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Abstract 36 

The exchange of water masses between the Indian Ocean and the Atlantic constitutes 37 

an integral inter-ocean link in the global thermohaline circulation. Long-term changes in deep 38 

water flow have been studied using seismic reflection profiles but the seismic stratigraphy 39 

was poorly constrained and not resolved for the time period from the late Miocene onward. 40 

Here, we present results from International Ocean Discovery Program Site U1475 (Agulhas 41 

Plateau) located over a sediment drift proximal to the entrance of North Atlantic Deep Water 42 

(NADW) into the Southern Ocean and South Indian Ocean. Site U1475 comprises a complete 43 

carbonate rich stratigraphic section of the last ~7 Ma that provides an archive of climate-44 

induced variations in ocean circulation. Six marker reflectors occurring in the upper 300 m of 45 

the drift are identified here for the first time. The formation of these reflectors is mainly due 46 

to density changes that are mostly caused by changes in biogenic vs. terrigenous sediment 47 

deposition. Synthetic seismograms allow age assignments for the horizons based on bio- and 48 

magnetostratigraphy. Prominent reflectors are related to late Pleistocene glacial/interglacial 49 

variability, the middle and early Pleistocene transitions, and the onset of the northern 50 

hemisphere glaciation. A peculiar early Pliocene interval (~ 5.3 – 4.0 Ma) bounded by two 51 

reflectors is characterized by 4-fold elevated sedimentation rates (> 10 cm/kyr) and the 52 

occurrence of sediment waves. We argue that this enhanced sediment transport to the Agulhas 53 

Plateau was caused by a reorganization of the bottom current circulation pattern due to 54 

maximized inflow of NADW. 55 

 56 

 57 

 58 



1 Introduction 59 

The exchange of shallow and deep water masses between the Indian Ocean and the 60 

Atlantic constitutes an integral inter-ocean link in the global thermohaline circulation (THC). 61 

The Atlantic Meridional Overturning Circulation (AMOC) in the Atlantic is characterized by 62 

a northward cross-equatorial mass flux at the surface ocean, deep water formation in the 63 

North Atlantic, and by the southward transport of North Atlantic Deep Water (NADW) in the 64 

deeper layers. Below the NADW flow there is an underlying, reversed overturning cell that 65 

originates in the Southern Ocean (Ritz et al., 2013). 66 

Modelling studies suggest that buoyancy anomalies in the Atlantic thermocline 67 

induced by saline Agulhas waters entrained from the Indian Ocean to the South Atlantic can 68 

change the AMOC and hence NADW formation rates (Haarsma et al., 2011; Weijer et al., 69 

2002).  70 

The Agulhas Plateau (AP) in the Southwest Indian Ocean is located in the pathway of 71 

the main branch of NADW that takes an eastbound route after passing the southern tip of 72 

Africa (Fig. 1). Contourite deposits found on top of the AP, in the Natal valley, and at the 73 

Mozambique Ridge (Fischer & Uenzelmann-Neben, 2018; Uenzelmann-Neben, 2002; Wiles 74 

et al., 2014) likely bear detailed information on past changes in the NADW flow history over 75 

long time intervals of the Cenozoic but until recently only late Pleistocene paleoceanographic 76 

studies for the region were carried out using sediment samples obtained from piston cores 77 

(Marino et al., 2013; Molyneux et al., 2007; Romero et al., 2015; Ziegler et al., 2013). Long-78 

term changes in deep water flow in the South African gateway during the Cenozoic have been 79 

inferred using seismic reflection profiles (Fischer & Uenzelmann-Neben, 2018; Gruetzner & 80 

Uenzelmann-Neben, 2016; Tucholke & Carpenter, 1977; Uenzelmann-Neben, 2002; 81 

Uenzelmann-Neben et al., 2007). While a recent seismic study of the Mozambique Ridge 82 

suggests that bottom current circulation in the African–Southern Ocean gateway may have 83 

started as early as the Late Cretaceous (Fischer & Uenzelmann-Neben, 2018), more 84 



widespread evidence for a vigorous (proto-Antarctic Bottom Water) circulation has been 85 

found for Late Eocene times (Gruetzner & Uenzelmann-Neben, 2016; Tucholke & Embley, 86 

1984; Uenzelmann-Neben et al., 2007). Bottom current sedimentation related to the influence 87 

of NADW on the AP may have started within the Middle Miocene to Early Pliocene period 88 

(Uenzelmann-Neben et al., 2007).  89 

Previous seismostratigraphic work in the Indian-Atlantic gateway and at the AP 90 

(Tucholke & Carpenter, 1977; Tucholke & Embley, 1984; Uenzelmann-Neben, 2001, 2002) 91 

is based on ground truth data from piston cores, gravity cores, and dredge samples. Major 92 

horizons were related to regional hiati at the Paleocene/ Eocene boundary (reflector LE in Fig. 93 

2), the Early/Middle Oligocene (reflector LO, Fig. 2), the Middle Miocene (reflector MM, 94 

Fig. 2), and the Upper Miocene/Lower Pliocene. The Upper Miocene/Lower Pliocene hiatus 95 

occurs often very close to the seafloor but can be buried much deeper in sediment drifts 96 

identified on the Agulhas Plateau (Uenzelmann-Neben, 2001). Up to now, the seismic 97 

stratigraphy on the AP was not constrained by ocean drilling and no further marker horizons 98 

have been identified within the time period for the late Miocene to present.  99 

In 2016, the International Ocean Discovery Program (IODP) Expedition 361 drilled 100 

six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest 101 

Indian Ocean. The sites were targeted to reconstruct the history of the greater Agulhas 102 

Current system and to determine the dynamics of the Indian-Atlantic gateway circulation over 103 

the past ~5 Ma. At all sites, the recovered sequences allowed the generation of complete 104 

spliced stratigraphic sections for the upper 200 to 300 m (Hall et al., 2017b), which will help 105 

to refine the Plio-Pleistocene seismic stratigraphy for the area. 106 

In this paper, we present a new detailed seismostratigraphic model for the uppermost 107 

300 m (~ 7 Ma to present) of the AP which is based on a detailed correlation of edited, 108 

spliced, and in situ corrected density and velocity data from Site U1475 (IODP Exp. 361) 109 

with site survey seismic reflection profiles. The results from seismic modeling via synthetic 110 



seismograms are interpreted in combination with measurements of natural gamma radiation 111 

(NGR) and carbonate content to infer major changes in sediment composition that are related 112 

to variations in bottom current controlled sedimentation in the Indian-Atlantic Ocean 113 

gateway.  114 

 115 

2 Geologic and oceanographic setting of the Agulhas Plateau 116 

The AP is a major bathymetric high in the Southwest Indian Ocean (Fig. 1a). It was 117 

formed during the early stages of the opening of the South Atlantic as part of a greater 118 

Southeast African Large Igneous Province (LIP) in phases of highly varying magmatic and 119 

volcanic activities between ~140 and 95 Ma (Gohl et al., 2012). The main volcanic formation 120 

of the greater AP can be estimated to have taken place between ~100 - 94 Ma (Parsiegla et al., 121 

2008) when the region passed over the Bouvet hotspot. Today, the AP ascends to ~2500 m 122 

above the adjacent seafloor, and the 230,000 km
2
 area has a sedimentary cover of variable 123 

thickness. While the northern part of the plateau is characterized by rugged topography with 124 

relatively thin and irregularly distributed sediments, the central and southern parts exhibit a 125 

smoother topography with a more uniform and thicker sediment cover (Allen & Tucholke, 126 

1981; Uenzelmann-Neben, 2001).  The AP is flanked by deep basins, the Agulhas Passage in 127 

the North, the Agulhas Basin in the West, and the Transkei Basin in the Northeast (Fig. 1a). 128 

The AP region is characterized by a strong water mass transport at all depth levels 129 

(Hernández-Guerra & Talley, 2016; Macdonald, 1993). The surface circulation is dominated 130 

by the Agulhas Return Current (Lutjeharms & Ansorge, 2001), which flows eastward over the 131 

AP and can reach down to more than 1500 m (Lutjeharms, 2007). The Agulhas Return 132 

Current originates from the Agulhas Retroflection south of Cape Agulhas where the Agulhas 133 

Current (AC) takes an anti-clockwise turn and doubles back on itself (Fig. 1a). The remainder 134 

of the warm and saline surface and intermediate waters from the Indian Ocean leaks into the 135 



Atlantic (Beal et al., 2011) via Agulhas Rings (Arhan et al., 2011) transporting between 5-20 136 

Sv of water from the Indian Ocean to the South Atlantic. Below the AC  (~ 1000 – 2000 m) 137 

Antarctic Intermediate Water (AAIW) originating from surface water around Antarctica also 138 

follows the same flow path near South Africa as the Agulhas Current and shows a similar 139 

retroflection (Lutjeharms, 1996). The top of the AP is located within the core flow of present-140 

day North Atlantic Deep Water (NADW), which exits the South Atlantic to the Indian Ocean 141 

around the tip of South Africa within a broad slope current. NADW can be identified by its 142 

higher salinity (S = ~34.8 psu, Figs. 1b,c) (Boyer et al., 2013) and more negative radiogenic 143 

Neodymium (εNd = ~-10 to -10.5) signature (Stichel et al., 2012) compared to Southern 144 

Ocean derived Upper (UCDW)- and Lower Circumpolar Deep Water (LCDW) masses (S = 145 

34.6–34.7 psu, , Fig. 1b,c) (Arhan et al., 2003). At depths below 4000 m the flanks of the AP 146 

are bathed by different branches of LCDW taking northeast directed pathways into the Indian 147 

Ocean.  148 

 149 

2.1 IODP Site U1475 150 

IODP site U1475 is located in 2669 m water depth on the southwestern flank of the AP 151 

over a wedge-shaped sediment drift, which thickens to the west reaching a water depth of 152 

~2510 m at its crest (Figs. 1, 2). Further towards the west, internal reflectors of the drift are 153 

truncated at the seafloor indicating erosion while no indications for major current erosion 154 

have been found on the eastern side of this drift (Uenzelmann-Neben, 2001). The recovered 155 

cores comprise a complete stratigraphic section for the upper 280 m based on a splice 156 

constructed from five parallel holes (Hall et al., 2017c).  157 

The sediment recovered at Site U1475 was classified in two lithologic units. The very 158 

thin Unit I (0–4.75 m CSF-A, Fig. 3e) is composed of pale brown, light greenish or olive-159 

gray, and white-gray nannofossil-rich foraminifer ooze. Unit II (4.75–277.22 m CSF-A, Fig. 160 

3e) is composed of light greenish or pale gray to white-gray nannofossil ooze. Alternations 161 



between foraminifer-bearing or foraminifer-rich nannofossil ooze and nannofossil ooze with 162 

fine sand (foraminifers, quartz, and occasionally diatoms) were observed. In general the 163 

recovered sediment is quite uniform without primary sedimentary structures and 164 

predominantly consists of biogenic materials. Centimeter-scale diffused mottling is common 165 

and indicates widespread bioturbation. While in Lithologic Unit I sand sized foraminifera 166 

constitute the main sediment component (45 ± 5% on average), the biogenic fraction of the 167 

remaining section (Lithologic Unit II) is fine grained (67 ± 10% clay size), dominated by 168 

calcareous nannofossils (55 ± 11% on average), and classified as nannofossil ooze (Hall et al., 169 

2017c). The non-carbonate fraction consists mainly of quartz (11 ± 4% on average), clay 170 

minerals (3 ± 2%) and diatoms (6 ± 4%). The presence of pyrite is also common while 171 

glauconite and feldspar occur rarely. Shipboard measurements revealed that calcium 172 

carbonate content in weight percentage (CaCO3 wt%) is ~80 wt% on average and ranges 173 

between 74 wt% and 86 wt%. Shipboard bio- and magnetostratigraphic data (Hall et al., 174 

2017c) indicate that the sedimentary sequence extends back to the late Miocene (~7 Ma). 175 

Between the bottom of Site U1475 at ~7.5 Ma and 5.3 Ma, average sedimentation rates are 176 

~2.5 cm/ky. After ~5.3 Ma the sedimentation rates increase significantly and these elevated 177 

rates (10.3 cm/ky) last until to ~3.9 Ma. At ~3.9 Ma sedimentation rates drop again to an 178 

average rate of 2.9 cm/ky.  179 

 180 

3 Methods 181 

For this study, the raw IODP Site U1475 shipboard physical property data of P-wave 182 

velocity (V), bulk density (WBD), and natural gamma radiation (NGR) measured during 183 

IODP Exp. 361 (Hall et al., 2017c) have been edited and cleaned of outliers (Fig. 3). While V 184 

and WBD data have been further converted to in situ conditions and were used to calculate 185 



synthetic seismograms, wt% Potassium (K) derived from the NGR spectra is used as an 186 

indicator of terrigenous vs. biogenic sediment composition.  187 

Concerning the usage of depth scales we follow the newest conventions of IODP 188 

(IODP-MI, 2011). Raw data were recorded on the CSF-A depth scale equivalent to the 189 

formerly used meters below seafloor (mbsf) scale. Composite curated depth below sea floor 190 

(  191 

Due to the methodology of splicing the CCSF depth scales are extended 192 

relative to CSF-A (Lisiecki & Herbert, 2007). At Site U1475 the extension is on average 193 

9.5% for all holes. Thus to correct for the depth offset a 9.5% linear compression was applied 194 

to the entire depth so that the compressed core length (CCSF-B) was equal to the interval 195 

cored. An extensive description of the depth scales is given in the supporting information. 196 

 197 

3.1 Measurements 198 

P-wave velocity (V) was measured at a resolution of 2.5 cm at all holes drilled at Site 199 

U1475 using a P-wave logger mounted on the whole round multi sensor track (Hall et al., 200 

2017a). The logger transmits an ultrasonic (500 kHz) P-wave pulse across the core section 201 

(Schultheiss & McPhail, 1989), and the traveltime of the signal is determined by a processing 202 

software that automatically detects the first arrival of the P-wave to a precision of 50 ns.  203 

Wet bulk density data was obtained at 2.5 cm resolution on the whole round multi 204 

sensor track (Hall et al., 2017c) using a Gamma Ray Attenuation (GRA) densitometer with a 205 

principal energy peak at 0.662 MeV (Best & Gunn, 1999). GRA-bulk density is calculated 206 

from the measured attenuation of a gamma beam transmitted through the core (Davidson et 207 

al., 1963). The attenuation through Compton scattering is related to the electron density in the 208 

sediment and can be used to derive bulk density by assuming an average attenuation 209 

coefficient of the sediment (Evans, 1965; Gerland & Villinger, 1995). Additionally, wet bulk 210 

density (WBD) was directly determined on 90 discrete samples by measurements of weights 211 



and volumes (wet and dry). These measurements also allow us to calculate dry bulk density, 212 

grain density, void ratio, and porosity (Hall et al., 2017a). Changes in GRA-bulk densities and 213 

WBD are well correlated throughout Site U1475 with slightly lower absolute values for the 214 

GRA densities (Fig. 4a). We thus converted the GRA-bulk densities to wet bulk densities 215 

using the relationship WBD = 1.008*GRA-density - 0.0508. This highly linear equation (r
2
 = 216 

0.93) is derived from regression analysis of WBD measurements at Site U1475 and 217 

corresponding GRA-density measurements across the same depth interval (Fig. 4b). 218 

Subsequently, we used the linear relationships (Figs. 4c,d) between WBD vs. dry bulk density 219 

(r
2
 = 0.99) and WBD vs. porosity (r

2
 = 0.95) to derive high-resolution (2.5 cm) data sets of 220 

dry bulk density and porosity, respectively. While the corrected dry bulk densities are 221 

provided for upcoming environmental studies based on the calculation of millennial-scale 222 

resolution sediment accumulation rates, porosity is used for the in situ correction of P-wave 223 

velocities (see 3.3).  224 

A Natural Gamma Radiation Logger equipped with 8 Sodium Iodide (NaI) scintillator 225 

detectors, 7 shielding plastic scintillator detectors, 22 photomultipliers, and passive Lead 226 

shielding (Vasiliev et al., 2011) was used to measure gamma radiation emitted from the 227 

whole-round core sections of Site U1475 at a resolution of 10 cm (Hall et al., 2017c).228 

Changes in natural gamma radiation represent the total variation in activity of the 229 

radioactive elements  (Potassium)  (Uranium) Thorium), and by 230 

integration of the NGR counts over the element-specific energy intervals of the spectrum 231 

concentrations of U, Th, and K have been derived (De Vleeschouwer et al., 2017). K is 232 

common in many sediments which bear feldspar, mica, and clays, thus characterizing the 233 

terrigenous sediment fraction.  234 

Following core splitting, spectral color reflectance was measured at resolutions of 0.5 or 235 

1 cm on the archive-half sections using an Ocean Optics USB4000 spectrophotometer with a 236 

halogen light source and an additional blue light source (Hall et al., 2017a). The 237 



measurements cover a wavelength range through the visible spectrum and slightly into the 238 

infrared domain (400 - 900 nm). Each measurement was recorded in 2 nm wide spectral bands 239 

and also converted to the L*a*b* system, which is also referred to as the CIELAB system. In 240 

this study we use color reflectance (Lightness parameter L*) to validate the shipboard age 241 

model for the Pleistocene by comparing it the global benthic oxygen isotope stack (see 5.3). 242 

 243 

3.2 Physical property editing 244 

During high recovery expeditions like Exp. 361, a vast number of physical property 245 

measurements are taken by core scanners in relatively short time to maintain a constant core 246 

flow.  Immediately after each scanner run, the measurements are saved to the IODP data base 247 

(http://web.iodp.tamu.edu/LORE/) to provide data sets that can be used rapidly for 248 

stratigraphic correlation between multiple holes during the cruise. These time constraints do 249 

not allow for much quality control by the operators, and subsequently the saved records 250 

usually contain a number of outliers (Fig. 3), which are mostly caused by section breaks and 251 

core disturbance. Although sediment disturbance through drilling at Site U1475 was 252 

minimized using the advanced piston corer, bad weather conditions caused significant heave 253 

and often led to core disturbance. When constructing the splice, these “bad intervals” were 254 

usually avoided, and thus the number of outliers are reduced in the composite section. 255 

Nevertheless, some outliers remain in the “splice”. The highest number of “spikes” is 256 

commonly found in the P-wave velocity measurements (Fig. 3b) since these are most delicate 257 

because a very good acoustic coupling between transducers, core-liner, and sediment is 258 

required to allow propagation of the compressional-wave pulse with sufficient amplitude. 259 

Otherwise the signal is strongly attenuated, the automated picking of the first arrival becomes 260 

inaccurate and anomalously high or low velocities are calculated. Velocities below 1400 m/s 261 

and above 4000 m/s were automatically omitted during the scanning process. The remaining 262 

questionable velocity values were judged manually by comparing the data with the digital 263 



core images, core descriptions, and stored waveform data. Sometimes step-like changes in the 264 

velocity values of more than 50 m/s were observed. This mostly occurred because the 265 

automated detection algorithm missed one or more minima, and in these cases the velocity 266 

was recalculated using manually adjusted traveltime picks. Anomalous data that corresponded 267 

to either a section end or visual core disturbance were deleted. Due to this rigorous editing 268 

process data gaps larger than 10 cm appeared at several places in the velocity splice. These 269 

were filled by data from parallel holes not used for the splice. The procedure to map the off-270 

splice holes into the CCSF-D scale is described in the supplementary information. The 271 

longest interval covered by off-splice data occurs in the upper 3.95 m below the seafloor 272 

where the anomalously low velocities (< 1400 m/s) recorded for the primary splice (Hole 273 

U1475B) were replaced with data from Hole U1475C. In total, only 8% of the used velocity 274 

data are from off-splice holes. 275 

 276 

3.3 In situ correction 277 

For an accurate correlation of seismic stratigraphies with geologic events identified in 278 

boreholes it is necessary to adjust the acoustic impedance derived in the laboratory to the 279 

natural conditions in the sub-seafloor environment (in situ correction, Fig 3). Differences 280 

between laboratory and in-situ measurements can be caused by temperature changes, pressure 281 

reduction, decrease of sediment rigidity, and mechanical porosity rebound (Hamilton, 1976) 282 

from which the effect of overburden pressure reduction on sediment elastic moduli and thus 283 

P-wave velocity is the most significant factor in carbonate rich sediments (Urmos et al., 284 

1993). An in situ velocity correction for carbonate sediments was empirically derived from 285 

wells on the Ontong Java Plateau (Urmos & Wilkens, 1993; Urmos et al., 1993) and was 286 

successfully tested for oozes and chalks recovered at ODP Sites 704, 722, and 762. This 287 

correction applied here for the Site U1475 velocity data consists of two steps. 288 



A first correction accounts for in situ temperature and pressure of the pore fluids 289 

(Wyllie et al., 1956): 290 

 291 

1

𝑉𝑐𝑜𝑟𝑟
=  

1

𝑉𝑙𝑎𝑏
+ [(

𝜂

𝑉𝑤 𝑖𝑛 𝑠𝑖𝑡𝑢
) −  (

𝜂

𝑉𝑤 𝑙𝑎𝑏
)] 

 292 

with η = fractional porosity, Vcorr = temperature and pressure corrected velocity, Vlab = 293 

measured laboratory velocity, Vw in situ = velocity of sea water at in situ temperature, depth 294 

(pressure) and salinity (35 %) (Mackenzie, 1981), and Vw lab = velocity of sea water at 295 

laboratory conditions (Mackenzie, 1981).  296 

A second adjustment corrects the differences in elastic moduli and sediment rigidity 297 

 298 

𝑉𝑖𝑛 𝑠𝑖𝑡𝑢 =  𝑉𝑐𝑜𝑟𝑟 + 0.66 × (1 −  𝑒−0.00208 × 𝑑) 

 299 

with Vin situ = velocity under in situ conditions, Vcorr = temperature and pressure corrected 300 

velocity, and d = depth (in m).  301 

The effects of hydraulic rebound on bulk density and porosity at Site U1475 have been 302 

calculated by considering the difference between laboratory and in situ sea water densities 303 

(Millero et al., 1980) but the rebound effect is smaller (< 1 %) than the measurement 304 

uncertainties and is thus neglected for the purpose of this investigation. 305 

 306 

3.4 Synthetic seismograms 307 

308 

309 

310 

311 
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313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

3.5 Age model 324 

Age control of the interpreted seismic reflectors is based on the shipboard age model for 325 

Site U1475 (Fig. 3a) that was derived from time estimates based on a combination of major 326 

planktonic foraminifer, calcareous nanno-plankton, diatom, and paleomagnetic datums. Fits 327 

of linear models to the available data with correlations of r
2
 = 0.94 (0–3.9 Ma), 0.92 (3.9–5.3 328 

Ma), and 0.68 (5.3–7.5 Ma) suggest that linear sedimentation rates represent a good 329 

approximation of deposition rates for at least the Pliocene and Pleistocene parts of the record 330 

(Hall et al., 2017c).  Examination of the Pliocene–Pleistocene sequence of chronological 331 

events since 3.9 Ma shows modest but consistent mismatches between datums at the same 332 

depth levels (Hall et al., 2017c) which give an indication of the maximum uncertainties 333 

inherent to the model and allow to estimate errors associated with stratigraphic placement of 334 

the seismic reflectors. The estimated errors are ±0.50 Ma at 260 m CCSF-A, ± 0.40 Ma at 100 335 

m CCSF-A, ± 0.30 Ma at 50 m CCSF-A (Fig. 2a). For the upper 30 m CCSF-A (~ last 1 Ma) 336 

the parameter L* (Lightness) exhibits amplitude changes nicely reflecting glacial/interglacial 337 



cycles and the L* curve (see 5.3) plotted on the linear shipboard age model reveals a great 338 

similarity with a global benthic isotope stack (Fig. 10b). A peak to peak correlation of 339 

identified marine isotope stages (MIS) shows that errors in the age determination of reflectors 340 

within the last 1000 kyrs are less than ± 0.03 Ma. 341 

4 Results 342 

The raw laboratory shipboard physical property records of P-wave velocity and density 343 

are described in the IODP Exp. 361 report for Site U1475 (Hall et al., 2017c). We here report 344 

major changes in acoustic impedance (in units of 10
5 

g 
. 
s

-1
 
.
 cm

-2
) derived from in situ 345 

corrected velocity and density data that occur on the CCSF-B (mbsf) depth scale (Fig. 5). 346 

Acoustic impedance at Site U1475 (Fig. 5c) is 2.65 on average and varies between 1.97 and 347 

3.12 (Fig. 6). It increases from 2.33 at the seafloor to 2.87 at 277 m CCSF-B exhibiting a 348 

linear increasing trend (r
2
 = 0.88) with depth (1.73 m

-1
) that is due to porosity reduction by 349 

compaction with increasing overburden pressure. Residual fluctuations around this trend are 350 

likely due to variation in sediment composition. Spike like impedance minima occur within 351 

the upper 10 m and between 20 m and 25 m CCSF-B. Below, two very prominent steps to 352 

higher impedance at 117 m and to lower impedance at 242 m are observed. Between these 353 

steps several cm scale high impedance spikes occur at 142 m, 172 m, 214 m, 220 m, and 228 354 

m CCSF-B. A comparison of the curves displayed in Figure 5 reveals that impedance shows a 355 

greater similarity with density than with velocity.  To further examine the variation in 356 

impedance, linear regressions between these parameters were calculated. There is a very good 357 

correlation (r
2
 = 0.85) between velocity and impedance (Fig. 6a) but the density-impedance 358 

correlation (Fig. 6b) is even stronger (r
2 

= 0.97). The low-resolution shipboard wt%  CaCO3 359 

data (Hall et al., 2017c) also allow a test of the carbonate vs. physical property relationships at 360 

Site U1475 (Fig. 7). Acoustic impedance (Fig. 7a) and density (Fig. 7b) both exhibit a strong 361 

positive correlation (r
2
 = 0.50) with carbonate content. 362 



Potassium (K) content derived from NGR (De Vleeschouwer et al., 2017) 363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

NGR at 373 

Site U1475 is inversely correlated to wt% CaCO3 (Fig. 7c), which indicates the dilution of 374 

biogenic carbonate with terrigenous derived particles. Potassium content (wt% K) derived 375 

from NGR shows an even stronger anti-correlation with CaCO3 (Fig. 7d). Thus in the 376 

discussion we use the wt% K curve to characterize the climate related development of the 377 

seismic reflectors.378 

Six seismic reflectors (Table 1) of high to moderate amplitude occurring within the upper 379 

300 m of the sediment column at the AP and described here for the first time are 380 

unambiguously correlated with the synthetic record (Figs. 8,9). In the seismic profile AWI-381 

98014 (Fig. 9) high amplitude reflections are observed below ~4 s TWT (not drilled) and in 382 

the upper 60 ms TWT below the seafloor (reflectors Purple and Green). The remaining 383 

section reveals very low to moderate seismic amplitudes. While the sediments between 384 

reflectors Green, Orange, and Yellow appear rather transparent in the seismic section, buried 385 

undulating wavy sedimentary structures are visible between reflectors Red and Yellow. The 386 

wavy reflection pattern occurs in a transparent interval in Fig. 2 and is relatively faint in Fig. 387 

9 (a,b). But a black and white plot using a narrow bandpass filter (Hanning window, 40–45 388 



Hz and 210–230 Hz) shows the development of sediment waves above reflector Red (after ~ 389 

5.6 ± 0.5 Ma) more clearly (Fig. 9c).  The wavelength of these structures is ~5 km and their 390 

height degrades from ~ 29 m at reflector Red towards the seafloor.   391 

5 Discussion 392 

5.1 Physical property interrelationships and the origin of seismic reflectors 393 

The observed very high density-impedance correlation in comparison to a weaker 394 

velocity-correlation at Site U1475 (Fig. 6) has been reported also for other areas with a high 395 

percentage of carbonate sedimentation (Mayer et al., 1985), and can be explained by the 396 

relatively minor degree of fluctuation in sonic velocity (< 5% of its mean value) compared to 397 

the much higher degree of variation in bulk density (~ 23% of its mean value). This implies 398 

that density can be used as a predictor for acoustic impedance in the Agulhas area and that 399 

vice versa understanding impedance contrast and thus the formation of seismic reflectors is 400 

mainly a task of determining what causes changes in saturated bulk density, or its inverse, 401 

porosity. 402 

For carbonate sediments of the equatorial Pacific it was found that density and 403 

impedance changes are strongly controlled by variations in carbonate content (Mayer, 1980; 404 

Mayer et al., 1986; Reghellin et al., 2013). High-carbonate samples are dominated by high-405 

density platy carbonate material while low-carbonate material is dominated by low-density 406 

spiny siliceous microfossils. Thus when the percentage of carbonate is high, the percentage of 407 

biogenic silica is low and this composition results in increased saturated bulk density and thus 408 

increased impedance. At Site U1475 the %CaCO3-impedance correlation is positive and 409 

strong (Fig. 7) but not as perfect as for the equatorial Pacific (Mayer, 1991). This is most 410 

likely due to the generally quite low variability of CaCO3 at the AP (74 – 85%). Further in 411 

contrast to the equatorial Pacific, the non-carbonate fraction at U1475 is dominated by quartz 412 

(11% ± 4% on average) and not by siliceous microfossils. Diatoms are continuously present 413 



in the sediment at Site U1475 but with much lower percentages (5% ± 2%) compared to the 414 

equatorial Pacific. 415 

 416 

5.2 Major depositional changes during the late Miocene and Pliocene 417 

Since Site U1475 today is bathed by NADW, we here discuss significant changes in 418 

oceanographic parameters (mainly changes in NADW inflow) that took place at or close to 419 

the same time the seismic reflectors were generated to assess their paleoceanographic 420 

significance for the Indian-Atlantic gateway. The changes in the physical property records are 421 

described in an upward direction in order to discuss the paleo-oceanographic events 422 

chronologically. 423 

The deepest major seismic horizon tied to the U1475 boreholes, reflector Red (Fig. 9), 424 

is associated with a very strong upward impedance increase (Fig. 8) resulting from step like 425 

changes in density and velocity at 242.39 m CCSF-B (Fig. 5).  At this depth, an upward 426 

decrease in wt% K is observed (Fig. 5d) but this change of 0.1 wt% K is small when 427 

compared to other intervals, especially the uppermost 50 m CCSF-B where short term 428 

changes of up to 0.3 wt% K occur. This suggests that changes in the admixture of terrigenous 429 

derived sediments to the biogenic carbonate fraction are likely not the cause for the high 430 

impedance contrast at 242.39 m CCSF-B. High P-wave velocities can be caused by elevated 431 

sand content, and thus grain size changes may be the cause for the impedance contrast. Given 432 

the discussed dating uncertainty of ± 0.5 Ma, reflector Red occurs within the late Miocene 433 

(5.2 - 6.2 Ma) in an interval with significant variability in benthic 
18

O, including the 434 

prominent glacial marine isotope stage (MIS) TG20 (Hodell et al., 2001). Widespread erosion 435 

documented around Antarctica indicates a vigorous ACC during this time. Furthermore, a 436 

drastic sea level fall during this period of maximum Antarctic ice volume at ~ 6 Ma is 437 

considered to have triggered the Messinian salinity crisis, d438 



439 

(Ohneiser et al., 2015)440 

441 

442 

443 

Reflector Red has a wavy outline, and this wavy character of the subsurface seismic 444 

reflection pattern continuous upward towards reflector Yellow (Fig. 9c) indicating the 445 

development of sediment waves after ~ 5.6 ± 0.5 Ma. Such deep-sea sediment waves are 446 

symmetrical undulating bedforms developing under stable bottom flow conditions (Wynn & 447 

Masson, 2008). They can occur under turbidity current and geostrophic flow systems 448 

(McCave, 2017; Wynn & Stow, 2002). Downslope sediment flows and river-fed turbidite 449 

systems have been described for the eastern margin of southern Africa (Castelino et al., 2017; 450 

Wiles et al., 2013) but the Site U1475 sediment cores from the elevated top of the AP do not 451 

show any turbiditic sedimentary structures (Hall et al., 2017c). Thus we interpret the sediment 452 

waves on the AP, which developed contemporaneously to a wavefield at the same latitude in 453 

the western Atlantic (Gruetzner et al., 2014), to be shaped by contouritic bottom currents. A 454 

model of sediment wave formation (Flood, 1988) predicts that the observed wave dimensions 455 

at the AP can form under geostrophic flow velocities that range from ~8 to 17 cm/s and the 456 

observation that the wave crests do not exhibit a significant up-current migration would point 457 

towards flow velocities at the lower end of this range. Present day bottom water flow speeds 458 

for the southwestern AP are in the range of ~2 to 6 cm/s as derived from high-resolution 459 

global ocean circulation models (Cronin et al., 2013). 460 

At the AP the sediment wave development is accompanied by a dramatic increase in 461 

sedimentation rates from 2.8 to 10.3 cm/kyr at ~ 5.3 Ma (Fig. 3a). Together, the elevated 462 

sediment accumulation and the appearance of sediment waves suggest a significant change in 463 

bottom current derived sediment transport to the AP after ~ 5.6 ± 0.5 Ma.  464 



Other processes such as increased productivity or higher terrigenous supply could 465 

have also caused the increased sedimentation rates but wt% K does not indicate a significant 466 

change in the biogenic vs. terrigenous sediment composition and also the CaCO3 percentages 467 

do not change (Fig. 5d). In case of a massive increase in biogenic carbonate production over 468 

the AP, one would expect an increase in carbonate content and lower K percentages. 469 

Conversely, higher terrigenous supply would result in lower carbonate content and increased 470 

K percentages. Biosiliceous sedimentation at site U1475 is slightly higher between 185 and 471 

245 m CCSF-A (~ 4.6 – 5.2 Ma) (Hall et al., 2017c) but can also not account for the almost 4-472 

fold increase in sedimentation rates. The profound change in sedimentation rate at the AP 473 

occurs in a time interval for which an increase of NADW production (Poore et al., 2006), a 474 

, and a sustained interval of high (3 475 

times the present day value) %NCW in the southern ocean (Billups, 2002) have been inferred. 476 

We conclude that these profound changes in global ocean circulation, that are thought to be 477 

related to the 478 

increased the intensity and lowered the core flow of the south setting bottom water 479 

current over the southwestern AP (Fig. 1b) in such a way that drift growth at the AP could 480 

accelerate. These changes in the Indian-Atlantic Ocean gateway occurred contemporaneously 481 

with other regional oceanographic and climatic variations, such as an abrupt change from dry 482 

to humid climate conditions in northwest Australia (Christensen et al., 2017) and an 483 

expansion of the Western Pacific Warm Pool (WPWP) to the South China Sea (Brierley et al., 484 

2009) and eastern Indian Ocean (Karas et al., 2011).  485 

Reflector Yellow (Figs. 8, 9) marks the upper boundary of the high sedimentation rate 486 

interval at 117 m CCSF-B (Table 1) and is caused by step-like upward drops in acoustic 487 

impedance, density, and velocity (Fig. 5).  The reflector occurs in an interval (~ 4 ± 0.4 Ma) 488 

characterized by a number of high K (low CaCO3) peaks (Fig. 10d) indicating 489 

enhanced deposition of terrigenous derived sediments. In the global benthic isotope stack, this 490 



time is marked by “cold” stages MIS Gi22/Gi20 (Fig. 10) corresponding to a pronounced 491 

early Pliocene expansion of global ice volume (Lisiecki & Raymo, 2005) and to a drop (-50 492 

m) in the eustatic sea level curve (Miller et al., 2005). Thus reflector Yellow likely marks a 493 

transition to colder conditions and the associated wt% K peaks may reflect a higher input of 494 

atmospheric dust into the depositing bottom currents e.g. through more vigorous atmospheric 495 

circulation and/or extended dust source areas due to reduced vegetation cover.  496 

Across reflector Yellow, a drop in sedimentation rates from 10.3 cm/kyr back to 2.8 497 

cm/kyr (Fig. 3) and the disappearance of the wavy structure of the subsurface reflections (Fig. 498 

9) indicate another major modification in depositional conditions.  This shift might be due to 499 

a 500 

δ501 

δ502 

503 

504 

505 

506 

507 

 508 

Reflector Orange at 71 m CCSF-B (Fig. 5, Table 1) has moderate strength and 509 

correlates with a step-like upward decrease in impedance (Fig. 10c) and a local maximum in 510 

wt% K (terrigenous supply). The assigned age of ~2.7±0.3 Ma places the reflector in an 511 

interval with distinct steps of abrupt change in the stacked benthic δ
18

O record (Lisiecki & 512 

Raymo, 2005) occurring ~3.0–2.7 Ma (Fig. 10a, c). Considering the age uncertainty the 513 

 spike at Site U1475 and reflector Orange are likely related to one of the larger δ
18

O-514 

maxima (cold stages) MIS G10 or MIS G6. These steps are thought to mark the onset of 515 

Quaternary-style climates (Lisiecki & Raymo, 2005) associated with the intensification of 516 



Major Northern Hemisphere glaciation (iNHG). However, a novel sea-level reconstruction 517 

(Rohling et al., 2014) implies that the changes in benthic δ
18

O at ~2.7 Ma were mainly driven 518 

by deep sea cooling and that the first major glaciation (sea level below 270 m) occurred much 519 

later at ~2.15 Ma (MIS 82). A crucial role as potential forcing for the onset of Quaternary-520 

style climates is attributed to the final closure phase of the Central American Seaway (CAS) 521 

dated to 3.2–2.7 Ma on the basis of the growing gradient in sea surface salinity between the 522 

southwest Caribbean and eastern equatorial Pacific (Sarnthein, 2013; Steph et al., 2006). Our 523 

new seismic stratigraphy reveals that depositional changes at the AP leading to the formation 524 

of reflector Orange at ~2.7±0.3 Ma occurred contemporaneously to the final closure of the 525 

CAS rather than to the sea level lowering at MIS 82 (2.15 Ma, Fig. 10c). However, relatively 526 

constant sedimentation rates and the rather low seismic amplitudes above reflector Orange 527 

(Fig. 8) do not indicate massive changes in bottom water flow over the AP following the 528 

iNHG. 529 

 530 

5.3 Reflectors related to Pleistocene climate variability 531 

Reflector Blue (Fig. 8, Table 1) is caused by sharply upward increasing impedance 532 

above a minimum in density at 40 m CCSF-B (Figs. 5, 10c). At this depth, K decreases 533 

from a local maximum of moderate amplitude. This change in wt% K and the assigned age of 534 

~1.5±0.3 Ma suggests that reflector Blue may be related to enhanced carbonate sedimentation 535 

at the transition from glacial conditions towards the “warmer” interglacials MIS 47/49 (Fig. 536 

10a). Interestingly, the absolute maximum (Fig. 5d) in K at 45 m CCSF-B (~1.7 Ma) is 537 

not reflected in an impedance/density reduction and thus does not cause a seismic reflector. 538 

Benthic carbon isotope records and gradients indicate that, corresponding to a decrease in the 539 

ventilation of the CDW (Hodell & Venz-Curtis, 2006), glacial shoaling of NADW began or 540 

increased greatly at ~1.5 Ma (Lisiecki, 2014). As a consequence of the NADW shoaling 541 



sedimentation on the AP may have been increasingly influenced by glacial/interglacial 542 

changes in the depth of the NADW/CDW boundary since 1.5 Ma. 543 

Two high amplitude seismic reflectors (Purple and Green) are visible directly below 544 

the seafloor reflection (Figs. 8, 9) and occur within the upper 25 m CCSF-B (Table 1).  In this 545 

interval K shows large scale oscillations in amplitude corresponding to late Pleistocene 546 

glacial/interglacial cycles. Both reflectors result from large impedance contrasts occurring in 547 

intervals characterized by upward increasing K values (Fig. 10b) suggesting that the 548 

reflectors were caused by enhanced terrigenous derived supply (carbonate minima). From 549 

piston core studies covering the last 350 kyrs it is known that glacial intervals (even MIS) at 550 

the AP are characterized by lower carbonate percentages, higher biogenic opal content 551 

(Romero et al., 2015),  and the occurrence of macroscopically visible dropstones, probably 552 

corresponding to ice rafted debris (IRD) (Marino et al., 2013). Thus the K maxima 553 

corresponding to reflectors Purple and Green likely indicate glacial conditions. The bio- and 554 

magnetostratigraphic age control places the K maxima at glacial marine isotope stages 555 

MIS 10 and 20. 556 

Based on the linear age model (Fig. 3a) reflector Green can be dated at ~0.8 Ma 557 

corresponding to glacial MIS 20. But the L* to LR04 correlation (Fig. 10b) before 0.65 Ma is 558 

not unambiguous, and thus the reflector may also relate to stage MIS 22 (0.87 Ma) implying 559 

an uncertainty of <100 kyr in the shipboard age model. MISs 20 and 22 are both within the 560 

mid-Pleistocene transition (MPT), the time period when glacial-interglacial periodicity 561 

increased from ~41-thousand-year to 100-thousand-year cycles and developed higher-562 

amplitude climate variability (Hays et al., 1976). Nd isotope data from the Cape Basin 563 

indicate a major THC-weakening (THC-crisis) during the MPT between MISs 25 and 21 564 

(~0.95 to 0.86 Ma ago) and subsequently weaker export of NADW during the following 565 

glacials (Pena & Goldstein, 2014). Thus the impedance contrast originating from rapid 566 

changes in terrigenous supply that formed reflector Green can be interpreted to reflect rapidly 567 



changing sediment transport to the AP by variable NADW during the THC-crisis. Upward 568 

from reflector Green the so-called interval of “luke warm interglacials” (MIS 19-13) (Jaccard 569 

et al., 2013) is characterized by very low variability in acoustic impedance (Fig. 10b), which 570 

at Site U1475 commences into MIS 11.  571 

Although the uncertainty of the used bio- and magnetostratigraphic datums is 572 

estimated to be up to ±0.3 Ma for the late Pleistocene (Fig. 3a), we are confident that the 573 

association of reflector Purple with the MIS 10/11 transition on the linear age model for the 574 

last 1 Ma is accurate since the associated K peak occurs directly above an interval of 575 

very light sediments (Fig. 10b) with maximum carbonate (and very low K -) content 576 

characterizing MIS 11. Furthermore the age control is confirmed by similarity of the U1475 577 

L* with the global benthic isotope stack (Fig. 10b).  578 

MIS 11 is globally marked by increased CaCO3 accumulation but also by enhanced 579 

carbonate dissolution (Barker et al., 2006). At Site U1475, MIS 11 correlates with a minimum 580 

in P-wave velocity at 11.5 m CCSF-B (Fig. 5a) that could be due to a dissolution-induced 581 

dominance of finer grain sizes in the carbonate fraction. But the velocity minimum does not 582 

cause reflector Purple since density at the same depth exhibits a maximum (Fig. 5b) leading 583 

to relatively constant impedance (Fig. 5c) in this interval. Instead, reflector Purple is caused 584 

by impedance decrease towards the glacial inception of MIS 10 (Fig. 10b).  585 

We postulate that the density/impedance drop at MIS10 is attributed to enhanced 586 

terrigenous supply during a time of rapid decrease in NADW influence over the AP and 587 

replacement by southern sourced waters as inferred for the younger glacial intervals 588 

(Molyneux et al., 2007). Upward from reflector Purple seismic impedance mirrors glacial 589 

/interglacial cycles with higher impedance and carbonate content (lower wt% K, higher L*) 590 

characterizing interglacial MIS (Fig. 10b). 591 

 592 



6 Conclusions 593 

We present a new seismic stratigraphy for the late Miocene to Pleistocene at the AP 594 

that is based on carefully edited and in situ corrected high-resolution physical property core 595 

logging data of IODP Site U1475. A synthetic seismogram allows accurate traveltime-depth 596 

conversions and ties to an age model that is based on bio- and magnetostratigraphic datums. 597 

The six identified marker horizons are here described for the first time and occur above 598 

previously dated horizons. 599 

Two reflectors dated at the late Miocene (~5.7±0.5 Ma) and the early Pliocene 600 

(~4.1±0.4 Ma) bound a peculiar high sedimentation rate interval that is characterized by the 601 

development of sediment waves and likely represents a time of strong AMOC with 602 

maximized flow of NADW in Indian-Atlantic Ocean gateway. 603 

A reflector of moderate strength and an assigned age of ~2.7±0.3 Ma correlates with 604 

the intensification of Northern Hemisphere Glaciation (iNHG) and possibly represents one of 605 

the larger glacial inceptions (MIS G10 or G6) following the final closure of the Central 606 

American Seaway (CAS). 607 

At the early Pleistocene transition (~1.5±0.3 Ma) another strong reflector, related to 608 

enhanced carbonate sedimentation, marks a glacial termination, which likely precedes the 609 

prominent “warm” MIS 47 and 49.  610 

Two high amplitude reflectors occur within the late Pleistocene sequence at the 611 

transitions from interglacial to glacial stages at ~ 0.36 ± 0.02 Ma and 0.80 ± 0.05 Ma. Both 612 

reflectors are associated with cooling following the prominent interglacial MIS 11 and the 613 

beginning of the mid Pleistocene transition (MPT), respectively.  614 

In summary, we have shown that the most prominent global climate and 615 

oceanographic changes of the last 7 Ma left a marked imprint in the physical structure of a 616 

sediment drift at the AP. The detailed stratigraphic and geochemical analyses necessary to 617 

establish a more precise timing of the reflection events are beyond the scope of this study, but 618 



will be the subject of future work. Thus, the presented correlations are general, but they 619 

strongly emphasize that Site U1475 provides an ideal archive for high-resolution paleo-620 

oceanographic reconstructions. In this context, the high sedimentation rates of ~10 cm/kyr in 621 

the interval ~3.9 - 5.3 Ma make the site especially suitable to achieve millennial-scale 622 

paleoceanographic objectives for the Pliocene.  623 

 624 
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 933 

Figure 1. Geomorphologic and oceanographic features near IODP Site U1475 (a). Dashed 934 

yellow arrows = main surface currents (AC = Agulhas Current, ARC = Agulhas Return 935 

Current), solid arrows = bottom water currents (NADW = North Atlantic Deep Water, CDW 936 

= Circumpolar Deep Water), AP = Agulhas Plateau, AB= Agulhas Basin. Map (b) and cross 937 

section (c, dotted orange line in a) of present day salinity (color coded) over the southern 938 

Agulhas Plateau (Boyer et al., 2013) and IODP Site U1475 (projected). Contours in (b) refer 939 

to water depths in m. Arrows indicate bottom water circulation (Uenzelmann-Neben, 2002) 940 

inferred from the position and shape of sediment drifts (white mounded shapes) in seismic 941 

reflection profiles (straight lines).  IODP Site U1475 and seismic profile AWI-98014 are 942 

marked in red in (a) and (b).  943 

  944 



 945 

Figure 2. Western part of line AWI-98014 across IODP Site U1475 (red vertical line). The 946 

mounded asymmetric geometry of the sediment drift on the southwestern Agulhas Plateau is 947 

covered by wavy structures in the east. The base of the drift is formed by a band of strong 948 

reflections: LE = Lower Eocene, LO = Lower Oligocene, MM = Middle Miocene 949 

(Uenzelmann-Neben, 2001). Here, the drift appears seismically transparent. Its internal 950 

structure and the new seismic ties with the borehole are shown in Fig. 9. 951 
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 953 

Figure 3. IODP Site U1475 data vs. depth (m CCSF-C): (a) Shipboard age model derived 954 

from bio- and magnetostratigraphy. Black bars indicate estimated age uncertainties. (b) Raw 955 

(grey), edited (black), and in situ corrected (orange) P-wave velocity. (c) Raw (grey) and 956 

edited (green) bulk density. (d) Raw (grey) and density corrected (dark red) natural gamma 957 

radiation (NGR). (e) Lithology (lithologic units I and II are shown in green and blue, 958 

respectively). Data resolution is 2.5 cm for velocity and density, and 10 cm for natural gamma 959 

radiation. Colored horizontal lines mark the positions of seismic reflectors. 960 
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 962 

Figure 4. IODP Site U1475 density and porosity relationships: (a) Wet bulk density (WBD) 963 

measurements on discrete samples (yellow dots) in comparison to bulk density (green line) 964 

derived from edited shipboard GRA-density measurements (grey line) using the linear 965 

equation derived in (b), (b) GRA-bulk density vs. wet bulk density (WBD), (c) WBD vs. dry 966 

bulk density (DBD), (d) WBD vs. porosity.  967 
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 969 

Figure 5. In situ corrected properties of (a) P-wave velocity, (b) bulk density, and (c) seismic 970 

impedance in comparison to (d) wt% Potassium (K, reverse scale) and discrete measurements 971 

of wt% CaCO3 (red dots). Data are displayed on the CCSF-B depth scale, the in situ depth in 972 

meters below the seafloor (mbsf). Colored horizontal lines indicate the positions of seismic 973 

reflectors. Black dots in (a) mark interval velocities resulting from the synthetic time-depth 974 

ties. The compaction trend in impedance is indicated by a grey line. 975 
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 977 

Figure 6. Linear regressions of seismic impedance vs. (a) P-wave velocity and (b) bulk 978 

density.  979 
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 981 

Figure 7. Linear regressions of carbonate content (wt% CaCO3) vs. acoustic impedance (a), 982 

bulk density (b), natural gamma radiation (NGR) (b), and wt% potassium derived from NGR 983 

(d). 984 
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 986 

Figure 8. Seismic impedance (smoothed) (a), reflection coefficient (b), 65 Hz Ricker-wavelet 987 

(c) used to calculate the synthetic seismogram (d) at Site U1475 in comparison to seismic 988 

traces extracted from profile AWI-98014 in proximity to Site U1475 (e). Numbers in (e) are 989 

ages in Ma (see Table 1 for uncertainty estimations). 990 
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 992 



Figure 9. (a) Interpreted section of multichannel seismic reflection profile AWI-98014 993 

(Uenzelmann-Neben, 2001) across IODP Site U1475 (red vertical line), the synthetic 994 

seismogram calculated from Site U1475 data is overlain, interpreted reflectors are listed in 995 

Table 1, (b) uninterpreted section, (c) black and white plot (wider section, narrower band pass 996 

filter of 40-45 to 210-230 Hz) of the interpreted profile. The synthetic seismogram is overlain 997 

and stippled lines indicate dimensions of a selected sediment wave. Note that wave height 998 

degrades from ~ 29 m at reflector Red towards the seafloor. 999 
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 1001 



Figure 10. (a) Age assignments of interpreted seismic reflectors (colored vertical lines, 1002 

estimated age uncertainty is indicated by shaded backgrounds) on the Agulhas Plateau in 1003 

comparison to a benthic oxygen isotope compilation of global ice volume changes over the 1004 

last 6.6 Ma (
18

O blue line < 3.25‰, modern value < 
18

O red line). The isotope compilation 1005 

consists of the benthic 
18

O “LR04” (Lisiecki & Raymo, 2005) stack from 0-5.3 Ma extended 1006 

to 6.6 Ma by the benthic 
18

O record of Site 982 (Hodell et al., 2001). Selected marine isotope 1007 

stages (MIS) are indicated. (b-d) Selected enlarged intervals of (a) illustrating the position of 1008 

the seismic reflectors in comparison to changes in global ice volume (benthic 
18

O, grey line 1009 

with colored isotope stages), acoustic impedance (black line) and wt% potassium (K, red line, 1010 

note reverse scale). Additionally, L* (lightness, orange line) from Site U1475 with identified 1011 

MIS is plotted in (b) to show the accuracy of the used linear age model over the last 1 Ma. 1012 

Reflector ages, impedance, K and L* are shown on the age model derived from the Site 1013 

U1475 bio- and magnetostratigraphic datums. 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

 1020 

  1021 



Table1 1022 

Traveltime to Major Reflectors as Picked from Field Record and Synthetic Seismogram, Site 1023 

U1475 1024 

 1025 
Reflector Two way traveltime  

(s) 

Depth  

(m CCSF-C) 

Depth  

(m CCSF-B) 

Age  

(Ma) 

 Field record Synthetic    

 

Purple 

 

3.618 

 

3.615 

 

10.27 

 

9.38 

 

0.36±0.01 

      

Green 3.635 3.630 22.96 20.98 0.80+0.07 

 

Blue 

 

3.648 

 

3.654 

 

43.43 

 

39.68 

 

1.51±0.30 

      

Orange 3.688 3.695 77.66 70.96 2.71±0.30 

      

Yellow 3.740 3.755 128.15 117.08 4.07±0.40 

 

Red 

 

3.913 

 

3.915 

 

265.29 

 

242.39 

 

5.66±0.50 
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