences. We tested this hypothesis 

using the ChIP-nexus data for Cic and also performed ChIP-nexus for Sd. Combining 

ChIP-nexus signal with motif enrichment identified 800 regions bound by Sd in the 

genome of wing disc cells. Strikingly, we did not find binding sites that were bound by 

both Sd and Cic in wild-type wing discs. We then compared Sd binding between wts 

and cic wts mutant discs to ask whether Sd now occupies more sites. However, we 

did not detect new Sd peaks where Cic normally binds. Therefore, Sd does not 

regulate Cic target genes by competing with Cic for binding the DNA.  

 

We also tested whether Cic can regulate Sd target genes, by searching for Cic peaks 

in their regulatory regions. We did not find any Cic binding in the prominent Yki-Sd 

target genes DIAP1, ex, wts, ft, ds, fj or ilp8. On the other hand, these regulatory 

regions were enriched for Sd motifs and had Sd binding as expected. In agreement 

with these findings, the expression of Yki-Sd target genes were induced at 

comparable levels in wts and in cic wts mutant discs (Fig.4B), supporting the 

conclusion that Cic does not regulate the expression of Yki target genes. Therefore, 

we conclude that Sd and Cic do not affect each other's ability to bind to target DNA in 

vivo and their binding motifs, despite only a single nucleotide difference, are clearly 

distinct. 

 

JAK-STAT signaling and Pnt contribute to the synergistic overgrowth 

iRegulon found no enrichment for Sd binding sites within our synergistic gene set. 

However, in addition to the Cic motif, this gene set was enriched for Pnt and Stat92E 

binding sites. Stat92E is the transcription factor of the JAK-STAT pathway, another 

important pathway in tumorigenesis (Amoyel et al., 2014, Zoranovic et al., 2013). 21 

of our 46 synergistic genes, including Pnt itself, are predicted to be regulated by Pnt, 

Cic and Stat92E together (Fig.5A). More than half of our synergistic genes (27/46) 
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had binding sites for at least 2 out of these 3 factors (Fig.5A). Therefore, we tested 

the importance of Pnt and Stat92E for the synergistic overgrowth. 

 

First, we found that the ligands of the JAK-STAT pathway, the Unpaired cytokines 

Upd1 (a.k.a. os), Upd2 and Upd3 are highly upregulated (2.1; 2.6; 2.4 fold 

respectively) in day 5 wts mutant discs (Fig.5C). Upd levels stayed high at day 9 wts 

discs and were further upregulated in cic wts double mutant discs (3; 6.18; 4.5 fold, 

respectively) (Fig.5C). Hence, having upregulated Upd ligand expression, JAK-STAT 

signaling is likely more active in wts and cic wts mutant cells. JAK-STAT signaling is 

frequently implicated in human cancer and it is commonly induced in Drosophila 

tumor models (Atkins et al., 2016, Davie et al., 2015, Wu et al., 2010). We then 

tested whether JAK-STAT activation is important for the synergistic overgrowth of cic 

wts mutants by expressing an inhibitor of the pathway, Socs36E (Stec et al., 2013), 

in our synergistic background (activated EGFR expression in ex background). Co-

expression of Socs36E efficiently suppressed the overgrowth phenotype in both wing 

and eye discs (Fig.5F-G vs 5D-E). Notably, the expression of the Upd genes is 

regulated by the Yki-Sd complex (Bunker et al., 2015) and we found ChIP-nexus 

peaks and corresponding motifs for both Sd and Cic near the upd genes (Fig.S2C). 

Altogether, these results show that the transcriptional regulation of the Upd genes 

and the activation of JAK-STAT signaling is an important contributor to the synergy 

between the Hippo and Ras pathways.  

 

We then used the same assay to test the contribution of Pnt upregulation to the 

synergistic phenotype. We constructed a stock where pnt-RNAi is under the control 

of the dpp-Gal4 driver. These flies are viable, fertile and only have mild venation 

defects on their wings (not shown), suggesting that Pnt function is only slightly 

reduced but largely intact in this background. However, this mild downregulation of 

Pnt activity was sufficient to prevent the development of full-fledged synergistic 

overgrowth. Discs that expressed pnt-RNAi in addition to activated EGFR in an ex 

mutant background did not display the full-grown synergistic overgrowth phenotype 

(Fig.5H-J). Therefore, high Pnt levels are important for the synergistic overgrowth 

obtained when both Ras and the Hippo pathways are manipulated. 

 

Yki-Sd controls the expression of the Ras pathway transcription factors 

Pointed and Capicua 

Having established that the network predicted by iRegulon is indeed driving the 

synergistic growth, and that Yki-Sd can influence this network via induction of Upd 
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transcription, we asked whether Yki-Sd could also regulate the other nodes of the 

network: Pnt and Cic.  

 

We first had a closer look at the regulation of Pnt. The PntP2 isoform is known to be 

activated by MAPK phosphorylation and drives the expression of PntP1 in eye discs 

(Shwartz et al., 2013). In addition, Cic negatively regulates Pnt expression in 

intestinal stem cells (Jin et al., 2015). To characterize its potential regulation by 

Hippo signaling, we generated antibodies against Pnt, which detected a pattern 

identical to dpERK and complementary to Cic in the wing and eye discs (Fig.6A-B 

and S3A-B). Removal of Cic was sufficient to derepress Pnt expression in wild-type 

and ex mutant cells (Fig.6C-C’ and S3F-F’). Since cic wts mutant clones occupy 

large areas, Pnt was expressed widely and lost all pattern in cic wts discs (Fig.S3G-

G’). These data confirm a tight regulation of Pnt expression by Ras signaling and 

establish Cic as an important regulator of pnt expression in imaginal discs. Direct 

regulation of Pnt by Cic is also strongly supported by our ChIP data. Of the 100 top 

Cic peaks in the genome of wing disc cells, 7 were in the pnt region and 

corresponded to Cic motifs (Fig.6D, Cic ChIP signal is shown in red; Sd ChIP signal 

is shown in blue). Furthermore, the RNA-seq data shows that transcription of pnt is 

induced when the repressor Cic is removed (Fig.5C). Notably, RNA levels of pnt are 

further increased in cic wts double mutant discs, although there is no increase in wts 

single mutants (Fig.5C). In fact, pnt is expressed at lower levels in wts and ex mutant 

discs (Fig.5C and S3E), probably due to higher Cic levels. Therefore, there must be 

another, positive input into pnt expression that depends on Yki-Sd (Fig.5A). Indeed, 

our ChIP-nexus detected a strong Sd peak containing a Sd motif (blue) in the pnt 

gene, which is also enriched for Pnt (green) and Stat92E (purple) binding sites 

(Fig.6D). We conclude that Cic, Yki-Sd, Stat92E, and Pnt itself control pnt 

transcription, and that repression by Cic is dominant over the activating inputs.  

 

Finally, we investigated whether Cic is a Sd target gene. We found multiple Sd ChIP-

nexus peaks with corresponding Sd binding motifs in the cic gene region (Fig.6F). 

However, cic RNA levels, as well as Cic protein levels, were only slightly higher in 

wts mutant wing discs (Fig.5C, 1.1 fold in day 5 and 1.23 fold in day 9 discs). On the 

other hand, Cic accumulation was obvious in eye discs posterior to the 

morphogenetic furrow and in-between the clusters of differentiating photoreceptor 

cells (Fig.6E-E’’), where Cic is normally present at low levels (Fig.S3B). Cic is 

expressed at high levels and uniformly in the wing discs, except for the cells where 

MAPK leads to its degradation (Fig.6A). We thus hypothesized that Yki-Sd are 
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required for the high uniform Cic expression. Indeed, knockdown of Yki in the 

posterior half of wing discs reduced Cic levels (Fig.6G-H’). Hence, induction of Cic 

transcription by Yki-Sd increases the threshold of Ras activity that is required to 

induce its target genes.  

 

Discussion 

The main conclusion from our study is that Hippo activity determines the outcome of 

Ras signaling. In our model, combined action of Hippo signaling and the repressor 

Cic prevents excessive proliferation and allows differentiation by keeping a set of key 

target genes off (Fig.7). Cic suppresses many of these genes directly and Hippo 

signaling prevents their full activation at least partially by keeping both JAK/STAT 

activity and Pnt levels low. This model is based on three key observations. First, we 

found that activated Ras signaling has different outcomes in wild-type discs vs ex 

mutant discs. While hyperactivation of Ras signaling in a wild-type disc promotes 

cellular differentiation, Ras activation combined with loss of ex drives aggressive 

hyperproliferation. Second, we defined a set of synergistic genes that were strongly 

induced only when the repressor Cic was removed and Yki was simultaneously 

activated. These genes were predicted to be regulated by Cic, Pnt, and Stat92E. 

Indeed, we confirmed that high Pnt levels and JAK/STAT activity contributed to the 

synergistic overgrowth phenotype. Lastly, we found that the Hippo pathway 

transcription factor Sd directly regulates the expression of the JAK/STAT ligands and 

the Ras signaling transcription factors Cic and Pnt. When Hippo signaling and Cic 

are simultaneously inhibited, the synergistic genes and the Yki targets are expressed 

at high levels, paving the way to cellular transformation. 

 

We defined a small set of direct Cic target genes in wing discs. Identification of many 

feedback regulators of Ras signaling among direct Cic targets emphasizes the 

central role of this protein in controlling Ras output despite the weak phenotypic 

consequences of its removal. Notably, Cic expression is complementary to that of the 

other two transcription factors of Ras signaling, Pnt and Yan (Fig.S3A-C). Indeed, 

Cic controls Pnt transcription in multiple tissues, but our RNA-seq and ChIP-nexus 

data on wing discs suggests Cic does not regulate Yan.      

 

Our data reveal a fundamental interaction between the Ras and Hippo pathways 

occurring at the level of their downstream transcription factors. Other points of 

crosstalk have been reported in the literature. Most prominently, MAPK was 

suggested to phosphorylate and activate the LIM domain protein Ajuba, a negative 
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regulator of the Wts kinase (Reddy and Irvine, 2013). Similarly, oncogenic Ras can 

induce Yap activation (Reddy and Irvine, 2013, Hong et al., 2014). We confirmed that 

overexpression of constitutively active EGFR or Ras induced the expression of the 

Yki regulated reporter gene ex-lacZ (Fig.S4A-B). Surprisingly however, this was not a 

general effect and was dependent on the position of the clone. Thus the effect of Ras 

hyperactivation on the Hippo pathway depends on the fate of a cell. Likewise, only a 

fraction of patients with activating mutations in Ras have elevated YAP levels 

paralleling the context dependency that we observed in discs (Lin et al., 2015). 

Unlike activation of Ras, loss of cic did not induce Yki activity. Notably, this was true 

in a wild-type background and in ex and wts mutant backgrounds in which loss of cic 

caused synergistic overgrowth (Fig.S4C-F). Two conclusions follow from these 

results. First, Ras signaling crosses over to the Hippo pathway only upstream of Cic, 

consistent with the model that MAPK regulates the activity of Ajuba (Reddy and 

Irvine, 2013). Second, the synergy between Ras and Hippo signaling cannot depend 

on the regulation of Hippo pathway activity by Ras signaling because loss of cic 

synergized with loss of wts in growth control even though Cic does not affect Yki 

activity. Thus, the synergy between the Hippo and Ras pathways is not due to a 

general activation of Yki in response to loss of Cic. Rather, we show that the synergy 

is due to hyperactivation of the Ras signaling output, which is under direct Yki-Sd 

control. Therefore, there are at least two points of crosstalk between the two 

pathways: one upstream of Cic via Ajuba and another at the level of transcription 

factors as described here. 

 

Strikingly, in the cic wts double mutant discs, the activities of the other major 

developmental pathways are reduced: Dpp, Hh, N and Wg signaling activity readouts 

are expressed at low levels, suggesting a block in the differentiation program 

(Fig.S5A). Activation of two key Cic target genes, Sulf1 and Brk, are likely to account 

for this observation. Sulf1 encodes an extracellular protein from the endosulfatase 

family that regulates the amount and pattern of sulfate groups on heparan sulfate 

proteoglycans (HSPGs). HSPGs in turn play major roles on morphogen distribution 

and patterning (Yan and Lin, 2009). Accordingly, Sulf1 was linked to dampening the 

activity of Wg and Hh signaling pathways (Kleinschmit et al., 2013, You et al., 2011, 

Wojcinski et al., 2011). Brk, the default repressor of Dpp signaling (Affolter and 

Basler, 2007), is also a direct Cic target and is highly induced in cic wts cells. As a 

result of the action of Sulf1, Brk and potentially others, we see a block in 

differentiation signature in cic wts double mutant cells (Fig.S5A). In these cells, the 

readout for Ras signaling is highly upregulated, and simultaneously Dpp, N, Wg and 
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Hh pathways are downregulated. Consequently, cic wts cells lose their differentiation 

potential and proliferate aggressively (Fig.S5B). Therefore, combined mutations in 

Hippo and Ras pathways are especially dangerous as both breaks that dampen the 

transformation potential of a cell are removed (Fig.7). We show that Cic and its 

targets are central to Ras driven tumorigenesis and the choice between 

differentiation vs proliferation. Activation of Yki/YAP along with Cic degradation 

switches the response of a cell from differentiation to proliferation by allowing full 

activation of Cic targets. 

 

Our analysis of the mechanism by which Hippo and Ras synergise to produce 

massive tissue overproliferation in flies is likely to be relevant to tumour formation in 

verterbrates. Recent work indicates that if activation of Ras or Raf is coupled with 

amplification of the YAP region, the resulting carcinomas are more aggressive and 

resistant to MEK and Raf inhibitors (Lin et al., 2015). It has also been shown that 

mutations in Nf2, an upstream regulator of Hippo, cooperate with activating Ras 

mutations in a mouse model of thyroid cancer and that co-expression of Ras and 

YAP lead to brain tumor formation in zebrafish (Garcia-Rendueles et al., 2015, 

Mayrhofer et al., 2017). These findings bring forth the conservation of tumor 

suppressor pathway structures and underline the need for a mechanistic 

understanding such as the one exposed here. Our results argue that the 

transcriptional output of Ras signaling is under Hippo control and that Cic targets can 

only be fully activated when Yki/YAP is active (Fig.7). Requiring Yki activation and 

simultaneous removal of Cic for full induction, such “synergy genes” may represent 

attractive drug targets.  
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Figure Legends: 

Figure 1: Activated EGFR can induce either differentiation or proliferation.  

(A-D’) Wing and (E-H) eye-antennal imaginal discs from late third instar larvae 

expressing the indicated UAS transgenes with the dpp-Gal4 driver. (A and E’) The 

expression pattern of dpp-Gal4 (green). ex-lacZ is shown in red (A-D’), Ci antibody 

marks the MF (red in F-H) and photoreceptor cells are labeled with ELAV antibodies 

(green in E-H). (B) Homozygous ex mutant discs are slightly overgrown and (F) have 

defects in the movement of the morphogenetic furrow (MF) in the eye. (C) 

Expression of activated EGFR (EGFRtop) in the dpp stripe (green) leads to expansion 

of this region and (G) induces ectopic photoreceptor differentiation. (D and H) The 
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same construct (EGFRtop) induces massive overgrowth in the absence of ex. All 

images are shown at the same scale. Scale bar in (D) is 50 µm. Genotypes: 

A&E: w; exe1/+; dpp-Gal4, UAS-GFPnls/+ 

B&F: w; exe1/exAP50; dpp-Gal4, UAS-GFPnls/+ 

C&G: w; dpp-Gal4, UAS-GFPnls/ UAS-EGFRtop 

D-D’&H: w; exe1/exAP50; dpp-Gal4, UAS-GFPnls/ UAS-EGFRtop 

 

Figure 2: The synergy between the two pathways is at the level of 

transcriptional regulation. 

Third instar eye-antennal imaginal discs (top rows) and male fly heads (bottom row) 

carrying eyflp (expressed only in the head) induced clones of indicated genotypes. 

Mutant clones are marked by the absence of GFP (green in top, gray in middle 

panel) or lack of mini-w+ expression (red in bottom panel). (A) cicQ474X mutant cells 

occupy roughly half the tissue and have no effect on photoreceptor differentiation 

marked by ELAV (red), (B) rasDC408 mutant clones are small in the larval eye and do 

not contribute to the adult tissue, (C) further deletion of cic rescues the proliferation 

but not the differentiation defects of rasDC408 mutant cells, (D) wts149 mutant cells 

over-proliferate and (E) cicQ474X wts149 double mutant cells induce overgrowth and 

many folds in the tissue. The eye field is very small. All discs are from day 5 larvae 

and are shown at the same magnification. Scale bar in (A) is 100 µm. Genotypes: 

A) y w eyflp / y w; FRT82B ubiGFPnls / FRT82B cicQ474X 

B) y w eyflp / y w; FRT82B ubiGFPnls / FRT82B rasDC408 

C) y w eyflp / y w; FRT82B ubiGFPnls / FRT82B rasDC408 cicQ474X 

D) y w eyflp / y w; FRT82B ubiGFPnls / FRT82B wts149 

E) y w eyflp / y w; FRT82B ubiGFPnls / FRT82B cicQ474X wts149 

 

Figure 3: Combined mutations in cic and wts induce tremendous overgrowth 

and delayed pupation.  

(A-B) Control wing and eye discs at the end of larval development. (C-D) Eye and 

wing discs with cicQ474X wts149 double mutant cells in a Minute background. (E) Time 

course analysis (day 3, 4, 5, 6 and 9) of wing discs with indicated genotypes. 

Mutations in wts lead to delayed pupation. (F) ubx-FLP, cic wts discs can grow up to 

10 times bigger than a full-grown wild-type wing disc. The graph shows wing area 

quantification at different time points (n= 3-5 discs per time point per genotype) and 

in fact underestimates the size of cic wts double mutant discs as they form many 

folds and are on average twice as thick as wts discs. All images are at the same 

magnification. The scale bars in (A) and (E) are 200 µm. Genotypes: 
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A-B) y w; FRT82B M(3) ubiGFPnls / FRT82B cicQ474X wts149 

C) y w eyflp / y w; FRT82B M(3) ubiGFPnls / FRT82B cicQ474X wts149 

D) y ubxflp / y w; FRT82B M(3) ubiGFPnls / FRT82B cicQ474X wts149 

E-F) wt: y ubxflp / y w; FRT82B M(3) ubiGFPnls / FRT82B  

       wts: y ubxflp / y w; FRT82B M(3) ubiGFPnls / FRT82B wts149 

       cic: y ubxflp / y w; FRT82B M(3) ubiGFPnls / FRT82B cicQ474X 

       cic wts: y ubxflp / y w; FRT82B M(3) ubiGFPnls / FRT82B cicQ474X wts149 

 

Figure 4: RNA-sequencing reveals synergistically regulated genes. 

Self Organizing Tree Algorithm (SOTA) found 4 clusters among the 350 upregulated 

genes in day 5 cic wts discs compared to the control discs. Row normalized heat-

maps of (A) Wts cluster, (B) known Yki target genes from the Wts cluster. Dilp8 is 

shown separately as it is most upregulated (28-folds in wts discs) and disrupts the 

visualization of the data when grouped with the other genes. (C) Cic cluster, (D) 

additive cluster, (E) synergistic cluster and (F) 28 genes from the Wts cluster that are 

further upregulated in cic wts discs (1,3 folds or more). Green bars represent 

average expression levels.  

 

Figure 5: Pnt and STAT are predicted key regulators of the synergistic genes 

and are required for the synergistic overgrowth. 

(A) iRegulon predicts that three factors, Cic, Pnt and Stat92E regulate the 

synergistically induced genes. The heat-maps of these 46 synergistic genes are 

shown in Suppl.Fig.2A. 8 genes whose expression did not stay elevated at day 9 cic 

wts discs were removed from the group as they are unlikely to drive the synergistic 

phenotype.  (B) iRegulon analysis on Cic target genes returns the same network as 

shown in panel A. The heat-maps of these 19 direct Cic target genes are shown in 

Suppl.Fig.2B. (C) Heat-map showing the expression levels of JAK-STAT ligands 

Upds and the transcription factors of Ras signaling, Pnt and Cic in different 

genotypes and time-points. (D-J) 7-day old wing (top) and eye-antennal (bottom) 

imaginal discs of indicated genotypes. UAS driven GFP (green) marks the 

expression domain of the dpp-Gal4 driver. Nuclei are shown in red marked by DAPI 

(D-G) or ex-lacZ expression (I-J). (H) Quantification of the wing disc areas with our 

synergistic combination (activated EGFR expression in ex mutant background (dark 

gray)) and upon additional knock-down of pnt (light gray) at different time points. We 

measured at least 6 discs per genotype. For dpp>EGFRtop in ex; day 5, n=11; day 6, 

n=10; day 7, n=9. For dpp>EGFRtop + pnt-RNAi in ex; day 5, n=6; day 6, n=10; day 7, 
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n=9.  All images are shown at the same scale. The scale bar in (F) is 100 µm. 

Genotypes:  

D-E) y w; FRT40A exAP50 / FRT40A exe1; UAS-EGFRtop / dpp-Gal4, UAS-GFP  

F-G) y w; FRT40A exAP50 UAS-SOCS-36E / FRT40A exe1; UAS-EGFRtop / dpp-Gal4, 

UAS-GFP  

I-J) y w; FRT40A exAP50 / FRT40A exe1; UAS-EGFRtop / dpp-Gal4, UAS-GFP, UAS-

pnt-RNAi (UAS-pnt-RNAi is BL31936) 

 

Figure 6: Pointed and Cic are direct Yki-Sd targets. 

(A-B) Cic and Pnt expression patterns, detected by antibody stainings, in late third 

instar wing discs. (C-C’) Pnt is derepressed in cic mutant clones. (D,F) ChIP-nexus 

tracks in pnt (D) and cic (F) genomic regions obtained by overlaying tracks from 

experimental triplicates. Blue and red tracks correspond to Sd and Cic ChIP data, 

respectively. Predicted binding motifs for Cic (red), Sd (blue), Pnt (green) and 

Stat92E (purple) are shown above the tracks. (E-E’’) Cic (red in E and E’’, gray in E’) 

and ELAV (blue in E’’) antibody staining in discs with wts149 mutant clones marked by 

the absence of GFP (green in E) is shown. Cic protein accumulates in 

interommatidial cells. (G-H’) Knocking down yki in the posterior compartment leads to 

a reduction in the compartment size and Cic levels. Hence high, uniform Cic levels 

require Yki input. The scale bars in C’, E and H’ are 100 µm. 

Genotypes: 

C) y w hsflp / y w; FRT82B ubiGFPnls / FRT82B cicQ474X 

E) y w hsflp / y w; FRT82B ubiGFPnls / FRT82B wts149 

G) y w ; en-Gal4 / + 

H) y w ; en-Gal4 / + ; UAS-Yki-RNAi / + 

 

Figure 7: Model of the transcriptional interaction between the Hippo and Ras 

pathways. 

The Hippo pathway effectors Yki-Sd regulate the expression of the Pnt and Cic 

transcription factors of the Ras pathway. The induction of Pnt regulates the sensitivity 

of a cell to Ras signaling, while the induction of Cic increases the threshold required 

for productive output. As a result, Cic target genes and synergy are only fully 

activated when Cic is removed and Yki is simultaneously activated. Thus, the activity 

of the Hippo pathway together with the repressor Cic provide parallel breaks that limit 

Ras signaling output and prevent hyperproliferation and cellular transformation. Blue 

highlights the interactions revealed in this study. 
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Figure S1: Different combinations of Hippo loss and Ras gain-of-function 

induce synergistic overgrowth.  

(A) Regardless of which level of signaling the two pathways are modulated, the 

synergistic overgrowth is observed. Photoreceptors are marked by ELAV staining in 

blue in all panels. The green signal in the middle and the right panel shows the GFP 

expression under dpp-Gal4. The scale bar is 50uM. Genotypes:  

Left) y w; FRT40A exBQ / FRT40A exe1; UAS-RasV12 / dpp-Gal4, UAS-GFP  

Middle) y w; FRT40A exBQ / FRT40A exe1; UAS-RafGOF / dpp-Gal4, UAS-GFP 

Right) y w; UAS-EGFRtop / +; UAS-Yki / dpp-Gal4, UAS-GFP 

(B-C) Yki overexpression in combination with cic knock-down induces synergistic 

overgrowth. Representative discs of indicated genotypes (B) and quantification of the 

GFP-positive areas as a percentage of the whole disc area are shown (C). Error bars 

represent standard deviation. Discs where cic is knocked down are slightly smaller 

(86% of normal size) with a slightly wider Ptc stripe. In discs where Yki is 

overexpressed, the Ptc stripe occupies more than a quarter of the whole disc. 

Additional cic knock-down further expands the Ptc stripe which now occupies a third 

of the disc. All discs shown are from day 5. Ptc> Yki + cic-RNAi larvae have 

extended larval life by an additional 2 days, but the discs do not further grow. 

Anterior is to the left and the scale bar is 100uM. 

Genotypes:  

ptc> GFP : y w; ptc-Gal4, UAS-GFP / CyO 

ptc> cic-RNAi : y w; ptc-Gal4, UAS-GFP / UAS-cic-RNAi  (VDRC line 103805) 

ptc> Yki : y w; ptc-Gal4, UAS-GFP / + ; UAS-Yki / + 

ptc> Yki + cic-RNAi : y w; ptc-Gal4, UAS-GFP / UAS-cic-RNAi ; UAS-Yki / + 

 

Figure S2: Heatmaps for synergistic and Cic target genes. Upd transcription is 

under Sd and Cic control. 

Row normalized heat-maps showing expression profiles of synergistically induced 

genes (A) and direct Cic target genes (B) in day 5 discs of indicated genotypes. (C) 

ChIP-nexus peaks (Sd in blue and Cic in red) and motifs (Sd in blue and Cic in red) 

in the Upd region suggest direct binding of Cic and Sd. 

 

Figure S3: Expression patterns and regulation of Pnt and Yan. 

(A) Pnt and Yan are expressed posterior to the morphogenetic furrow in the eye 

discs. (B) Cic expression pattern is complementary to that of Pnt and Yan in eye 

discs. (C) Yan protein is not detected in wing discs. (D) Pnt antibody staining (gray) 

reflects the Ras activity pattern in a third instar wing imaginal disc. (E) Pnt pattern is 
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weaker in an ex disc likely due to higher Cic levels. (F-F’) Pnt is deprepressed (gray 

F, red in F’) in cic mutant cells marked by the absence of GFP (green in F’) in an ex 

disc. (G-G’) Pnt protein levels (gray G, red in G’) are highly elevated in cic wts mutant 

cells marked by the absence of GFP and the pattern is lost. All images are shown at 

the same scale. Genotypes:  

E) y w / w; FRT40A exe1/ FRT40A exAP50 

F) y w hsflp / w; FRT40A exe1/ FRT40A exAP50; FRT82B ubiGFP/ FRT82B cicQ474X  

G) y w hsflp / y w; FRT82B ubiGFPnls / FRT82B cicQ474X wts149 

 

Figure S4: Ras regulates Yki activity, but Cic does not.  

Late third instar imaginal discs that carry (A) EGFRtop or (B) Ras overexpression 

clones marked by GFP co-expression in green and stained with ß-gal antibodies to 

reveal ex-lacZ expression in red (gray in A’ and B’). Within the pouch region, most 

clones of cells with activated EGFR/Ras signaling showed a cell autonomous 

upregulation of ex-lacZ expression (arrows). On the other hand, clones outside the 

pouch area (arrowheads) had either no effect or only boundary effects on ex-lacZ 

levels. (C) cic mutant clones marked by lack of GFP expression do not modulate ex-

lacZ expression (red in C, gray in C’). (D) cic mutant clones overgrow and form folds 

(arrowheads) in exe1/exAP50 mutant background, but do not affect ex-lacZ expression 

(red in D, gray in D’). (E-F) Ex protein levels are not affected by loss of cic even in a 

wts mutant disc where they overgrow and display synergy. All scale bars are 100u. 

Full genotypes: 

A) y w hsflp / w; FRT40A exe1/+; UAS-EGFRtop/ act < CD2 < Gal4, UAS-GFP  

B) y w hsflp / w; FRT40A exe1/+; UAS-Ras / act < CD2 < Gal4, UAS-GFP  

C) y w hsflp / w; FRT40A exe1/+; FRT82B ubiGFP/ FRT82B cicQ474X 

D) y w hsflp / w; FRT40A exe1/ FRT40A exAP50; FRT82B ubiGFP/ FRT82B cicQ474X  

E) y w hsflp / w; FRT82B wtsP2 ubiGFP/ FRT82B wts149 

F) y w hsflp / w; FRT82B wtsP2 ubiGFP/ FRT82B cicQ474X wts149 

 

Figure S5: The differentiation program is shut down in cic wts mutant cells. 

(A) Row normalized heat-map showing expression profiles of components and target 

genes for developmental pathways in day 5 discs of indicated genotypes. Pathway 

readouts for Dpp, Notch, Wg and Hh signaling are down regulated in cic wts mutant 

discs. (B) Eye discs from indicated genotypes and ages. Similar to Figure 2, but the 

discs are allowed to grow to their maximum potential. wts mutant cells (marked by 

the absence of GFP in green) can differentiate into photoreceptors (red), but are 

positioned further apart from each other due to the increased number of 
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interommatidial cells. Photoreceptor rosettes are often incomplete in cic wts mutant 

areas. The scale bar in (B) is 50 µm. Genotypes: 

wt: y w eyflp / y w; FRT82B ubiGFPnls / FRT82B  

wts: y w eyflp / y w; FRT82B ubiGFPnls / FRT82B wts149 

cicwts: y w eyflp / y w; FRT82B ubiGFPnls / FRT82B cicQ474X wts149 
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STAR Methods: 

CONTACT FOR REAGENT AND RESOURCE SHARING  

Requests for resources and reagents should be directed to Fisun Hamaratoglu 
(fisun.hamaratoglu@unil.ch)  

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Drosophila melanogaster were grown on standard fly medium and kept in 26°C 
incubators.  

METHOD DETAILS  

Immunohistochemistry 

Standard protocols were followed for immunohistochemistry (as detailed in 

(Hamaratoglu et al., 2011)). Antibodies used were: m-β-gal (1:2000, Promega), r-

ELAV (1:1500, DSHB-7E8A10), m-Yan (1:10, DSHB-8B12H9), r-Ci (1:150, Robert A. 

Holmgren), rb-Pnt (1:2000), m-dp-ERK (1:5000, Benny Shilo), gp-Cic (1:300, Iswar 

Hariharan).  

 

Antibody production 

Antibodies against Pnt and Cic were produced by GenScript.  They were antigen 

affinity purified and resuspended in PBS pH 7.4 / 0.02% sodium azide at the 

following concentrations: anti-rabbit-Pnt = 2.622 mg/ml, anti-rabbit-Cic = 1.715 

mg/ml. Pnt C-term half (last 298 aas), that is common to all isoforms, was used as an 

epitope and the antibody recognizes overexpressed Pnt-P1 and Pnt-P2. For Cic, a 

C-term small peptide (NDSDMDDTPFDYRK) was used to generate a peptide 

antibody. 

 

RNA-seq sample preparation and sequencing 

Wing discs were collected from 12-35 larvae under sterile conditions and 

immediately lysed. Genotypes used were: wt, day 5 (y w ubxflp/ y w; FRT82B M(3) 

ubiGFP/ FRT 82B), cic, day 5 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B 

cicQ474X), wts, day 5 and day 9 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B 

wts149), cic wts, day 5 and day 9 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B 

cicQ474X wts149). RNA extraction was done using Ambion RNAqueous Micro kit. 500ng 

total RNA and Illumina TruSeq mRNA Library Prep reagents were used according to 

the protocol recommended by the manufacturer for library preparation and the 

sequencing was done using Illumina HiSeq2500. 
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Isolation of chromatin from imaginal discs 

We used larvae of following genotypes: wild-type control (y w ubxflp/ y w; FRT82B 

M(3) ubiGFP/ FRT 82B), 500 wing discs/ sample; wts mutant discs from day9 giant 

larvae (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B wts149), 100 wing discs/ 

sample; cic wts mutant discs from day9 giant larvae (y w ubxflp/ y w; FRT82B M(3) 

ubiGFP/ FRT 82B cicQ474X wts149) , 100 wing discs/ sample. 

 

Third instar larvae were dissected in cold PBS and imaginal disc complexes (anterior 

one third of the larvae after removing the fat body and salivary glands) were fixed in 

1 ml fixation buffer (50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

[HEPES], pH 7.5; 1 mM ethylenediaminetetraacetic acid [EDTA]; 0.5 mM ethylene 

glycol tetraacetic acid [EGTA]; 100 mM NaCl; 2% formaldehyde) for 30 min at room 

temperature. Fixed disc complexes were washed 3x fast and 2x 20 minutes with 

PBST (PBS, pH 7.4; 0.1% Triton X-100; 0.1% Tween-20), and were stored at 4°C 

until enough discs were obtained. 100-500 wing discs were dissected away from the 

cuticle and resuspended in buffer A2 (15 mM HEPES, pH 7.5; 140 mM NaCl; 1 mM 

EDTA; 0.5 mM EGTA; 1% Triton X-100; 0.1% sodium deoxycholate; 0.1 % sodium 

dodecyl sulfate [SDS]; 0.5 % N-lauroylsarcosine; 1× Roche complete protease 

inhibitor cocktail, cat. no. 5056489001). Tubes were flash frozen in liquid nitrogen 

and stored at -80°C. Imaginal discs were pooled to reach 500 wt discs (or 100 

mutant), and sonication was performed in a Bioruptor sonicator for 5 min (30 s on/off 

cycle at the “high” setting) in buffer A2. Following centrifugation (16,000 × g; 10 min 

at 4 °C), the supernatant containing soluble chromatin was transferred to fresh tubes, 

and used for ChIP-nexus. 

 

ChIP-nexus 

20 µg antibody (rb-Sd (Ikmi et al., 2014) or rb-Cic) was incubated with Protein A and 

Protein G beads for 6 hours. Chromatin isolated from 500 wild-type and 100 mutant 

imaginal discs were added to antibody coated beads and incubated overnight at 4 °C 

with end to end rotation in a 1ml volume. ChIP-nexus digestion and library 

preparation was performed as published (He et al., 2015), with the following 

modifications. To repair the DNA ends, NEB Next End Repair Module (NEB#E6050) 

was used, and reactions were set up in a 50µl volume at 20°C for 1h in thermomixer 

with gentle mixing. Beads were washed as described previously. The dA tailing 

reactions were set up in a 50µl final volume, incubated for 30 minutes at 37°C using 

the NEBNext dA-Tailing Module (NEB#E6053). The PCR amplification of nexus 
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library was performed using the NEB Next High-Fidelity 2X PCR Master Mix 

(NEB#M0541). All the samples were sequenced with Illumina NextSeq 500. 

QUANTIFICATION AND STATISTICAL ANALYSIS  

iRegulon Normalized Enrichment Scores (NES): 
For a certain gene set as input, the enrichment for each motif (9713 unique PWMs) is 

determined by the Area Under the Recovery Curve (AUC) of the cumulative recovery 

curve, along the whole-genome ranking. A Normalized Enrichment Score (NES) is 

computed as the AUC value of the motif minus the mean of all AUCs for all motifs 

and divided by the standard deviation of all AUCs. This is very similar to a z-score, 

and a NES score of 3 corresponds to an FDR (false discovery rate) of 0.03 to 0.09. A 

high NES for a certain motif indicates that this motif is significantly overrepresented 

in the immediate regulatory space (5kb upstream and all introns) of the genes from 

the input set (Janky et al., 2014).  

 

RNA-seq analysis 

Raw reads were cleaned for adapter sequences using fastq-mcf. Cleaned reads 

were mapped on Drosophila melanogaster FlyBase release r6.03 using TopHat2 

(Kim et al., 2013) (Bowtie2/2.2.1-intel-2014a). Htseq-count (Anders et al., 2015) 

(HTSeq/0.6.1p1-foss-2014a-Python-2.7.6) was used to assign reads to genes using 

the dmel-all-r6.03.gff template. The raw counts matrix (6 conditions each with 3 

biological replicates) was further processed and size factor was normalized in R. The 

list of 350 upregulated genes in cic wts double mutants vs wild type controls was 

obtained using DESeq2 (Love et al., 2014) (differential analysis with 3 replicates, 

cutoff; average expression > 50, logFC > 0.5 and adjusted P-value < 0.01). These 

350 genes were subdivided into four groups, based on their normalized expression 

values (log2 transformed) in the day_5 samples, using an unsupervised clustering 

method (Self Organizing Tree Algorithm, standard parameters in MeV) (Saeed et al., 

2003). Genes from wts cluster whose expression increased more than 1.3 folds from 

wts to cic wts were added to the synergetic cluster. The final set of 46 synergistic 

genes was obtained by filtering out genes whose expression dropped below wild type 

levels in cic wts day_9. Motif enrichment analysis was carried out on each gene set 

using iRegulon v1.4 (Janky et al., 2014), (plugin for Cytoscape) using a library of 

9713 PWMs, taking the full transcript and 5kb upstream of each gene into account. 

Expression heat-maps were generated with the NMF package in R (Gaujoux and 

Seoighe, 2010), using log2 normalized counts and these options: scale="row", 

Rowv=F ,Colv=NA, annRow=medianexp.  
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ChIP-nexus analysis 

Mapped bam files and bigwig files were generated as described from the sequenced 

reads (He et al., 2015). Scalloped peaks were called on the (unclipped) mapped 

reads, using the MACS2 software suite (Feng et al., 2011) (macs2 callpeak -t 

sd_genotype.bam -g dm -n sd_genotype.macs2  --keep-dup all  --call-summits). 

ChIP peaks with sufficient reads (fold change > 10) were retained for further analysis. 

Cic peaks were called on the (unclipped) mapped reads, using Cic-ChIP in cic wts 

mutants samples as control (macs2 callpeak -t cic_genotype.bam -g dm -n 

cic_genotype.macs2  --bdg --nomodel -c cic_cic.wts.bam). Using the negative 

controls (Cic pulldown in cic wts discs) removed most of the noise, allowing us to use 

all the called peaks for further analysis. The retained ChIP peaks were used as input 

sets for i-cisTarget (Imrichová et al., 2015), a tool that identifies significantly enriched 

motifs in a set of (ChIP) regions. Directly bound regions were defined as those 

regions that had their respective transcription factor DNA binding motifs significantly 

enriched. 

DATA AND SOFTWARE AVAILABILITY  

RNA-seq and ChIP-nexus datasets have been deposited to NCBI's Gene Expression 

Omnibus. They are accessible through GEO Series accession number GSE96868. 

ADDITIONAL RESOURCES  

iRegulon: http://iregulon.aertslab.org 

i-cisTarget: https://gbiomed.kuleuven.be/apps/lcb/i-cisTarget/ 

ChIP-nexus Protocol: 
http://research.stowers.org/zeitlingerlab/documents/150709ChIP-
nexusProtocol_000.pdf 
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