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Abstract

Individual response to stress is correlated with neuroticism and is an important predictor of

both neuroticism and the onset of major depressive disorder (MDD). Identification of the

genetics underpinning individual differences in response to negative events (stress-sensitiv-

ity) may improve our understanding of the molecular pathways involved, and its association

with stress-related illnesses. We sought to generate a proxy for stress-sensitivity through

modelling the interaction between SNP allele and MDD status on neuroticism score in order

to identify genetic variants that contribute to the higher neuroticism seen in individuals with a

lifetime diagnosis of depression compared to unaffected individuals. Meta-analysis of

genome-wide interaction studies (GWIS) in UK Biobank (N = 23,092) and Generation Scot-

land: Scottish Family Health Study (N = 7,155) identified no genome-wide significance SNP

interactions. However, gene-based tests identified a genome-wide significant gene,

ZNF366, a negative regulator of glucocorticoid receptor function implicated in alcohol

dependence (p = 1.48x10-7; Bonferroni-corrected significance threshold p < 2.79x10-6).

Using summary statistics from the stress-sensitivity term of the GWIS, SNP heritability for

stress-sensitivity was estimated at 5.0%. In models fitting polygenic risk scores of both MDD

and neuroticism derived from independent GWAS, we show that polygenic risk scores

derived from the UK Biobank stress-sensitivity GWIS significantly improved the prediction of

MDD in Generation Scotland. This study may improve interpretation of larger genome-wide

association studies of MDD and other stress-related illnesses, and the understanding of the

etiological mechanisms underpinning stress-sensitivity.
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Introduction

Stressful life events are known to increase liability to mental illness and disease-related traits

[1] including neuroticism [2–4], major depressive disorder (MDD) [5–7], autoimmune dis-

eases [8] and some cancers [9, 10]. A greater understanding of the causal mechanism by which

negative events affect disease risk or outcome may be beneficial in identifying individuals for

targeted support. However, it has been proposed that sensitivity to stress may be an important

predictor of response to stress [11, 12]. In particular, the effect on an individual may result

more from the perceived stress than the event itself, and may be dependent on individual dif-

ferences in stress-sensitivity [13–18]. Studies of 5-HTT and twin studies suggest that stress-

sensitivity may, at least in part, be heritable [19–22]. Despite a complex interaction between

MDD, neuroticism and stress, multivariate structural equation models have confirmed a

genetic effect on perceived stress, overlapping that on MDD or neuroticism, but with a specific

genetic component [21]. The inter-relatedness of these traits may offer an approach to identify

the genetic variation that affects an individual’s stress-sensitivity, and improve genetic predic-

tion of an individual’s liability to negative outcomes. By modelling the interaction between

SNP allele and MDD status on neuroticism score through genome-wide interaction studies

(GWIS), we sought to investigate the genetics of stress-sensitivity.

The personality trait neuroticism is moderately heritable (30–50% estimates from twin

studies) [23–26], is higher in individuals with depression compared to controls [27, 28] and is

known to have shared genetic aetiology with depression [29–32]. Neuroticism is strongly cor-

related with measures of sensitivity to punishment but not reward [33], positively correlated

with perceived personal relevance of a stressor [34, 35] and has been used previously as a

proxy measure of stress-sensitivity [36]. Neuroticism is thought to mediate or interact with the

effects of adverse life events on risk of depression [5, 37]. It has a substantial stable component

[38], however, there is evidence for change, as well as stability, across the life span [2–4, 39].

Individual differences in neuroticism are enduringly influenced by both genetic and environ-

mental factors [40]. Whereas the stable component of neuroticism is strongly determined by

genetics, change in neuroticism score is attributed to the effects of unshared environment [39].

Persistent change in neuroticism score has been shown in response to life events [2–4]. Nega-

tive life events lead to small persistent increases in neuroticism over time [3]. However, recent

stressful life events (β = 0.14 95%CI 0.13–0.15, p< 0.001) have a stronger effect than distant

stressful life events suggesting a reduction of effect over time [3]. Long-lasting increases in

neuroticism associated with distant negative life events are mediated by depression [4].

Major depressive disorder (MDD) is a complex disorder influenced by both genetic contri-

butions and environmental risk factors, with heritability estimates from twin and family stud-

ies of between 31–42% [41, 42]. Confirmed environmental risk factors for MDD include

maternal infections, childhood maltreatment and negative life events [5–7, 43, 44]. However,

few genetic studies have such information and even fewer prospective studies exist. Incorpo-

ration of stressful life events has been shown to improve the ability to predict MDD [45, 46]

and, although stress is an environmental risk factor, it may have an independent genetic con-

tribution to risk of depression [46–50].

These studies suggest that a genetic variable derived from the difference in neuroticism lev-

els seen in individuals with MDD compared to controls may allow us to identify genetic loci

important for stress-sensitivity. We sought to identify the genetic underpinnings of individu-

al’s sensitivity to stress response (stress-sensitivity) by identifying variants that contribute to

the higher neuroticism levels seen in individuals with a lifetime diagnosis of MDD. Further,

polygenic risk scores (PRS) derived from this stress-sensitivity variable may improve predic-

tion of MDD over that based on MDD or neuroticism PRS alone.

Stress-sensitivity proxy and depression
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Using unrelated individuals from two large population-based samples, UK Biobank (UKB;

N = 23,092) and Generation Scotland: Scottish Family Health Study (GS:SFHS; N = 7,155), we

sought to identify genes involved in stress-sensitivity by performing GWIS for the interaction

between MDD status and SNP allele on neuroticism score. We identified a gene significantly

associated with stress-sensitivity and show that a PRS derived from the interaction term of the

GWIS, significantly predicts liability to depression independently of the PRS for MDD and/or

neuroticism.

Materials and methods

UK Biobank (UKB) participants

UKB is a major national health resource that aims to improve the prevention, diagnosis and

treatment of a wide range of illnesses. It recruited more than 500,000 participants aged from

middle to older age who visited 22 assessment centres across the UK between 2006 and 2010.

Data were collected on background and lifestyle, cognitive and physical assessments, sociode-

mographic factors and medical history. The scientific rationale, study design, ethical approval,

survey methods, and limitations are reported elsewhere [51, 52]. UKB received ethical

approval from the NHS National Research Ethics Service North West (Research Ethics Com-

mittee Reference Number: 11/NW/0382). All participants provided informed consent. The

present study was conducted on genome-wide genotyping data available from the initial

release of UKB data (released 2015). Details of sample processing specific to UKB project are

available at http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155583 and the Axiom array at

http://media.affymetrix.com/support/downloads/manuals/axiom_2_assay_auto_workflow_

user_guide.pdf. UKB genotyping and the stringent QC protocol applied to UKB data before it

was released can be found at http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580. SNPs

genotyped on GS:SFHS were extracted from the imputed UKB genotype data [53] (imputed by

UKB using a merged panel of the UK10K haplotype reference panel and the 1000 Genomes

Phase 3 reference panel) with quality > 0.9 was hard-called using PLINK v1.9 [54]. Individuals

were removed based on UKB genomic analysis exclusion (UKB Data Dictionary item #22010),

non-white British ancestry (#22006: genetic ethnic grouping; from those individuals who self-

identified as British, principal component analysis was used to remove outliers), high genotype

missingness (#22005), genetic relatedness (#22012; no pair of individuals have a KING-esti-

mated kinship coefficient > 0.0442), QC failure in UK BiLEVE study (#22050 and #22051: UK

BiLEVE Affymetrix and UK BiLEVE genotype quality controls for samples) and gender mis-

match (#22001: genetic sex). Further, from the initial release of UKB data and using PLINK pi-

hat< 0.05, individuals who were also participants of GS:SFHS and their relatives were

excluded to remove any overlap of individuals between discovery and target samples. A dataset

of 109,283 individuals with 557,813 SNPs remained for further analysis, aged 40–79 (57,328

female, 51,954 male; mean age = 57.1 years, s.d. = 7.99), of which 109,282 had data available

for neuroticism score and 23,092 had data available on MDD status (ncases = 7,834, ncontrols =

15,258, nfemale = 11,510, nmale = 11,582; mean age = 57.7 years, s.d. = 8.04). Thus, the final data-

set comprised 23,092 unrelated individuals.

Generation Scotland Scottish Family Health Study (GS:SFHS) participants

GS:SFHS is a family-based genetic epidemiology study which includes 23,960 participants

from ~ 7,000 Scottish family groups collected by a cross-disciplinary collaboration of Scottish

medical schools and the National Health Service (NHS) from Feb 2006 to Mar 2011. Partici-

pants were interviewed and clinically assessed for a wide range of health-related traits (includ-

ing high-fidelity phenotyping for Major Depressive Disorder and related endophenotypes),

Stress-sensitivity proxy and depression
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environmental covariates and linked to routine health records [55, 56]. All components of GS:

SFHS obtained ethical approval from the Tayside Committee on Medical Research Ethics on

behalf of the NHS (Research Ethics Committee Reference Number: 05/S1401/89) and partici-

pants provided written consent. The protocol for recruitment is described in detail in previous

publications [57, 58]. GS:SFHS genotyping and quality control is detailed elsewhere [59].

Briefly, individuals with more than 2% missing genotypes and sex discrepancies were removed,

as well as population outliers. SNPs with genotype missingness > 2%, minor allele

frequency< 1% and a Hardy-Weinberg Equilibrium test p< 1x10−6 were exclude. Finally,

individuals were removed based on relatedness (pi-hat < 0.05), maximizing retention of case

individuals, using PLINK v1.9 [54]. Genome-wide SNP data for further analysis comprised

7,233 unrelated individuals genotyped for 560,698 SNPs (nfemale = 3,476, nmale = 3,757; PLINK

v1.9 [54]), aged 18–92 (mean age = 50.4 years, s.d. = 12.06) of which: 7,190 had clinical data on

MDD; 7,196 individuals had data on neuroticism; and 7,155 had data on both neuroticism and

MDD.

Phenotype assessment

Neuroticism score (EPQN). Participants in both UKB and GS:SFHS cohorts were

assessed for neuroticism using 12 questions from the Eysenck Personality Questionnaire-

Revised Short Form’s Neuroticism Scale (EPQN) [60–63]. Neuroticism can be scored by add-

ing up the number of “Yes” responses on EPQN. This short scale has a reliability of more than

0.8 [64]. EPQN distributions were found to be sufficiently “normal” after assessment for skew-

ness and kurtosis to be analysed using linear regression (both coefficients were between -1

and 1).

MDD diagnoses. In UKB, the MDD phenotype was derived following the definitions

from Smith et al. [63] Current and previous depressive symptoms were assessed by items relat-

ing to the lifetime experience of minor and major depression [60], items from the Patient

Health Questionnaire [65] and items on help-seeking for mental health [63]. Using a touchsc-

reen questionnaire, participants were defined as probable cases if they i) answered “Yes” to the

question “Ever depressed for a whole week” (UKB field: 4598), plus at least 2 weeks duration

(UKB field: 4609), or ii) did report having seen a GP or psychiatrist for nerves, anxiety, tension

or depression (UKB fields: 2090 and 2010) and reported symptoms (UKB field: 4631) with at

least 2 weeks duration (UKB field: 5375). In our unrelated sample, 7,834 participants were

diagnosed with MDD (with single, moderate or recurrent episodes) and 15,258 were controls

(N = 23,092).

In GS:SFHS, participants took in-person clinical visits where they were screened for a his-

tory of psychiatric and emotional disorders (i.e., psychiatric, mood state/psychological distress,

personality and cognitive assessment) by trained researchers using the Structured Clinical

Interview for DSM-IV Non-Patient Version (SCID) [66], which is internationally validated to

identify episodes of depression. Those participants that were positive in the initial screening

continue through clinical interview and were administered the mood sections of the SCID.

The SCID elicited the presence or absence of a lifetime history of MDD, age of onset and num-

ber of episodes. Participants fulfilling the criteria for at least one major depressive episode

within the last month were defined as current MDD cases. Participants who were screened

positive for Bipolar I Disorder were excluded. Those participants who were negative during

the initial screening or did not fulfilled criteria for MDD were assigned as controls. Further

details regarding the diagnostic assessment are reported elsewhere [56, 57]. All interviewers

were trained for the administration of the SCID. Inter-rater reliability for the presence or

absence of a lifetime diagnosis of major depressive disorder was good (Kappa = 0.86,

Stress-sensitivity proxy and depression
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p< 0.001, 95%CI 0.7 to 1.0). In our unrelated GWIS sample (N = 7,155), 2,010 had a lifetime

diagnosis of MDD and 5,145 were controls.

Statistical methods

GWIS and derivation of a genetic stress-sensitivity effect. The effect size of an stress-

sensitivity effect (βSS) was derived by performing a GWIS for the effect of the MDD status and

SNP allele on EPQN (dependent variable) in both UKB and GS:SFHS cohorts using PLINK

1.90 (PLINK-command—gxe; fitting MDD diagnosis as a binary “group” effect) [54]. PLINK-

command—gxe estimates the difference in allelic association with a quantitative trait (EPQN)

between two groups (MDD cases vs. controls) producing effect estimates on each group and a

test of significance for the interaction between SNP allele and MDD status. The interaction p
value reflects the difference between the regression coefficient of the allelic effect in a linear

model for EPQN in MDD cases (βA) and the same regression coefficient in a linear model for

EPQN in controls (βB). The stress-sensitivity interaction effect was defined as the difference in

allele effect between MDD cases and control groups.

Considering one SNP, the effect it confers to EPQN can be modelled by MDD status (con-

trol = 0, MDD case = 1) as follows:

MDD ¼ 0; EPQN ¼ b0 þ bBSNPþ b0cCOV þ ε

MDD ¼ 1; EPQN ¼ b1 þ bASNPþ b1cCOV þ ε

(

This is equivalent to modelling the effect on MDD cases as follows:

MDD ¼ 0; EPQN ¼ b0 þ bBSNPþ b0cCOV þ ε

MDD ¼ 1; EPQN ¼ b1 þ bBSNPþ ðbA � bBÞSNPþ b1cCOV þ ε

(

Or, it can be modelled as a whole as:

EPQN ¼ b0 þ b2MDDþ bBSNPþ ðbA � bBÞSNP �MDDþ b0cCOV þ b2CCOV �MDDþ ε

Where COV stands for covariates, β2 stands for β1−β0, and β2c stands for β1c−β0c.

Thus, the interaction effect (βSS) can be estimated as the difference in allelic effect on EPQN

between MDD cases (βA) and controls (βB) as follows,

b̂SS ¼ b̂A � b̂B

b̂SS is therefore defined as the effect size reflecting the genetic stress-sensitivity effect on

MDD cases compared to controls (S1 Fig).

Stress-sensitivity GWIS, main additive effect GWASs, meta-analysis and gene-set analy-

sis. For GWIS and subsequent analyses, sample specific covariates were applied as follows:

UKB. All phenotypes were adjusted for centre, array and batch as random effects prior to anal-

yses. Analyses were adjusted for age, sex and 15 informative principal components (PCs; UKB

Data Dictionary items #22009.01 to #22009.15) as fixed effects to take account of possible pop-

ulation stratification. GS:SFHS. All the analyses were adjusted for age, sex and 20 PCs.

GWAS for MDD and neuroticism, using logistic and linear models of additive allelic effects

respectively, were conducted on the same sample sets for comparison and generation of

matched PRS using PRSice-2 [67].

Results from the GWIS of UKB and GS:SFHS were combined in a sample size weighted

meta-analysis performed using METAL [68]. While the use of standard error weighting is

more common, the different diagnostic scheme and MDD prevalence between the two cohorts

Stress-sensitivity proxy and depression
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(GS:SFHS; 12.2%, UKB: 25.8%) [57, 63] may indicate systematic differences in the measure-

ment of MDD. Generalized gene-based analysis of the meta-analysis was performed using

MAGMA [69] implemented through FUMA [70] (http://fuma.ctglab.nl). Briefly, SNP sum-

mary statistics were mapped to 17,931 protein-coding genes. Individual SNP p values from a

gene were combined into a gene test-statistic using a SNP-wise model and a known approxi-

mation of the sampling distribution used to obtain a gene-based p value. Genome-wide signifi-

cance was defined at p = 0.05/17,931 = 2.79x10-6.

LD Score regression. The summary statistics from the meta-analysis were used to exam-

ine the genetic overlap between the polygenic architecture of stress-sensitivity, MDD and neu-

roticism. LD score regression was used to derive the genetic correlations (rG) between these

traits [71, 72] using meta-analysed GWAS and GWIS summary statistics. SNP-based heritabil-

ity was also estimated using LD score regression, using the summary statistics from single-

SNP analyses.

Pathway, functional and gene expression analyses. Lead SNPs, independently associated

with the phenotype, were identified using PLINK 1.90 by clumping (p threshold < 2x10-5; LD

r2> 0.1; physical kb threshold = 500kb; 1000 Genomes Project Phase 1 CEU, GBR, TSI geno-

type data), and analysed using DEPICT [73]. Further detail is given in ‘DEPICT analyses’ in S1

Supporting Information.

Genes associated with lead SNPs were investigated for evidence of: phenotypic association

in the NCBI dbGaP database of genotypes and phenotypes [74] (https://www.ncbi.nlm.nih.

gov/gap/phegeni), regulatory DNA elements in normal cell lines and association with expres-

sion quantitative trait loci (eQTLs) using the RegulomeDB database [75] (http://www.

regulomedb.org) and the Genotype-Tissue Expression (GTEx) Portal [76] (http://www.

gtexportal.org).

Polygenic profiling. PRS were produced using PRSice-2 [67], permuted 10,000 times and

standardized to a mean of 0 and a standard deviation of 1. Using GWIS summary statistics, we

created PRS for stress-sensitivity (PRSSS) by weighting the sum of the reference alleles in an

individual by the stress-sensitivity effect (βSS). Additional PRS were generated weighting by

MDD main additive effects (PRSD) and neuroticism main additive effects (PRSN) using

GWAS summary statistics from GS:SFHS or UKB. In addition, PRSD and PRSN were also gen-

erated using summary statistics from the most recent Psychiatric Genetic Consortium (PGC)

MDD meta-analysis [42] (excluding GS:SFHS, and UKB individuals when required;

N = 155,866 & 138,884) and the Genetics of Personality Consortium (GPC) neuroticism meta-

analysis [24, 77] (N = 63,661). Generalized linear models were implemented in R 3.1.3 [78].

The direct effect of PRSSS (model 1), PRSD (model 2) and PRSN (model 3) on MDD risk were

assessed in independent logistic regression models on GS:SFHS (target cohort) using GWAS

and GWIS statistics from UKB (the largest cohort) as the discovery sample to weight PRS.

Multiple regression models fitting both PRSD and PRSN (model 4) and fitting each of them

separately with PRSSS (models 5 and 6) were also calculated. Finally, full additive multiple

regression models fitting PRS weighted by all three effects (full model) was assessed using both

PRSSS, PRSD and PRSN at their best-fit in independent models. Further, results were also

assessed using PRSD and PRSN weighted by PGC2 MDD [42] and GPC neuroticism [77] sum-

mary statistics. Further detail is given in ‘Polygenic Profiling’ in S1 Supporting Information.

All models were adjusted by sex, age and 20 PCs. A null model was estimated from the direct

effects of all covariates on MDD. 10,000 permutations were used to assess significance of each

PRS. The predictive improvement of combining the effects of multiple PRS over a single PRS

alone was tested for significance using the likelihood-ratio test.

Cross-validation was performed using UKB as target sample and GS:SFHS as discovery

sample. Additional analyses using PRSD and PRSN weighted by PGC2 MDD [42] and GPC

Stress-sensitivity proxy and depression
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neuroticism [77] summary statistics were also tested. MDD status on UKB was adjusted by

centre, array and genotyping batch as random effects and scaled (between 0 and 1) prior to

analysis, giving a quasi-binomial distribution of MDD status on UKB. Models implemented

on UKB (quasi-binomial regression) were adjusted by sex, age and 15 PCs. Nagelkerke’s R2

coefficients were estimated to quantify the proportion of MDD liability explained at the

observed scale by each model and converted into R2 coefficients at the liability scale (preva-

lence: 12.2% in GS:SFHS [57] and 25.8% in UKB [63]) using Hong Lee’s transformation [79]

available from GEAR: GEnetic Analysis Repository [80].

Using stress-sensitivity to stratify depression. GS:SFHS MDD cases (ncases = 2,016;

nfemale = 1,345, nmale = 671) have data available on MDD course (single or recurrent),

age of onset (n = 1,964) and episode count (n = 2,016), as well as on neuroticism (n =
2,010). In addition, a subset were evaluated by Mood Disorder Questionnaire [81]

(MDQ; n = 1,022) and Schizotypal Personality Questionnaire [82] (SPQ; n = 1,093). The

reduced sample number of MDQ and SPQ reflects the later addition of these question-

naires to the study and does not reflect a particular subgroup of GS:SFHS.

Difference in PRSSS and PRSD between MDD cases and controls on GS:SFHS were tested

using a Student’s two sample t-test (two tailed). Cases of MDD on GS:SFHS with data available

on each trait analyzed were stratified by quintiles based on PRSSS and PRSD (5x5 groups). Post

hoc, the effects on each trait of quintiles based on PRSSS and its interaction effect with quintiles

based on PRSD were assessed using linear regression models adjusting by sex and age in an

attempt to identify a characteristic subtype of MDD patients with differential stress-sensitivity

levels. The same analysis was reproduced using PRSs as continuous variables.

Results

We confirmed the elevated neuroticism score in MDD cases in our samples. Individuals

with a diagnosis of MDD had significantly higher EPQN scores compared to healthy con-

trols (all p < 1.9.x10-279) in both GS:SFHS (meancontrols = 3.16; meancases = 6.42) and UKB

(meancontrols = 2.79; meancases = 5.64). Neuroticism levels differ significantly between

males and females. To control for this and any age/polygenic effects, which may account

for differences in the prevalence of MDD, we created a matched set of cases and controls.

The difference in neuroticism levels between cases and controls remained significant after

matching the controls for PGC PRSD, sex and age. (GS:SFHS: meancontrols = 3.51; UKB:

meancontrols = 2.97; all p < 2.7x10-158; S1 Table).

Meta-analysis of stress-sensitivity in UKB and GS:SFHS

No SNPs were associated with stress-sensitivity at the genome-wide significant threshold

(p< 5x10-8, Fig 1). However, 14 SNPs from 8 loci achieved suggestive p value (p< 1x10-5)

ranging between p = 8.9x10-6–5.1x10-7 (summary statistics available in S1–S3 Files; Meta-anal-

ysis: Table 1; UKB and GS:SFHS: S2 and S3 Tables; Meta-analysis QQ-plot with λ: S2 Fig; UKB

and GS:SFHS QQ-plots: S3 Fig). Traits with prior evidence of association with the nearest

genes to the 8 lead SNPs were identified using dbGap and are shown in S4 Table. Comparison

between the SNP association profile along the genome between stress-sensitivity GWIS and

MDD GWAS meta-analyses is shown in Miami plots filtering for the most significant stress-

sensitivity or MDD SNPs (p< 0.001; Meta-analysis: Fig 2; UKB and GS:SFHS: S4 Fig). No

SNP with a p-value< 0.01 had a corresponding p-value in the alternate trait, suggesting that

different variants contribute to depression and stress-sensitivity. Gene-based test identified

ZNF366 as the only gene achieving genome-wide significance (p = 1.48x10-7; Bonferroni-cor-

rected significance threshold p< 2.79x10-6; S5 Table and S5 Fig). Using summary statistics

Stress-sensitivity proxy and depression
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from meta-analysis GWIS results, stress-sensitivity SNP-based heritability was estimated from

LD score regression at 5.0% (h2 = 0.0499, s.e. = 0.017, p = 1.67x10-3). Conversely, the SNP-

based heritability for MDD and neuroticism were estimated at 9.6% (h2 = 0.0962, s.e. = 0.0179,

p = 3.87x10-8) and 10.1% (h2 = 0.1006, s.e. = 0.0076, p = 3.47x10-40) respectively, using sum-

mary statistics from the meta-analysed GWAS of UKB and GS:SFHS.

Pathway enrichment, functional annotation and gene expression analyses

Lead SNPs from the GWIS meta-analysis were investigated using DEPICT. No gene showed

statistically significant links to stress-sensitivity at a DEPICT false discovery rate (FDR) <

0.05. No significant result was found for either gene set analysis or tissue enrichment analysis

Fig 1. Manhattan plots showing stress-sensitivity associations. Manhattan plots of the GWIS from (A) UKB, (B) GS:SFHS and (C) sample size weighted meta-

analysis of UKB and GS:SFHS. The x-axis is chromosomal position and y-axis is the p value (-log10 p value) of association with stress-sensitivity effect. Suggestive

genome-wide significance threshold (p = 1x10-5) is shown by solid line at y = 5. Genes or closest gene up- and down-stream from SNP position (/) are annotated. “-“:

No gene within 100kb of the SNP.

https://doi.org/10.1371/journal.pone.0209160.g001
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at FDR< 0.05. Evidence of regulatory elements on normal cell lines/tissues was identified for

5 of the 12 lead SNPs (i.e. rs3762096, rs10987199, rs2221540, rs246565, rs319924). Two lead

SNPs were associated with eQTLs: rs319924 (an intronic SNP in EYS) and rs9509508 (an

intronic SNP in LATS2) and potentially regulate LGSN/RP3-407E4.3 (p = 6.31x10-12/

p = 1.15x10-5) and LATS2 (p = 3.74x10-8), respectively.

Polygenic risk scores for stress-sensitivity predict MDD liability

PRS were used to investigate whether common variants affecting stress-sensitivity predict

MDD risk. We generated PRS (PRSSS) for stress-sensitivity based on the summary statistics

from the GWIS. After 10,000 permutations, PRSSS significantly predicted MDD risk in GS:

SFHS using weights from the larger UKB summary data (Empirical-p = 0.04; p = 5.2x10-3; β =

Table 1. Top 25 SNPs from meta-analysis of GWISs.

Rank CHR SNP BP A1 Z-score Effecta pb p (EPQN) c p (MDD) d GENE POSITIONe

1 6 rs319924 64487247 A 5.024 ++ 5.05x10-7 0.376 0.637 EYS Intronic

2 5 rs246565 71809247 A -4.684 — 2.82x10-6 0.248 0.589 ZNF366 5998bp 5’

3 10 rs2265265 24854876 A 4.604 ++ 4.15x10-6 0.035 0.084 KIAA1217 / ARHGAP21 18104bp 3’ / 17662bp 3’

4 6 rs1057530 64427095 A -4.556 — 5.21x10-6 0.636 0.840 PHF3/EYS 1677bp 3’ / 2781bp 3’

5 16 rs7199110 78790765 A -4.553 — 5.29x10-6 0.661 0.741 WWOX Intronic

6 6 rs10485358 64386060 A -4.546 — 5.46x10-6 0.390 0.902 PHF3 Intronic

7 12 rs10778077 101193988 A 4.54 ++ 5.62x10-6 0.614 0.430 ANO4 Intronic

8 5 rs13358894 71803446 A 4.527 ++ 5.99x10-6 0.257 0.651 ZNF366 197bp 5’

9 10 rs2256220 24856314 A -4.524 — 6.06x10-6 0.134 0.129 KIAA1217 / ARHGAP21 19542bp 3’ / 16224bp 3’

10 10 rs3762096 98136250 A -4.521 — 6.15x10-6 0.437 0.149 TLL2 Intronic

11 11 rs2221540 132716369 A -4.492 — 7.05x10-6 0.468 0.364 OPCML Intronic

12 5 rs10043659 71781839 A 4.483 ++ 7.37x10-6 0.339 0.808 ZNF366 Intronic

13 12 rs10778078 101195088 A -4.45 — 8.58x10-6 0.599 0.456 ANO4 Intronic

14 9 rs10987199 128968987 A -4.442 — 8.91x10-6 0.199 0.026 LOC101929116 63416bp 3’

15 5 rs10042132 71789021 A -4.416 — 1.01x10-5 0.418 0.538 ZNF366 Intronic

16 11 rs10894606 132671611 A -4.404 — 1.06x10-5 0.438 0.587 OPCML Intronic

17 12 rs7295089 2440464 A 4.372 ++ 1.23x10-5 0.266 0.212 CACNA1C Intronic

18 5 rs9293292 71696942 A -4.351 — 1.36x10-5 0.126 0.731 PTCD2/ZNF366 41762bp 3’ / 42292bp 3’

19 15 rs3097437 27872136 A 4.346 ++ 1.38x10-5 0.970 0.226 GABRG3 93762bp 3’

20 9 rs1999377 11919732 A 4.344 ++ 1.40x10-5 0.436 0.064 - Intragenic

21 5 rs6862221 71754962 A 4.342 ++ 1.41x10-5 0.543 0.823 ZNF366 Intronic

22 5 rs9293289 71683885 A -4.323 — 1.54x10-5 0.395 0.510 PTCD2/ZNF366 28705bp 3’ / 55349bp 3’

23 11 rs4575282 132719646 A -4.313 — 1.61x10-5 0.598 0.514 OPCML Intronic

24 9 rs2417008 128970219 A -4.3 — 1.71x10-5 0.208 0.026 LOC101929116 62184bp 3’

25 9 rs7021461 128972210 A 4.299 ++ 1.72x10-5 0.202 0.025 LOC101929116 60193bp 3’

aEffect direction in GS:SFHS and UK Biobank.
b,c,dSignificances of
bGWIS stress-sensitivity effect
cSNP main effect on neuroticism derived from GWAS meta-analysis of EPQN between UK Biobank and Generation Scotland
dSNP main effect on MDD derived from GWAS meta-analysis of MDD between UK Biobank and Generation Scotland.
ePosition of the SNP respect to closest gene transcripts within 100kb (including UTRs) from 5 prime (5’) or 3prime (3’).

LD score regression was performed to obtain genetic correlations between stress-sensitivity, MDD and neuroticism. As previously shown, there was a significant genetic

correlation between MDD and neuroticism (rG = 0.637, s.e. = 0.0704, p = 1.39x10-19). However, we found no evidence for a genetic correlation between stress-sensitivity

and MDD (rG = -0.099, s.e. = 0.182, p = 0.585) or between stress-sensitivity and neuroticism (rG = 0.114, s.e. = 0.107, p = 0.285).

https://doi.org/10.1371/journal.pone.0209160.t001
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0.078, s.e. = 0.028; best-fit p threshold = 0.005; S6 Table). On the liability scale, the MDD vari-

ance explained in GS:SFHS by PRSSS was modest (R2 = 0.195%). This was less than predicted

by PRS weighted by the genetic main effects of MDD or neuroticism (PRSD: R2 = 0.368%;

PRSN: R2 = 0.459%; Table 2 and S6 Table). However, this association was not cross-validated

in UKB using summary data from the smaller GS:SFHS GWIS (Empirical-p = 0.68; p = 0.23;

β = 0.004, s.e. = 0.003; best-fit p threshold = 0.005; PRSSS R2 = 0.013%; S6 Table), likely due

to lack of power as a result of the small discovery sample size. PRSD (R2 = 0.204%) and PRSN

(R2 = 0.166%) derived from GS:SFHS significantly predicted MDD in UKB (Table 2 and S6

Table).

Due to the known genetic correlations between MDD, neuroticism and stressful life events

[21], models jointly fitting the effects of multiple PRS were analysed. Multiple regression analy-

ses in GS:SFHS showed that, compared to PRSD effects alone, the stress-sensitivity effect

derived from the UKB GWIS effects significantly explains an additional 0.195% (a predictive

improvement of 53.1%, p = 5.1x10-3; PRSD: β = 0.112, s.e. = 0.029; PRSSS: β = 0.078, s.e. =

0.028). The inclusion of PRSSS in the full model, where PRSSS was fitted along with both PRSD

and PRSN weighted by GWAS summary statistics derived from UKB remained significant;

explaining an additional 0.172% (a predictive improvement of 24.6%, p = 8.5x10-3; PRSD:

Fig 2. Miami plots showing comparison between association profile between stress-sensitivity GWIS and MDD GWAS. Miami plots from meta-

analysis filter at p = 1x10-3: (A) filtering for stress-sensitivity p values (•), (B) filtering for MDD p values (×). The x-axis is chromosomal position and

y-axis is the p value (-log10 p value) of association with stress-sensitivity (up; red dots) and MDD p value (down; blue crosses). Dot line: genome-

wide suggestive threshold (p = 1x10-5) at the filtered effect; dashed lines: p = 0.01 and 0.05 at unfiltered effect.

https://doi.org/10.1371/journal.pone.0209160.g002
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β = 0.093, s.e. = 0.029; PRSN: β = 0.107, s.e. = 0.030; PRSSS: β = 0.073, s.e. = 0.028). In models

fitting PRSD and PRSN, the variances explained were non-additive, demonstrating the partial

overlap between MDD risk prediction from PRSD and PRSN main additive effects. This is con-

sistent with the known genetic correlation between these two traits. An overlap was not seen

between the variance explained by PRSSS effect and the variance explained by PRSD and/or

PRSN. Multiple regression analyses fitting PRSD and PRSN derived from worldwide con-

sortiums (Fig 3) showed that the increased sample size from GWAS used to derive PRSD

resulted in an increment of MDD variance explained in GS:SFHS by PRSD (from 0.368% to

1.378%). However, there was no change in the proportion of the variance explained by the

PRSSS in the full model (PRSSS p = 3.5x10-3). These results suggest that PRSSS explains a pro-

portion of MDD risk not accounted for by PRSD or PRSN at current sample sizes. However,

these findings were not cross-validated in UKB using PRSSS derived from GS:SFHS GWIS,

likely due to lack of power as a result of the small discovery sample size (S6 Fig).

Using stress-sensitivity to stratify MDD in GS:SFHS

MDD cases show significantly higher PRSSS (p = 2x10-3) and PRSD (p = 1.8x10-4) than con-

trols. Association between MDD-related traits and stress-sensitivity risk quintiles was assessed

Table 2. MDD risk prediction at best fits.

UKB predicting on GS:SFHS

Weighted effect Best fit threshold # SNPs R2 (%)d R2 (%)e p Empirical-p
Stress-sensitivity 0.005 1,626 0.141 0.195 5.2x10-3 0.0399

MDDa 0.1 22,771 0.265 0.368 1.3x10-4 0.0015

EPQNb 0.4 65,276 0.330 0.459 1.8x10-5 0.0002

MDDa + EPQNb - - 0.503 0.699 8.0x10-7 -

joint modelsc - - 0.627 0.871 1.2x10-7 -

PGC2 & GPC predicting on GS:SFHS

PGC2 MDDa 1 92,248 0.993 1.378 1.4x10-13 �0.0001

GPC EPQNb 0.01 3,521 0.108 0.149 0.014 0.1038

PGC2 MDD + GPC EPQNb - - 1.052 1.461 1.7x10-13 -

joint modelsc - - 1.203 1.671 1.6x10-14 -

GS:SFHS predicting on UKB

Weighted effect Best fit threshold # SNPs R2 (%)a R2 (%)b p Empirical-p
Stress-sensitivity 0.005 1,526 0.008 0.013 0.231 0.6841

MDDa 0.03 7,725 0.130 0.204 1.6x10-6 �0.0001

EPQNb 0.05 12,296 0.106 0.166 1.6x10-5 0.0005

MDDa + EPQNb - - 0.197 0.309 2.8x10-8 -

joint modelsc - - 0.206 0.322 6.6x10-8 -

PGC2 & GPC predicting on UKB

PGC2 MDDa 0.5 64,113 0.919 1.440 3.4x10-37 <0.0001

GPC EPQNb 0.03 8,761 0.066 0.104 6.5x10-4 0.006

PGC2 MDDa + GPC EPQNb - - 0.950 1.488 2.9x10-37 -

joint modelsc - - 0.958 1.501 1.5x10-36 -

amajor depressive disorder
bneuroticism score
ccombined effect fitting all 3 PRS weighted by all the effects (i.e. stress-sensitivity, MDD and EPQN)
dNagelkerke’s R2 at observed scale
eR2 on the liability scale.

https://doi.org/10.1371/journal.pone.0209160.t002
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Fig 3. MDD is best predicted using multiple PRS. MDD risk explained (R2 coefficient (%); top bar values) on the

liability scale by each PRS in GS:SFHS; weighted by GWAS main additive and GWIS stress-sensitivity effects

independently and combined. (A) Using summary statistics from UKB as discovery sample. There is an increment on

MDD risk prediction from adding PRSSS to PRSD model of 53.1% and 24.6% when combining PRSSS with both MDD

and neuroticism PRS. (B) Replication of fitting PRSD and PRSN using summary statistics from worldwide consortiums

(i.e. PGC &GPC). Significance codes: p values ��� < 0.001< �� < 0.01< � < 0.05< •< 0.1; derived from likelihood

ratio tests. SS stands for stress-sensitivity.

https://doi.org/10.1371/journal.pone.0209160.g003

Stress-sensitivity proxy and depression

PLOS ONE | https://doi.org/10.1371/journal.pone.0209160 December 20, 2018 12 / 29

https://doi.org/10.1371/journal.pone.0209160.g003
https://doi.org/10.1371/journal.pone.0209160


on MDD cases in order to identify a subgroup of MDD patients, perhaps defining a character-

istic aetiological subtype of MDD. However, stratification analysis failed, and no quintile based

on PRSSS nor its interaction with quintiles based on PRSD showed statistically significant

effects on any trait analyzed. Individuals with high PRSSS were not significantly different from

other cases for sex, MDD course, age of onset or episode count, nor neuroticism, mood disor-

der or schizotypal personality scores (p> 0.05; S7 Table). Results remained non significant

when PRSs were fitted as continuous variables (p> 0.05).

Discussion

The existence of genetic variants affecting an individual’s risk of depression in response to

stress has been predicted previously [46, 49, 50] and is consistent with the departure from a

simple additive genetic model seen in twin-studies of recurrent depressive disorder [83].

Through international research efforts such as the PGC and UK Biobank, there are ever-

increasing sample sizes available for understanding the genetics of MDD. These resources are

beginning, and will continue to, identify genome-wide significant loci [42, 84, 85]. However,

the lack of environmental data and/or their reliability, makes the study of genetic individual’s

response to their negative effects, and their contribution to the onset of MDD and other stress-

related disorders, difficult. As a way to address this limitation, we generated a proxy for stress-

sensitivity through modelling the interaction between SNP allele and MDD status on neuroti-

cism score in a GWIS approach. Thus, we sought to identify the genetic underpinnings of indi-

vidual’s sensitivity to stress response (stress-sensitivity) through those variants that contribute

to higher neuroticism levels only in individuals with a lifetime diagnosis of MDD but not in

healthy controls.

We performed a GWIS to identify loci showing differential effects on neuroticism scores in

individuals with and without MDD (so called stress-sensitivity proxy). No SNPs reached

genome-wide significance, but 14 SNPs from 8 loci reached suggestive significance levels (see

S4 Table for prior evidence of associated phenotypes). Enrichment analysis showed no evi-

dence for enrichment of specific pathways or tissues. The top two loci, PTP4A1-PHF3-EYS
and ZNF366 have been previously associated with alcohol dependence [86–90], alcohol intake

(dbGaP: phs000342) and glucocorticoid receptor function [91–93]. The most significant SNP

in this study, rs319924, is an intronic variant in EYS that is a potential eQTL for LGSN [76], a

gene previously associated with male-specific depression [94]. This is of particular interest

given previous studies linking alcohol consumption, stress and the risk of depression [95–

100]. However, findings should be interpreted with caution, as these loci did not reach

genome-wide significance at current sample size. Evidence of an eQTL effect was predicted for

a lead SNP in LATS2, a positive regulator of histone methyltransferase activity [101] a process

important in anxiety-related behaviours [102]. The prior association of the top two loci in this

study with alcohol related-phenotypes suggests that genes involved in the sensitivity to stress

may mediate the effects of stress on alcohol consumption. Some PHF3 paralogs have been

shown to be linked with depression and modulate stress response [103, 104].

Gene-based analysis identified a genome-wide significant association between ZNF366 and

stress-sensitivity. ZNF366 (also known as DC-SCRIPT) is a corepressor of transcription found

in nuclear receptor complexes including the glucocorticoid receptor. ZNF366 represses gluco-

corticoid receptor-mediated transcription in monocyte-derived dendritic cells [91]; and may

act through histone deacetylases to modulate immune response [92]. There is evidence from a

large-scale mRNA display study that PHF3, in the region underlying the most significant peak

in the single SNP analysis, may also interact, directly or indirectly, with the glucocorticoid

receptor (IntAct database [93]) but this has not been confirmed. These results reinforce the
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hypothesis that our proxy for stress-sensitivity truly reflects the genetic architecture of sensitiv-

ity to respond to stress.

We estimated a significant lower bound on common SNP-based heritability for stress-sen-

sitivity of 5%. Whilst the known genetic overlap between MDD and neuroticism was detect-

able, the lack of genetic correlation with stress-sensitivity, reinforced by results from multiple

regression analyses, indicated a lack of significant overlap in the genetics factors underpinning

stress-sensitivity and MDD or neuroticism. This analysis may be limited by our sample size,

although using the largest available meta-analyses of MDD and neuroticism [42, 77] did not

decrease the proportion of liability explained by the PRSSS. We note, that as such meta-analy-

ses increase in size it is likely, as with the effects of smoking in schizophrenia [105, 106], that

the indirect genetic effects of the environment on the risk of depression will be detected by

GWAS. However, through studies such as ours, or similar, the mechanism for the effect of the

risk alleles may be clarified.

Further, we show that such genetic information in stress-sensitivity could significantly

improve the proportion of liability to MDD predicted by PRS based only on additive genetic

effects on MDD identified by large GWAS. The summary results from the GWIS were used to

derive a PRS reflecting the genetic difference in stress-sensitivity. This variable significantly

predicted liability to MDD in GS:SFHS (p = 5.2x10-3, Empirical-p = 0.04 after 10,000 permuta-

tions), although this finding could not be replicated in UKB (Empirical-p = 0.68), likely due to

lack of power. This is consistent with the expectation that the larger the discovery sample (i.e.

UKB), the greater the accuracy of the weighting and the more predictive the PRS [107]. Multi-

ple regression models in GS:SFHS suggest that inclusion of PRS weighted by stress-sensitivity

significantly improves MDD prediction over use of either MDD and/or neuroticism weighted

PRS alone (improvement in full model p = 8.5x10-3). However, we were unable to identify a

subgroup of MDD cases with higher PRSss. The polygenic interaction approach used in our

study may, therefore, improve the interpretation of both positive and negative findings from

GWAS studies (i.e. pathways and mechanisms involved, lack of replication, or negative find-

ings in variants mediating environmental effects). Added to paralleling recent developments

in GWAS analyses, it may maximize our power to detect gene-by-environment effects in this

heterogeneous disorder.

Future studies will be required to further investigate the effects of adverse life events in indi-

viduals with high or low polygenic risk scores for stress-sensitivity. However, the methodology

presented allows addressing the genetic response to negative outcomes via proxy in the

absence of prospective environmental data.

Here we identify an independent set of risk variants for an individual’s response to negative

outcomes and show that incorporating information across many loci provides clear and repli-

cable evidence for a genetic effect of stress-sensitivity on MDD risk; identifying a potential

genetic link with alcohol intake. These results require further study, but may inform treatment

of comorbid alcohol dependency and depression.
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S3 File. GWIS summary statistics from meta-analysis.
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S1 Fig. Genetic stress-sensitivity effect representation. Genetic stress-sensitivity effect on

MDD (βSS) is defined as the difference between the regression coefficient in MDD cases (βA)

and the regression coefficient in controls (βB) from linear models regressed on EPQN, adjusted

by covariates. A1: allele 1. A2 allele 2.

(TIFF)

S2 Fig. QQ plot from stress-sensitivity meta-analysis. QQ plot of GWIS from sample size

weighted meta-analysis (λ = 0.997; s.e. = 1.05x10-5). All SNPs wit p< 2x10-5, p threshold (dot

line) where some SNPs start to deviate from null distribution going outside 95% confidence

intervals (grey shadow), were selected to perform DEPICT analyses to assess pathway and

functional genomic analyses. 27 top variants from 12 independent loci were selected.

(TIFF)

S3 Fig. QQ plots of GWIS p values. QQ plots of GWIS from (A) UKB (λ = 1.014; s.e. =

1.027x10-5), (B) GS:SFHS (λ = 0.997; s.e. = 7.989x10-6). The 95% confidence interval is shaded

in grey.

(TIFF)

S4 Fig. Miami plots on UK Biobank and Generation Scotland: Scottish Family Health

Study. Miami plots showing comparison between association profile between SS and MDD

main additive effects. Miami plots from (A) UKB filtering for SS p values (top) and MDD p val-

ues (bottom), (B) GS:SFHS filtering for SS p values (top) and MDD p values (bottom). Filter at

p = 1x10-3. The x-axis is base-paired chromosomal position and y-axis is the significance

(-log10 p) of association with (up; red dots) SS effect and (down; blue dots) MDD. Dot line:

genome-wide suggestive threshold (p = 1x10-5) at the filtered effect; dashes lines: p value = 0.01

and 0.05 at compared effect.

(TIFF)

S5 Fig. Manhattan plot of the gene-based test for stress-sensitivity. Manhattan plot showing
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Héléna A Gaspar (MRC Social Genetic and Developmental Psychiatry Centre, King’s College

London, London, GB), Michael Gill (Department of Psychiatry, Trinity College Dublin, Dub-

lin, IE), Fernando S Goes (Psychiatry & Behavioral Sciences, Johns Hopkins University, Balti-

more, MD, US), Scott D Gordon (Genetics and Computational Biology, QIMR Berghofer

Medical Research Institute, Brisbane, QLD, AU), Jakob Grove (Department of Biomedicine,

Aarhus University, Aarhus, DK, iSEQ, Centre for Integrative Sequencing, Aarhus University,

Aarhus, DK, iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric

Research, DK and Bioinformatics Research Centre, Aarhus University, Aarhus, DK), Lynsey S

Hall (Division of Psychiatry, University of Edinburgh, Edinburgh, GB and Institute of Genetic

Medicine, Newcastle University, Newcastle upon Tyne, GB), Christine Søholm Hansen

(iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, DK and

Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut,

Copenhagen, DK), Thomas F Hansen (Danish Headache Centre, Department of Neurology,

Rigshospitalet, Glostrup, DK, Institute of Biological Psychiatry, Mental Health Center Sct.

Hans, Mental Health Services Capital Region of Denmark, Copenhagen, DK and iPSYCH,

The Lundbeck Foundation Initiative for Psychiatric Research, Copenhagen, DK), Stefan

Herms (Institute of Human Genetics, University of Bonn, Bonn, DE, Life&Brain Center,

Department of Genomics, University of Bonn, Bonn, DE and Human Genomics Research

Group, Department of Biomedicine, University of Basel, Basel, CH), Ian B Hickie (Brain and

Mind Centre, University of Sydney, Sydney, NSW, AU), Per Hoffmann (Institute of Human

Genetics, University of Bonn, Bonn, DE, Life&Brain Center, Department of Genomics, Uni-

versity of Bonn, Bonn, DE and Human Genomics Research Group, Department of Biomedi-

cine, University of Basel, Basel, CH), Georg Homuth (Interfaculty Institute for Genetics and

Functional Genomics, Department of Functional Genomics, University Medicine and Ernst

Moritz Arndt University Greifswald, Greifswald, Mecklenburg-Vorpommern, DE), Carsten

Horn (Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences,

Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH), Jouke-Jan Hottenga

(Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Uni-

versiteit Amsterdam, Amsterdam, NL), David M Hougaard (iPSYCH, The Lundbeck Founda-

tion Initiative for Integrative Psychiatric Research, DK and Center for Neonatal Screening,

Department for Congenital Disorders, Statens Serum Institut, Copenhagen, DK), Marcus

Ising (Max Planck Institute of Psychiatry, Munich, DE), Rick Jansen (Department of Psychia-

try, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, NL), Eric Jorgenson

(Division of Research, Kaiser Permanente Northern California, Oakland, CA, US), James A

Knowles (Psychiatry & The Behavioral Sciences, University of Southern California, Los Ange-

les, CA, US), Isaac S Kohane (Department of Biomedical Informatics, Harvard Medical School,

Boston, MA, US, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, US

and Informatics Program, Boston Children’s Hospital, Boston, MA, US), Julia Kraft (Depart-

ment of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte,
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MC, Rotterdam, Zuid-Holland, NL), Daniel Umbricht (Roche Pharmaceutical Research and

Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery & Transla-

tional Medicine Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH),

Sandra Van der Auwera (Department of Psychiatry and Psychotherapy, University Medicine

Greifswald, Greifswald, Mecklenburg-Vorpommern, DE), Albert M van Hemert (Department

of Psychiatry, Leiden University Medical Center, Leiden, NL), Alexander Viktorin (Depart-

ment of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE), Peter

M Visscher (Institute for Molecular Bioscience, The University of Queensland, Brisbane,

QLD, AU and Queensland Brain Institute, The University of Queensland, Brisbane, QLD,

AU), Yunpeng Wang (iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiat-

ric Research, DK, Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental

Health Services Capital Region of Denmark, Copenhagen, DK and KG Jebsen Centre for Psy-

chosis Research, Norway Division of Mental Health and Addiction, Oslo University Hospital,

Oslo, NO), Bradley T. Webb (Virginia Institute of Psychiatric & Behavioral Genetics, Virginia

Commonwealth University, Richmond, VA, US), Shantel Marie Weinsheimer (iPSYCH, The

Lundbeck Foundation Initiative for Integrative Psychiatric Research, DK and Institute of Bio-

logical Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of

Denmark, Copenhagen, DK), Jürgen Wellmann (Institute of Epidemiology and Social Medi-

cine, University of Münster, Münster, Nordrhein-Westfalen, DE), Gonneke Willemsen (Dept

of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit

Amsterdam, Amsterdam, NL), Stephanie H Witt (Department of Genetic Epidemiology in

Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg Uni-
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